高凡1, 2,,,
郭家选1, 2,,,
沈元月1, 2,
张雨桐1,
郑然1
1.农业应用新技术北京市重点实验室/北京农学院资源与环境系 北京 102206
2.北京林果业生态环境功能提升协同创新中心 北京 102206
基金项目: 国家自然科学基金项目>31471837
北京市自然科学基金重点项目6171001
科技北京百名领军人才培养计划项目LJ201612
详细信息
作者简介:董少康, 主要研究方向为草莓水肥高效利用及产量与品质调控。E-mail:dskxiwang@163.com
通讯作者:高凡, 主要研究方向为水资源与水环境, E-mail:gaofan@bua.edu.cn
郭家选, 主要研究方向为农业水资源利用, E-mail:guojiaxuangjx@163.com
中图分类号:S668.4;S275.3计量
文章访问数:802
HTML全文浏览量:1
PDF下载量:1012
被引次数:0
出版历程
收稿日期:2017-10-18
录用日期:2017-12-29
刊出日期:2018-05-01
Effects of water and nitrogen coupling on strawberry yield and quality under partial root-zone irrigation
DONG Shaokang1,,GAO Fan1, 2,,,
GUO Jiaxuan1, 2,,,
SHEN Yuanyue1, 2,
ZHANG Yutong1,
ZHENG Ran1
1. Beijing Key Laboratory of New Technology in Agricultural Application/Department of Resources and Environment, Beijing University of Agriculture, Beijing 102206, China
2. Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
Funds: This study was funded by the National Natural Science Foundation of China31471837
the Key Project of Beijing Natural Science Foundation6171001
the Science and Technology Beijing 100 Leading Talent Training ProgramLJ201612
More Information
Corresponding author:GAO Fan, E-mail: gaofan@bua.edu.cn;GUO Jiaxuan, E-mail: guojiaxuangjx@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:本文采用盆栽分根固定干湿灌溉试验研究了水氮耦合对草莓果实品质及产量的影响。试验设置水分和氮肥2个因素,草莓根区设置湿润与干旱(A/B)两个区域,湿润一侧(A)全生育期内土壤相对含水量均为80%±5%,干旱一侧(B)土壤相对含水量设置为20%±5%(重度水分胁迫)、35%±5%(中度水分胁迫)、50%±5%(轻度水分胁迫)3个处理水平;施氮量设置0.5 g(N)·kg-1(低氮)、0.75 g(N)·kg-1(中氮)、1 g(N)·kg-1(高氮)3个处理水平,对照处理(即常规生产模式,CK)A/B两区域均为80%±5%土壤相对含水量、中氮[0.75 g(N)·kg-1]水平。研究结果表明:1)分根干湿灌溉显著减少了草莓全生育期灌溉水量,提高了草莓的水分利用效率(WUE),全生育期内干旱一侧(B)土壤相对含水量为20%±5%、35%±5%和50%±5%的水分处理总灌溉水量分别为14.77 L·株-1、16.62 L·株-1和18.47 L·株-1,较CK处理(24.62 L·株-1)分别减少40.0%、32.5%和25.0%;以中度水分胁迫中氮水平的草莓水分利用效率(WUE)最高,为13.55 g·L-1,较CK处理提高47.1%,而产量没有明显减少;耦合分根干湿灌溉和施氮处理,轻度水分胁迫中氮水平下草莓果实产量最高,较CK处理提高4.4%。2)从对草莓果实品质影响角度分析,中氮及中度水分胁迫处理的草莓果实中Vc含量、可溶性糖含量、有机酸含量和糖酸比分别比CK处理增加63.3%、12.5%、3.9%和8.3%。综合考虑不同水氮耦合处理对草莓果实品质、产量、水分利用效率及对农业环境安全的影响,以湿润一侧(A)保持土壤相对含水量为80%±5%、干旱一侧(B)保持土壤相对含水量为35%±5%,且0.75 g(N)·kg-1施氮水平为设施草莓生产适宜的水肥管理模式。
关键词:草莓/
分根灌溉/
施氮量/
水氮耦合/
品质/
产量/
水分利用效率
Abstract:The effect of water and nitrogen application on efficient utilization of water and fertilizer under partial root-zone irrigation has attracted the attention of scientists around the globe. In order to improve the quality and yield of strawberry along with the utilization efficiency of water and fertilizer, this study examined the effects of integrated water and nitrogen management on the yield and quality of strawberry under partial root-zone irrigation. The main objective of the study was to provide a scientific basis for highly efficient utilization of water and fertilizer of strawberry. In the experiment, two factors (water and nitrogen) were set up with three levels for each factor. The roots of strawberry were well distributed in two zones-wetting and drying zones (A/B). The relative water content of soil was 80%±5% in the wetting zone (A). For the drying zone (B), the relative water content was in three levels, which were 20%±5% (sever water stress, SS), 35%±5% (moderate water stress, MS) and 50%±5% (light water stress, LS). At the same time, nitrogen fertilizer was set at 3 levels, which were respectively 0.50 g(N)·kg-1 (lower N, LN), 0.75 g(N)·kg-1 (medium N, MN) and 1.00 g(N)·kg-1 (high N, HN). The two (A and B) zones of control (CK) were 80%±5% of soil relative water content and medium nitrogen[0.75 g(N)·kg-1] fertilize rate (i.e., the conventional production mode). Based on the test data, the growth, quality and yield of strawberry under different water and nitrogen conditions were analyzed and evaluated using Principal Component Analysis (CPA) and polynomial fitting. The main findings of the study were as follows. 1) Due to partial root-zone irrigation, water utilization significantly dropped while water use efficiency (WUE) improved during the growth period of strawberry. The rates of irrigation water under SS, MS and LS treatments were respectively 14.77 L, 16.62 L and 18.47 L per plant. Compared with the control treatment (which was 25 L·plant-1), irrigate rates for 3 treatments dropped respectively by 40.0%, 32.5% and 25.0%. Under MSMN treatment, WUE of strawberry was 13.55 g·L-1, 47.1% higher than that under CK treatment; but the yield change was not significant. The yield of strawberry was the highest under LSMN treatment among all treatments, which increased 4.4% over that under CK treatment. 2) The contents of Vc, soluble sugar, organic acid and sugar acid ratio of strawberry fruits under MSMN treatment were respectively 63.32%, 12.48%, 3.90% and 8.31% higher than that under CK treatment. The effects of integrated water and nitrogen management on the yield, quality and WUE of strawberry indicated that the most suitable model of water and nitrogen management for the production of strawberry was 0.75 g(N)·kg-1 nitrogen rate with relative soil water content of 80%±5% in the wet zone and 35%±5% in the dry zone (i.e., MSMN).
Key words:Strawberry/
Partial root-zone irrigation/
Nitrogen application rate/
Water and nitrogen coupling/
Quality/
Yield/
Water use efficiency
HTML全文

图1中氮施肥下不同水分胁迫对土壤碱解氮含量的影响
同一时间不同字母表示在0.05水平差异显著。
Figure1.Effects of different water stresses on contents of soil alkaline nitrogen with medium nitrogen treatments
Different lowercase letters at the same time mean significant differences at 0.05 level.


图2分根灌溉下水氮耦合对草莓株高(A)、茎粗(B)及叶面积(C)的影响
同一调查时期不同字母表示在0.05水平差异显著。
Figure2.Effects of water and nitrogen coupling on the plant height (A), stem diameter (B) and leaf area (C) of strawberry under partial root-zone irrigation
Different lowercase letters at the same time mean significant differences at 0.05 level.


图3分根灌溉下水氮耦合对单株草莓总产量的影响
不同小写字母表示草莓总产量在0.05水平差异显著。
Figure3.Effect of water and nitrogen coupling on accumulative yield per plant under partial root zone irrigation
Different lowercase letters mean significant differences in total strawberry yield among treatments at 0.05 level.


图4施氮量、土壤相对含水量与单株草莓产量的关系
Figure4.Relationship of strawberry yield per plant with nitrogen and relative water content of soil

表1草莓分根灌溉下水氮耦合试验处理
Table1.Treatments of water and nitrogen coupling on strawberry in partial root-zone irrigation
水分处理 Water treatment | 土壤相对含水量Relative soil water content (%) | 氮肥处理 Nitrogen treatment | 施氮量 Nitrogen rate [g(N)·kg-1] | ||
A侧Zone A | B侧Zone B | ||||
CK | 80 | 80 | CK | 0.75 | |
LS | 80 | 50 | LN | 0.50 | |
MS | 80 | 35 | MN | 0.75 | |
SS | 80 | 20 | HN | 1.00 |

表2不同水氮处理下草莓单株产量及水分利用效率(WUE)
Table2.Yield per plant and water use efficiency (WUE) of strawberry under different water and nitrogen treatments
处理 Treatment | 单株 全生育期灌水量 Irrigation at whole growth period per plant (L) | 单株产量 Yield per plant (g) | 单株水分 利用效率 Water use effi- ciency (g·L-1) |
CK | 24.62 | 226.78±9.26a | 9.21±0.38d |
LSLN | 18.47 | 118.22±4.83d | 6.40±0.26e |
LSMN | 18.47 | 236.36±9.65a | 12.80±0.52b |
LSHN | 18.47 | 182.45±7.45b | 9.88±0.40d |
MSLN | 16.62 | 191.49±7.82b | 11.52±0.47c |
MSMN | 16.62 | 225.24±9.20a | 13.55±0.55b |
MSHN | 16.62 | 184.03±7.51b | 11.07±0.45c |
SSLN | 14.77 | 164.49±6.72c | 11.13±0.45c |
SSMN | 14.77 | 226.01±9.23a | 15.30±0.62a |
SSHN | 14.77 | 196.68±8.03b | 13.31±0.54b |
???表中数据为平均值±标准差, 同列不同小写字母表示不同处理间在0.05水平差异显著。Data in the table are mean ± std., different lowercase letters in the same column mean significant differences at 0.05 level. |

表3根灌溉下水氮耦合对草莓根系生长的影响
Table3.Effects of water and nitrogen coupling on root growth of strawberry under partial root-zone irrigation
处理 Treatment | 地上部鲜重 Shoot fresh weight (g) | 根鲜重 Root fresh weight (g) | ? | 根长 Root length (cm) | 根冠比 Root-shoot ratio | ||
A侧 Zone A | B侧 Zone B | ? | A侧 Zone A | B侧 Zone B | |||
CK | 115.30±3.03a | 10.09±0.55gA | 12.54±0.32cA | ? | 33.63±1.81aA | 33.17±1.21bA | 0.20±0.01g |
LSLN | 65.49±2.95e | 6.40±0.22hA | 5.93±0.25eA | 27.53±1.88cA | 27.97±0.96cA | 0.19±0.00g | |
LSMN | 91.98±3.60c | 13.28±1.18fA | 14.55±0.98bA | 27.57±0.94cA | 26.17±1.80cdA | 0.30±0.01c | |
LSHN | 100.82±7.07b | 13.28±0.34fA | 11.76±0.74cB | 30.83±0.81bA | 31.57±1.13bA | 0.25±0.01f | |
MSLN | 77.47±4.40d | 17.09±0.44cA | 11.82±0.54cB | 23.77±0.60eB | 27.57±0.94cA | 0.37±0.01b | |
MSMN | 115.83±2.95a | 16.32±0.44cdA | 17.66±0.73aA | 23.67±0.76eA | 26.17±1.85cd A | 0.29±0.01cd | |
MSHN | 106.13±4.38b | 15.31±0.38deA | 14.01±0.51bB | 29.83±1.02bB | 36.67±0.99aA | 0.28±0.01de | |
SSLN | 53.53±3.17f | 14.38±0.35efA | 9.14±0.45dB | 26.33±0.68cdA | 26.27±0.88cdA | 0.44±0.01a | |
SSMN | 104.57±6.22b | 20.13±1.52bA | 9.33±0.42dB | 24.57±0.61deA | 23.97±1.74dA | 0.28±0.00e | |
SSHN | 121.97±4.32a | 24.56±0.80aA | 4.52±0.15fB | 20.57±0.62fB | 26.07±1.84cdA | 0.24±0.00f | |
显著性检验(F值) Significance test (F value) | |||||||
水分因素Water | 20.46** | 301.19** | 311.53** | 57.73** | 25.93** | 174.90** | |
氮肥因素Nitrogen | 251.46** | 111.91** | 173.65** | 8.32** | 42.80** | 164.02** | |
水分×氮肥Water × nitrogen | 19.22** | 55.35** | 70.29** | 36.35** | 10.06** | 216.13** | |
同列不同小写字母或同行不同大写字母表示在0.05水平差异显著; *、**分别表示P < 0.05和P < 0.01水平影响显著。Different lowercase letters in the same column or different capital letters in the same row indicate significant differences at 0.05 level. *, ** mean significant effects at P < 0.05 and P < 0.01 levels, respectively |

表4分根灌溉下水氮耦合对草莓果实品质的影响
Table4.Effects of water and nitrogen coupling on quality of strawberry under partial root-zone irrigation
处理Treatment | Vc含量 Vc content [mg(FW)·100g-1] | 可溶性蛋白含量 Soluble protein content [mg(FW)·g-1] | 可溶性固形物 Soluble solids content (%) | 可溶性糖含量 Soluble sugar content ( %) | 有机酸含量 Organic acid content (%) | 糖酸比 Sugar acid ratio |
CK | 47.96±1.75e | 0.65±0.02a | 10.37±0.21d | 5.77±0.02bcd | 0.77±0.04cd | 7.46±0.38bcd |
LSLN | 66.81±1.19c | 0.67±0.05a | 11.17±0.49b | 6.76±0.50 a | 0.71±0.02e | 9.46±0.47a |
LSMN | 86.19±1.54a | 0.66±0.03a | 11.80±0.26a | 6.70±0.25a | 0.90±0.03a | 7.46±0.48bcd |
LSHN | 59.66±1.94d | 0.66±0.03a | 10.67±0.31cd | 6.30±0.82abc | 0.82±0.01bc | 7.71±0.88bc |
MSLN | 49.41±3.18e | 0.62±0.03ab | 10.40±0.10cd | 5.47±0.28d | 0.81±0.02bcd | 6.76±0.45d |
MSMN | 78.33±1.09b | 0.63±0.11a | 11.20±0.46b | 6.49±0.44ab | 0.80±0.01bcd | 8.08±0.57b |
MSHN | 41.57±3.28f | 0.71±0.02a | 10.47±0.15cd | 5.80±0.61bcd | 0.83±0.05bc | 7.03±0.74cd |
SSLN | 65.38±3.52c | 0.50±0.04c | 10.87±0.21bc | 5.62±0.11cd | 0.81±0.03bcd | 6.93±0.29cd |
SSMN | 26.98±2.82h | 0.67±0.12a | 11.30±0.10b | 6.14±0.40abcd | 0.76±0.06de | 8.09±0.71b |
SSHN | 33.65±0.44g | 0.52±0.06bc | 10.30±0.20d | 5.68±0.20cd | 0.84±0.01b | 6.75±0.25d |
显著性检验(F值) Significance test (F value) | ||||||
水分因素Water | 336.68** | 6.54** | 8.02** | 7.67** | 0.18 | 8.05** |
氮肥因素Nitrogen | 164.03** | 1.95 | 25.63** | 3.72* | 6.94** | 3.87* |
水分×氮肥Water × nitrogen | 182.80** | 3.04* | 1.19 | 1.18 | 13.05** | 8.11** |
???同列不同小写字母表示在0.05水平差异显著; *、**P < 0.05和P < 0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at 0.05 level; *, ** mean significant effect at P < 0.05 and P < 0.01 levels, respectively. |

表5草莓果实品质评价主成分的特征值、贡献率和累积s贡献率
Table5.Eigenvalues, contribution proportions and cumulative contribution proportions of main principle components for strawberry quality
主成分 Principle component | 特征值 Eigenvalue | 贡献率 Contribution proportion (%) | 累计贡献率 Cumulative contribution proportion (%) |
1 | 2.81 | 46.84 | 46.84 |
2 | 1.58 | 26.36 | 73.21 |
3 | 0.76 | 12.74 | 85.95 |
4 | 0.45 | 7.46 | 93.40 |
5 | 0.39 | 6.56 | 99.97 |
6 | 0.00 | 0.03 | 100.00 |

表6不同水氮处理下草莓果实品质综合评判结果
Table6.Comprehensive evaluation of strawberry quality for different water and nitrogen treatments
处理Treatment | F1 | F2 | F3 | F | 排序Sort |
CK | 27.37 | 25.60 | -12.35 | 18.00 | 7 |
LSLN | 35.51 | 34.90 | -17.10 | 23.65 | 3 |
LSMN | 41.03 | 45.94 | -21.08 | 28.64 | 1 |
LSHN | 31.75 | 31.69 | -15.04 | 21.31 | 5 |
MSLN | 27.31 | 26.65 | -12.57 | 18.22 | 6 |
MSMN | 38.41 | 41.44 | -19.44 | 26.44 | 2 |
MSHN | 25.11 | 22.46 | -10.75 | 16.31 | 8 |
SSLN | 32.89 | 35.08 | -16.38 | 22.57 | 4 |
SSMN | 21.42 | 14.72 | -7.79 | 12.92 | 10 |
SSHN | 22.16 | 18.44 | -9.02 | 14.09 | 9 |

参考文献
[1] | 陈广锋, 杜森, 江荣风, 等.我国水肥一体化技术应用及研究现状[J].中国农技推广, 2013, 29(5):39-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnjtg201305020 CHEN G F, DU S, JIANG R F, et al. Application and research status of water and fertilizer integration technology in China[J]. China Agricultural Technology Extension, 2013, 29(5):39-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnjtg201305020 |
[2] | 黄国勤, 王兴祥, 钱海燕, 等.施用化肥对农业生态环境的负面影响及对策[J].生态环境, 2004, 13(4):656-660 http://www.cqvip.com/QK/97636B/2004004/12091167.html HUANG G Q, WANG X X, QIAN H Y, et al. Negative impact of inorganic fertilizes application on agricultural environment and its countermeasures[J]. Ecology and Environment, 2004, 13(4):656-660 http://www.cqvip.com/QK/97636B/2004004/12091167.html |
[3] | 田孝威, 宋峰, 包永佶, 等.温室草莓栽培管理技术[J].农业科技通讯, 2018, (2):216-217 http://www.docin.com/p-693405630.html TIAN X W, SONG F, BAO Y J, et al. Cultivation and management techniques of strawberry in greenhouse[J]. Bulletin of Agricultural Science and Technology, 2018, (2):216-217 http://www.docin.com/p-693405630.html |
[4] | YUAN B Z, SUN J, NISHIYAMA S. Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse[J]. Biosystems Engineering, 2004, 87(2):237-245 doi: 10.1016/j.biosystemseng.2003.10.014 |
[5] | 王燕, 蔡焕杰, 陈新明, 等.根区局部控水无压地下灌溉对番茄生理特性及产量、品质的影响[J].中国农业科学, 2007, 40(2):322-329 https://www.wenkuxiazai.com/doc/e8ff8cfff705cc175527092b.html WANG Y, CAI H J, CHEN X M, et al. Effects of crop rootzone non-pressure subirrigation on tomato physiological characteristics, yield and quality[J]. Scientia Agricultura Sinica, 2007, 40(2):322-329 https://www.wenkuxiazai.com/doc/e8ff8cfff705cc175527092b.html |
[6] | 刘明池, 小岛孝之, 田中宗浩, 等.亏缺灌溉对草莓生长和果实品质的影响[J].园艺学报, 2001, 28(4):307-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb200104005 LIU M C, TAKAYUKI K, MUNEHIRO T, et al. Effect of soil moisture on plant growth and fruit properties of strawberry[J]. Acta Horticulturae Sinica, 2001, 28(4):307-311 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb200104005 |
[7] | 隋静, 姜远茂, 彭福田, 等.施氮水平对草莓果实品质的影响[J].落叶果树, 2007, 39(1):1-3 https://www.wenkuxiazai.com/doc/254239cc4431b90d6d85c733.html SUI J, JIANG Y M, PENG F T, et al. Quality of strawberry fruit as influenced by nitrogen supplied at different levels[J]. Deciduous Fruits, 2007, 39(1):1-3 https://www.wenkuxiazai.com/doc/254239cc4431b90d6d85c733.html |
[8] | DAVIES W J, HARTUNG W. Has extrapolation from biochemistry to crop functioning worked to sustain plant production under water scarcity?[C]//Proceeding of the 4th International Crop Science Congress. Brisbane, Australia: CDROM, 2004: 26 |
[9] | 梁宗锁, 康绍忠, 胡炜, 等.控制性分根交替灌水的节水效应[J].农业工程学报, 1997, 13(4):58-63 http://www.cqvip.com/QK/90712X/1997004/2712611.html LIANG Z S, KANG S Z, HU W, et al. Effect of controlled roots divided alternative irrigation on water use efficiency[J]. Transactions of the CSAE, 1997, 13(4):58-63 http://www.cqvip.com/QK/90712X/1997004/2712611.html |
[10] | 杜太生, 康绍忠, 胡笑涛, 等.果树根系分区交替灌溉研究进展[J].农业工程学报, 2005, 21(2):172-178 http://www.cqvip.com/qk/90712X/20052/11942263.html DU T S, KANG S Z, HU X T, et al. Research progress of alternate partial rootzone irrigation on fruit tree[J]. Transactions of the CSAE, 2005, 21(2):172-178 http://www.cqvip.com/qk/90712X/20052/11942263.html |
[11] | 王翠玲, 孙协平, 宋凯, 等.有限性灌溉对设施草莓产量及水分利用效率的影响[J].水土保持学报, 2009, 23(5):133-137 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs200905029&dbname=CJFD&dbcode=CJFQ WANG C L, SUN X P, SONG K, et al. Influence of limited irrigation on yield and water use efficiency of strawberry in greenhouse[J]. Journal of Soil and Water Conservation, 2009, 23(5):133-137 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trqs200905029&dbname=CJFD&dbcode=CJFQ |
[12] | SCHORTEMEYER M, FEIL B, STAMP P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system[J]. Annals of Botany, 1993, 72(2):107-115 doi: 10.1006/anbo.1993.1087 |
[13] | 梁宗锁, 康绍忠, 石培泽, 等.隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益[J].中国农业科学, 2000, 33(6):26-32 LIANG Z S, KANG S Z, SHI P Z, et al. Effect of alternate furrow irrigation on maize production, root density and water-saving benefit[J]. Scientia Agricultura Sinica, 2000, 33(6):26-32 |
[14] | 胡田田, 康绍忠, 原丽娜, 等.不同灌溉方式对玉米根毛生长发育的影响[J].应用生态学报, 2008, 19(6):1289-1295 http://www.cjae.net/CN/abstract/abstract10724.shtml HU T T, KANG S Z, YUAN L N, et al. Effects of different irrigation patterns on the growth of maize root hair[J]. Chinese Journal of Applied Ecology, 2008, 19(6):1289-1295 http://www.cjae.net/CN/abstract/abstract10724.shtml |
[15] | KANG S Z, ZHANG J H. Controlled alternate partial root-zone irrigation:Its physiological consequences and impact on water use efficiency[J]. Journal of Experimental Botany, 2004, 55(407):2437-2446 doi: 10.1093/jxb/erh249 |
[16] | MOUSAVI S F, SOLTANI-GERDEFARAMARZI S, MOSTAFAZADEH-FARD B. Effects of partial rootzone drying on yield, yield components, and irrigation water use efficiency of canola (Brassica napus L.)[J]. Paddy and Water Environment, 2010, 8(2):157-163 doi: 10.1007/s10333-009-0194-6 |
[17] | 杜太生, 康绍忠, 张建华.不同局部根区供水对棉花生长与水分利用过程的调控效应[J].中国农业科学, 2007, 40(11):2546-2555 doi: 10.3321/j.issn:0578-1752.2007.11.020 DU T S, KANG S Z, ZHANG J H. Response of cotton growth and water use to different partial root zone irrigation[J]. Scientia Agricultura Sinica, 2007, 40(11):2546-2555 doi: 10.3321/j.issn:0578-1752.2007.11.020 |
[18] | ROMERO-CONDE A, KUSAKABE A, MELGAR J C. Physiological responses of citrus to partial rootzone drying irrigation[J]. Scientia Horticulturae, 2014, 169:234-238 doi: 10.1016/j.scienta.2014.02.022 |
[19] | 宋曼曼, 夏俭利.不同氮素水平对草莓生长的影响[J].安徽农学通报, 2013, 19(11):55 doi: 10.3969/j.issn.1007-7731.2013.11.028 SONG M M, XIA J L. Effects of different nitrogen levels on strawberry growth[J]. Anhui Agricultural Science Bulletin, 2013, 19(11):55 doi: 10.3969/j.issn.1007-7731.2013.11.028 |
[20] | 王连新, 曾峰, 张继祥.分根灌溉对草莓光合特性及水分利用效率的影响[J].山东农业科学, 2009, (3):22-24 http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI200903007.htm WANG L X, ZENG F, ZHANG J X. Effects of partial root zone irrigation on photosynthesis characteristics and water use efficiency of strawberry[J]. Shandong Agricultural Sciences, 2009, (3):22-24 http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI200903007.htm |
[21] | 董彦红, 赵志成, 张旭, 等.分根交替滴灌对管栽黄瓜光合作用及水分利用效率的影响[J].植物营养与肥料学报, 2016, 22(1):269-276 doi: 10.11674/zwyf.14179 DONG Y H, ZHAO Z C, ZHANG X, et al. Improvement of alternate partial root-zone drip irrigation on photosynthesis and water use efficiency of cucumbers[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1):269-276 doi: 10.11674/zwyf.14179 |
[22] | 武永军, 刘红侠, 梁宗锁, 等.分根区干湿交替对玉米光合速率及蒸腾效率的影响[J].西北植物学报, 1999, 19(4):605-611 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xbzwxb199904006 WU Y J, LIU H X, LIANG Z S, et al. Photosynthesis rate and transpiration efficiency change by alternately drying and wetting on maize plant[J]. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(4):605-611 http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xbzwxb199904006 |
[23] | 蔡庆生.植物生理学实验[M].北京:中国农业大学出版社, 2013 CAI Q S. Physiology Experiments[M]. Beijing:China Agricultural University Press, 2013 |
[24] | 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000 LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing:Higher Education Press, 2000 |
[25] | LOVEYS B, GRANT J, DRY P, et al. Progress in the development of partial rootzone drying[J]. Australian Grapegrower and Winemaker, 1997, 402:18-20 https://www.researchgate.net/publication/284357036_Progress_in_the_development_of_partial_rootzone_drying_of_apple_trees |
[26] | CASPARI H W, NEAL S, ALSPACH P. Partial rootzone drying. A new deficit irrigation strategy for apple[J]. Acta Horticulturae, 2004, 646:93-100 https://www.researchgate.net/publication/283963330_Partial_Rootzone_Drying_-_A_new_deficit_irrigation_strategy_for_apple |
[27] | YAO C, MORESHET S, ALONI B. Water relations and hydrolulic control of stomatal behaviour in bell pepper plant in partial root drying[J]. Plant Cell Environment, 2001, 24:227-235 doi: 10.1111/pce.2001.24.issue-2 |
[28] | COMSTOCK J P. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration[J]. Journal of Experimental Botany, 2002, 53:195-200 doi: 10.1093/jexbot/53.367.195 |
[29] | SPERRY J S, HACKE U G, OREN R, et al. Water deficits and hydraulic limits to leaf water supply[J]. Plant, Cell and Environment, 2002, 25:251-263 doi: 10.1046/j.0016-8025.2001.00799.x |
[30] | KHALLIL A A M, GRACE J. Does xylem sap ABA control the stomatal behaviour of water-stressed sycamore seedlings?[J]. Journal of Experimental Botany, 1993, 44:1127-1134 doi: 10.1093/jxb/44.7.1127 |
[31] | WILKINSON S. pH as a stress signal[J]. Plant Growth Regulation, 1999, 29:87-99 doi: 10.1023/A:1006203715640 |
[32] | LI B, FENG Z, XIE M, et al. Modulation of the root-sourced ABA signal along its way to the shoot in Vitis riparia×Vitis labrusca under water deficit[J]. Journal of Experimental Botany, 2011, 62:1731-1741 doi: 10.1093/jxb/erq390 |
[33] | LIU F L, SHAHNAZARI A, ANDERSEN M N, et al. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying:ABA signalling, leaf gas exchange, and water use efficiency[J]. Journal of Experimental Botany, 2006, 57(14):3727-3735 doi: 10.1093/jxb/erl131 |
[34] | NORTH G B, NOBEL P S. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of agave deserti (Agavaceae)[J]. American Journal of Botany, 1991, 78(7):906-915 doi: 10.1002/ajb2.1991.78.issue-7 |
[35] | 唐立松, 张建龙, 李彦, 等.植物对土壤水分变化的响应与控制性分根交替灌溉[J].干旱区研究, 2005, 22(1):90-93 http://www.cqvip.com/QK/94330X/200501/15001300.html TANG L S, ZHANG J L, LI Y, et al. Response of plants to the change of soil moisture content and the controlled alternative partial root-zone irrigation[J]. Arid Zone Research, 2005, 22(1):90-93 http://www.cqvip.com/QK/94330X/200501/15001300.html |
[36] | MITCHELL P D, CHALMERS D J, JERIE P H, et al. The use of initial withholding of irrigation and tree spacing to enhance the effect of regulated deficit irrigation on pear trees[J]. Journal of the American Society for Horticultural Science, 1986, 111(6):858-861 http://agris.fao.org/openagris/search.do?recordID=US8718249 |
[37] | ANDERSON E L. Corn root growth and distribution as influenced by tillage and nitrogen fertilization[J]. Agronomy Journal, 1987, 79(3):544-549 doi: 10.2134/agronj1987.00021962007900030029x |
[38] | 徐国伟, 王贺正, 翟志华, 等.不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J].农业工程学报, 2015, 31(10):132-141 doi: 10.11975/j.issn.1002-6819.2015.10.018 XU G W, WANG H Z, ZHAI Z H, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the CSAE, 2015, 31(10):132-141 doi: 10.11975/j.issn.1002-6819.2015.10.018 |
[39] | 孙永健, 孙园园, 李旭毅, 等.水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J].作物学报, 2009, 35(11):2055-2063 http://www.cnki.com.cn/Article/CJFDTotal-XBZW200911016.htm SUN Y J, SUN Y Y, LI X Y, et al. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11):2055-2063 http://www.cnki.com.cn/Article/CJFDTotal-XBZW200911016.htm |
[40] | JIAO D Y, XIANG M H, LI W G, et al. Dry-season irrigation and fertilisation affect the growth, reproduction, and seed traits of Plukenetia volubilis L. plants in a tropical region[J]. The Journal of Horticultural Science and Biotechnology, 2012, 87(4):311-316 doi: 10.1080/14620316.2012.11512870 |
[41] | 隋岩, 冯志文, 王翠玲, 等.水肥耦合对设施草莓生长、产量品质及水分利用效率的影响[J].山东农业大学学报:自然科学版, 2011, 42(3):369-375 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnydxxb201103008 SUI Y, FENG Z W, WANG C L, et al. Effects of water and fertilizer coupling on growth, yield and quality and water use efficiency of strawberry in greenhouse[J]. Journal of Shandong Agricultural University:Natural Science, 2011, 42(3):369-375 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnydxxb201103008 |
[42] | 郑洪波, 李亚莉, 耿庆龙, 等.不同氮素水平下的草莓生长状况研究[J].新疆农业科学, 2017, 54(1):104-109 doi: 10.6048/j.issn.1001-4330.2017.01.013 ZHENG H B, LI Y L, GENG Q L, et al. Strawberry growth under different nitrogen levels[J]. Xinjiang Agricultural Sciences, 2017, 54(1):104-109 doi: 10.6048/j.issn.1001-4330.2017.01.013 |
[43] | 万春雁, 糜林, 李金凤, 等.苗期不同水分处理对草莓花芽分化及果实早熟化的影响[J].果树学报, 2016, 33(12):1523-1531 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gskk201612008&dbname=CJFD&dbcode=CJFQ WAN C Y, MI L, LI J F, et al. Effect of different water treatments at seedling stage on flower bud differentiation and prematurity of strawberry[J]. Journal of Fruit Science, 2016, 33(12):1523-1531 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gskk201612008&dbname=CJFD&dbcode=CJFQ |
[44] | 谢安坤, 李志宏, 张云贵, 等.不同施氮水平对番茄产量、品质及土壤剖面硝态氮的影响[J].中国土壤与肥料, 2011, (1):26-29 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trfl201101007&dbname=CJFD&dbcode=CJFQ XIE A K, LI Z H, ZHANG Y G, et al. Effect of different application of nitrogen on yield and quality of tomato and nitrate in soft profile[J]. Soil and Fertilizer Sciences in China, 2011, (1):26-29 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trfl201101007&dbname=CJFD&dbcode=CJFQ |