刘红兵3,
朱波1,,
1.中国科学院山地表生过程与生态调控重点实验室/中国科学院成都山地灾害与环境研究所 成都 610041
2.中国科学院大学 北京 100049
3.四川省农业厅成都土壤肥料测试中心 成都 610041
基金项目: 国家自然科学基金项目41330744
国家自然科学基金项目41271321
国家重点基础研究发展计划(973计划)项目2012CB417101
详细信息
作者简介:任晓, 主要研究方向为土壤氮循环。E-mail:renxiao.baobao@163.com
通讯作者:朱波, 主要研究方向为土壤养分循环及面源污染控制研究。E-mail:bzhu@imde.ac.cn
中图分类号:S145.6计量
文章访问数:1039
HTML全文浏览量:3
PDF下载量:1046
被引次数:0
出版历程
收稿日期:2017-12-12
录用日期:2017-12-21
刊出日期:2018-02-01
Impact of conversion from forestland to cropland on soil N2O emission from purplish soil
REN Xiao1, 2,,LIU Hongbing3,
ZHU Bo1,,
1. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Chengdu Soil Fertilizer Testing Center, Sichuan Provincial Agricultural Department, Chengdu 610041, China
Funds: the National Natural Science Foundation of China41330744
the National Natural Science Foundation of China41271321
the National Basic Research Program of China (973 Program)2012CB417101
More Information
Corresponding author:ZHU Bo, E-mail: bzhu@imde.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土地利用方式变化是造成大气中温室气体浓度变化的主要原因之一,但土地利用方式转变,如林地转变为耕地过程对土壤氧化亚氮(N2O)排放的影响还缺乏系统研究。本研究于2016年7月中旬在四川盆地丘陵区将林地转变为耕地,并按照耕地冬小麦-夏玉米轮作方式,采用静态暗箱-气相色谱法,对比分析了耕地翻耕不施肥(CL-T)、翻耕施肥(CL-TF)和邻近林地(CK)的土壤N2O排放过程特征。结果表明,试验期间CL-T、CL-TF土壤N2O排放通量较CK均显著增加(P < 0.01),且二者的N2O排放通量在林地转变为耕地初期均有明显的排放峰。小麦季和玉米季土壤N2O排放通量[μg(N)·m-2·h-1]均值CK分别为2.52和4.60,CL-T分别为3.55和11.63,CL-TF分别为6.26和22.16,N2O排放通量玉米季显著高于小麦季。CK、CL-T和CL-TF的土壤N2O全年累积排放量[mg(N)·hm-2]分别为0.271、0.515和0.957,CL-T、CL-TF较CK分别显著增长89.8%、253.0%,说明林地转变为耕地,紫色土N2O排放迅速增加。首先翻耕改变土壤结构并显著增加土壤无机氮含量(P < 0.05),其次施肥大幅增加土壤无机氮含量导致土壤N2O的激发排放。而土壤温度和水分未发生显著改变(P>0.05),种植作物短时间内也未显著改变土壤的N2O排放。结果表明,林地转变为耕地激发土壤N2O排放的根本机制可能是提高了土壤有机氮矿化速率。但土地利用转变对土壤氮转化过程的影响以及进而改变土壤N2O的排放特征的机理有待进一步研究。
Abstract:Land use change is one of the main reasons for changes of greenhouse gases concentration in the atmosphere. However, the impacts of land use change process, such as conversion process from forestland to cropland, on soil N2O emission is still lack of a systematic study. In this study, forestland was converted into cropland in the hilly area of the Central Sichuan Basin in mid July 2016, and then planted as winter wheat-summer maize rotation from October 26, 2016 to September 15, 2017. Static chamber-gas chromatographic technique were used to compare the characteristics of N2O emission from croplands, converted from forest land with tillage without fertilizer (CL-T) and with tillage and fertilizer (CL-TF), and forestland (CK). The results showed that during the experimental period, the soil N2O emission fluxes of CL-T and CL-TF both significantly increased compared to CK (P < 0.01), and there was an obvious emission peak at the beginning of land use conversion from forestland to cropland. The mean N2O emission fluxes in the wheat season and maize season were 2.52 μg(N)·m-2·h-1 and 4.60 μg(N)·m-2·h-1 under CK, 3.55 μg(N)·m-2·h-1 and 11.63 μg(N)·m-2·h-1 under CL-T, 6.26 μg(N)·m-2·h-1 and 22.16 μg(N)·m-2·h-1 under CL-TF, respectively. N2O emission peak flux was significantly higher in maize season than in wheat season. The annual accumulative soil N2O emissions were 0.271 kg(N)·hm-2, 0.515 kg(N)·hm-2 and 0.957 kg(N)·hm-2 under CK, CL-T and CL-TF, respectively. Compared to CK, CL-T and CL-TF increased the annual accumulative soil N2O emissions by 89.8% and 253.0%, respectively. This indicated that land use conversion from forestland to cropland significantly induced the increase of N2O emission in purplish soil. Tillage changed soil structure and significantly increased soil inorganic nitrogen content (P < 0.05), then fertilizer application increased soil inorganic nitrogen content sharply by a large quantity, which resulted in pulsive N2O emission. While soil temperature (5 cm) and soil moisture (WFPS) were not changed significantly (P> 0.05), and planting did not change N2O emission significantly in short time during the process of land use conversion. It was suggested that the fundamental mechanism of stimulating N2O emission caused by land use conversion from forestland to cropland might be derived from the increase of mineralization rate of soil organic nitrogen. However, the effect of land use conversion on soil nitrogen transformation and the mechanism of changing of soil N2O emission need to be further studied.
HTML全文

图1不同处理下的土壤无机氮动态变化特征
CK:林地; CL-T:林地转为耕地, 翻耕不施肥; CL-TF:林地转为耕地, 翻耕并施肥。
Figure1.Dynamic changes of soil inorganic N contents in different treatments
CK: forestland; CL-T: cropland converted from forestland with tillage; CL-TF: cropland converted from forestland with tillage and fertilization.


图2试验期间不同处理下土壤环境因子动态变化
CK:林地; CL-T:林地转为耕地, 翻耕不施肥; CL-TF:林地转为耕地, 翻耕并施肥。
Figure2.Dynamic changes in soil environmental factors during experimental period in different treatments
CK: forestland; CL-T: cropland converted from forestland with tillage; CL-TF: cropland converted from forestland with tillage and fertilization.


图3不同处理下的土壤N2O排放通量的动态变化
CK:林地; CL-T:林地转为耕地, 翻耕不施肥; CL-TF:林地转为耕地, 翻耕并施肥。
Figure3.Dynamic changes of soil N2O emission fluxes in different treatments
CK: forestland; CL-T: cropland converted from forestland with tillage; CL-TF: cropland converted from forestland with tillage and fertilization.

表1不同处理下土壤基本理化性质
Table1.Basic physical and chemical properties of topsoil in different treatments
处理 Treatment | 容重 Bulk density (g?cm-3) | 孔隙度Porosity (%) | 黏粒含量 Clay content (%) | 粉粒含量 Silt content (%) | 砂粒含量 Sand content (%) | pH Soil pH | 全氮 Total N (g?kg-1) | 全磷 Total P (g?kg-1) | 全钾 Total K (g?kg-1) | 有机碳 Organic carbon (g?kg-1) |
CK | 1.23±0.03a | 0.54±0.01b | 17.65±0.81a | 35.84±1.00b | 46.51±0.20a | 8.26±0.05a | 2.87±0.05a | 0.45±0.04b | 21.49±0.57b | 25.95±0.62a |
CL-T | 1.16±0.02b | 0.56±0.01a | 18.05±0.43a | 40.74±1.44a | 41.21±1.00b | 8.30±0.04a | 1.18±0.08b | 0.48±0.00b | 22.78±0.37b | 11.79±1.02b |
CL-TF | 1.16±0.01b | 0.56±0.00a | 18.70±0.81a | 40.49±0.80a | 40.81±1.61b | 8.29±0.07a | 1.26±0.07b | 0.58±0.02a | 24.82±0.62a | 13.35±0.93b |
????CK:林地; CL-T:林地转为耕地, 翻耕不施肥; CL-TF:林地转为耕地, 翻耕并施肥。同列不同字母表示处理间0.05水平差异显著。CK: forestland; CL-T: cropland converted from forestland with tillage; CL-TF: cropland converted from forestland with tillage and fertilization. Different small letters in the same column indicate significant differences among treatments (P < 0.05). |

表2不同处理下土壤N2O累积排放量
Table2.Accumulative soil N2O emission flux in different treatments
[kg(N)·hm-2] | |||
处理Treatment | N2O累积排放量Accumulative N2O emission | ||
小麦季Wheat season | 玉米季Maize season | 全年Whole year | |
CK | 0.134±0.001c | 0.138±0.003c | 0.271±0.004c |
CL-T | 0.178±0.001b | 0.337±0.008b | 0.515±0.008b |
CL-TF | 0.295±0.015a | 0.662±0.009a | 0.957±0.013a |
????CK:林地; CL-T:林地转为耕地, 翻耕不施肥; CL-TF:林地转为耕地, 翻耕并施肥。同列不同字母表示处理间0.05水平差异显著。CK: forestland; CL-T: cropland converted from forestland with tillage; CL-TF: cropland converted from forestland with tillage and fertilization. Different small letters in the same column indicate significant differences among treatments (P < 0.05). |

参考文献
[1] | IPCC. Climate change 2013: The physical science basis: Summary for policymakers[R]. Stockholm, Sweden: IPCC, 2013: 465–570 |
[2] | WANG G X, MA H Y, QIAN J, et al. Impact of land use changes on soil carbon, nitrogen and phosphorus and water pollution in an arid region of northwest China[J]. Soil Use and Management, 2004, 20(1): 32–39 doi: 10.1079/SUM2003220 |
[3] | FLECHARD C R, AMBUS P, SKIBA U, et al. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe[J]. Agriculture, Ecosystems and Environment, 2007, 121(1/2): 135–152 https://www.sciencedirect.com/science/article/pii/S0167880906004385 |
[4] | TAKAKAI F, MORISHITA T, HASHIDOKO Y, et al. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia[J]. Soil Science and Plant Nutrition, 2006, 52: 662–674 doi: 10.1111/j.1747-0765.2006.00084.x |
[5] | WAIRIU M, LAL R. Tillage and land use effects on soil microporosity in Ohio, USA and Kolombangara, Solomon Islands[J]. Soil and Tillage Research, 2006, 88(1/2): 80–84 https://www.sciencedirect.com/science/article/pii/S016719870600033X |
[6] | CALDERóN F J, JACKSON L E, SCOW K M, et al. Microbial responses to simulated tillage in cultivated and uncultivated soils[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1547–1559 https://www.sciencedirect.com/science/article/pii/S0038071700000675 |
[7] | WOODS L E. Active organic matter distribution in the surface 15 cm of undisturbed and cultivated soil[J]. Biology and Fertility of Soils, 1989, 8(3): 271–278 doi: 10.1007/BF00266490 |
[8] | CHATSKIKH D, OLESEN J. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley[J]. Soil and Tillage Research, 2007, 97(1): 5–18 doi: 10.1016/j.still.2007.08.004 |
[9] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008–1010 doi: 10.1126/science.1182570 |
[10] | DAI Y, DI H J, CAMERON K C, et al. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil[J]. Science of the Total Environment, 2013, 465: 125–135 doi: 10.1016/j.scitotenv.2012.08.091 |
[11] | 刘韵, 柳文丽, 朱波.施肥方式对冬小麦-夏玉米轮作土壤N2O排放的影响[J].土壤学报, 2016, 53(3): 735–745 http://www.cjae.net/CN/abstract/abstract20120.shtml LIU Y, LIU W L, ZHU B. Effect of fertilization regime on soil N2O emission from upland field under wheat-maize rotation system[J]. Acta Pedologica Sinica, 2016, 53(3): 735–745 http://www.cjae.net/CN/abstract/abstract20120.shtml |
[12] | 柳文丽, 李锡鹏, 沈茜, 等.施肥方式对冬小麦季紫色土N2O排放特征的影响[J].中国生态农业学报, 2014, 22(9): 1029–1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014905&flag=1 LIU W L, LI X P, SHEN X, et al. Effects of fertilizer application regimes on soil N2O emissions in the croplands of purple soil in the Sichuan Basin during wheat season[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1029–1037 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014905&flag=1 |
[13] | 于亚军, 高美荣, 朱波.小麦-玉米轮作田与菜地N2O排放的对比研究[J].土壤学报, 2012, 49(1): 96–103 doi: 10.11766/trxb201103280115 YU Y J, GAO M R, ZHU B. Comparison study on N2O emissions from field under wheat-maize rotation system and field under vegetable cultivation[J]. Acta Pedologica Sinica, 2012, 49(1): 96–103 doi: 10.11766/trxb201103280115 |
[14] | 王小国, 朱波, 高美荣, 等.四川桤柏混交林土壤N2O排放的实测与模拟[J].中国环境科学, 2009, 29(3): 242–247 http://lprapp14.fao.org/XML_Output/2014/CN/CN0_2014_11_1.xml WANG X G, ZHU B, GAO M R, et al. Measurement and simulation of N2O emissions from a alder and cypress mixed plantation in hilly areas of the central Sichuan Basin[J]. China Environmental Science, 2009, 29(3): 242–247 http://lprapp14.fao.org/XML_Output/2014/CN/CN0_2014_11_1.xml |
[15] | 柯韵, 杨红薇, 王小国, 等.紫色土坡耕地退耕还林对土壤N2O排放的影响[J].农业环境科学学报, 2015, 34(7): 1398–1406 doi: 10.11654/jaes.2015.07.024 KE Y, YANG H W, WANG X G, et al. Effect of returning cropland to forestland on N2O emissions from sloping purple soil[J]. Journal of Agro-Environment Science, 2015, 34(7): 1398–1406 doi: 10.11654/jaes.2015.07.024 |
[16] | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000: 13–52 LU R K. Analytical Methods of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000: 13–52 |
[17] | LIU H, ZHAO P, LU P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China[J]. Agriculture, ecosystems and environment, 2008, 124(1): 125–135 https://www.sciencedirect.com/science/article/pii/S0167880907002307 |
[18] | CHENG J, LEE X, ZHOU Z, et al. Nitrous oxide emissions from different land use patterns in a typical karst region, Southwest China[J]. Acta Geochimica, 2013, 32(2): 137–145 http://cn.bing.com/academic/profile?id=d2929ab3f29ab2117ac240f4d09881a3&encoded=0&v=paper_preview&mkt=zh-cn |
[19] | áLVARO-FUENTES J, ARRúE J L, BIELSA A, et al. Simulating climate change and land use effects on soil nitrous oxide emissions in Mediterranean conditions using the Daycent model[J]. Agriculture, Ecosystems and Environment, 2017, 238: 78–88 https://digital.csic.es/handle/10261/141160 |
[20] | BRONICK C J, LAL R. Soil structure and management: A review[J]. Geoderma, 2005, 124: 3–22 doi: 10.1016/j.geoderma.2004.03.005 |
[21] | 刘晓利, 何园球, 李成亮, 等.不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J].土壤学报, 2008, 45(3): 459–465 http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_trxb200803011 LIU X L, HE Y Q, LI C L, et al. Distribution and physical properties of soil water-stable aggregates in red soils different in land use and soil fertility[J]. Acta Pedologica Sinica, 2008, 45(3): 459–465 http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_trxb200803011 |
[22] | 项虹艳, 朱波, 况福虹, 等.氮肥施用对紫色土-玉米根系系统N2O排放的影响[J].环境科学学报, 2007, 27(3): 413–420 http://manu30.magtech.com.cn/zwyy/CN/Y2006/V12/I6/840 XIANG H Y, ZHU B, KUANG F H, et al. Effects of nitrogen fertilizer application on N2O emission in a purple soil and maize root system[J]. Acta Scientiae Circumstantiae, 2007, 27(3): 413–420 http://manu30.magtech.com.cn/zwyy/CN/Y2006/V12/I6/840 |
[23] | PETERSEN S O, SCHJONNING P, THOMSEN I K, et al. Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content[J]. Soil Biology and Biochemistry, 2008, 40(4): 967–977 doi: 10.1016/j.soilbio.2007.11.017 |
[24] | 陈书涛, 黄耀, 郑循华, 等.种植不同作物对农田N2O和CH4排放的影响及其驱动因子[J].气候与环境研究, 2007, 12(2): 147–155 http://www.plantnutrifert.org/CN/abstract/abstract4261.shtml CHEN S T, HUANG Y, ZHENG X H, et al. Nitrous oxide and methane emissions from croplands with different crops and driving factors[J]. Climatic and Environmental Research, 2007, 12(2): 147–155 http://www.plantnutrifert.org/CN/abstract/abstract4261.shtml |
[25] | 唐柄哲, 何丙辉, 闫建梅.川中丘陵区土地利用方式对土壤理化性质影响的灰色关联分析[J].应用生态学报, 2016, 27(5): 1445–1452 https://www.wenkuxiazai.com/doc/ddac9ceb915f804d2a16c137.html Tang B Z, He B H, Yan J M. Gray correlation analysis of the impact of land use types on soil physical and chemical properties in the hilly areas of central Sichuan, China[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1445–1452 https://www.wenkuxiazai.com/doc/ddac9ceb915f804d2a16c137.html |
[26] | YANG L, ZHANG F, GAO Q, et al. Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China[J]. Catena, 2010, 82(1): 15–22 doi: 10.1016/j.catena.2010.04.004 |
[27] | 李铭, 朱利川, 张全发, 等.不同土地利用类型对丹江口库区土壤氮矿化的影响[J].植物生态学报, 2012, 36(6): 530–538 http://mall.cnki.net/magazine/Article/DZDQ201402009.htm LI M, ZHU L C, ZHANG Q F, et al. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 530–538 http://mall.cnki.net/magazine/Article/DZDQ201402009.htm |
[28] | ZHANG J B, ZHU T B, MENG T Z, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China[J]. Soil Biology and Biochemistry, 2013, 62: 107–114 doi: 10.1016/j.soilbio.2013.03.006 |