删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

蛋白质磷酸化修饰与种子休眠及萌发调控

本站小编 Free考研考试/2022-01-01

赵晓亭1, 毛凯涛1, 徐佳慧1,2, 郑钏1,3, 罗晓峰1, 舒凯,1,*1西北工业大学生态环境学院, 西安 710129
2中国农业大学农学院, 北京 100193
3四川农业大学生态农业研究所, 成都 611130

Protein Phosphorylation and Its Regulatory Roles in Seed Dormancy and Germination

Xiaoting Zhao1, Kaitao Mao1, Jiahui Xu1,2, Chuan Zheng1,3, Xiaofeng Luo1, Kai Shu,1,*1School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
3Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China

通讯作者: *E-mail:kshu@nwpu.edu.cn

责任编辑: 朱亚娜
收稿日期:2021-01-15接受日期:2021-04-19
基金资助:国家自然科学基金(31872804)
国家自然科学基金(31701064)


Corresponding authors: *E-mail:kshu@nwpu.edu.cn
Received:2021-01-15Accepted:2021-04-19


摘要
种子休眠与萌发是截然不同而又紧密联系的两个生理过程, 也是植物生命周期中的关键阶段, 对自然状态下的植物物种繁殖与地理分布以及农业生产均具有重要意义, 且两个过程受不同内源激素和环境信号之间的精确互作调控。大量研究表明, 蛋白质磷酸化修饰作为一种重要的翻译后修饰方式, 参与调控种子休眠与萌发以及植物逆境胁迫响应等过程并发挥重要作用。该文简要介绍了蛋白质磷酸化、去磷酸化修饰过程及其功能, 系统总结了蛋白质磷酸化修饰在种子休眠与萌发过程中的调控作用, 并展望了未来的研究方向。
关键词: 种子;休眠;萌发;蛋白质磷酸化;植物激素

Abstract
Seed dormancy and germination are two distinct but closely related physiological processes, which are also key stages during plant life-cycle and have great significance to agricultural production, plant species reproduction, and geographical distribution. These processes are precisely regulated by interactions between different endogenous phytohormones and environmental signals. A large number of studies have shown that protein phosphorylation, plays an important role in regulating seed dormancy and germination, as well as plant response to stresses. This review paper briefly introduces the procedures and functions of protein phosphorylation and dephosphorylation modification, and summarizes the regulatory roles of protein phosphorylation modification in seed dormancy and germination. Finally, some future research directions are prospected.
Keywords:seed;dormancy;germination;protein phosphorylation;phytohormone


PDF (863KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
赵晓亭, 毛凯涛, 徐佳慧, 郑钏, 罗晓峰, 舒凯. 蛋白质磷酸化修饰与种子休眠及萌发调控. 植物学报, 2021, 56(4): 488-499 doi:10.11983/CBB21011
Zhao Xiaoting, Mao Kaitao, Xu Jiahui, Zheng Chuan, Luo Xiaofeng, Shu Kai. Protein Phosphorylation and Its Regulatory Roles in Seed Dormancy and Germination. Chinese Bulletin of Botany, 2021, 56(4): 488-499 doi:10.11983/CBB21011




种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014)。种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要。该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017)。在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020)。因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义。

种子休眠与萌发受到内源激素与外界环境因子的精细互作调控。在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008)。ABA与GA拮抗调控种子休眠与萌发。ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021)。除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL)。这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016)。除植物激素外, 环境因子也参与调控种子休眠与萌发。例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019)。红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009)。当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017)。水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019)。

蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015)。蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011)。去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程。这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化。蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020)。

蛋白质磷酸化修饰在调控植物根系生长、开花时间、种子休眠与萌发以及生物/非生物胁迫响应等方面发挥重要作用。本文简要介绍了蛋白质磷酸化修饰、去磷酸化修饰过程及其功能, 系统综述了近年来蛋白质磷酸化修饰在调控种子休眠与萌发过程中的主要进展, 重点总结了磷酸化相关基因在该过程中的分子功能与调控通路, 并展望了未来的研究方向。

1 蛋白质磷酸化与去磷酸化的分子过程及功能

PKs、类受体激酶(receptor-like kinases, RLKs)和PPs在蛋白质磷酸化和去磷酸化修饰过程中扮演至关重要的角色(张静和侯岁稳, 2019)。PKs将底物蛋白的特定位点磷酸化, 使底物蛋白的分子构象发生改变, 进而使其活性缺失或获得。PPs则将被磷酸化的底物蛋白特定氨基酸残基上的磷酸基团去除, 恢复磷酸化之前的蛋白活性。而RLKs是一大类特殊的激酶, 作为特定的跨膜蛋白参与磷酸化修饰。

PKs是催化蛋白质磷酸化过程的关键酶(Jha et al., 2017)。目前, 已经在拟南芥(Arabidopsis thaliana)、大豆(Glycine max)和水稻(Oryza sativa)等多种植物中分离出大量PKs。在细胞信号转导和细胞周期调控等过程中, PKs形成了纵横交错的调控网络(Shen et al., 2005)。这类酶通过磷酸化修饰调节蛋白活性, 使其发挥相应的生理功能。PKs的种类较多, 根据其底物蛋白被磷酸化的氨基酸残基种类, 可将其分为5类, 分别为丝氨酸/苏氨酸蛋白激酶、酪氨酸蛋白激酶、组/赖/精氨酸蛋白激酶、半胱氨酸蛋白激酶以及天冬氨酰基/谷氨酰基蛋白激酶(Hanks and Hunter, 1995)。目前已发现的植物蛋白激酶大多是前3类。

RLKs是PKs家族中重要而特殊的一类, 同时在植物中也是较大的基因家族之一(Ye et al., 2017), 具有独特的蛋白结构。RLKs是定位于细胞质膜上的跨膜蛋白, 主要由包含胞外结构域、跨膜结构域和胞内激酶域三大结构域和一段信号肽序列组成(Shiu and Bleecker, 2003)。在信号转导过程中, 胞外结构域首先识别受体, 感知细胞外信号, 跨膜结构域将该信号传递至细胞质一侧, 胞内激酶结构域与下游底物蛋白相互作用, 启动磷酸化等一系列生化反应, 最后将信号传递到细胞核内, 调控下游基因表达, 使其进行信号输出(Ye et al., 2017), 从而帮助生物体适应外界环境变化。

PPs是催化蛋白质去磷酸化过程的酶, 与PKs相对应存在, 共同构成磷酸化和去磷酸化这一重要的蛋白质活性开关系统(Luan, 2003)。PPs通过水解磷酸基团将对应底物蛋白去磷酸化, 其效应与PKs的作用正好相反。根据去磷酸化的氨基酸残基的不同, PPs可分为丝氨酸/苏氨酸磷酸酶、酪氨酸磷酸酶和双特异性磷酸酶(Schweighofer and Meskiene, 2015)。

2 PKs和RLKs参与种子休眠与萌发

在种子休眠与萌发调控过程中, PKs可直接发挥作用, 或通过影响ABA/GA等激素信号转导间接调控种子休眠与萌发以及逆境响应等生物学过程。目前, 在种子休眠与萌发方面研究相对较多的主要有4种激酶, 即丝裂原活化的蛋白激酶(mitogen-activated protein kinases, MAPKs)、钙依赖性蛋白激酶(calcium- dependent protein kinases, CDPKs)、蔗糖非发酵型1相关蛋白激酶(sucrose non-fermentation 1-related protein kinase, SnRKs)和RLKs (表1)。

Table 1
表1
表1蛋白质磷酸化修饰过程中参与种子休眠与萌发的主要调节基因
Table 1The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
大类关键基因分子功能参考文献
蛋白激
MAPKsMPK8通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换。Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发。Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发。Lee et al., 2015
MKK3MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠。Nakamura et al., 2016; Torada et al., 2016
CPKsCPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制。Zhu et al., 2007
CPK12CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发。Zhao et al., 2011a, 2011b
CPK32CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发。Choi et al., 2005
SnRKsSnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应。Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发。Kim et al., 2012
类受体
激酶
RLKsGRACE编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠。Wu et al., 2017
RPK1RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发。Hong et al., 1997; Osakabe et al., 2005
CRK28CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发。Pelagio-Flores et al., 2019
CRK45过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发。Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发。Zhang et al., 2018; Wang et al., 2019
OsLecRKOsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发。
Cheng et al., 2013
磷酸酶PP2CsAHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠。Née et al., 2017; Nishimura et al., 2018
PP2C-a10PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发。Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发。
Merlot et al., 2001; Raghavendra et al., 2010
RDO5RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠。Xiang et al., 2014
FsPP2C1过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发。
González-García et al., 2003; Saavedra et al., 2010
HONHON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡。
Kim et al., 2013
脂质磷
酸酶
LPP2后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发。Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶SLP2SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发。Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶FRY1FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发。
Xiong et al., 2001

新窗口打开|下载CSV

2.1 MAPKs参与种子休眠与萌发

MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005)。同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008)。拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019)。TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015)。因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019)。

AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009)。在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009)。因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009)。同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019)。此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015)。与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控。

MKK3位于MAPKK途径上, 在控制谷物种子休眠中发挥重要作用(Nakamura et al., 2016)。小麦(Triticum aestivum) TaMKK3-A位于4A染色体上, 是种子休眠位点Phs1的候选基因(Martinez et al., 2020); 小麦品系MEL29MEL31显示出不同的休眠水平, MEL29种子萌发率比MEL31高。TaMKK3-A基因在MEL29种子中表达水平高于MEL31, 而较高的TaMKK3-A表达促进了休眠释放(Torada et al., 2016)。而大麦(Hordeum vulgare)在5H染色体上有2个主要的种子休眠数量性状位点SD1SD2 (Gong et al., 2014), 其中SD2所处的Qsd2-AK位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠。此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016)。然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚。

2.2 CPKs参与种子休眠与萌发

钙是植物细胞信号转导的主要调节剂, 已被证明是参与ABA信号转导的重要第二信使(Finkelstein et al., 2002; Hepler, 2005)。植物钙调蛋白和CDPKs等可作为钙传感蛋白, 其中CDPKs是植物中最典型的钙信号之一(Cheng et al., 2002; Luan et al., 2002)。

CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006)。拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a)。CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007)。cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚。而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a)。与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发。拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发。CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005)。

2.3 SnRKs参与种子休眠与萌发

SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族。SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控。snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009)。因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007)。此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008)。

有意思的是, 水稻含有10个SnRK2激酶(SAPK1-10) (Kobayashi et al., 2004), 也可分为3个亚类。SAPK2是水稻SnRK2亚类II家族的成员, sapk2突变体种子在萌发和萌发后阶段表现出ABA不敏感表型, 但外源ABA处理并不上调SAPK2的表达。ABA受体PYL/RCAR5在SAPK2上游起作用, 并激活SAPK2的激酶活性, 进而通过ABRE结合因子OREB1介导ABA信号转导, 诱导ABA依赖的ABRE启动子活性, 从而负调控种子萌发及萌发后的幼苗生长(Kim et al., 2012)。

2.4 RLKs参与种子休眠与萌发

RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993)。通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫。LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a)。GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017)。外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究。同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997)。RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究。

CRK28是一种富含半胱氨酸的类受体激酶(CRKs), 在种子萌发期间正调控ABA信号(Pelagio- Flores et al., 2019)。与野生型相比, crk28突变体种子萌发率无显著差异, 而35S:CRK28过表达的种子萌发率较低, 且表现出对ABA超敏感表型; 后续研究发现, CRK28上调ABI3ABI5的表达, 从而导致ABA反应增强(Pelagio-Flores et al., 2019)。CRKs家族的另一个成员CRK45也参与种子萌发期间对ABA的响应(Zhang et al., 2013)。在无ABA的情况下, 野生型、crk4535S:CRK45的种子萌发率相似; 但在ABA存在的情况下, crk45表现出对ABA不敏感的表型, 而35S:CRK45表现出相反的表型; 进一步研究发现, CRK45过表达上调了ABA合成基因(NCED3NCED5ABA1ABA2AAO3)及ABA响应基因(ABF1-4MYC2)的表达水平, 从而正调控ABA信号转导, 延缓种子萌发(Zhang et al., 2013)。

CARK1和CARK6是一类胞质类受体激酶(RLCKs), 属于RLCK VIII亚家族, 在ABA信号转导中发挥积极作用(Wang et al., 2019)。与野生型相比, cark1cark6突变体种子对ABA不敏感, 其过表达种子对ABA更敏感; 且CARK1和CARK6与ABA受体(RCAR11、RCAR12、RCAR13和RCAR14)均能相互作用, 使受体蛋白磷酸化, 进而促进ABA信号转导(Zhang et al., 2018; Li et al., 2019), 最终削弱种子萌发。OsLecRK是从水稻中分离出来的G型凝集素类受体激酶, 在种子萌发和植物免疫中具有双重作用(Cheng et al., 2013)。在种子萌发过程中, 萌发信号(如生长因子)会刺激OsLecRK表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013)。因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题。

3 蛋白磷酸酶参与种子休眠与萌发

蛋白磷酸酶2C (PP2C)是一类丝氨酸/苏氨酸蛋白磷酸酶, 是高等植物中存在的最大的蛋白磷酸酶家族(Singh et al., 2010)。目前, 已经在植物中发现了多种PP2C类磷酸酶, 它们中的大多数都参与ABA通路的信号转导(翁华等, 2003)。

AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007)。值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010)。在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012)。而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012)。在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018)。dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型。上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018)。后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017)。与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020)。在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发。同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性。PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020)。

ABI1和ABI2是PP2C分支A中另外2个ABA信号通路的负调控因子(Merlot et al., 2001), 其隐性突变体表现出种子休眠及对ABA敏感的表型; 在ABA存在条件下, ABA与其受体PYR1/PYL/RCARs结合, 导致ABI1和ABI2蛋白磷酸酶失活, 进一步激活SnRK2激酶活性, 并磷酸化下游转录因子ABFs/AREBs和ABI5, 使ABA信号向下传递(Raghavendra et al., 2010)。

RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子。它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014)。与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究。与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010)。在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知。另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013)。与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013)。

与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009)。在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发。SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017)。atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究。此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001)。与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1)。

4 总结与展望

大量研究表明, 各种内源和环境因素(如光照、温度、水分状况以及植物激素(如ABA和GA))均调节休眠与萌发之间的平衡。而蛋白质磷酸化修饰作为重要的翻译后修饰方式之一, 也参与种子休眠与萌发的平衡调节。然而, 着眼于蛋白质磷酸化修饰与种子休眠及萌发调控的总结却极少。本文主要综述了蛋白质磷酸化修饰调节种子休眠与萌发的重要基因及调控通路(表1)。目前, 有几个悬而未决的问题值得进一步研究并有望取得突破。

首先, 蛋白质磷酸化修饰在ABA信号转导通路中具有重要作用, 大多数研究集中在磷酸化修饰通过介导ABA信号进而调控种子休眠与萌发, 但对GA合成及信号转导以及其它激素通路的调节机制尚所知有限。因此, 后续要深入探究蛋白质磷酸化修饰与其它植物激素通路互作调控种子休眠与萌发的分子机理, 进一步丰富对种子休眠与萌发调控的认识。

其次, 氧气与水分是种子萌发过程中不可或缺的元素, 而蛋白质磷酸化修饰与植物氧气/水分利用效率与途径的关系值得深入研究。因此, 系统揭示蛋白质磷酸化修饰与氧气/水分通路的关系, 将极大地拓展和加深我们对于种子休眠与萌发过程调控机制的理解, 该领域也是种子生物学领域非常重要的研究方向之一。

最后, 目前大多数研究均着眼于磷酸化相关基因调控非生物胁迫下的植物发育, 而调控种子休眠与萌发的精确分子机制很大程度上仍然未知, 且目前对蛋白磷酸酶的结构、机理和功能的了解大部分来自动物和真菌。因此, 深入研究植物蛋白激酶和磷酸酶的分子功能, 解析其蛋白结构, 对于系统认识蛋白质磷酸化相关基因调控种子休眠与萌发的分子机制至关重要。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

翁华, 冉亮, 魏群 (2003). 植物蛋白磷酸酶及其在植物抗逆中的作用
植物学通报 20, 609-615.

[本文引用: 1]

杨立文, 刘双荣, 林荣呈 (2019). 光信号与激素调控种子休眠和萌发研究进展
植物学报 54, 569-581.

DOI:10.11983/CBB19038 [本文引用: 1]
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。

张静, 侯岁稳 (2019). 蛋白质翻译后修饰在ABA信号转导中的作用
植物学报 54, 300-315.

DOI:10.11983/CBB18217 [本文引用: 1]
脱落酸(ABA)是植物生长发育和逆境适应过程中非常关键的植物激素。植物响应ABA信号转导过程由信号识别、转导及响应级联完成, 其中心转导途径由ABA受体RCAR/PYR/PYLs、磷酸酶PP2Cs、激酶SnRK2s、转录因子和离子通道蛋白构成。蛋白磷酸化、泛素化、类泛素化和氧化还原等翻译后修饰在ABA转导途径中起重要作用。该文综述了翻译后修饰在ABA信号转导中的作用。

朱丹, 曹汉威, 李媛, 任东涛 (2020). 植物蛋白磷酸化的检测方法
植物学报 55, 76-82.

DOI:10.11983/CBB19208 [本文引用: 1]
蛋白磷酸化是一种重要的蛋白质翻译后修饰方式, 几乎参与植物所有生命过程的调节。蛋白磷酸化过程主要指在蛋白激酶的催化作用下, 将三磷酸腺苷(ATP)上的γ位磷酸基团转移到底物蛋白特定氨基酸残基上的过程。底物蛋白上被磷酸化的常见氨基酸有丝氨酸、苏氨酸及酪氨酸, 磷酸基团与氨基酸中的羟基通过酯键连接。该文详细描述了几种常用的蛋白质体外及体内磷酸化的检测方法及注意事项。

Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL (2012). Selective inhibition of clade a phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors
Plant Physiol 158, 970-980.

DOI:10.1104/pp.111.188623URL [本文引用: 1]

Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009). Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley
Plant Physiol 150, 1006-1021.

DOI:10.1104/pp.109.137901PMID:19386806 [本文引用: 3]
The decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8'-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.

Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis
Proc Natl Acad Sci USA 103, 17042-17047.

DOI:10.1073/pnas.0607877103URL [本文引用: 1]

Bewley JD (1997). Seed germination and dormancy
Plant Cell 9, 1055-1066.

[本文引用: 1]

Biddulph TB, Plummer JA, Setter TL, Mares DJ (2007). Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.)
Field Crop Res 103, 139-153.

DOI:10.1016/j.fcr.2007.05.005URL [本文引用: 1]

Bigeard J, Rayapuram N, Pflieger D, Hirt H (2014). Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins
Proteomics 14, 2127-2140.

DOI:10.1002/pmic.201400073PMID:24889195 [本文引用: 1]
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bodrone MP, Rodríguez MV, Arisnabarreta S, Batlla D (2017). Maternal environment and dormancy in sunflower: the effect of temperature during fruit development
Eur J Agron 82, 93-103.

DOI:10.1016/j.eja.2016.10.007URL [本文引用: 1]

Boudsocq M, Barbier-Brygoo H, Laurière C (2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana
J Biol Chem 279, 41758-41766.

PMID:15292193 [本文引用: 1]
Several calcium-independent protein kinases were activated by hyperosmotic and saline stresses in Arabidopsis cell suspension. Similar activation profiles were also observed in seedlings exposed to hyperosmotic stress. One of them was identified to AtMPK6 but the others remained to be identified. They were assumed to belong to the SNF1 (sucrose nonfermenting 1)-related protein kinase 2 (SnRK2) family, which constitutes a plant-specific kinase group. The 10 Arabidopsis SnRK2 were expressed both in cells and seedlings, making the whole SnRK2 family a suitable candidate. Using a family-specific antibody raised against the 10 SnRK2, we demonstrated that these non-MAPK protein kinases activated by hyperosmolarity in cell suspension were SnRK2 proteins. Then, the molecular identification of the involved SnRK2 was investigated by transient expression assays. Nine of the 10 SnRK2 were activated by hyperosmolarity induced by mannitol, as well as NaCl, indicating an important role of the SnRK2 family in osmotic signaling. In contrast, none of the SnRK2 were activated by cold treatment, whereas abscisic acid only activated five of the nine SnRK2. The probable involvement of the different Arabidopsis SnRK2 in several abiotic transduction pathways is discussed.

Breeze E (2019). Letting sleeping DOGs lie: regulation of DOG1 during seed dormancy
Plant Cell 31, 1218-1219.

DOI:10.1105/tpc.19.00284 [本文引用: 1]

Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008). Seed after- ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis
Plant J 53, 214-224.

PMID:18028281 [本文引用: 2]
After-ripening (AR) is a time and environment regulated process occurring in the dry seed, which determines the germination potential of seeds. Both metabolism and perception of the phytohormone abscisic acid (ABA) are important in the initiation and maintenance of dormancy. However, molecular mechanisms that regulate the capacity for dormancy or germination through AR are unknown. To understand the relationship between ABA and AR, we analysed genome expression in Arabidopsis thaliana mutants defective in seed ABA synthesis (aba1-1) or perception (abi1-1). Even though imbibed mutant seeds showed no dormancy, they exhibited changes in global gene expression resulting from dry AR that were comparable with changes occurring in wild-type (WT) seeds. Core gene sets were identified that were positively or negatively regulated by dry seed storage. Each set included a gene encoding repression or activation of ABA function (LPP2 and ABA1, respectively), thereby suggesting a mechanism through which dry AR may modulate subsequent germination potential in WT seeds. Application of exogenous ABA to after-ripened WT seeds did not reimpose characteristics of freshly harvested seeds on imbibed seed gene expression patterns. It was shown that secondary dormancy states reinstate AR status-specific gene expression patterns. A model is presented that separates the action of ABA in seed dormancy from AR and dry storage regulated gene expression. These results have major implications for the study of genetic mechanisms altered in seeds as a result of crop domestication into agriculture, and for seed behaviour during dormancy cycling in natural ecosystems.

Chen F, Zhou WG, Yin H, Luo XF, Chen W, Liu X, Wang XC, Meng YJ, Feng LY, Qin YY, Zhang CY, Yang F, Yong TW, Wang XC, Liu J, Du JB, Liu WG, Yang WY, Shu K (2020). Shading of the mother plant during seed development promotes subsequent seed germination in soybean
J Exp Bot 71, 2072-2084.

DOI:10.1093/jxb/erz553PMID:31925954 [本文引用: 1]
The effect of shading during seed development on subsequent germination remains largely unknown. In this study, two soybean (Glycine max) seed production systems, monocropping (MC) and maize-soybean intercropping (IC), were employed to examine the effects of shading of the mother plant on subsequent seed germination. Compared to the MC soybean seeds, which received light, the developing IC seeds were exposed to shade resulting from the taller neighboring maize plants. The IC seeds germinated faster than the MC seeds, although there was no significant difference in the thickness of the seed coat. The concentration of soluble pro-anthocyanidin in the IC seed coat was significantly lower than that in the MC seed coat. Changes in the concentrations of several types of fatty acids in IC seeds were also observed, the nature of which were consistent with the effect on germination. The expression levels of genes involved in abscisic acid (ABA) biosynthesis were down-regulated in IC seeds, while the transcription levels of the genes related to gibberellin (GA) biosynthesis were up-regulated. This was consistently reflected in decreased ABA concentrations and increased active GA4 concentrations in IC seeds, resulting in an increased GA4/ABA ratio. Our results thus indicated that shading of the mother plant during seed development in soybean promoted subsequent germination by mediating the biosynthesis of pro-anthocyanidins, fatty acids, and phytohormones.© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Cheng SH, Willmann MR, Chen HC, Sheen J (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family
Plant Physiol 129, 469-485.

[本文引用: 1]

Cheng XY, Wu Y, Guo JP, Du B, Chen RZ, Zhu LL, He GC (2013). A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination
Plant J 76, 687-698.

DOI:10.1111/tpj.2013.76.issue-4URL [本文引用: 3]

Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005). Arabidopsis calcium- dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity
Plant Physiol 139, 1750-1761.

DOI:10.1104/pp.105.069757URL [本文引用: 2]

Colcombet J, Hirt H (2008). Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes
Biochem J 413, 217-226.

DOI:10.1042/BJ20080625PMID:18570633 [本文引用: 1]
Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale.

Cyrek M, Fedak H, Ciesielski A, Guo YW, Sliwa A, Brzezniak L, Krzyczmonik K, Pietras Z, Kaczanowski S, Liu FQ, Swiezewski S (2016). Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1
Plant Physiol 170, 947-955.

DOI:10.1104/pp.15.01483URL [本文引用: 1]

Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination
New Phytol 171, 501-523.

PMID:16866955 [本文引用: 1]
Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.

Finkelstein R, Reeves W, Ariizumi T, Steber C (2008). Molecular aspects of seed dormancy
Annu Rev Plant Biol 59, 387-415.

DOI:10.1146/annurev.arplant.59.032607.092740PMID:18257711 [本文引用: 4]
Seed dormancy provides a mechanism for plants to delay germination until conditions are optimal for survival of the next generation. Dormancy release is regulated by a combination of environmental and endogenous signals with both synergistic and competing effects. Molecular studies of dormancy have correlated changes in transcriptomes, proteomes, and hormone levels with dormancy states ranging from deep primary or secondary dormancy to varying degrees of release. The balance of abscisic acid (ABA):gibberellin (GA) levels and sensitivity is a major, but not the sole, regulator of dormancy status. ABA promotes dormancy induction and maintenance, whereas GA promotes progression from release through germination; environmental signals regulate this balance by modifying the expression of biosynthetic and catabolic enzymes. Mediators of environmental and hormonal response include both positive and negative regulators, many of which are feedback-regulated to enhance or attenuate the response. The net result is a slightly heterogeneous response, thereby providing more temporal options for successful germination.

Finkelstein RR, Gampala SSL, Rock CD (2002). Abscisic acid signaling in seeds and seedlings
Plant Cell 14(Suppl), S15-S45.

DOI:10.1105/tpc.010441URL [本文引用: 1]

Fujii H, Verslues PE, Zhu JK (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis
Plant Cell 19, 485-494.

DOI:10.1105/tpc.106.048538URL [本文引用: 1]

Fujii H, Zhu JK (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress
Proc Natl Acad Sci USA 106, 8380-8385.

DOI:10.1073/pnas.0903144106URL [本文引用: 2]

Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis
Plant Cell Physiol 50, 2123-2132.

DOI:10.1093/pcp/pcp147URL [本文引用: 1]

Gong X, Li CD, Zhou MX, Bonnardeaux Y, Yan GJ (2014). Seed dormancy in barley is dictated by genetics, environments and their interactions
Euphytica 197, 355-368.

DOI:10.1007/s10681-014-1072-xURL [本文引用: 1]

González-García MP, Rodríguez D, Nicolás C, Rodríguez PL, Nicolás G, Lorenzo O (2003). Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination
Plant Physiol 133, 135-144.

PMID:12970481 [本文引用: 2]
FsPP2C1 was previously isolated from beech (Fagus sylvatica) seeds as a functional protein phosphatase type-2C (PP2C) with all the conserved features of these enzymes and high homology to ABI1, ABI2, and PP2CA, PP2Cs identified as negative regulators of ABA signaling. The expression of FsPP2C1 was induced upon abscisic acid (ABA) treatment and was also up-regulated during early weeks of stratification. Furthermore, this gene was specifically expressed in ABA-treated seeds and was hardly detectable in vegetative tissues. In this report, to provide genetic evidence on FsPP2C1 function in seed dormancy and germination, we used an overexpression approach in Arabidopsis because transgenic work is not feasible in beech. Constitutive expression of FsPP2C1 under the cauliflower mosaic virus 35S promoter confers ABA insensitivity in Arabidopsis seeds and, consequently, a reduced degree of seed dormancy. Additionally, transgenic 35S:FsPP2C1 plants are able to germinate under unfavorable conditions, as inhibitory concentrations of mannitol, NaCl, or paclobutrazol. In vegetative tissues, Arabidopsis FsPP2C1 transgenic plants show ABA-resistant early root growth and diminished induction of the ABA-response genes RAB18 and KIN2, but no effect on stomatal closure regulation. Seed and vegetative phenotypes of Arabidopsis 35S:FsPP2C1 plants suggest that FsPP2C1 negatively regulates ABA signaling. The ABA inducibility of FsPP2C1 expression, together with the transcript accumulation mainly in seeds, suggest that it could play an important role modulating ABA signaling in beechnuts through a negative feedback loop. Finally, we suggest that negative regulation of ABA signaling by FsPP2C1 is a factor contributing to promote the transition from seed dormancy to germination during early weeks of stratification.

Gu XY, Kianian SF, Foley ME (2006). Dormancy genes from weedy rice respond divergently to seed development environments
Genetics 172, 1199-1211.

DOI:10.1534/genetics.105.049155URL [本文引用: 1]

Guan CM, Wang XC, Feng J, Hong SL, Liang Y, Ren B, Zuo JR (2014). Cytokinin antagonizes abscisic acid- mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis
Plant Physiol 164, 1515-1526.

DOI:10.1104/pp.113.234740URL [本文引用: 1]

Gubler F, Millar AA, Jacobsen JV (2005). Dormancy release, ABA and pre-harvest sprouting
Curr Opin Plant Biol 8, 183-187.

PMID:15752999 [本文引用: 1]
Seed dormancy is an adaptive trait that enables the seeds of many species to remain quiescent until conditions become favorable for germination. Dormancy is normally initiated during seed maturation and maintained to seed maturity. In mature seeds, the loss of dormancy may be gradual (after-ripening) or can be terminated by chilling and other environmental triggers. Dormancy is an important trait for many important crop species: it inhibits pre-harvest spouting or vivipary, a widespread problem in many regions of the world. Too much dormancy, however, can lead to non-uniform germination in the field. Recent progress has been made in understanding the role of abscisic acid metabolism and dormancy release in both model plants and crop species. Advances in our understanding of the molecular mechanisms that are involved in dormancy, along with approaches using quantitative genetics, will provide new strategies through which the desired level of dormancy can be introduced into crop species.

Hanks SK, Hunter T (1995). The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification
FASEB J 9, 576-596.

PMID:7768349 [本文引用: 1]
The eukaryotic protein kinases make up a large superfamily of homologous proteins. They are related by virtue of their kinase domains (also known as catalytic domains), which consist of approximately 250-300 amino acid residues. The kinase domains that define this group of enzymes contain 12 conserved subdomains that fold into a common catalytic core structure, as revealed by the 3-dimensional structures of several protein-serine kinases. There are two main subdivisions within the superfamily: the protein-serine/threonine kinases and the protein-tyrosine kinases. A classification scheme can be founded on a kinase domain phylogeny, which reveals families of enzymes that have related substrate specificities and modes of regulation.

Hepler PK (2005). Calcium: a central regulator of plant growth and development
Plant Cell 17, 2142-2155.

PMID:16061961 [本文引用: 1]

Hong SW, Jon JH, Kwak JM, Nam HG (1997). Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana
Plant Physiol 113, 1203-1212.

PMID:9112773 [本文引用: 2]
A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed.

Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases
Plant Physiol 132, 666-680.

DOI:10.1104/pp.102.011999URL [本文引用: 1]

Humphrey SJ, James DE, Mann M (2015). Protein phosphorylation: a major switch mechanism for metabolic regulation
Trends Endocrinol Metab 26, 676-687.

DOI:10.1016/j.tem.2015.09.013URL [本文引用: 1]

Jha SK, Malik S, Sharma M, Pandey A, Pandey GK (2017). Recent advances in substrate identification of protein kinases in plants and their role in stress management
Curr Genomics 18, 523-541.

[本文引用: 1]

Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana
Plant J 43, 107-117.

PMID:15960620 [本文引用: 1]
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA levels during early germination. To investigate the role of PA during seed germination, we focused on the PA catabolic enzyme lipid phosphate phosphatase (LPP). LPP catalyzes the conversion of PA to diacylglycerol (DAG). There are 4 LPP genes in the Arabidopsis genome. Among them, AtLPP2 and AtLPP3 are expressed during seed germination. Two AtLPP2 T-DNA insertional mutants (lpp2-1 and lpp2-2) showed hypersensitivity to ABA and significant PA accumulation during germination. Furthermore, double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not. These results suggest that PA is involved in ABA signaling and that AtLPP2 functions as a negative regulator upstream of ABI4, which encodes an AP2-type transcription factor, in ABA signaling during germination.

Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2012). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth
J Exp Bot 63, 1013-1024.

DOI:10.1093/jxb/err338URL [本文引用: 2]

Kim W, Lee Y, Park J, Lee N, Choi G (2013). HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis
Plant Cell Physiol 54, 555-572.

DOI:10.1093/pcp/pct017URL [本文引用: 3]

Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004). Differential activation of the rice sucrose nonfermenting 1-related protein kinase 2 family by hyperosmotic stress and abscisic acid
Plant Cell 16, 1163-1177.

PMID:15084714 [本文引用: 1]
To date, a large number of sequences of protein kinases that belong to the sucrose nonfermenting1-related protein kinase2 (SnRK2) family are found in databases. However, only limited numbers of the family members have been characterized and implicated in abscisic acid (ABA) and hyperosmotic stress signaling. We identified 10 SnRK2 protein kinases encoded by the rice (Oryza sativa) genome. Each of the 10 members was expressed in cultured cell protoplasts, and its regulation was analyzed. Here, we demonstrate that all family members are activated by hyperosmotic stress and that three of them are also activated by ABA. Surprisingly, there were no members that were activated only by ABA. The activation was found to be regulated via phosphorylation. In addition to the functional distinction with respect to ABA regulation, dependence of activation on the hyperosmotic strength was different among the members. We show that the relatively diverged C-terminal domain is mainly responsible for this functional distinction, although the kinase domain also contributes to these differences. The results indicated that the SnRK2 protein kinase family has evolved specifically for hyperosmotic stress signaling and that individual members have acquired distinct regulatory properties, including ABA responsiveness by modifying the C-terminal domain.

Lee SJ, Lee MH, Kim JI, Kim SY (2015). Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response
Plant Cell Physiol 56, 84-97.

DOI:10.1093/pcp/pcu148URL [本文引用: 3]

Li XY, Kong XG, Huang Q, Zhang Q, Ge H, Zhang L, Li GM, Peng L, Liu ZB, Wang JM, Li XF, Yang Y (2019). CARK1 phosphorylates subfamily III members of ABA receptors
J Exp Bot 70, 519-528.

DOI:10.1093/jxb/ery374URL [本文引用: 1]

Liu J, Hasanuzzaman M, Wen HL, Zhang J, Peng T, Sun HW, Zhao QZ (2019). High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice
Protoplasma 256, 1217-1227.

DOI:10.1007/s00709-019-01354-6URL [本文引用: 1]

Lorenzo O, Rodríguez D, Nicolás G, Rodríguez PL, Nicolás C (2001). A new protein phosphatase 2C (FsPP2C1) induced by abscisic acid is specifically expressed in dormant beechnut seeds
Plant Physiol 125, 1949-1956.

PMID:11299374 [本文引用: 1]
An abscisic acid (ABA)-induced cDNA fragment encoding a putative protein phosphatase 2C (PP2C) was obtained by means of differential reverse transcriptase-polymerase chain reaction approach. The full-length clone was isolated from a cDNA library constructed using mRNA from ABA-treated beechnut (Fagus sylvatica) seeds. This clone presents all the features of plant type PP2C and exhibits homology to members of this family such as AthPP2CA (61%), ABI1 (48%), or ABI2 (47%), therefore it was named FsPP2C1. The expression of FsPP2C1 is detected in dormant seeds and increases after ABA treatment, when seeds are maintained dormant, but it decreases and tends to disappear when dormancy is being released by stratification or under gibberellic acid treatment. Moreover, drought stress seems to have no effect on FsPP2C1 transcript accumulation. The FsPP2C1 transcript expression is tissue specific and was found to accumulate in ABA-treated seeds rather than in other ABA-treated vegetative tissues examined. These results suggest that the corresponding protein could be related to ABA-induced seed dormancy. By expressing FsPP2C1 in Escherichia coli as a histidine tag fusion protein, we have obtained direct biochemical evidence supporting Mg2+-dependent phosphatase activity of this protein.

Luan S (2003). Protein phosphatases in plants
Annu Rev Plant Biol 54, 63-92

DOI:10.1146/annurev.arplant.54.031902.134743URL [本文引用: 1]

Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002). Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants
Plant Cell 14(Suppl), S389-S400.

DOI:10.1105/tpc.001115URL [本文引用: 1]

Luo XF, Dai YJ, Zheng C, Yang YZ, Chen W, Wang QC, Chandrasekaran U, Du JB, Liu WG, Shu K (2021). The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress
New Phytol 229, 950-962.

DOI:10.1111/nph.v229.2URL [本文引用: 1]

Martinez SA, Shorinola O, Conselman S, See D, Skinner DZ, Uauy C, Steber CM (2020). Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype
Theor Appl Genet 133, 719-736.

DOI:10.1007/s00122-019-03503-0PMID:31993676 [本文引用: 1]
Using bulked segregant analysis of exome sequence, we fine-mapped the ABA-hypersensitive mutant ERA8 in a wheat backcross population to the TaMKK3-A locus of chromosome 4A. Preharvest sprouting (PHS) is the germination of mature grain on the mother plant when it rains before harvest. The ENHANCED RESPONSE TO ABA8 (ERA8) mutant increases seed dormancy and, consequently, PHS tolerance in soft white wheat 'Zak.' ERA8 was mapped to chromosome 4A in a Zak/'ZakERA8' backcross population using bulked segregant analysis of exome sequenced DNA (BSA-exome-seq). ERA8 was fine-mapped relative to mutagen-induced SNPs to a 4.6 Mb region containing 70 genes. In the backcross population, the ERA8 ABA-hypersensitive phenotype was strongly linked to a missense mutation in TaMKK3-A-G1093A (LOD 16.5), a gene associated with natural PHS tolerance in barley and wheat. The map position of ERA8 was confirmed in an 'Otis'/ZakERA8 but not in a 'Louise'/ZakERA8 mapping population. This is likely because Otis carries the same natural PHS susceptible MKK3-A-A660 allele as Zak, whereas Louise carries the PHS-tolerant MKK3-A-C660 allele. Thus, the variation for grain dormancy and PHS tolerance in the Louise/ZakERA8 population likely resulted from segregation of other loci rather than segregation for PHS tolerance at the MKK3 locus. This inadvertent complementation test suggests that the MKK3-A-G1093A mutation causes the ERA8 phenotype. Moreover, MKK3 was a known ABA signaling gene in the 70-gene 4.6 Mb ERA8 interval. None of these 70 genes showed the differential regulation in wild-type Zak versus ERA8 expected of a promoter mutation. Thus, the working model is that the ERA8 phenotype results from the MKK3-A-G1093A mutation.

Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway
Plant J 25, 295-303.

PMID:11208021 [本文引用: 2]
The Arabidopsis ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C (PP2C). These genes have been originally identified by the dominant mutations abi1--1 and abi2--1, which reduce the plant's responsiveness to the hormone abscisic acid (ABA). However, recessive mutants of ABI1 were recently shown to be supersensitive to ABA, which demonstrated that the ABI1 phosphatase is a negative regulator of ABA signalling. We report here the isolation and characterisation of the first reduction-of-function allele of ABI2, abi2--1R1. The in vitro phosphatase activity of the abi2--1R1 protein is approximately 100-fold lower than that of the wild-type ABI2 protein. Abi2--1R1 plants displayed a wild-type ABA sensitivity. However, doubly mutant plants combining the abi2--1R1 allele and a loss-of-function allele at the ABI1 locus were more responsive to ABA than each of the parental single mutants. These data indicate that the wild-type ABI2 phosphatase is a negative regulator of ABA signalling, and that the ABI1 and ABI2 phosphatases have overlapping roles in controlling ABA action. Measurements of PP2C activity in plant extracts showed that the phosphatase activity of ABI1 and ABI2 increases in response to ABA. These results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA signalling pathway.

Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJJ (2012). The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds
Plant Cell 24, 2826-2838.

DOI:10.1105/tpc.112.100214URL [本文引用: 1]

Nakagami H, Pitzschke A, Hirt H (2005). Emerging MAP kinase pathways in plant stress signaling
Trends Plant Sci 10, 339-346.

DOI:10.1016/j.tplants.2005.05.009URL [本文引用: 1]

Nakamura S, Pourkheirandish M, Morishige H, Kubo Y, Nakamura M, Ichimura K, Seo S, Kanamori H, Wu JZ, Ando T, Hensel G, Sameri M, Stein N, Sato K, Matsumoto T, Yano M, Komatsuda T (2016). Mitogen-activated protein kinase kinase 3 regulates seed dormancy in barley
Curr Biol 26, 775-781.

DOI:10.1016/j.cub.2016.01.024PMID:26948880 [本文引用: 3]
Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/ SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy
Plant Cell Physiol 50, 1345-1363.

DOI:10.1093/pcp/pcp083PMID:19541597 [本文引用: 1]
ABA is an important phytohormone regulating various plant processes, including stress tolerance, seed development and germination. SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3 are redundant ABA-activated SNF1-related protein kinases 2 (SnRK2s) in Arabidopsis thaliana. We examined the role of these protein kinases in seed development and germination. These SnRK2 proteins were mainly expressed in the nucleus during seed development and germination. The triple mutant (srk2d srk2e srk2i) was sensitive to desiccation and showed severe growth defects during seed development. It exhibited a loss of dormancy and elevated seed ABA content relative to wild-type plants. The severity of these phenotypes was far stronger than that of any single or double SRK2D, SRK2E and SRK2I mutants, including the srk2d srk2i mutant. The triple mutant had greatly reduced phosphorylation activity in in-gel kinase experiments using basic leucine zipper (bZIP) transcription factors including ABI5. Microarray experiments revealed that 48 and 30% of the down-regulated genes in abi5 and abi3 seeds were suppressed in the triple mutant seeds, respectively. Moreover, disruption of the three protein kinases induced global changes in the up-regulation of ABA-repressive gene expression, as well as the down-regulation of ABA-inducible gene expression. These alterations in gene expression result in a loss of dormancy and severe growth defects during seed development. Collectively, these results indicate that SRK2D, SRK2E and SRK2I protein kinases involved in ABA signaling are essential for the control of seed development and dormancy through the extensive control of gene expression.

Née G, Kramer K, Nakabayashi K, Yuan BJ, Xiang Y, Miatton E, Finkemeier I, Soppe WJJ (2017). DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signaling pathway to control seed dormancy
Nat Commun 8, 72.

DOI:10.1038/s41467-017-00113-6URL [本文引用: 3]

Nguyen QTC, Lee SJ, Choi SW, Na YJ, Song MR, Hoang QTN, Sim SY, Kim MS, Kim JI, Soh MS, Kim SY (2019). Arabidopsis Raf-like kinase Raf10 is a regulatory component of core ABA signaling
Mol Cells 42, 646-660.

DOI:10.14348/molcells.2019.0173PMID:31480825 [本文引用: 1]
Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABAregulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.

Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K, Kaiwa N, Irisa T, Kinoshita T, Schroeder JI, Yates JR III, Hirayama T, Yamazaki T (2018). Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme
Nat Commun 9, 2132.

DOI:10.1038/s41467-018-04437-9PMID:29875377 [本文引用: 3]
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.

Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007). ABA-Hypersensitive Germination 1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed
Plant J 50, 935-949.

PMID:17461784 [本文引用: 1]
The phytohormone abscisic acid (ABA) regulates physiologically important stress and developmental responses in plants. To reveal the mechanism of response to ABA, we isolated several novel ABA-hypersensitive Arabidopsis thaliana mutants, named ahg (ABA-hypersensitive germination). ahg1-1 mutants showed hypersensitivity to ABA, NaCl, KCl, mannitol, glucose and sucrose during germination and post-germination growth, but did not display any significant phenotypes in adult plants. ahg1-1 seeds accumulated slightly more ABA before stratification and showed increased seed dormancy. Map-based cloning of AHG1 revealed that ahg1-1 has a nonsense mutation in a gene encoding a novel protein phosphatase 2C (PP2C). We previously showed that the ahg3-1 mutant has a point mutation in the AtPP2CA gene, which encodes another PP2C that has a major role in the ABA response in seeds (Yoshida et al., 2006b). The levels of AHG1 mRNA were higher in dry seeds and increased during late seed maturation--an expression pattern similar to that of ABI5. Transcriptome analysis revealed that, in ABA-treated germinating seeds, many seed-specific genes and ABA-inducible genes were highly expressed in ahg1-1 and ahg3-1 mutants compared with the wild-type. Detailed analysis suggested differences between the functions of AHG1 and AHG3. Dozens of genes were expressed more strongly in the ahg1-1 mutant than in ahg3-1. Promoter-GUS analyses demonstrated both overlapping and distinct expression patterns in seed. In addition, the ahg1-1 ahg3-1 double mutant was more hypersensitive than either monogenic mutant. These results suggest that AHG1 has specific functions in seed development and germination, shared partly with AHG3.

Nonogaki H (2017). Seed biology updates-highlights and new discoveries in seed dormancy and germination research
Front Plant Sci 8, 524.

[本文引用: 1]

Nonogaki H, Bassel GW, Bewley JD (2010). Germination-still a mystery
Plant Sci 179, 574-581.

DOI:10.1016/j.plantsci.2010.02.010URL [本文引用: 1]

Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks
Cell 127, 635-648.

DOI:10.1016/j.cell.2006.09.026URL [本文引用: 1]

Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005). Leucine-rich repeat receptor-like kinase 1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis
Plant Cell 17, 1105-1119.

PMID:15772289 [本文引用: 2]
Abscisic acid (ABA) is important in seed maturation, seed dormancy, stomatal closure, and stress response. Many genes that function in ABA signal transduction pathways have been identified. However, most important signaling molecules involved in the perception of the ABA signal or with ABA receptors have not been identified yet. Receptor-like kinase1 (RPK1), a Leu-rich repeat (LRR) receptor kinase in the plasma membrane, is upregulated by ABA in Arabidopsis thaliana. Here, we show the phenotypes of T-DNA insertion mutants and RPK1-antisense plants. Repression of RPK1 expression in Arabidopsis decreased sensitivity to ABA during germination, growth, and stomatal closure; microarray and RNA gel analysis showed that many ABA-inducible genes are downregulated in these plants. Furthermore, overexpression of the RPK1 LRR domain alone or fused with the Brassinosteroid-insensitive1 kinase domain in plants resulted in phenotypes indicating ABA sensitivity. RPK1 is involved in the main ABA signaling pathway and in early ABA perception in Arabidopsis.

Pelagio-Flores R, Muñoz-Parra E, Barrera-Ortiz S, Ortiz- Castro R, Saenz-Mata J, Ortega-Amaro MA, Jiménez- Bremont JF, López-Bucio J (2019). The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses
Planta 251, 2.

DOI:10.1007/s00425-019-03296-yPMID:31776759 [本文引用: 3]
CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.

Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010). ABA perception and signaling
Trends Plant Sci 15, 395-401.

DOI:10.1016/j.tplants.2010.04.006PMID:20493758 [本文引用: 3]
Plant productivity is continuously challenged by pathogen attack and abiotic stress such as drought and salt stress. The phytohormone abscisic acid (ABA) is a key endogenous messenger in plants' responses to such stresses and understanding ABA signalling is essential for improving plant performance in the future. Since the discovery of ABA as a leaf abscission- and seed dormancy-promoting sesquiterpenoid in the 1960s, our understanding of the action of the phytohormone ABA has come a long way. Recent breakthroughs in the field of ABA signalling now unfold a unique hormone perception mechanism where binding of ABA to the ABA receptors RCARs/PYR1/PYLs leads to inactivation of type 2C protein phosphatases such as ABI1 and ABI2. The protein phosphatases seem to function as coreceptors and their inactivation launches SNF1-type kinase action which targets ABA-dependent gene expression and ion channels.

Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012). Seed germination and vigor
Annu Rev Plant Biol 63, 507-533.

DOI:10.1146/annurev-arplant-042811-105550PMID:22136565 [本文引用: 1]
Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadí D, Masiero S (2015). TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana
Mol Plant 8, 482-485.

DOI:10.1016/j.molp.2014.11.018URL [本文引用: 1]

Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid
Plant Physiol 150, 1345-1355.

DOI:10.1104/pp.109.137174URL [本文引用: 1]

Saavedra X, Modrego A, Rodríguez D, González-García MP, Sanz L, Nicolás G, Lorenzo O (2010). The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress
Plant Physiol 152, 133-150.

DOI:10.1104/pp.109.146381PMID:19889877 [本文引用: 2]
The functional protein phosphatase type 2C from beechnut (Fagus sylvatica; FsPP2C1) was a negative regulator of abscisic acid (ABA) signaling in seeds. In this report, to get deeper insight on FsPP2C1 function, we aim to identify PP2C-interacting partners. Two closely related members (PYL8/RCAR3 and PYL7/RCAR2) of the Arabidopsis (Arabidopsis thaliana) BetV I family were shown to bind FsPP2C1 in a yeast two-hybrid screening and in an ABA-independent manner. By transient expression of FsPP2C1 and PYL8/RCAR3 in epidermal onion (Allium cepa) cells and agroinfiltration in tobacco (Nicotiana benthamiana) as green fluorescent protein fusion proteins, we obtained evidence supporting the subcellular localization of both proteins mainly in the nucleus and in both the cytosol and the nucleus, respectively. The in planta interaction of both proteins in tobacco cells by bimolecular fluorescence complementation assays resulted in a specific nuclear colocalization of this interaction. Constitutive overexpression of PYL8/RCAR3 confers ABA hypersensitivity in Arabidopsis seeds and, consequently, an enhanced degree of seed dormancy. Additionally, transgenic 35S:PYL8/RCAR3 plants are unable to germinate under low concentrations of mannitol, NaCl, or paclobutrazol, which are not inhibiting conditions to the wild type. In vegetative tissues, Arabidopsis PYL8/RCAR3 transgenic plants show ABA-resistant drought response and a strong inhibition of early root growth. These phenotypes are strengthened at the molecular level with the enhanced induction of several ABA response genes. Both seed and vegetative phenotypes of Arabidopsis 35S:PYL8/RCAR3 plants are opposite those of 35S:FsPP2C1 plants. Finally, double transgenic plants confirm the role of PYL8/RCAR3 by antagonizing FsPP2C1 function and demonstrating that PYL8/RCAR3 positively regulates ABA signaling during germination and abiotic stress responses.

Schwartz PA, Murray BW (2011). Protein kinase biochemistry and drug discovery
Bioorg Chem 39, 192-210.

DOI:10.1016/j.bioorg.2011.07.004PMID:21872901 [本文引用: 1]
Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.Copyright © 2011 Elsevier Inc. All rights reserved.

Schweighofer A, Meskiene I (2015). Phosphatases in plants. In: Schulze W, eds. Plant Phosphoproteomics. Methods in Molecular Biology, Vol 1306. New York: Humana Press. pp. 25-46.
[本文引用: 1]

Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006). Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism
Plant J 48, 354-366.

DOI:10.1111/tpj.2006.48.issue-3URL [本文引用: 1]

Seo M, Nambara E, Choi G, Yamaguchi S (2009). Interaction of light and hormone signals in germinating seeds
Plant Mol Biol 69, 463-472.

DOI:10.1007/s11103-008-9429-yURL [本文引用: 1]

Shen K, Hines AC, Schwarzer D, Pickin KA, Cole PA (2005). Protein kinase structure and function analysis with chemical tools
Biochim Biophys Acta 1754, 65-78.

PMID:16213197 [本文引用: 1]
Protein kinases are the largest enzyme superfamily involved in cell signal transduction and represent therapeutic targets for a range of diseases. There have been intensive efforts from many labs to understand their catalytic mechanisms, discover inhibitors and discern their cellular functions. In this review, we will describe two approaches developed to analyze protein kinases: bisubstrate analog inhibition and phosphonate analog utilization. Both of these methods have been used in combination with the protein semisynthesis method expressed protein ligation to advance our understanding of kinase-substrate interactions and functional elucidation of phosphorylation. Previous work on the nature of the protein kinase mechanism suggests it follows a dissociative transition state. A bisubstrate analog was designed against the insulin receptor kinase to mimic the geometry of a dissociative transition state reaction coordinate distance. This bisubstrate compound proved to be a potent inhibitor against the insulin receptor kinase and occupied both peptide and nucleotide binding sites. Bisubstrate compounds with altered hydrogen bonding potential as well as varying spacers between the adenine and the peptide demonstrate the importance of the original design features. We have also shown that related bisubstrate analogs can be used to potently block serine/threonine kinases including protein kinase A. Since many protein kinases recognize folded protein substrates for efficient phosphorylation, it was advantageous to incorporate the peptide-ATP conjugates into protein structures. Using expressed protein ligation, a Src-ATP conjugate was produced and shown to be a high affinity ligand for the Csk tyrosine kinase. Nonhydrolyzable mimics of phosphoSer/phosphoTyr can be useful in examining the functionality of phosphorylation events. Using expressed protein ligation, we have employed phosphonomethylene phenylalanine and phosphonomethylene alanine to probe the phosphorylation of Tyr and Ser, respectively. These tools have permitted an analysis of the SH2-phosphatases (SHP1 and SHP2), revealing a novel intramolecular stimulation of catalytic activity mediated by the corresponding phosphorylation events. They have also been used to characterize the cellular regulation of the melatonin rhythm enzyme by phosphorylation.

Shiu SH, Bleecker AB (2001a). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases
Proc Natl Acad Sci USA 98, 10763-10768.

DOI:10.1073/pnas.181141598URL [本文引用: 1]

Shiu SH, Bleecker AB (2001b). Plant receptor-like kinase gene family: diversity, function, and signaling
Sci STKE (113), re22.

[本文引用: 1]

Shiu SH, Bleecker AB (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis
Plant Physiol 132, 530-543.

DOI:10.1104/pp.103.021964URL [本文引用: 1]

Shu K, Liu XD, Xie Q, He ZH (2016). Two faces of one seed: hormonal regulation of dormancy and germination
Mol Plant 9, 34-45.

DOI:10.1016/j.molp.2015.08.010URL [本文引用: 1]

Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK (2010). Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development
BMC Genomics 11, 435.

DOI:10.1186/1471-2164-11-435URL [本文引用: 1]

Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana
Plant J 53, 42-52.

PMID:17953649 [本文引用: 1]
To understand the molecular mechanisms underlying regulation of seed germination, we searched enriched cis elements in the upstream regions of Arabidopsis genes whose transcript levels increased during seed germination. Using available published microarray data, we found that two cis elements, Up1 or Up2, which regulate outgrowth of Arabidopsis axillary shoots, were significantly over-represented. Classification of Up1- and Up2-containing genes by gene ontology revealed that protein synthesis-related genes, especially ribosomal protein genes, were highly over-represented. Expression analysis using a reporter gene driven by a synthetic promoter regulated by these elements showed that the Up1 is necessary and sufficient for germination-associated gene induction, whereas Up2 acts as an enhancer of Up1. Up1-mediated gene expression was suppressed by treatments that blocked germination. Up1 is almost identical to the site II motif, which is the predicted target of TCP transcription factors. Of 24 AtTCP genes, AtTCP14, which showed the highest transcript level just prior to germination, was functionally characterized to test its involvement in the regulation of seed germination. Transposon-tagged lines for AtTCP14 showed delayed germination. In addition, germination of attcp14 mutants exhibited hypersensitivity to exogenously applied abscisic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. AtTCP14 was predominantly expressed in the vascular tissues of the embryo, and affected gene expression in radicles in a non-cell-autonomous manner. Taken together, these results indicate that AtTCP14 regulates the activation of embryonic growth potential in Arabidopsis seeds.

Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu JZ, Matsumoto T, Kawaura K, Ogihara Y (2016). A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase
Curr Biol 26, 782-787.

DOI:10.1016/j.cub.2016.01.063URL [本文引用: 2]

Uhrig RG, Labandera AM, Tang LY, Sieben NA, Goudreault M, Yeung E, Gingras AC, Samuel MA, Moorhead GBG (2017). Activation of mitochondrial protein phosphatase SLP2 by MIA40 regulates seed germination
Plant Physiol 173, 956-969.

DOI:10.1104/pp.16.01641PMID:27923987 [本文引用: 3]
Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.© 2017 American Society of Plant Biologists. All Rights Reserved.

Viswanathan C, Zhu JK (2002). Molecular genetic analysis of cold-regulated gene transcription
Philos Trans R Soc Lond B Biol Sci 357, 877-886.

DOI:10.1098/rstb.2002.1076URL [本文引用: 1]

Walker JC (1993). Receptor-like protein kinase genes of Arabidopsis thaliana
Plant J 3, 451-456.

PMID:8220453 [本文引用: 1]
The isolation of a maize cDNA clone that encodes a membrane spanning protein kinase related to the self-incompatibility glycoproteins (SLG) of Brassica and structurally similar to the growth factor receptor tyrosine kinases has recently been reported. Three distinct receptor-like protein kinase (RLK) cDNA clones from Arabidopsis thaliana have now been identified. Two of the Arabidopsis RLK genes encode SLG-related protein kinases but have different patterns of expression: one is expressed predominantly in rosettes while the other is expressed primarily in roots. The third RLK gene contains an extracellular domain that consists of 21 leucine-rich repeats that are analogous to the leucine-rich repeats found in proteins from humans, flies and yeast. The Arabidopsis leucine-rich gene is expressed at equivalent levels in roots and rosettes. These results show that there are several genes in higher plants that encode members of the receptor protein kinase superfamily. The structural diversity and differential expression of these genes suggest that each plays a distinct and possibly important role in cellular signaling in plants.

Walker JC, Zhang R (1990). Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica
Nature 345, 743-746.

DOI:10.1038/345743a0URL [本文引用: 1]

Wang JL, Zhang Q, Yu Q, Peng L, Wang JM, Dai QL, Yang Y, Li XY (2019). CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana
Biochem Biophys Res Commun 513, 460-464.

DOI:10.1016/j.bbrc.2019.03.180URL [本文引用: 2]

Wang WQ, Ye JQ, Rogowska-Wrzesinska A, Wojdyla KI, Jensen ON, Møller IM, Song SQ (2014). Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance
J Proteome Res 13, 606-626.

DOI:10.1021/pr4007574URL [本文引用: 1]

Wu Z, Liang S, Song W, Lin GZ, Wang WG, Zhang HQ, Han ZF, Chai JJ (2017). Functional and structural characterization of a receptor-like kinase involved in germination and cell expansion in Arabidopsis
Front Plant Sci 8, 1999.

DOI:10.3389/fpls.2017.01999URL [本文引用: 2]

Xiang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe WJJ (2014). Reduced Dormancy 5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis
Plant Cell 26, 4362-4375.

DOI:10.1105/tpc.114.132811URL [本文引用: 3]

Xiang Y, Song BX, Nee G, Kramer K, Finkemeier I, Soppe WJJ (2016). Sequence polymorphisms at the REDUCED DORMANCY 5 pseudophosphatase underlie natural variation in Arabidopsis dormancy
Plant Physiol 171, 2659-2670.

DOI:10.1104/pp.16.00525PMID:27288362 [本文引用: 1]
Seed dormancy controls the timing of germination, which regulates the adaptation of plants to their environment and influences agricultural production. The time of germination is under strong natural selection and shows variation within species due to local adaptation. The identification of genes underlying dormancy quantitative trait loci is a major scientific challenge, which is relevant for agricultural and ecological goals. In this study, we describe the identification of the DELAY OF GERMINATION18 (DOG18) quantitative trait locus, which was identified as a factor in natural variation for seed dormancy in Arabidopsis (Arabidopsis thaliana). DOG18 encodes a member of the clade A of the type 2C protein phosphatases family, which we previously identified as the REDUCED DORMANCY5 (RDO5) gene. DOG18/RDO5 shows a relatively high frequency of loss-of-function alleles in natural accessions restricted to northwestern Europe. The loss of dormancy in these loss-of-function alleles can be compensated for by genetic factors like DOG1 and DOG6, and by environmental factors such as low temperature. RDO5 does not have detectable phosphatase activity. Analysis of the phosphoproteome in dry and imbibed seeds revealed a general decrease in protein phosphorylation during seed imbibition that is enhanced in the rdo5 mutant. We conclude that RDO5 acts as a pseudophosphatase that inhibits dephosphorylation during seed imbibition.© 2016 American Society of Plant Biologists. All Rights Reserved.

Xing Y, Jia WS, Zhang JH (2009). AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination
Plant Mol Biol 70, 725-736.

DOI:10.1007/s11103-009-9503-0PMID:19484493 [本文引用: 4]
Abscisic acid (ABA) and sugars have been well established to be crucial factors controlling seed germination of Arabidopsis. Here we demonstrate that AtMKK1 and AtMPK6 are both critical signals involved in ABA and sugar-regulated seed germination. Wild type plants depended on stratification and after-ripening for seed germination, whereas this dependence on either stratification or after-ripening was not required for mutants of mkk1 and mpk6 as well as their double mutant mkk1 mpk6. While seed germination of wild type plants was sensitively inhibited by ABA and glucose, mkk1, mpk6 and mkk1 mpk6 were all strongly resistant to ABA or glucose treatments, and in contrast, plants overexpressing MKK1 or MPK6 were super-sensitive to ABA and glucose. Glucose treatment significantly induced increases in MKK1 and MPK6 activities. These results clearly indicate that MKK1 and MPK6 are involved in the ABA and sugar signaling in the process of seed germination. Further experiments showed that glucose was capable of inducing ABA biosynthesis by up-regulating NCED3 and ABA2, and furthermore, this up-regulation of NCED3 and ABA2 was arrested in the mkk1 mpk6 double mutant, indicating that the inhibition of seed germination by glucose is potentially resulted from sugar-induced up-regulation of the ABA level.

Xiong LM, Lee BH, Ishitani M, Lee H, Zhang CQ, Zhu JK (2001). FIERY1 encoding an inositol polyphosphate 1- phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis
Gene Dev 15, 1971-1984.

PMID:11485991 [本文引用: 2]
The plant hormone abscisic acid (ABA) plays a wide range of important roles in plant growth and development, including embryogenesis, seed dormancy, root and shoot growth, transpiration, and stress tolerance. ABA and various abiotic stresses also activate the expression of numerous plant genes through undefined signaling pathways. To gain insight into ABA and stress signal transduction, we conducted a genetic screen based on ABA- and stress-inducible gene transcription. Here we report the identification of an Arabidopsis mutation, fiery1 (fry1), which results in super-induction of ABA- and stress-responsive genes. Seed germination and postembryonic development of fry1 are more sensitive to ABA or stress inhibition. The mutant plants are also compromised in tolerance to freezing, drought, and salt stresses. Map-based cloning revealed that FRY1 encodes an inositol polyphosphate 1-phosphatase, which functions in the catabolism of inositol 1, 4, 5-trisphosphate (IP(3)). Upon ABA treatment, fry1 mutant plants accumulated more IP(3) than did the wild-type plants. These results provide the first genetic evidence indicating that phosphoinositols mediate ABA and stress signal transduction in plants and their turnover is critical for attenuating ABA and stress signaling.

Xu R, Duan PG, Yu HY, Zhou ZK, Zhang BL, Wang RC, Li J, Zhang GZ, Zhuang SS, Lyu J, Li N, Chai TY, Tian ZX, Yao SG, Li YH (2018). Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice
Mol Plant 11, 860-873.

DOI:10.1016/j.molp.2018.04.004URL [本文引用: 1]

Ye YY, Ding YF, Jiang Q, Wang FJ, Sun JW, Zhu C (2017). The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants
Plant Cell Rep 36, 235-242.

DOI:10.1007/s00299-016-2084-xURL [本文引用: 3]

Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006). ABA-Hyper- sensitive germination 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs
Plant Physiol 140, 115-126.

PMID:16339800 [本文引用: 1]
The phytohormone abscisic acid (ABA) regulates physiologically important developmental processes and stress responses. Previously, we reported on Arabidopsis (Arabidopsis thaliana) L. Heynh. ahg mutants, which are hypersensitive to ABA during germination and early growth. Among them, ABA-hypersensitive germination3 (ahg3) showed the strongest ABA hypersensitivity. In this study, we found that the AHG3 gene is identical to AtPP2CA, which encodes a protein phosphatase 2C (PP2C). Although AtPP2CA has been reported to be involved in the ABA response on the basis of results obtained by reverse-genetics approaches, its physiological relevance in the ABA response has not been clarified yet. We demonstrate in vitro and in vivo that the ahg3-1 missense mutation causes the loss of PP2C activity, providing concrete confirmation that this PP2C functions as a negative regulator in ABA signaling. Furthermore, we compared the effects of disruption mutations of eight structurally related PP2C genes of Arabidopsis, including ABI1, ABI2, HAB1, and HAB2, and found that the disruptant mutant of AHG3/AtPP2CA had the strongest ABA hypersensitivity during germination, but it did not display any significant phenotypes in adult plants. Northern-blot analysis clearly showed that AHG3/AtPP2CA is the most active among those PP2C genes in seeds. These results suggest that AHG3/AtPP2CA plays a major role among PP2Cs in the ABA response in seeds and that the functions of those PP2Cs overlap, but their unique tissue- or development-specific expression confers distinct and indispensable physiological functions in the ABA response.

Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP (2006). Abscisic acid stimulates a calcium-dependent protein kinase in grape berry
Plant Physiol 140, 558-579.

DOI:10.1104/pp.105.074971URL [本文引用: 1]

Yu XF, Han JP, Li L, Zhang Q, Yang GX, He GY (2020). Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic Arabidopsis
Plant Cell Rep 39, 635-651.

DOI:10.1007/s00299-020-02520-4URL [本文引用: 3]

Zhang L, Li XY, Li DK, Sun YN, Li Y, Luo Q, Liu ZB, Wang JM, Li XF, Zhang H, Lou ZY, Yang Y (2018). CARK1 mediates ABA signaling by phosphorylation of ABA receptors
Cell Discov 4, 30.

DOI:10.1038/s41421-018-0029-yURL [本文引用: 2]

Zhang W, Cochet F, Ponnaiah M, Lebreton S, Matheron L, Pionneau C, Boudsocq M, Resentini F, Huguet S, Blázquez , Bailly C, Puyaubert J, Baudouin E (2019). The MPK8-TCP14 pathway promotes seed germination in Arabidopsis
Plant J 100, 677-692.

DOI:10.1111/tpj.14461 [本文引用: 4]
The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.

Zhang XJ, Yang GY, Shi R, Han XM, Qi LW, Wang RG, Xiong LM, Li GJ (2013). Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses
Plant Physiol Biochem 67, 189-198.

DOI:10.1016/j.plaphy.2013.03.013URL [本文引用: 3]

Zhao R, Sun HL, Mei C, Wang XJ, Yan L, Liu R, Zhang XF, Wang XF, Zhang DP (2011a). The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth
New Phytol 192, 61-73.

DOI:10.1111/j.1469-8137.2011.03793.xPMID:21692804 [本文引用: 3]
• Ca(2+) -dependent protein kinase (CDPK) is believed to be involved in abscisic acid (ABA) signaling, and several members of the Arabidopsis CDPK superfamily have been identified as positive ABA signaling regulators, but it remains unknown if CDPK negatively regulates ABA signaling. • Here, we investigated the function of an Arabidopsis (Arabidopsis thaliana) CDPK, CPK12, in ABA signaling pathway. • We generated Arabidopsis CPK12-RNAi lines, and observed that downregulation of CPK12 resulted in ABA hypersensitivity in seed germination and post-germination growth, and altered expression of a set of ABA-responsive genes. Expression assay showed that CPK12 was ubiquitously expressed and localized to both cytosol and nucleus. Biochemical assays showed that CPK12 interacted with, phosphorylated and stimulated a type 2C protein phosphatase ABI2, and phosphorylated two ABA-responsive transcription factors (ABF1 and ABF4) in vitro. • Our findings show that the Arabidopsis CPK12 is a negative ABA-signaling regulator in seed germination and post-germination growth, suggesting that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction.© 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

Zhao R, Wang XF, Zhang DP (2011b). CPK12: a Ca2+- dependent protein kinase balancer in abscisic acid signaling
Plant Signal Behav 6, 1687-1690.

DOI:10.4161/psb.6.11.17954PMID:22041934 [本文引用: 2]
Ca2+ is believed to be a critical second messenger in ABA signal transduction. Ca2+-dependent protein kinases (CDPKs) are the best characterized Ca2+ sensors in plants. Recently, we identified an Arabidopsis CDPK member CPK12 as a negative regulator of ABA signaling in seed germination and post-germination growth, which reveals that different members of the CDPK family may constitute a regulation loop by functioning positively and negatively in ABA signal transduction. We observed that both RNA interference and overexpression of CPK12 gene resulted in ABA-hypersensitive phenotypes in seed germination and post-germination growth, suggesting a high complexity of the CPK12-mediated ABA signaling pathway. CPK12 stimulates a negative ABA-signaling regulator (ABI2) and phosphorylates two positive ABA-signaling regulators (ABF1 and ABF4), which may partly explain the ABA hypersensitivity induced by both downregulation and upregulation of CPK12 expression. Our data indicate that CPK12 appears to function as a balancer in ABA signal transduction in Arabidopsis.

Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis
Plant Cell 19, 3019-3036.

DOI:10.1105/tpc.107.050666URL [本文引用: 2]

植物蛋白磷酸酶及其在植物抗逆中的作用
1
2003

... 蛋白磷酸酶2C (PP2C)是一类丝氨酸/苏氨酸蛋白磷酸酶, 是高等植物中存在的最大的蛋白磷酸酶家族(Singh et al., 2010).目前, 已经在植物中发现了多种PP2C类磷酸酶, 它们中的大多数都参与ABA通路的信号转导(翁华等, 2003). ...

光信号与激素调控种子休眠和萌发研究进展
1
2019

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

蛋白质翻译后修饰在ABA信号转导中的作用
1
2019

... PKs、类受体激酶(receptor-like kinases, RLKs)和PPs在蛋白质磷酸化和去磷酸化修饰过程中扮演至关重要的角色(张静和侯岁稳, 2019).PKs将底物蛋白的特定位点磷酸化, 使底物蛋白的分子构象发生改变, 进而使其活性缺失或获得.PPs则将被磷酸化的底物蛋白特定氨基酸残基上的磷酸基团去除, 恢复磷酸化之前的蛋白活性.而RLKs是一大类特殊的激酶, 作为特定的跨膜蛋白参与磷酸化修饰. ...

植物蛋白磷酸化的检测方法
1
2020

... 蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015).蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011).去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程.这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化.蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020). ...

Selective inhibition of clade a phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors
1
2012

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley
3
2009

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

... ; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis
1
2006

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Seed germination and dormancy
1
1997

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.)
1
2007

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins
1
2014

... 蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015).蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011).去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程.这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化.蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020). ...

Maternal environment and dormancy in sunflower: the effect of temperature during fruit development
1
2017

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana
1
2004

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Letting sleeping DOGs lie: regulation of DOG1 during seed dormancy
1
2019

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Seed after- ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis
2
2008

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

Shading of the mother plant during seed development promotes subsequent seed germination in soybean
1
2020

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family
1
2002

... 钙是植物细胞信号转导的主要调节剂, 已被证明是参与ABA信号转导的重要第二信使(Finkelstein et al., 2002; Hepler, 2005).植物钙调蛋白和CDPKs等可作为钙传感蛋白, 其中CDPKs是植物中最典型的钙信号之一(Cheng et al., 2002; Luan et al., 2002). ...

A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination
3
2013

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CARK1和CARK6是一类胞质类受体激酶(RLCKs), 属于RLCK VIII亚家族, 在ABA信号转导中发挥积极作用(Wang et al., 2019).与野生型相比, cark1cark6突变体种子对ABA不敏感, 其过表达种子对ABA更敏感; 且CARK1和CARK6与ABA受体(RCAR11、RCAR12、RCAR13和RCAR14)均能相互作用, 使受体蛋白磷酸化, 进而促进ABA信号转导(Zhang et al., 2018; Li et al., 2019), 最终削弱种子萌发.OsLecRK是从水稻中分离出来的G型凝集素类受体激酶, 在种子萌发和植物免疫中具有双重作用(Cheng et al., 2013).在种子萌发过程中, 萌发信号(如生长因子)会刺激OsLecRK表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013).因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题. ...

... 表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013).因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题. ...

Arabidopsis calcium- dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity
2
2005

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006).拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a).CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007).cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...

Arabidopsis MAPKs: a complex signaling network involved in multiple biological processes
1
2008

... MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1
1
2016

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Seed dormancy and the control of germination
1
2006

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

Molecular aspects of seed dormancy
4
2008

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Abscisic acid signaling in seeds and seedlings
1
2002

... 钙是植物细胞信号转导的主要调节剂, 已被证明是参与ABA信号转导的重要第二信使(Finkelstein et al., 2002; Hepler, 2005).植物钙调蛋白和CDPKs等可作为钙传感蛋白, 其中CDPKs是植物中最典型的钙信号之一(Cheng et al., 2002; Luan et al., 2002). ...

Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis
1
2007

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress
2
2009

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis
1
2009

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Seed dormancy in barley is dictated by genetics, environments and their interactions
1
2014

... MKK3位于MAPKK途径上, 在控制谷物种子休眠中发挥重要作用(Nakamura et al., 2016).小麦(Triticum aestivum) TaMKK3-A位于4A染色体上, 是种子休眠位点Phs1的候选基因(Martinez et al., 2020); 小麦品系MEL29MEL31显示出不同的休眠水平, MEL29种子萌发率比MEL31高.TaMKK3-A基因在MEL29种子中表达水平高于MEL31, 而较高的TaMKK3-A表达促进了休眠释放(Torada et al., 2016).而大麦(Hordeum vulgare)在5H染色体上有2个主要的种子休眠数量性状位点SD1SD2 (Gong et al., 2014), 其中SD2所处的Qsd2-AK位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠.此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016).然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚. ...

Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination
2
2003

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

Dormancy genes from weedy rice respond divergently to seed development environments
1
2006

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Cytokinin antagonizes abscisic acid- mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis
1
2014

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Dormancy release, ABA and pre-harvest sprouting
1
2005

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification
1
1995

... PKs是催化蛋白质磷酸化过程的关键酶(Jha et al., 2017).目前, 已经在拟南芥(Arabidopsis thaliana)、大豆(Glycine max)和水稻(Oryza sativa)等多种植物中分离出大量PKs.在细胞信号转导和细胞周期调控等过程中, PKs形成了纵横交错的调控网络(Shen et al., 2005).这类酶通过磷酸化修饰调节蛋白活性, 使其发挥相应的生理功能.PKs的种类较多, 根据其底物蛋白被磷酸化的氨基酸残基种类, 可将其分为5类, 分别为丝氨酸/苏氨酸蛋白激酶、酪氨酸蛋白激酶、组/赖/精氨酸蛋白激酶、半胱氨酸蛋白激酶以及天冬氨酰基/谷氨酰基蛋白激酶(Hanks and Hunter, 1995).目前已发现的植物蛋白激酶大多是前3类. ...

Calcium: a central regulator of plant growth and development
1
2005

... 钙是植物细胞信号转导的主要调节剂, 已被证明是参与ABA信号转导的重要第二信使(Finkelstein et al., 2002; Hepler, 2005).植物钙调蛋白和CDPKs等可作为钙传感蛋白, 其中CDPKs是植物中最典型的钙信号之一(Cheng et al., 2002; Luan et al., 2002). ...

Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana
2
1997

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

The Arabidopsis CDPK-SnRK superfamily of protein kinases
1
2003

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

Protein phosphorylation: a major switch mechanism for metabolic regulation
1
2015

... 蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015).蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011).去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程.这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化.蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020). ...

Recent advances in substrate identification of protein kinases in plants and their role in stress management
1
2017

... PKs是催化蛋白质磷酸化过程的关键酶(Jha et al., 2017).目前, 已经在拟南芥(Arabidopsis thaliana)、大豆(Glycine max)和水稻(Oryza sativa)等多种植物中分离出大量PKs.在细胞信号转导和细胞周期调控等过程中, PKs形成了纵横交错的调控网络(Shen et al., 2005).这类酶通过磷酸化修饰调节蛋白活性, 使其发挥相应的生理功能.PKs的种类较多, 根据其底物蛋白被磷酸化的氨基酸残基种类, 可将其分为5类, 分别为丝氨酸/苏氨酸蛋白激酶、酪氨酸蛋白激酶、组/赖/精氨酸蛋白激酶、半胱氨酸蛋白激酶以及天冬氨酰基/谷氨酰基蛋白激酶(Hanks and Hunter, 1995).目前已发现的植物蛋白激酶大多是前3类. ...

An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana
1
2005

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth
2
2012

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... 有意思的是, 水稻含有10个SnRK2激酶(SAPK1-10) (Kobayashi et al., 2004), 也可分为3个亚类.SAPK2是水稻SnRK2亚类II家族的成员, sapk2突变体种子在萌发和萌发后阶段表现出ABA不敏感表型, 但外源ABA处理并不上调SAPK2的表达.ABA受体PYL/RCAR5在SAPK2上游起作用, 并激活SAPK2的激酶活性, 进而通过ABRE结合因子OREB1介导ABA信号转导, 诱导ABA依赖的ABRE启动子活性, 从而负调控种子萌发及萌发后的幼苗生长(Kim et al., 2012). ...

HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis
3
2013

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

... )的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

Differential activation of the rice sucrose nonfermenting 1-related protein kinase 2 family by hyperosmotic stress and abscisic acid
1
2004

... 有意思的是, 水稻含有10个SnRK2激酶(SAPK1-10) (Kobayashi et al., 2004), 也可分为3个亚类.SAPK2是水稻SnRK2亚类II家族的成员, sapk2突变体种子在萌发和萌发后阶段表现出ABA不敏感表型, 但外源ABA处理并不上调SAPK2的表达.ABA受体PYL/RCAR5在SAPK2上游起作用, 并激活SAPK2的激酶活性, 进而通过ABRE结合因子OREB1介导ABA信号转导, 诱导ABA依赖的ABRE启动子活性, 从而负调控种子萌发及萌发后的幼苗生长(Kim et al., 2012). ...

Arabidopsis putative MAP kinase kinase kinases Raf10 and Raf11 are positive regulators of seed dormancy and ABA response
3
2015

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009).在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

... ); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

CARK1 phosphorylates subfamily III members of ABA receptors
1
2019

... CARK1和CARK6是一类胞质类受体激酶(RLCKs), 属于RLCK VIII亚家族, 在ABA信号转导中发挥积极作用(Wang et al., 2019).与野生型相比, cark1cark6突变体种子对ABA不敏感, 其过表达种子对ABA更敏感; 且CARK1和CARK6与ABA受体(RCAR11、RCAR12、RCAR13和RCAR14)均能相互作用, 使受体蛋白磷酸化, 进而促进ABA信号转导(Zhang et al., 2018; Li et al., 2019), 最终削弱种子萌发.OsLecRK是从水稻中分离出来的G型凝集素类受体激酶, 在种子萌发和植物免疫中具有双重作用(Cheng et al., 2013).在种子萌发过程中, 萌发信号(如生长因子)会刺激OsLecRK表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013).因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题. ...

High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice
1
2019

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

A new protein phosphatase 2C (FsPP2C1) induced by abscisic acid is specifically expressed in dormant beechnut seeds
1
2001

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

Protein phosphatases in plants
1
2003

... PPs是催化蛋白质去磷酸化过程的酶, 与PKs相对应存在, 共同构成磷酸化和去磷酸化这一重要的蛋白质活性开关系统(Luan, 2003).PPs通过水解磷酸基团将对应底物蛋白去磷酸化, 其效应与PKs的作用正好相反.根据去磷酸化的氨基酸残基的不同, PPs可分为丝氨酸/苏氨酸磷酸酶、酪氨酸磷酸酶和双特异性磷酸酶(Schweighofer and Meskiene, 2015). ...

Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants
1
2002

... 钙是植物细胞信号转导的主要调节剂, 已被证明是参与ABA信号转导的重要第二信使(Finkelstein et al., 2002; Hepler, 2005).植物钙调蛋白和CDPKs等可作为钙传感蛋白, 其中CDPKs是植物中最典型的钙信号之一(Cheng et al., 2002; Luan et al., 2002). ...

The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress
1
2021

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype
1
2020

... MKK3位于MAPKK途径上, 在控制谷物种子休眠中发挥重要作用(Nakamura et al., 2016).小麦(Triticum aestivum) TaMKK3-A位于4A染色体上, 是种子休眠位点Phs1的候选基因(Martinez et al., 2020); 小麦品系MEL29MEL31显示出不同的休眠水平, MEL29种子萌发率比MEL31高.TaMKK3-A基因在MEL29种子中表达水平高于MEL31, 而较高的TaMKK3-A表达促进了休眠释放(Torada et al., 2016).而大麦(Hordeum vulgare)在5H染色体上有2个主要的种子休眠数量性状位点SD1SD2 (Gong et al., 2014), 其中SD2所处的Qsd2-AK位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠.此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016).然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚. ...

The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway
2
2001

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... ABI1和ABI2是PP2C分支A中另外2个ABA信号通路的负调控因子(Merlot et al., 2001), 其隐性突变体表现出种子休眠及对ABA敏感的表型; 在ABA存在条件下, ABA与其受体PYR1/PYL/RCARs结合, 导致ABI1和ABI2蛋白磷酸酶失活, 进一步激活SnRK2激酶活性, 并磷酸化下游转录因子ABFs/AREBs和ABI5, 使ABA信号向下传递(Raghavendra et al., 2010). ...

The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION 1 protein levels in freshly harvested seeds
1
2012

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Emerging MAP kinase pathways in plant stress signaling
1
2005

... MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

Mitogen-activated protein kinase kinase 3 regulates seed dormancy in barley
3
2016

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... MKK3位于MAPKK途径上, 在控制谷物种子休眠中发挥重要作用(Nakamura et al., 2016).小麦(Triticum aestivum) TaMKK3-A位于4A染色体上, 是种子休眠位点Phs1的候选基因(Martinez et al., 2020); 小麦品系MEL29MEL31显示出不同的休眠水平, MEL29种子萌发率比MEL31高.TaMKK3-A基因在MEL29种子中表达水平高于MEL31, 而较高的TaMKK3-A表达促进了休眠释放(Torada et al., 2016).而大麦(Hordeum vulgare)在5H染色体上有2个主要的种子休眠数量性状位点SD1SD2 (Gong et al., 2014), 其中SD2所处的Qsd2-AK位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠.此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016).然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚. ...

... 位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠.此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016).然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚. ...

Three Arabidopsis SnRK2 protein kinases, SRK2D/ SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy
1
2009

... SnRKs是植物中特异性表达的激酶家族, 由SnRK1、SnRK2和SnRK3三个亚家族共同组成(Hrabak et al., 2003), 在种子休眠与萌发方面研究较多的主要是SnRK2亚家族.SnRK2亚家族的10个成员根据其结构可分为3个亚类, 其中亚类III中的2个成员(SnRK2.2和SnRK2.3)作为ABA信号通路的正调控因子(Boudsocq et al., 2004; Fujita et al., 2009)参与ABA诱导的种子萌发调控.snrk2.2snrk2.3突变体种子与野生型相比无显著差异, 而snrk2.2/snrk2.3双突变体在种子萌发中表现出很强的ABA不敏感表型(Nakashima et al., 2009).因此, SnRK2.2和SnRK2.3的功能冗余(Fujii et al., 2007).此外, 随着ABA的积累, ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3的激酶活性激活下游转录因子(Fujii and Zhu, 2009), 包括ABA响应元件ABRE的结合因子ABF (ABF1和ABF2)、ABI5、ABI3和ABI4, 从而诱导种子对ABA的响应, 削弱种子萌发(Finkelstein et al., 2008). ...

DELAY OF GERMINATION 1 requires PP2C phosphatases of the ABA signaling pathway to control seed dormancy
3
2017

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

... ).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Arabidopsis Raf-like kinase Raf10 is a regulatory component of core ABA signaling
1
2019

... AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009).在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme
3
2018

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

... 三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

ABA-Hypersensitive Germination 1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed
1
2007

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Seed biology updates-highlights and new discoveries in seed dormancy and germination research
1
2017

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

Germination-still a mystery
1
2010

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

Global, in vivo, and site-specific phosphorylation dynamics in signaling networks
1
2006

... 蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015).蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011).去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程.这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化.蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020). ...

Leucine-rich repeat receptor-like kinase 1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis
2
2005

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses
3
2019

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CRK28是一种富含半胱氨酸的类受体激酶(CRKs), 在种子萌发期间正调控ABA信号(Pelagio- Flores et al., 2019).与野生型相比, crk28突变体种子萌发率无显著差异, 而35S:CRK28过表达的种子萌发率较低, 且表现出对ABA超敏感表型; 后续研究发现, CRK28上调ABI3ABI5的表达, 从而导致ABA反应增强(Pelagio-Flores et al., 2019).CRKs家族的另一个成员CRK45也参与种子萌发期间对ABA的响应(Zhang et al., 2013).在无ABA的情况下, 野生型、crk4535S:CRK45的种子萌发率相似; 但在ABA存在的情况下, crk45表现出对ABA不敏感的表型, 而35S:CRK45表现出相反的表型; 进一步研究发现, CRK45过表达上调了ABA合成基因(NCED3NCED5ABA1ABA2AAO3)及ABA响应基因(ABF1-4MYC2)的表达水平, 从而正调控ABA信号转导, 延缓种子萌发(Zhang et al., 2013). ...

... 的表达, 从而导致ABA反应增强(Pelagio-Flores et al., 2019).CRKs家族的另一个成员CRK45也参与种子萌发期间对ABA的响应(Zhang et al., 2013).在无ABA的情况下, 野生型、crk4535S:CRK45的种子萌发率相似; 但在ABA存在的情况下, crk45表现出对ABA不敏感的表型, 而35S:CRK45表现出相反的表型; 进一步研究发现, CRK45过表达上调了ABA合成基因(NCED3NCED5ABA1ABA2AAO3)及ABA响应基因(ABF1-4MYC2)的表达水平, 从而正调控ABA信号转导, 延缓种子萌发(Zhang et al., 2013). ...

ABA perception and signaling
3
2010

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

... ABI1和ABI2是PP2C分支A中另外2个ABA信号通路的负调控因子(Merlot et al., 2001), 其隐性突变体表现出种子休眠及对ABA敏感的表型; 在ABA存在条件下, ABA与其受体PYR1/PYL/RCARs结合, 导致ABI1和ABI2蛋白磷酸酶失活, 进一步激活SnRK2激酶活性, 并磷酸化下游转录因子ABFs/AREBs和ABI5, 使ABA信号向下传递(Raghavendra et al., 2010). ...

Seed germination and vigor
1
2012

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana
1
2015

... MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid
1
2009

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress
2
2010

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

Protein kinase biochemistry and drug discovery
1
2011

... 蛋白质磷酸化是指由蛋白激酶(protein kinases, PKs)催化的, 将三磷酸腺苷(ATP)的磷酸基团转移到底物蛋白特定氨基酸残基上的过程, 广泛参与植物几乎所有生命过程的调节, 是蛋白质翻译后修饰的主要方式之一(Humphrey et al., 2015).蛋白质磷酸化主要发生在3类氨基酸上, 其中以丝氨酸最多, 苏氨酸次之, 第三类是酪氨酸(Olsen et al., 2006; Schwartz and Murray, 2011).去磷酸化则是磷酸化反应的逆反应, 即把加在蛋白质特定氨基酸残基上的磷酸基团水解、还原成羟基的过程.这2个过程分别由PKs和蛋白磷酸酶(protein phosphatases, PPs)催化.蛋白质磷酸化与去磷酸化作为一种重要的蛋白质翻译后修饰方式, 直接或间接影响蛋白质自身的活性、稳定性以及亚细胞定位(Bigeard et al., 2014), 从而广泛参与细胞内信号传递以及植物生长发育过程(朱丹等, 2020). ...

1
2015

... PPs是催化蛋白质去磷酸化过程的酶, 与PKs相对应存在, 共同构成磷酸化和去磷酸化这一重要的蛋白质活性开关系统(Luan, 2003).PPs通过水解磷酸基团将对应底物蛋白去磷酸化, 其效应与PKs的作用正好相反.根据去磷酸化的氨基酸残基的不同, PPs可分为丝氨酸/苏氨酸磷酸酶、酪氨酸磷酸酶和双特异性磷酸酶(Schweighofer and Meskiene, 2015). ...

Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism
1
2006

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Interaction of light and hormone signals in germinating seeds
1
2009

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Protein kinase structure and function analysis with chemical tools
1
2005

... PKs是催化蛋白质磷酸化过程的关键酶(Jha et al., 2017).目前, 已经在拟南芥(Arabidopsis thaliana)、大豆(Glycine max)和水稻(Oryza sativa)等多种植物中分离出大量PKs.在细胞信号转导和细胞周期调控等过程中, PKs形成了纵横交错的调控网络(Shen et al., 2005).这类酶通过磷酸化修饰调节蛋白活性, 使其发挥相应的生理功能.PKs的种类较多, 根据其底物蛋白被磷酸化的氨基酸残基种类, 可将其分为5类, 分别为丝氨酸/苏氨酸蛋白激酶、酪氨酸蛋白激酶、组/赖/精氨酸蛋白激酶、半胱氨酸蛋白激酶以及天冬氨酰基/谷氨酰基蛋白激酶(Hanks and Hunter, 1995).目前已发现的植物蛋白激酶大多是前3类. ...

Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases
1
2001

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

Plant receptor-like kinase gene family: diversity, function, and signaling
1
2001

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis
1
2003

... RLKs是PKs家族中重要而特殊的一类, 同时在植物中也是较大的基因家族之一(Ye et al., 2017), 具有独特的蛋白结构.RLKs是定位于细胞质膜上的跨膜蛋白, 主要由包含胞外结构域、跨膜结构域和胞内激酶域三大结构域和一段信号肽序列组成(Shiu and Bleecker, 2003).在信号转导过程中, 胞外结构域首先识别受体, 感知细胞外信号, 跨膜结构域将该信号传递至细胞质一侧, 胞内激酶结构域与下游底物蛋白相互作用, 启动磷酸化等一系列生化反应, 最后将信号传递到细胞核内, 调控下游基因表达, 使其进行信号输出(Ye et al., 2017), 从而帮助生物体适应外界环境变化. ...

Two faces of one seed: hormonal regulation of dormancy and germination
1
2016

... 种子休眠与萌发受到内源激素与外界环境因子的精细互作调控.在诸多植物激素中, 脱落酸(abscisic acid, ABA)与赤霉素(gibberellins, GA)对种子休眠与萌发的影响最为重要(Bewley, 1997; Gubler et al., 2005; Finkelstein et al., 2008).ABA与GA拮抗调控种子休眠与萌发.ABA促进种子休眠, 抑制种子萌发; 而GA促进种子萌发, 抑制种子休眠(Guan et al., 2014; Luo et al., 2021).除ABA和GA外, 还有多种植物激素也参与调控种子休眠与萌发, 包括生长素(auxin, AUX)、细胞分裂素(cytokinin, CTK)、乙烯(ethylene, ETH)、油菜素甾醇(brassinosteroids, BR)、水杨酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和独脚金内酯(strigolactones, SL).这些激素通过与ABA/GA合成以及信号转导等通路中的重要基因发生互作, 间接调控种子休眠与萌发(Shu et al., 2016).除植物激素外, 环境因子也参与调控种子休眠与萌发.例如, 光信号通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠与萌发(杨立文等, 2019).红光通过抑制ABA合成基因转录促进种子萌发, 而远红光通过诱导ABA合成基因表达延缓种子萌发(Seo et al., 2006, 2009).当种子处于高温或低温的萌发环境时, 种子休眠程度加深, 萌发速率降低(Gu et al., 2006; Biddulph et al., 2007; Bodrone et al., 2017).水分也是影响种子休眠与萌发的关键因素, 在缺水条件下, 种子萌发会严重受阻(Liu et al., 2019). ...

Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development
1
2010

... 蛋白磷酸酶2C (PP2C)是一类丝氨酸/苏氨酸蛋白磷酸酶, 是高等植物中存在的最大的蛋白磷酸酶家族(Singh et al., 2010).目前, 已经在植物中发现了多种PP2C类磷酸酶, 它们中的大多数都参与ABA通路的信号转导(翁华等, 2003). ...

Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana
1
2008

... MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase
2
2016

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... MKK3位于MAPKK途径上, 在控制谷物种子休眠中发挥重要作用(Nakamura et al., 2016).小麦(Triticum aestivum) TaMKK3-A位于4A染色体上, 是种子休眠位点Phs1的候选基因(Martinez et al., 2020); 小麦品系MEL29MEL31显示出不同的休眠水平, MEL29种子萌发率比MEL31高.TaMKK3-A基因在MEL29种子中表达水平高于MEL31, 而较高的TaMKK3-A表达促进了休眠释放(Torada et al., 2016).而大麦(Hordeum vulgare)在5H染色体上有2个主要的种子休眠数量性状位点SD1SD2 (Gong et al., 2014), 其中SD2所处的Qsd2-AK位点决定了不同品种间种子休眠的差异; 有意思的是, MKK3可以与Qsd2-AK相互作用, 进而调控种子休眠.此外, N260作为影响MKK3激酶活性的重要氨基酸, 该等位基因中的N260T替代会降低MKK3激酶活性, 导致休眠加深, 从而延迟种子萌发(Nakamura et al., 2016).然而, ABA是否以及如何影响MKK3激酶的作用, 目前还不清楚. ...

Activation of mitochondrial protein phosphatase SLP2 by MIA40 regulates seed germination
3
2017

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

... 表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

Molecular genetic analysis of cold-regulated gene transcription
1
2002

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

Receptor-like protein kinase genes of Arabidopsis thaliana
1
1993

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica
1
1990

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

CARK6 is involved in abscisic acid to regulate stress responses in Arabidopsis thaliana
2
2019

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CARK1和CARK6是一类胞质类受体激酶(RLCKs), 属于RLCK VIII亚家族, 在ABA信号转导中发挥积极作用(Wang et al., 2019).与野生型相比, cark1cark6突变体种子对ABA不敏感, 其过表达种子对ABA更敏感; 且CARK1和CARK6与ABA受体(RCAR11、RCAR12、RCAR13和RCAR14)均能相互作用, 使受体蛋白磷酸化, 进而促进ABA信号转导(Zhang et al., 2018; Li et al., 2019), 最终削弱种子萌发.OsLecRK是从水稻中分离出来的G型凝集素类受体激酶, 在种子萌发和植物免疫中具有双重作用(Cheng et al., 2013).在种子萌发过程中, 萌发信号(如生长因子)会刺激OsLecRK表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013).因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题. ...

Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance
1
2014

... 种子萌发是指种胚突破胚乳和种皮的物理限制而向外生长, 是种子从休眠状态恢复到活跃生理状态的过程(Nonogaki et al., 2010; Wang et al., 2014).种子休眠及萌发是高等植物生活史中的重要过程, 对于植物繁殖和地理分布至关重要.该过程需精确协调多种外部环境和内部因素的动态变化, 如光照、温度、水分和内源植物激素(Finch-Savage and Leubner-Metzger, 2006; Finkelstein et al., 2008; Rajjou et al., 2012; Nonogaki, 2017).在农业生产系统中, 及时萌发和整齐出苗是决定作物高产稳产的重要因素之一(Chen et al., 2020).因此, 深入研究调控种子休眠及萌发的分子机制具有重要的理论和实际意义. ...

Functional and structural characterization of a receptor-like kinase involved in germination and cell expansion in Arabidopsis
2
2017

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

Reduced Dormancy 5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis
3
2014

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

... 的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

Sequence polymorphisms at the REDUCED DORMANCY 5 pseudophosphatase underlie natural variation in Arabidopsis dormancy
1
2016

... RDO5 (reduced dormancy 5)属于PP2C磷酸酶家族, 是种子中特异性表达的休眠正调控因子.它不与A分支磷酸酶聚集在一起, 独立于ABA对种子休眠的调控(Xiang et al., 2014).与野生型相比, rdo5突变体种子休眠显著减弱, 但对ABA的敏感性不变(Xiang et al., 2016), 而下调APUM9 (Arabidopsis PUMILIO 9)和APUM11的表达可以恢复其休眠减弱表型; 因此, RDO5通过抑制APUM9APUM11的转录水平调节种子休眠, 且RDO5介导的调控通路不同于ABA信号通路(Xiang et al., 2014), 其具体机制需要深入研究.与之不同, FsPP2C1是一种在山毛榉(Fagus sylvatica)中特异表达的功能性PP2C磷酸酶, 其表达受ABA调控(Lorenzo et al., 2001; Saavedra et al., 2010).在拟南芥中, 35S:FsPP2C1转基因种子休眠程度较低, 对ABA不敏感, 且能够在不利条件(如甘露醇和盐)下萌发, 其过表达拟南芥种子也表现出ABA不敏感表型(González-García et al., 2003); 然而, FsPP2C1如何被激活以调控ABA信号转导, 从而促进种子萌发, 尚属未知.另一种PP2C蛋白HON是种子休眠的负调控因子, 在ABA存在条件下能够与PYR/PYL/RCARs结合, 降低HON的PP2C磷酸酶活性(Kim et al., 2013).与野生型相比, hon突变体休眠程度加深, 但其过表达种子休眠程度减弱; 此外, HON通过下调ABA响应基因(EM1EM6)和GA分解代谢基因GA2ox2的表达, 上调GA响应基因(CP1EXP1)和GA合成基因(GA3ox1GA3ox2)的表达, 抑制ABA信号而激活GA信号, 进而使种子解除休眠, 向萌发过渡(Kim et al., 2013). ...

AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination
4
2009

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009).在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

... 双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

... ).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

FIERY1 encoding an inositol polyphosphate 1- phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis
2
2001

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... 与PP2C磷酸酶不同, 脂质磷酸酶LPP (lipid phosphate phosphatase)家族成员在后熟诱导的种子休眠解除中起重要作用(Barrero et al., 2009).在拟南芥和大麦中, lpp2突变体在萌发过程中表现出ABA超敏表型(Katagiri et al., 2005; Barrero et al., 2009), 且后熟能够激活LPP2基因转录, 使其表达上调(Carrera et al., 2008), 进而抑制种子对ABA的敏感性, 使种子能够完成萌发.SLP2 (shewanella-like protein phosphatase 2)是一种线粒体蛋白磷酸酶, 位于线粒体膜间隙, 能够与AtMIA40 (mitochondrial oxidoreductase import and assembly protein 40)互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发(Uhrig et al., 2017).atslp2-2突变体萌发表型与内源GA水平有关; 同时, 在无AtSLP2的情况下, GA水平升高, GA诱导的AtSLP2表达水平与GA3氧化酶基因(GA3ox)和GID1A表达呈负相关, 而与GA合成基因下游的DELLA转录因子(RGA1和RGL2)表达呈正相关(Uhrig et al., 2017), 但其底物蛋白与详细机制尚不清楚, AtSLP2如何负调控GA相关过程值得深入探究.此外, 肌醇多聚磷酸1-磷酸酶FRY1能够通过负调控ABA信号转导抑制种子休眠(Xiong et al., 2001).与野生型相比, fry1-1突变体种子萌发期间表现出对ABA和渗透胁迫敏感的表型; 并且在低温、渗透胁迫或ABA处理下, FRY1突变使第二信使IP3 (inositol(1,4,5)-triphosphate)大量积累, 导致ABA的诱导和RD29A及其它胁迫响应基因(如KIN1COR15AHSP70ADH)的表达显著增强, 促进种子休眠(Viswanathan and Zhu, 2002) (表1). ...

Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice
1
2018

... AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009).在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants
3
2017

... RLKs是PKs家族中重要而特殊的一类, 同时在植物中也是较大的基因家族之一(Ye et al., 2017), 具有独特的蛋白结构.RLKs是定位于细胞质膜上的跨膜蛋白, 主要由包含胞外结构域、跨膜结构域和胞内激酶域三大结构域和一段信号肽序列组成(Shiu and Bleecker, 2003).在信号转导过程中, 胞外结构域首先识别受体, 感知细胞外信号, 跨膜结构域将该信号传递至细胞质一侧, 胞内激酶结构域与下游底物蛋白相互作用, 启动磷酸化等一系列生化反应, 最后将信号传递到细胞核内, 调控下游基因表达, 使其进行信号输出(Ye et al., 2017), 从而帮助生物体适应外界环境变化. ...

... ).在信号转导过程中, 胞外结构域首先识别受体, 感知细胞外信号, 跨膜结构域将该信号传递至细胞质一侧, 胞内激酶结构域与下游底物蛋白相互作用, 启动磷酸化等一系列生化反应, 最后将信号传递到细胞核内, 调控下游基因表达, 使其进行信号输出(Ye et al., 2017), 从而帮助生物体适应外界环境变化. ...

... RLKs是植物中最重要的感官蛋白之一, 在感知环境信号中起主要作用(Walker and Zhang, 1990; Walker, 1993).通过磷酸化级联反应, RLKs将胞外信号传递至胞内, 以调节生长发育(Shiu and Bleecker, 2001b; Ye et al., 2017)和响应生物/非生物胁迫.LRR-RLK是拟南芥中最大且研究最充分的RLK亚家族(Shiu and Bleecker, 2001a).GRACE是该亚家族中编码膜蛋白的成员之一, 在干种子中高表达且具有维持种子休眠的功能(Wu et al., 2017).外源ABA处理能够显著上调GRACE表达, 但其与ABA互作调控种子休眠的分子机制仍需要进一步研究.同样, 从拟南芥中分离得到的RPK1基因也属于该亚家族, 其表达受ABA诱导(Hong et al., 1997).RPK1突变体(rpk1-1rpk1-2)在种子萌发过程中对ABA不敏感, 且antisense-RPK1转基因种子表现出相同的表型; 进一步研究发现, 该表型是由于RPK1表达下降引起(Osakabe et al., 2005), 但其具体机制尚待进一步研究. ...

ABA-Hyper- sensitive germination 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs
1
2006

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

Abscisic acid stimulates a calcium-dependent protein kinase in grape berry
1
2006

... CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006).拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a).CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007).cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...

Wheat PP2C-a10 regulates seed germination and drought tolerance in transgenic Arabidopsis
3
2020

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AHG1 (ABA-hypersensitive germination 1)和AHG3是PP2C分支A的2个成员, 负调节种子休眠且功能冗余(Yoshida et al., 2006; Nishimura et al., 2007).值得注意的是, 该分支的多数成员是ABA信号通路的负调控因子(Rubio et al., 2009; Raghavendra et al., 2010).在有ABA时, 该分支的多数磷酸酶活性被ABA受体PYR/PYL/RCARs家族抑制(Antoni et al., 2012).而DOG1 (delay of germination 1)是种子休眠过程中关键的正调控因子(Cyrek et al., 2016; Breeze, 2019), 其突变体种子表现出非休眠表型(Bentsink et al., 2006; Nakabayashi et al., 2012).在种子中, DOG1需要借助PP2C控制种子休眠, DOG1通过与AHG1和/或AHG3结合, 抑制其磷酸酶活性, 进而增强ABA信号(Née et al., 2017; Nishimura et al., 2018).dog1/ahg1dog1/ahg3双突变体是非休眠的, 而dog1/ahg1/ahg3三突变体表现出非常强的休眠表型.上述结果表明, 磷酸酶AHG1和AHG3功能冗余, 且二者位于DOG1的下游, 为DOG1发挥功能所必需(Nishimura et al., 2018).后续研究发现, ABA和DOG1调控的休眠途径在PP2C磷酸酶分支A处汇聚, 通过降低共同以及单独的PP2C磷酸酶活性调节种子休眠(Née et al., 2017).与之一致的是, AHG1亚家族的另一个成员PP2C-a10也可以通过DOG1L调节种子萌发(Yu et al., 2020).在小麦中, TaPP2C-a10与TaDOG1L1和TaDOG1L4相互作用, 促进种子萌发.同样, 在拟南芥中, PP2C-a10的异源表达也能够促进种子萌发, 降低种子对ABA的敏感性.PP2C-a10能够通过与ABA响应基因(ABI3ABI4ABI5EM1EM6)相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

... )相互作用, 降低其表达水平, 进而促进种子萌发(Yu et al., 2020). ...

CARK1 mediates ABA signaling by phosphorylation of ABA receptors
2
2018

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CARK1和CARK6是一类胞质类受体激酶(RLCKs), 属于RLCK VIII亚家族, 在ABA信号转导中发挥积极作用(Wang et al., 2019).与野生型相比, cark1cark6突变体种子对ABA不敏感, 其过表达种子对ABA更敏感; 且CARK1和CARK6与ABA受体(RCAR11、RCAR12、RCAR13和RCAR14)均能相互作用, 使受体蛋白磷酸化, 进而促进ABA信号转导(Zhang et al., 2018; Li et al., 2019), 最终削弱种子萌发.OsLecRK是从水稻中分离出来的G型凝集素类受体激酶, 在种子萌发和植物免疫中具有双重作用(Cheng et al., 2013).在种子萌发过程中, 萌发信号(如生长因子)会刺激OsLecRK表达, 使被激活的OsLecRK激酶结构域与OsADF (actin-depolymerizing factor)结合, 导致α-淀粉酶合成基因表达上调, 从而增强种子活力, 促进种子萌发(Cheng et al., 2013).因此, 在未来的研究中, ABA是否以及如何影响OsLecRK激酶活性将是一个重要课题. ...

The MPK8-TCP14 pathway promotes seed germination in Arabidopsis
4
2019

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... ).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... AtMKK1和AtMPK6是拟南芥中参与ABA和糖调节种子萌发过程的关键分子(Xing et al., 2009).在未层积化处理情况下, mkk1/mpk6双突变体种子显示出比野生型更高的萌发率, 且mpk6mkk1/mpk6突变体对ABA和葡萄糖处理不敏感, 而过表达MKK1MPK6种子则对ABA和葡萄糖超敏感; 此外, 葡萄糖能够通过上调NCED3ABA2的表达诱导ABA合成, 但这种上调在mkk1/mpk6双突变体中被阻断(Xing et al., 2009).因此, MKK1和MPK6是种子萌发过程中葡萄糖信号的下游调节因子, 葡萄糖通过MKK1和MPK6促进ABA合成, 从而抑制种子萌发(Xing et al., 2009).同样, 水稻OsMPK6也通过增强ABA的合成与信号强度, 实现对种子休眠的维持与萌发的抑制(Xu et al., 2018; Zhang et al., 2019).此外, 在MAPKKK途径中, Raf10和Raf11激酶正调控种子休眠(Lee et al., 2015).与野生型相比, raf10raf11突变体种子的休眠程度和对ABA的敏感性较低, 而过表达则导致种子萌发延迟, ABA的敏感性增强; 进一步研究发现, 在Raf10Raf11过表达种子中, ABA信号正调控基因ABI3ABI5的表达均有所上调(Nguyen et al., 2019); 并且Raf10和Raf11可以发生自磷酸化, 其激酶活性被MAPKKK抑制剂BAY 43-9006抑制(Lee et al., 2015), 从而影响其对种子休眠的调控. ...

Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses
3
2013

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CRK28是一种富含半胱氨酸的类受体激酶(CRKs), 在种子萌发期间正调控ABA信号(Pelagio- Flores et al., 2019).与野生型相比, crk28突变体种子萌发率无显著差异, 而35S:CRK28过表达的种子萌发率较低, 且表现出对ABA超敏感表型; 后续研究发现, CRK28上调ABI3ABI5的表达, 从而导致ABA反应增强(Pelagio-Flores et al., 2019).CRKs家族的另一个成员CRK45也参与种子萌发期间对ABA的响应(Zhang et al., 2013).在无ABA的情况下, 野生型、crk4535S:CRK45的种子萌发率相似; 但在ABA存在的情况下, crk45表现出对ABA不敏感的表型, 而35S:CRK45表现出相反的表型; 进一步研究发现, CRK45过表达上调了ABA合成基因(NCED3NCED5ABA1ABA2AAO3)及ABA响应基因(ABF1-4MYC2)的表达水平, 从而正调控ABA信号转导, 延缓种子萌发(Zhang et al., 2013). ...

... )的表达水平, 从而正调控ABA信号转导, 延缓种子萌发(Zhang et al., 2013). ...

The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth
3
2011

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006).拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a).CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007).cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...

... 双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...

CPK12: a Ca2+- dependent protein kinase balancer in abscisic acid signaling
2
2011

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006).拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a).CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007).cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...

Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis
2
2007

... The main regulatory genes involved in seed dormancy and germination during protein phosphorylation modification
Table 1
大类 关键基因 分子功能 参考文献
蛋白激
MAPKs MPK8 通过与GA反应的转录因子TCP14相互作用磷酸化TCP14, 增强其转录活性, 调控从休眠到萌发的转换. Zhang et al., 2019
MKK1
MPK6
参与ABA和糖调节的种子萌发, 通过增强ABA的合成与信号强度, 维持种子休眠, 抑制种子萌发. Xing et al., 2009
Raf10
Raf11
过表达Raf10Raf11, 使种子对ABA敏感性增强, ABI3ABI5表达上调, 从而延缓种子萌发. Lee et al., 2015
MKK3 MKK3-A高表达促进小麦种子休眠释放, 且MKK3可以与Qsd2-AK相互作用, 调控大麦种子休眠. Nakamura et al., 2016; Torada et al., 2016
CPKs CPK4
CPK11
过表达CPK4CPK11, 种子表现出对ABA敏感表型, 萌发受到明显抑制. Zhu et al., 2007
CPK12 CPK12通过与ABI2相互作用磷酸化ABI2, 并下调ABF1ABF4表达, 负调控ABA信号, 促进种子萌发. Zhao et al., 2011a, 2011b
CPK32 CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 抑制种子萌发. Choi et al., 2005
SnRKs SnRK2.2
SnRK2.3
ABA信号通路复合物PYLs-ABA-PP2C通过激活SnRK2.2和SnRK2.3激酶活性, 激活下游转录因子, 诱导种子对ABA的响应. Finkelstein et al., 2008; Fujii and Zhu, 2009
SAPK2 ABA受体PYL/RCAR5作用于SAPK2上游, 激活SAPK2激酶活性, 通过OREB1介导ABA信号转导, 激活ABRE启动子活性, 负调控种子萌发. Kim et al., 2012
类受体
激酶
RLKs GRACE 编码膜蛋白, 在干种子中高表达, 其表达水平受ABA诱导, 进而延缓种子萌发, 维持种子休眠. Wu et al., 2017
RPK1 RPK1基因表达受ABA诱导, 通过正调控ABA信号传导, 抑制种子萌发. Hong et al., 1997; Osakabe et al., 2005
CRK28 CRK28能够上调ABI3ABI5的表达, 使ABA反应增强, 削弱种子萌发. Pelagio-Flores et al., 2019
CRK45 过表达CRK45能够上调ABA合成及反应基因表达水平, 正调控ABA信号转导, 延缓种子萌发. Zhang et al., 2013
CARK1
CARK6
CARK1和CARK6通过与ABA受体RCAR11-14相互作用, 使其磷酸化, 促进ABA信号转导, 最终抑制种子萌发. Zhang et al., 2018; Wang et al., 2019
OsLecRK OsLecRK表达受萌发信号刺激而上调, 进而与OsADF相互作用, 并进
一步转导萌发信号, 上调α-淀粉酶基因表达, 增强种子活力, 促进种子萌发.
Cheng et al., 2013
磷酸酶 PP2Cs AHG1
AHG3
DOG1与AHG1/AHG3相互作用, 形成PP2C磷酸酶复合物, 抑制其磷酸酶活性, 进而增强ABA信号, 促使种子休眠. Née et al., 2017; Nishimura et al., 2018
PP2C-a10 PP2C-a10与TaDOG1L1和TaDOG1L4互作, 促进小麦种子萌发; 也可与ABA反应基因(ABI3ABI4ABI5EM1EM6)互作, 降低其表达水平, 促进拟南芥种子萌发. Yu et al., 2020
ABI1
ABI2
在ABA存在条件下, ABA与PYR1/PYL/RCAR受体结合, 抑制ABI1和ABI2活性, 激活SnRK2s的激酶活性, 并磷酸化下游转录因子, 使ABA
信号向下传递, 抑制种子萌发.
Merlot et al., 2001; Raghavendra et al., 2010
RDO5 RDO5是种子特异性表达的休眠积极调控因子, 独立于ABA对种子休眠的调控, 通过抑制APUM9APUM11的转录水平调节种子休眠. Xiang et al., 2014
FsPP2C1 过表达PP2C1种子萌发率高, 对ABA敏感性低, 且能够在不利的条件
(如甘露醇和盐)下萌发, 通过负调控ABA信号转导, 促进种子萌发.
González-García et al., 2003; Saavedra et al., 2010
HON HON通过上调GA合成和响应基因的表达, 下调ABA响应基因和GA分解
基因表达, 激活GA信号, 抑制ABA信号, 使种子解除休眠, 向萌发过渡.
Kim et al., 2013
脂质磷
酸酶
LPP2 后熟可激活LPP2的转录活性, 使其表达上调, 抑制种子对ABA的敏感性, 使种子能够完成萌发. Carrera et al., 2008; Barrero et al., 2009
线粒体蛋白磷酸酶 SLP2 SLP2与AtMIA40互作, 形成AtSLP2-AtMIA40蛋白质复合体, 通过抑制GA相关过程负调控种子萌发. Uhrig et al., 2017
肌醇多聚磷酸1-磷酸酶 FRY1 FRY1突变使IP3大量积累, 导致ABA的诱导和内源RD29A及其它胁迫
响应基因的表达显著增强, 负调控ABA和逆境信号, 促进种子萌发.
Xiong et al., 2001
2.1 MAPKs参与种子休眠与萌发 MAPK级联由3类酶组成, 分别为MAPK、MAPKK (mitogen-activated protein kinases kinases)和MAPKKK (mitogen-activated protein kinases kinases kinases), ABA信号转导通路也与该级联反应相关(Nakagami et al., 2005).同时, 该级联反应也涉及多个生物学过程, 如调控植物生长发育及响应生物/非生物胁迫(Colcombet and Hirt, 2008).拟南芥mpk8突变体种子比野生型休眠程度深, 表现出延迟萌发表型, 且后熟和外源赤霉素处理均无法有效缓解这种深度休眠, 但其具体机制尚待进一步探究(Zhang et al., 2019).TCP14 (Teosinte branched1/ Cycloidea/Proliferating cell factor)是种子萌发过程中参与GA反应的转录因子, 也是MPK8的底物蛋白, 可被MPK8磷酸化, 增强其转录活性, 进而调控从休眠到萌发的转换(Tatematsu et al., 2008), 且mpk8/ tcp14双突变体种子的休眠程度比各自单突变体种子深; 进一步研究发现, mpk8tcp14mpk8/tcp14双突变体种子中GA合成基因(GA3ox1GA3ox2)和响应基因(CP1GASA4GASA14)的转录水平均有所下降, 且突变体种子均呈现出对GA合成抑制剂多效唑敏感的表型(Resentini et al., 2015).因此, MPK8经由转录因子TCP14介导负调控种子休眠(Zhang et al., 2019). ...

... CDPKs被认为与ABA信号有关, 参与调节种子萌发及植物发育(Yu et al., 2006).拟南芥CDPK超家族的不同成员CPK4、CPK11和CPK12通过在ABA信号转导中发挥拮抗作用而构成一个调节环(Zhao et al., 2011a).CPK4和CPK11是ABA信号转导途径2个重要的正调节因子(Zhu et al., 2007).cpk4cpk11突变体种子表现出萌发加快和ABA/盐不敏感表型; cpk4/cpk11双突变体种子比各自单突变体种子具有更强的ABA不敏感和盐响应表型, 其过表达种子则表现出相反表型, 萌发受到明显抑制, 但详细的调控机制尚不清楚.而CPK12在种子萌发和萌发后生长过程中是ABA信号的负调节因子(Zhao et al., 2011a).与野生型相比, CPK12-RNAi种子在萌发期间对ABA敏感; CPK12通过与ABA信号通路的负调节蛋白ABI2相互作用磷酸化ABI2, 使ABA响应转录因子ABF1和ABF4磷酸化, 并下调其表达(Zhao et al., 2011b), 从而正调控种子萌发.拟南芥CDPK超家族的另一个成员CPK32也参与ABA介导的种子萌发.CPK32过表达导致ABA超敏表型, 种子萌发受到抑制; 进一步研究表明, CPK32通过与ABF4相互作用磷酸化ABF4, 增强其转录活性, 促进ABA信号转导, 进而抑制种子萌发(Choi et al., 2005). ...




相关话题/种子 信号 基因 过程 植物