删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

畜禽养殖粪污工程化处理对污水理化性状的影响

本站小编 Free考研考试/2022-01-01

盛婧,,
周炜,
王子臣,
张丽萍,
孙国峰
农业部种养结合重点实验室/江苏省农业科学院循环农业研究中心 南京 210014
基金项目: 江苏省农业科技自主创新资金项目CX(16)1003

详细信息
作者简介:盛婧, 研究方向为环境养分循环利用工程。E-mail:nkysj@hotmail.com
中图分类号:S19;S181

计量

文章访问数:883
HTML全文浏览量:0
PDF下载量:701
被引次数:0
出版历程

收稿日期:2017-11-07
录用日期:2018-01-22
刊出日期:2018-06-01

Effect of engineering treatment on the physical and chemical properties of livestock slurry

SHENG Jing,,
ZHOU Wei,
WANG Zichen,
ZHANG Liping,
SUN Guofeng
Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture/Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Funds: the Independent Innovation Project of Jiangsu Province, ChinaCX(16)1003

More Information
Corresponding author:SHENG Jing, E-mail: nkysj@hotmail.com


摘要
HTML全文
(0)(2)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:种养结合是畜禽养殖场粪污处理与利用的一项重要措施。集约化生产条件下,种养结合主要依赖于工程措施来实现,然而工程措施对粪污水理化性状的影响研究不足,限制了粪污水的资源化利用。本文在综述近年来国内外粪污处理各环节理化性状变化研究基础上,重点对固液分离、厌氧发酵、贮存等3个工程环节对粪污理化性状的影响效果进行分析,旨在为规模养殖场粪污资源化利用提供依据。养殖污水经各环节工程措施处理,其颗粒物数量及大小、养分与重金属含量及形态均发生了显著变化。固液分离环节通过机械去除大颗粒物,显著减少粪污水中干物质(DM)总量,降低总氮(TN)和总磷(TP),粪污水中DM、TN、TP的去除效率分别为5.7%~65%、2.7%~49%、2.3%~82%。不同固液分离方法对粪污水中DM、TN、TP的去除效率差异显著,同时还显著地改变粪污水的N:P:K比例,但对Cu、Zn的去除效率较低。厌氧发酵环节主要分解小颗粒物,经厌氧发酵后,粪污水中干物质量大幅度减少,TN、K总量基本不变,但TN组成发生改变,NH4+-N含量显著增加,其占TN的比例达46%~93%;而P、Cu、Zn部分以晶体形式附着于发酵罐内壁,其余部分还会发生液相向固相大量转移的现象。贮存环节由于小颗粒物降解和大颗粒物转化、沉降,使粪污水中干物质总量削减,液相部分TN、NH4+-N、TP、K浓度显著降低。在20~25℃条件下,露天贮存90 d,畜禽粪污沼液TN、TP和K浓度分别降低39%~77%、61%~78%和23%~54%。以上研究对于制定粪污水农田利用工程方案、区域养分综合管理计划具有重要的指导作用。然而,由于我国粪污处理大多采用多级处理工艺措施,而国内外研究侧重于单项工程措施对污水理化性状的影响,现有数据支撑难以提出针对粪污水农田利用的最佳养殖粪污处理方案和组合。粪污水农田利用迫切需要加强两个方面的工作:1)处理工程对粪污水理化性状影响的全过程监测评估;2)基于农田消纳的粪污矿质养分固液相分配定向调控技术研发。
关键词:养殖污水/
固液分离/
厌氧发酵/
贮存/
理化性状
Abstract:The combination of livestock breeding and crops planting is an important strategy for manure utilization and management. Under intensive production, the combination of livestock breeding and crops planting mainly relies on efficient modern engineering measures. However, limited studies have been carried out on the effects of engineering measures on the physic-chemical properties of slurry, which restricts the utilization of slurry as a resource. This paper reviewed recent literatures and analyzed the effects of three engineering measures (manure solid-liquid separation, anaerobic fermentation and storage) on the physic-chemical properties of slurry. The results showed that the number and size of particles, the concentration and morphology of nutrients and heavy metals in slurry changed significantly under intervention of engineering measures. In solid-liquid separation process, almost all large particles in slurry were removed and dry matter (DM), total N (TN) and total P (TP) also significantly reduced, with respective removal efficiencies of 5.7%-65% for DM, 2.7%-49% TN and 2.3%-82% for TP. Removal efficiency of DM, TN and TP as well as the rate N:P:K in slurry significantly varied with solid-liquid separation method. However, few heavy metals such as Cu and Zn were removed in solid-liquid separation process. Small particles decomposition mainly occurred in anaerobic fermentation process, which greatly reduced DM concentration in slurry. After anaerobic fermentation, the total amounts of TN and K changed little, while NH4+-N concentration increased significantly with proportion of TN in the range of 46%-93%. Patches of P, Cu and Zn crystals were attached on the inside walls of the tank, while the remains transferred from liquid to solid in the anaerobic fermentation process. In the storage process, the concentrations of DM, TN, NH4+-N, TP and K significantly decreased in the liquid part of the slurry, due to the decomposition and deposition. After 90 days of storage at 20-25℃, TN, TP and K concentrations in biogas slurry decreased respectively by 39%-77%, 61%-78% and 23%-54%. The study provided relevant guide on designing slurry treatment engineering and formulating comprehensive nutrient management plans in a given region. Since the area of farmland under slurry application is limited in China, livestock manure treatment usually follows multi-stage treatment technology. However, most of the current studies have focused on single engineering measure for the physic-chemical properties of slurry. Thus, it is difficult to put forward the best manure treatment scheme and treatment combination through such data. It was recommended that future works of slurry utilization in farmlands focused on:(1) the monitoring and evaluation of the response of physic-chemical properties of slurry to the entire processes of engineering treatments; (2) the development of directional regulation technology of slurry nutrient between solid and liquid phases for better application of slurry in farmlands.
Key words:Livestock slurry/
Solid-liquid separation/
Anaerobic fermentation/
Storage/
Physical and chemical properties

HTML全文

表1固液分离方法对畜禽粪污固液分离效率的影响
Table1.Effects of solid-liquid separation methods on solid-liquid separation efficiency of livestock slurry
固液分离方法
Solid-liquid separation method
分离颗粒物粒径
Size of separated particle (μm)
去除效率
Remove efficiency (%)
分离后的污水
Liquid
分离出的固体
Solid
参考文献
Reference
干物质
Dry matter
总氮
Total N
总磷
Total P
NH4+-N:NN︰P︰KNH4+-N︰NN︰P︰K
沉淀Sediment< 1 00042~5522~3744~520.91︰0.03︰0.70.31︰0.4︰0.3[23-25]
筛分Sieve> 5005.7~312.7~5.52.3~120.31︰0.01︰0.30.21:0.6:0.2[17, 23]
螺旋挤压Screw press> 30019~354.4~1012~30[3, 17, 20, 23]
压滤Belt press> 1 00043~4824~3130~42[17, 23, 26]
沉降离心Decanter centrifuge> 2055~6527~4962~820.81︰0.02︰0.80.21︰0.5︰0.2[3, 6, 23]
原料粪污NH4+-N︰N为0.3, N︰P︰K为1︰0.2︰0.4。NH4+-N︰total N was 0.3, and N︰P︰K ratio was 1︰0.2︰0.4 in slurry.


下载: 导出CSV
表2猪粪和牛粪厌氧发酵前后氮磷在固相和液相中的比例变化[28, 33]
Table2.Change rates of nitrogen and phosphorus ratios in solid and liquid phases of samples obtained before and after anaerobic digestion of pig and dairy manure
%
粪污类型
Manure type
N比例N ratioP比例P ratio
固相(沼渣)
Solid phase (sludge)
液相(沼液)
Liquid phase (biogas slurry)
固相(沼渣)
Solid phase (sludge)
固相(沉淀)
Solid phase (sediment)
液相(沼液)
Liquid phase (biogas slurry)
猪粪Pig manure-28.0+10.7-30.0+35.1-77.3
牛粪Dairy manure+2.8-8.7+38.7+0.02-79.5


下载: 导出CSV

参考文献(42)
[1]中国农业年鉴编辑委员会编. 中国农业年鉴2014[M]. 北京: 中国农业出版社, 2015
China Agriculture Yearbook Editorial Committee. China Ag-riculture Yearbook 2014[M]. Beijing: China Agriculture Press, 2015
[2]FANGUEIRO D, MARGARIDA G, GRILO J, et al. Propor-tion, composition and potential N mineralization of particle size fractions obtained by mechanical separation of animal slurry[J]. Biosystems Engineering, 2010, 106(4):333-337 doi: 10.1016/j.biosystemseng.2010.02.010
[3]M?LLER H B, SOMMER S G, AHRING B K. Separation ef-ficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2):189-196 doi: 10.1016/S0960-8524(02)00047-0
[4]SOMMER S G, PETERSEN S O, S?RENSEN P, et al. Me-thane and carbon dioxide emissions and nitrogen turnover during liquid manure storage[J]. Nutrient Cycling in Agroe-cosystems, 2007, 78(1):27-36 doi: 10.1007/s10705-006-9072-4
[5]常志州, 黄红英, 吴军伟, 等.猪和奶牛粪便的粒径及养分分布对固液分离效率的影响[J].农业环境科学学报, 2010, 29(2):392-395 https://wenku.baidu.com/view/bfdf8a5a2b160b4e767fcf92.html
CHANG Z Z, HUANG H Y, WU J W, et al. Effect of particle sizes and nutrient contents in swine and cow manures on efficiency of solid-liquid separation[J]. Journal of Agro-Environment Science, 2010, 29(2):392-395 https://wenku.baidu.com/view/bfdf8a5a2b160b4e767fcf92.html
[6]HJORTH M, CHRISTENSEN K V, CHRISTENSEN M L, et al. Solid-liquid separation of animal slurry in theory and practice. A review[J]. Agronomy for Sustainable Development, 2010, 30(1):153-180 doi: 10.1051/agro/2009010
[7]POPOVIC O, JENSEN L S. Storage temperature affects dis-tribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction[J]. Water Research, 2012, 46(12):3849-3858 doi: 10.1016/j.watres.2012.04.020
[8]李书田, 刘荣乐, 陕红.我国主要畜禽粪便养分含量及变化分析[J].农业环境科学学报, 2009, 28(1):179-184 https://wenku.baidu.com/view/7abc1ef3f705cc175527097c.html
LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1):179-184 https://wenku.baidu.com/view/7abc1ef3f705cc175527097c.html
[9]SáNCHEZ M, GONZáLEZ J L. The fertilizer value of pig slurry. Ⅰ. Values depending on the type of operation[J]. Bioresource Technology, 2005, 96(10):1117-1123 doi: 10.1016/j.biortech.2004.10.002
[10]单英杰, 章明奎.不同来源畜禽粪的养分和污染物组成[J].中国生态农业学报, 2012, 20(1):80-86 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20120115&flag=1
SHAN Y J, ZHANG M K. Contents of nutrient elements and pollutants in different sources of animal manures[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1):80-86 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20120115&flag=1
[11]祝其丽, 李清, 胡启春, 等.猪场清粪方式调查与沼气工程适用性分析[J].中国沼气, 2011, 29(1):26-28 http://mall.cnki.net/magazine/Article/ZGZQ201101007.htm
ZHU Q L, LI Q, HU Q C, et al. Investigation and analysis of animal manure collection methods on pig farms and their applicability to the anaerobic digestion[J]. China Biogas, 2011, 29(1):26-28 http://mall.cnki.net/magazine/Article/ZGZQ201101007.htm
[12]刘永丰, 许振成, 吴根义, 等.清粪方式对养猪废水中污染物迁移转化的影响[J].江苏农业科学, 2012, 40(6):318-320 https://wenku.baidu.com/view/bae8f7c90c22590102029df7.html
LIU Y F, XU Z C, WU G Y, et al. Effects of manure col-lection methods on the transfer and transformation of pollutant in pig wastewater[J]. Jiangsu Agricultural Sciences, 2012, 40(6):318-320 https://wenku.baidu.com/view/bae8f7c90c22590102029df7.html
[13]郭德杰, 吴华山, 马艳, 等.不同猪群粪、尿产生量的监测[J].江苏农业学报, 2011, 27(3):516-522 http://mall.cnki.net/magazine/Article/JSNB201103011.htm
GUO D J, WU H S, MA Y, et al. Monitoring of the amount of pig manure and urine in different swineries[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(3):516-522 http://mall.cnki.net/magazine/Article/JSNB201103011.htm
[14]M?LLER H B, LUND I, SOMMER S G. Solid-liquid separa-tion of livestock slurry:Efficiency and cost[J]. Bioresource Technology, 2000, 74(3):223-229 doi: 10.1016/S0960-8524(00)00016-X
[15]吴军伟. 畜禽粪便固液分离技术研究[D]. 南京: 南京农业大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10307-2010173749.htm
WU J W. The research on solid and liquid separation of animal manure[D]. Nanjing: Nanjing Agricultural University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-10307-2010173749.htm
[16]PETERS K, HJORTH M, JENSEN L S, et al. Carbon, nitro-gen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry[J]. Journal of Environment Quality, 2011, 40(1):224-232 doi: 10.2134/jeq2010.0217
[17]江滔, 温志国, 马旭光, 等.畜禽粪便固液分离技术特点及效率评估[J].农业工程学报, 2016, 32(S2):218-225 http://www.cnki.com.cn/Article/CJFDTotal-NJYJ201408054.htm
JIANG T, WEN Z G, MA X G, et al. Characteristics and effi-ciency evaluation of livestock slurry separation technolo-gies[J]. Transactions of the CSAE, 2016, 32(S2):218-225 http://www.cnki.com.cn/Article/CJFDTotal-NJYJ201408054.htm
[18]MARCATO C E, PINELLI E, POUECH P, et al. Particle size and metal distributions in anaerobically digested pig slurry[J]. Bioresource Technology, 2008, 99(7):2340-2348 doi: 10.1016/j.biortech.2007.05.013
[19]JAPENGA J, HARMSEN K. Determination of mass balances and ionic balances in animal manure[J]. Netherlands Journal of Agricultural Science, 1990, 38:354-367 http://cn.bing.com/academic/profile?id=4f02344010c150c760aa0c600fc2262d&encoded=0&v=paper_preview&mkt=zh-cn
[20]BéLINE F, DAUMER M L, GUIZIOU F. Biological aerobic treatment of pig slurry in France:Nutrients removal efficien-cy and separation performances[J]. Transactions of the ASAE, 2004, 47(3):857-864 doi: 10.13031/2013.16097
[21]RIA?O B, GARCíA-GONZáLEZ M C. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction[J]. Journal of Environmental Management, 2014, 132:87-93 http://cn.bing.com/academic/profile?id=11cb04bcd92d807e2f590318ac6ad9c9&encoded=0&v=paper_preview&mkt=zh-cn
[22]J?RGENSEN K, JENSEN L S. Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies[J]. Bioresource Tech-nology, 2009, 100(12):3088-3096 doi: 10.1016/j.biortech.2009.01.065
[23]FANGUEIRO D, LOPES C, SURGY S, et al. Effect of the pig slurry separation techniques on the characteristics and potential availability of N to plants in the resulting liquid and solid fractions[J]. Biosystems Engineering, 2012, 113(2):187-194 doi: 10.1016/j.biosystemseng.2012.07.006
[24]DENGL W, LI Y, CHEN Z A, et al. Separation of swine slurry into different concentration fractions and its influence on biogas fermentation[J]. Applied Energy, 2014, 114:504-511 doi: 10.1016/j.apenergy.2013.10.018
[25]CONVERSE J C, KARTHIKEYAN K G. Nutrient and solids separation of flushed dairy manure by gravity settling[J]. Applied Engineering in Agriculture, 2004, 20(4):503-507 http://cn.bing.com/academic/profile?id=455dde820ad649498265ad54052e2979&encoded=0&v=paper_preview&mkt=zh-cn
[26]PIETERS J G, NEUKERMANS G G J, COLANBEEN M B A. Farm-scale membrane filtration of sow slurry[J]. Journal of Agricultural Engineering Research, 1999, 73(4):403-409 doi: 10.1006/jaer.1999.0435
[27]MASSé DI, CROTEAU F, MASSE L. The fate of crop nutri-ents during digestion of swine manure in psychrophilic an-aerobic sequencing batch reactors[J]. Bioresource Technology, 2007, 98(15):2819-2823 doi: 10.1016/j.biortech.2006.07.040
[28]靳红梅, 付广青, 常志州, 等.猪、牛粪厌氧发酵中氮素形态转化及其在沼液和沼渣中的分布[J].农业工程学报, 2012, 28(21):208-214 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201221031
JIN H M, FU G Q, CHANG Z Z, et al. Distribution of nitro-gen in liquid and solid fraction of pig and dairy manure in anaerobic digestion reactor[J]. Transactions of the CSAE, 2012, 28(21):208-214 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201221031
[29]LEVINE A D, TCHOBANOGLOUS G, ASANO T. Charac-terization of the size distribution of contaminants in wastewater:Treatment and reuse implications[J]. Journal of the Water Pollution Control Federation, 1988, 57(7):805-816 http://www.scichina.com:8083/sciGe/fileup/PDF/03yg0518.pdf
[30]ELMITWALLI T A, SOELLNER J, DE KEIZER A, et al. Bi-odegradability and change of physical characteristics of par-ticles during anaerobic digestion of domestic sewage[J]. Wa-ter Research, 2001, 35(5):1311-1317 doi: 10.1016/S0043-1354(00)00377-8
[31]ANDARAA R, ESTEBANJ M L. Transition of particle size fractions in anaerobic digestion of the solid fraction of piggery manure[J]. Biomass and Bioenergy, 2002, 23(3):229-235 doi: 10.1016/S0961-9534(02)00043-0
[32]COCOLO G, HJORTH M, ZAREBSKA A, et al. Effect of acidification on solid-liquid separation of pig slurry[J]. Bio-systems Engineering, 2016, 143:20-27 http://cn.bing.com/academic/profile?id=59519f9de0ec7ebfb85402d6265da0d4&encoded=0&v=paper_preview&mkt=zh-cn
[33]付广青, 叶小梅, 靳红梅, 等.厌氧发酵对猪与奶牛两种粪污固液相中磷含量的影响[J].农业环境科学学报, 2013, 32(1):179-184 doi: 10.11654/jaes.2013.01.026
FU G Q, YE X M, JIN H M, et al. Effect of anaerobic diges-tion on phosphorus transformation of both pig and dairy manure[J]. Journal of Agro-Environment Science, 2013, 32(1):179-184 doi: 10.11654/jaes.2013.01.026
[34]周杨, 章明奎.长三角城郊区沼液化学组分特点及其农用重金属污染风险评价[J].中国农学通报, 2016, 32(20):101-106 doi: 10.11924/j.issn.1000-6850.casb16040048
ZHOU Y, ZHANG M K. Characteristics of chemical com-ponent and agricultural potential risk assessment of heavy metals of biogas slurry in suburban areas of Yangtze Del-ta[J]. Chinese Agricultural Science Bulletin, 2016, 32(20):101-106 doi: 10.11924/j.issn.1000-6850.casb16040048
[35]GüNG?R K, KARTHIKEYAN K G. Phosphorus forms and extractability in dairy manure:A case study for Wisconsin on-farm anaerobic digesters[J]. Bioresource Technology, 2008, 99(2):425-436 doi: 10.1016/j.biortech.2006.11.049
[36]靳红梅, 付广青, 常志州.猪粪及奶牛粪中温厌氧发酵对Cu和Zn的影响[J].环境科学研究, 2015, 28(3):474-480 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201503021.htm
JIN H M, FU G Q, CHANG Z Z. Effects of mesophilic an-aerobic digestion of pig and dairy manures on Cu and Zn[J]. Research of Environmental Sciences, 2015, 28(3):474-480 http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201503021.htm
[37]李轶, 冯洋洋, 张辉, 等.温度对猪粪厌氧发酵中Cu, Zn, Cr形态的影响[J].中国沼气, 2017, 35(3):11-15 http://mall.cnki.net/magazine/Article/ZGZQ201503002.htm
LI Y, FENG Y Y, ZHANG H, et al. Effects of different tem-peratures on form of Cu, Zn, Cr in anaerobic fermentation of pig manure[J]. China Biogas, 2017, 35(3):11-15 http://mall.cnki.net/magazine/Article/ZGZQ201503002.htm
[38]BURTON C H, TURNER C. Manure Management:Treatment Strategies for Sustainable Agriculture[M]. 2nd ed. Silsoe, UK:Silsoe Research Institute, 2003
[39]ZHU J, NDEGWA P M, LUO A. Changes in swine manure solids during storage may affect separation efficiency[J]. Applied Engineering in Agriculture, 2000, 16(5):571-575 doi: 10.13031/2013.5300
[40]丁京涛, 沈玉君, 孟海波, 等.沼渣沼液养分含量及稳定性分析[J].中国农业科技导报, 2016, 18(4):139-146 http://mall.cnki.net/magazine/Article/NKDB201604021.htm
DING J T, SHEN Y J, MENG H B, et al. Nutrition contents and its stability analysis of biogas residue and slurry[J]. Journal of Agricultural Science and Technology, 2016, 18(4):139-146 http://mall.cnki.net/magazine/Article/NKDB201604021.htm
[41]吴华山, 郭德杰, 马艳, 等.猪粪沼液贮存过程中养分变化[J].农业环境科学学报, 2012, 31(12):2493-2499 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212027.htm
WU H S, GUO D J, MA Y, et al. Changes of nutrients in anaerobically digested slurry of pig manure during storage[J]. Journal of Agro-Environment Science, 2012, 31(12):2493-2499 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201212027.htm
[42]刘庆玉, 李晓娟, 翟建宇, 等.不同贮存条件对沼液成分的影响[J].中国沼气, 2017, 35(1):63-66 http://mall.cnki.net/magazine/Article/ZGZQ201701014.htm
LIU Q Y, LI X J, ZHAI J Y, et al. Influence of different stor-age conditions on biogas slurry composition[J]. China Biogas, 2017, 35(1):63-66 http://mall.cnki.net/magazine/Article/ZGZQ201701014.htm

相关话题/工程 理化 农业 比例 环境科学