删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

固氮蓝藻的农业应用研究进展

本站小编 Free考研考试/2022-01-01

包江桥1,,
周伊薇1,
何璐茜1,
李琦1,
黎华寿1,
张定煌2,,,
贺鸿志1,,
1.农业部华南热带农业环境重点实验室/广东省现代生态农业与循环农业工程技术研究中心/华南农业大学资源环境学院 广州 510642
2.中山市农业科技推广中心 中山 528401
基金项目: 国家重点研发计划项目2017YFD0800903
广东省科技计划项目2015A020209152
广东省科技计划项目2016A030303050
中山市科技计划项目2014A2FC239
华南农业大学大学生创新创业训练计划项目201510564050
华南农业大学大学生创新创业训练计划项目201610564066

详细信息
作者简介:包江桥, 主要研究方向为农业生态学。E-mail: 948342123@qq.com
通讯作者:张定煌, 主要研究方向为农业技术推广, E-mail:269980562@qq.com
贺鸿志, 主要研究方向为微藻生物技术和农业生态学, E-mail:scauhhz@scau.edu.cn
中图分类号:Q939.96

计量

文章访问数:803
HTML全文浏览量:2
PDF下载量:1701
被引次数:0
出版历程

收稿日期:2017-10-20
录用日期:2017-12-23
刊出日期:2018-04-01

Research progress in agricultural application of nitrogen-fixing cyanobacteria

BAO Jiangqiao1,,
ZHOU Yiwei1,
HE Luxi1,
LI Qi1,
LI Huashou1,
ZHANG Dinghuang2,,,
HE Hongzhi1,,
1. Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
2. Zhongshan Agricultural Science and Technology Extension Center, Zhongshan 528401, China
Funds: the National Key Research and Development Program of China2017YFD0800903
the Science and Technology Planning Project of Guangdong Province, China2015A020209152
the Science and Technology Planning Project of Guangdong Province, China2016A030303050
the Science and Technology Planning Project of Zhongshan City, China2014A2FC239
the Undergraduate Innovation and Entrepreneurship Training Programs of South China Agricultural University201510564050
the Undergraduate Innovation and Entrepreneurship Training Programs of South China Agricultural University201610564066

More Information
Corresponding author:ZHANG Dinghuang, E-mail: 269980562@qq.com;HE Hongzhi, E-mail: scauhhz@scau.edu.cn


摘要
HTML全文
(0)(0)
参考文献(58)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:作为可固氮固碳的自养光合微生物,固氮蓝藻是一种非常重要的微生物资源。关于固氮蓝藻在农业生产上的应用始于1939年印度首次报道用固氮蓝藻肥田,之后一段时期虽然受到国际广泛关注,但最终并未实现规模化推广应用。究其原因既与化肥在世界范围内的大规模使用有关,也与自身技术相对复杂、成本高和可靠性低有关。对于前者虽然化肥的农业增产作用巨大,但其对农业自身和生态环境的负面影响日益凸显。而对于后者,新的固氮蓝藻规模化生产技术和新的接种技术的发展正在逐步消除这些缺陷。在当前国家要求农业"减量化"和"低碳化"发展的背景下,固氮蓝藻作为生态环保的生物肥料可能迎来新的发展契机。同时,除了作为生物肥料,近年来国内外的研究表明固氮蓝藻具有多重农业应用价值,可能在作物生长调节剂和生物农药开发、农业环境污染防治和农业生态环境保护等方面发挥作用。因此,本文就国内外近5年(2013-2017年)关于固氮蓝藻的农业应用进展进行了全面综述,并就存在的问题和今后的发展方向做了展望。今后固氮蓝藻作物生长调节方面需深入研究藻激素的代谢和调控机制,藻接种技术方面需深入研究生物膜中藻类和其他微生物的互作关系,抗病虫害方面需要进行更多的田间试验以评估其实际应用效果并阐明抗性机制,降解有机农药方面需深入研究降解关键酶、降解途径和大田应用技术,生态环境保护方面需评估固氮蓝藻抗旱抗盐碱实际应用效果并阐明其机理。
关键词:固氮蓝藻/
农业应用/
生物肥料/
生物农药/
生长调节剂/
接种技术
Abstract:As autotrophic photosynthetic micro-organisms with the ability to fix nitrogen and carbon into the soil, nitrogen-fixing cyanobacteria belong to an important microbial resource. The first report on their application in agriculture came from India in 1939. Although it subsequently had global attention, large-scale popularization and application of nitrogen-fixing cyanobacteria were not implemented in the end. The reasons were related to the wholesome use of chemical fertilizers in the world and the immature application technology of nitrogen-fixing cyanobacteria with high complexity, high cost and low reliability. For the former, although chemical fertilizers promoted crop production dramatically, its negative effects on agriculture and the eco-environment were already a growing concern in the public thinking. For the latter, with the development of new technologies in large-scale production and inoculation of nitrogen-fixing cyanobacteria, these defects were gradually eliminated. In the big background of current national policy advocating for "reduction" and "low carbon" development in agriculture, the application of nitrogen-fixing cyanobacteria (as green bio-fertilizer) has ushered in a new development opportunity for future application. In addition to bio-fertilizers in agriculture, studies in recent years have shown that nitrogen-fixing cyanobacteria were used in crop growth regulation, bio-pesticide development, agricultural pollution control and agro-ecological protection. This paper reviewed the progress in studies on agricultural application of nitrogen-fixing cyanobacteria in the past five years (2013-2017) at national and international scales. Moreover, the existing problems and future development directions were discussed. It was hoped that the review provided a summary reference for the development of this field in China. In recent years, there have been new ideas and considerable progresses in the application of nitrogen-fixing cyanobacteria in crop growth regulation, bio-fertilizer production and application, pest control, agricultural pollution treatment and agro-ecological protection. However, there were still problems in this field. Before large-scale application, these problems needed to be solved through further re-search. This included research on algal hormone metabolism and regulation mechanism, metabolic interaction of micro-organisms in biofilm, field evaluation of the degree of crop protection, protection mechanism, pathways and key enzymes of pesticides degradation, field-applied technologies, and effects and mechanism of drought and salt resistance.
Key words:Nitrogen-fixing cyanobacteria/
Agricultural application/
Bio-fertilizer/
Bio-pesticide/
Crop growth regulator/
Application method

HTML全文

参考文献(58)
[1]PRASANNA R, BABU S, RANA A, et al. Evaluating the es-tablishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat-rice cropping se-quence[J]. Experimental Agriculture, 2013, 49(3):416-434 doi: 10.1017/S001447971200107X
[2]SINGH N K, DHAR D W, TABASSUM R. Role of cyano-bacteria in crop protection[J]. Proceedings of the National Academy of Sciences, India Section B:Biological Sciences, 2016, 86(1):1-8 doi: 10.1007/s40011-014-0445-1
[3]GUPTA V, RATHA S K, SOOD A, et al. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)-Prospects and challenges[J]. Algal Research, 2013, 2(2):79-97 doi: 10.1016/j.algal.2013.01.006
[4]DE P K. The role of blue-green algae in nitrogen fixation in rice-fields[J]. Proceedings of the Royal Society B:Biological Sciences, 1939, 127(846):121-139 doi: 10.1098/rspb.1939.0014
[5]黎尚豪.固氮蓝藻作为晚稻肥源的研究[J].水生生物学集刊, 1981, 7(3):417-423 http://www.irgrid.ac.cn/handle/1471x/251341?mode=full&submit_simple=Show+full+item+record
LI S H. Studies on the nitrogen-fixing blue-green algae as biofertilizer in the late rice crop[J]. Acta Hydrobiologica Sinica, 1981, 7(3):417-423 http://www.irgrid.ac.cn/handle/1471x/251341?mode=full&submit_simple=Show+full+item+record
[6]AKOIJAM C, SINGH A K, RAI A N. Characterization of free-living cyanobacterial strains and their competence to colonize rice roots[J]. Biology and Fertility of Soils, 2012, 48(6):679-687 doi: 10.1007/s00374-012-0664-7
[7]WANG R F, PENG B, HUANG K Y. The research progress of CO2 sequestration by algal bio-fertilizer in China[J]. Jour-nal of CO2 Utilization, 2015, 11:67-70 doi: 10.1016/j.jcou.2015.01.007
[8]LU Y D, XU J. Phytohormones in microalgae:A new oppor-tunity for microalgal biotechnology?[J]. Trends in Plant Sci-ence, 2015, 20(5):273-282 doi: 10.1016/j.tplants.2015.01.006
[9]?I?KOVá E, KUBE? M, DOBREV P I, et al. Control of cy-tokinin and auxin homeostasis in cyanobacteria and algae[J]. Annals of Botany, 2017, 119(1):151-166 doi: 10.1093/aob/mcw194
[10]BOOPATHI T, BALAMURUGAN V, GOPINATH S, et al. Characterization of IAA production by the mangrove cyano-bacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis[J]. Journal of Plant Growth Regulation, 2013, 32(4):758-766 doi: 10.1007/s00344-013-9342-8
[11]MAZHAR S, COHEN J D, HASNAIN S. Auxin producing non-heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat[J]. Journal of Basic Microbiology, 2013, 53(12):996-1003 doi: 10.1002/jobm.v53.12
[12]HUSSAIN A, SHAH S T, RAHMAN H, et al. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots[J]. Frontiers in Plant Science, 2015, doi: 10.3389/fpls.2015.00046
[13]HASHTROUDI M S, GHASSEMPOUR A, RIAHI H, et al. Endogenous auxins in plant growth-promoting cyanobac-teria -Anabaena vaginicola and Nostoc calcicola[J]. Journal of Applied Phycology, 2013, 25(2):379-386 doi: 10.1007/s10811-012-9872-7
[14]HUSSAIN A, HAMAYUN M, SHAH S T. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12[J]. Current Microbiology, 2013, 67(5):624-630 doi: 10.1007/s00284-013-0408-4
[15]FRéBORTOVá J, PLíHAL O, FLOROVá V, et al. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria)[J]. Journal of Phycology, 2017, 53(3):703-714 doi: 10.1111/jpy.2017.53.issue-3
[16]PITTOL M, DURSO L, VALIATI V H, et al. Agronomic and environmental aspects of diazotrophic bacteria in rice fields[J]. Annals of Microbiology, 2016, 66(2):511-527 doi: 10.1007/s13213-015-1154-6
[17]BARMINSKI R, STORTEBOOM H, DAVIS J G. Develop-ment and evaluation of an organically certifiable growth me-dium for cultivation of cyanobacteria[J]. Journal of Applied Phycology, 2016, 28(5):2623-2630 doi: 10.1007/s10811-016-0819-2
[18]SILVA P G, DE JESúS SILVA H. Biomass production of Tolypothrix tenuis as a basic component of a cyanobacterial biofertilizer[J]. Journal of Applied Phycology, 2013, 25(6):1729-1736 doi: 10.1007/s10811-013-0035-2
[19]RENUKA N, SOOD A, RATHA S K, et al. Evaluation of mi-croalgal consortia for treatment of primary treated sewage effluent and biomass production[J]. Journal of Applied Phy-cology, 2013, 25(5):1529-1537 doi: 10.1007/s10811-013-9982-x.pdf
[20]MUKHERJEE C, CHOWDHURY R, SUTRADHAR T, et al. Parboiled rice effluent:A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization[J]. Algal Re-search, 2016, 19:225-236 doi: 10.1016/j.algal.2016.09.009
[21]CHINTAGUNTA A D, JACOB S, BANERJEE R. Integrated bioethanol and biomanure production from potato waste[J]. Waste Management, 2016, 49:320-325 doi: 10.1016/j.wasman.2015.08.010
[22]KUMAR M, PRASANNA R, BIDYARANI N, et al. Evaluat-ing the plant growth promoting ability of thermotolerant bac-teria and cyanobacteria and their interactions with seed spice crops[J]. Scientia Horticulturae, 2013, 164:94-101 doi: 10.1016/j.scienta.2013.09.014
[23]SHARIATMADARI Z, RIAHI H, ABDI M, et al. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L.[J]. Journal of Applied Phycology, 2015, 27(6):2279-2287 doi: 10.1007/s10811-014-0512-2
[24]孔德柱, 张树峰, 周玉生, 等.固氮鱼腥藻在小麦和西红柿上的肥效[J].江苏农业科学, 2016, 44(10):499-502 http://www.cqvip.com/QK/93934X/201610/670615572.html
KONG D Z, ZHANG S F, ZHOU Y S, et al. The fertilizer ef-fects of Anabaena azotica in wheat and tomato[J]. Jiangsu Agricultural Sciences, 2016, 44(10):499-502 http://www.cqvip.com/QK/93934X/201610/670615572.html
[25]RENUKA N, PRASANNA R, SOOD A, et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat[J]. Environmental Science and Pollution Research, 2016, 23(7):6608-6620 doi: 10.1007/s11356-015-5884-6
[26]DASH N P, KUMAR A, KAUSHIK M S, et al. Cyanobacte-rial (unicellular and heterocystous) biofertilization to wetland rice influenced by nitrogenous agrochemical[J]. Journal of Applied Phycology, 2016, 28(6):3343-3351 doi: 10.1007/s10811-016-0871-y
[27]BABU S, PRASANNA R, BIDYARANI N, et al. Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools[J]. Journal of Applied Phycology, 2015, 27(1):327-338 doi: 10.1007/s10811-014-0322-6
[28]ZAYADAN B K, MATORIN D N, BAIMAKHANOVA G B, et al. Promising microbial consortia for producing biofertilizers for rice fields[J]. Microbiology, 2014, 83(4):391-397 doi: 10.1134/S0026261714040171
[29]PRASANNA R, BABU S, BIDYARANI N, et al. Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton[J]. Experimental Agriculture, 2015, 51(1):42-65 doi: 10.1017/S0014479714000143
[30]ALI M A, SATTAR M A, ISLAM M N, et al. Integrated ef-fects of organic, inorganic and biological amendments on methane emission, soil quality and rice productivity in irri-gated paddy ecosystem of Bangladesh:Field study of two consecutive rice growing seasons[J]. Plant and Soil, 2014, 378(1/2):239-252 https://www.researchgate.net/publication/261600657_Integrated_effects_of_organic_inorganic_and_biological_amendments_on_methane_emission_soil_quality_and_rice_productivity_in_irrigated_paddy_ecosystem_of_Bangladesh_Field_study_of_two_consecutive_rice_
[31]SWARNALAKSHMI K, PRASANNA R, KUMAR A, et al. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat[J]. European Journal of Soil Biology, 2013, 55:107-116 doi: 10.1016/j.ejsobi.2012.12.008
[32]BIDYARANI N, PRASANNA R, BABU S, et al. Enhance-ment of plant growth and yields in chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed in-oculants[J]. Microbiological Research, 2016, 188/189:97-105 doi: 10.1016/j.micres.2016.04.005
[33]PRASANNA R, ADAK A, VERMA S, et al. Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nu-trient dynamics[J]. Ecological Engineering, 2015, 84:532-541 doi: 10.1016/j.ecoleng.2015.09.033
[34]GUPTA V, PRASANNA R, CAMEOTRA S S, et al. Enhanc-ing the production of an antifungal compound from Anabaena laxa through modulation of environmental condi-tions and its characterization[J]. Process Biochemistry, 2013, 48(5/6):768-774 https://www.researchgate.net/publication/318185430_Plant_Growth-Promoting_Microbes_Diverse_Roles_in_Agriculture_and_Environmental_Sustainability
[35]NATARAJAN C, GUPTA V, KUMAR K, et al. Molecular characterization of a fungicidal endoglucanase from the cya-nobacterium Calothrix elenkinii[J]. Biochemical Genetics, 2013, 51(9/10):766-779 http://www.ncbi.nlm.nih.gov/pubmed/23839085
[36]PRASANNA R, CHAUDHARY V, GUPTA V, et al. Cyano-bacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato[J]. European Journal of Plant Pathology, 2013, 136(2):337-353 doi: 10.1007/s10658-013-0167-x
[37]ABDEL-HAFEZ S I I, ABO-ELYOUSR K A M, ABDEL-RAHIM I R. Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri[J]. European Journal of Phycology, 2015, 50(2):239-245 doi: 10.1080/09670262.2015.1028105
[38]ROBERTI R, GALLETTI S, BURZI P L, et al. Induction of defence responses in zucchini (Cucurbita pepo) by Ana-baena sp. water extract[J]. Biological Control, 2015, 82:61-68 doi: 10.1016/j.biocontrol.2014.12.006
[39]HOLAJJER P, KAMRA A, GAUR H S, et al. Potential of cyanobacteria for biorational management of plant parasitic nematodes:A review[J]. Crop Protection, 2013, 53:147-151 doi: 10.1016/j.cropro.2013.07.005
[40]HOLAJJER P, KAMRA A, GAUR H S, et al. Evaluation of heterocystous and non heterocystous cyanobacterial species for nematicidal activity[J]. Indian Journal of Nematology, 2013, 43(1):34-39 https://www.researchgate.net/publication/251236390_Evaluation_of_Heterocystous_and_Non_Heterocystous_Cyanobacterial_Species_for_Nematicidal_Activity
[41]MUKHERJEE C, CHOWDHURY R, RAY K. Phosphorus recycling from an unexplored source by polyphosphate ac-cumulating microalgae and cyanobacteria-A step to phosphorus security in agriculture[J]. Frontiers in Microbiology, 2015, doi: 10.3389/fmicb.2015.01421
[42]TSOLCHA O N, TEKERLEKOPOULOU A G, AKRATOS C S, et al. Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Lep-tolyngbya-based microbial consortium[J]. Journal of Cleaner Production, 2017, 148:185-193 doi: 10.1016/j.jclepro.2017.02.026
[43]DEBNATH M, BHADURY P. Adaptive responses and arse-nic transformation potential of diazotrophic cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain[J]. Journal of Applied Phycology, 2016, 28(5):2777-2792 doi: 10.1007/s10811-016-0820-9
[44]IBRAHIM W M, KARAM M A, EL-SHAHAT R M, et al. Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria[J]. Biomed Research International, 2014, doi: 10.1155/2014/392682
[45]ZHANG H J, JIANG X J, LU L P, et al. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1[J]. PLoS One, 2015, 10(7):e0131450, doi: 10.1371/journal.pone.0131450
[46]TIWARI B, SINGH S, CHAKRABORTY S, et al. Sequential role of biosorption and biodegradation in rapid removal degradation and utilization of methyl parathion as a phosphate source by a new cyanobacterial isolate Scytonema sp. BHUS-5[J]. International Journal of Phytoremediation, 2017, 19(10):884-893 doi: 10.1080/15226514.2017.1303807
[47]ABDEL-ATY A M, GAD-ALLAH T A, ALI M E M, et al. Parametric, equilibrium, and kinetic studies on biosorption of diuron by Anabaena sphaerica and Scenedesmus obliquus[J]. Environmental Progress & Sustainable Energy, 2015, 34(2):504-511 doi: 10.1002/ep.12027/pdf
[48]BHATI R, MALLICK N. Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostoc muscorum Agardh:A sustainable ap-proach[J]. Journal of Applied Phycology, 2016, 28(1):161-168 doi: 10.1007/s10811-015-0573-x
[49]JACOB S, BANERJEE R. Nutrient enrichment of organic manure through biotechnological means[J]. Waste and Bio-mass Valorization, 2017, 8(3):645-657 doi: 10.1007/s12649-016-9650-x
[50]BAR-EYAL L, EISENBERG I, FAUST A, et al. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(10):1267-1273 doi: 10.1016/j.bbabio.2015.07.008
[51]COLICA G, LI H, ROSSI F, et al. Microbial secreted ex-opolysaccharides affect the hydrological behavior of in-duced biological soil crusts in desert sandy soils[J]. Soil Biology and Biochemistry, 2014, 68:62-70 doi: 10.1016/j.soilbio.2013.09.017
[52]WU Y W, RAO B Q, WU P P, et al. Development of artifi-cially induced biological soil crusts in fields and their ef-fects on top soil[J]. Plant and Soil, 2013, 370(1/2):115-124 https://www.researchgate.net/publication/249011428_Development_of_artificially_induced_biological_soil_crusts_in_fields_and_their_effects_on_top_soil
[53]LIN C S, WU J T. Tolerance of soil algae and cyanobacteria to drought stress[J]. Journal of Phycology, 2014, 50(1):131-139 doi: 10.1111/jpy.2014.50.issue-1
[54]张丙昌, 王敬竹, 张元明, 等.水分对具鞘微鞘藻构建人工藻结皮的作用[J].应用生态学报, 2013, 24(2):535-540 http://www.cjae.net/CN/abstract/abstract18946.shtml
ZHANG B C, WANG J Z, ZHANG Y M, et al. Roles of moisture in constructing man-made algal crust with Micoco-leus vaginatus[J]. Chinese Journal of Applied Ecology, 2013, 24(2):535-540 http://www.cjae.net/CN/abstract/abstract18946.shtml
[55]吴丽, 张高科, 陈晓国, 等.生物结皮的发育演替与微生物生物量变化[J].环境科学, 2014, 35(4):1479-1485 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hjkx201404040
WU L, ZHANG G K, CHEN X G, et al. Development and succession of biological soil crusts and the changes of microbial biomasses[J]. Environmental Science, 2014, 35(4):1479-1485 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hjkx201404040
[56]XU Y H, ROSSI F, COLICA G, et al. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils:A potential approach for the restoration of desertified areas[J]. Biology and Fertility of Soils, 2013, 49(2):143-152 doi: 10.1007/s00374-012-0707-0
[57]李寒, 张晓黎, 郭晓红, 等.滨海盐渍化土壤中蓝细菌多样性及分布[J].微生物学通报, 2015, 42(5):957-967 http://journals.im.ac.cn/html/wswxtbcn/2015/5/tb15050957.htm
LI H, ZHANG X L, GUO X H, et al. Diversity and distribu-tion of cyanobacteria in coastal saline soils[J]. Microbiology China, 2015, 42(5):957-967 http://journals.im.ac.cn/html/wswxtbcn/2015/5/tb15050957.htm
[58]CUDDY W S, SUMMERELL B A, GEHRINGER M M, et al. Nostoc, Microcoleus and Leptolyngbya inoculums are detri-mental to the growth of wheat (Triticum aestivum L.) under salt stress[J]. Plant and Soil, 2013, 370(1/2):317-332 https://www.researchgate.net/publication/315761462_Biotechnological_applications_to_improve_salinity_stress_in_wheat

相关话题/农业 技术 微生物 华南农业大学 资源