Advances in Molecular Mechanisms of Stress Tolerance in Wild Soybean
Yan Wang, Bowei Jia, Mingzhe Sun, Xiaoli Sun,*Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China通讯作者: E-mail:csmbl2016@126.com
责任编辑: 孙冬花
收稿日期:2020-08-10接受日期:2020-11-24网络出版日期:2021-01-01
基金资助: |
Corresponding authors: *E-mail:csmbl2016@126.com
Received:2020-08-10Accepted:2020-11-24Online:2021-01-01
摘要
野生大豆(Glycine soja)起源于中国, 是栽培大豆(G. max)的近缘祖先, 逆境适应能力强, 是研究耐逆分子机制和挖掘耐逆关键调控基因的优良材料。该文综述了野生大豆耐逆基因组、转录组和蛋白质组等组学研究进展, 总结了近年来类受体蛋白激酶、转录因子、离子通道和氧化还原在野生大豆耐逆应答中的调控作用及机制, 为耐逆作物新品种培育提供了新思路。
关键词:
Abstract
Wild soybeans (Glycine soja) originated in China, which was the closest ancestor of soybean. Because of the remarkable adaptability to adverse conditions, wild soybean has become an ideal material for the study of key genes in regulating stress tolerance. In this review, we provided an overview on the genome, transcriptome and proteome of wild soybean in stress tolerance. Meanwhile, we summarized current research progress on the protein kinases, transcription factors, ion channels and redox regulation in response to stress, which will provide new ideas for the cultivation of stress- tolerant crops in the future.
Keywords:
PDF (741KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
王研, 贾博为, 孙明哲, 孙晓丽. 野生大豆耐逆分子调控机制研究进展. 植物学报, 2021, 56(1): 104-115 doi:10.11983/CBB20144
Wang Yan, Jia Bowei, Sun Mingzhe, Sun Xiaoli.
大豆(Glycine max)原产于中国, 是仅次于水稻(Oryza sativa)、小麦(Triticum aestivum)和玉米(Zea mays)的第四大作物。我国大豆遗传基础狭窄, 加之受非生物胁迫(如盐碱、低温和干旱)和生物胁迫(病虫害)的影响, 致使其单位面积产值低于世界发达国家(盖钧镒, 2011)。因此, 通过大豆种质创新, 提高大豆品质和产量已成为我国农业发展的重要课题之一。
野生大豆(G. soja)是栽培大豆的祖先种(盖钧镒和赵团结, 2001; 夏正俊, 2017), 仅分布于亚洲东部北回归线以北区域(包括中国、朝鲜半岛、日本和俄罗斯的远东地区) (孙备等, 2008)。野生大豆耐逆性强且蛋白质含量高(杨光宇和纪锋, 1999)。近年来, 野生大豆的组学和耐逆基因挖掘均取得了较大进展, 为栽培大豆育种提供了宝贵的基因资源和亲本材料。本文主要综述野生大豆耐逆组学的研究进展, 以及蛋白激酶、转录因子、通道蛋白和氧化还原在野生大豆逆境应答中的调控作用及机制。
1 野生大豆耐逆组学
1.1 野生大豆基因组学
2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(Schmutz et al., 2010), 为大豆基因组学研究奠定了基础。随后, 香港中文大学林汉明团队对17个野生大豆和14个栽培大豆进行了基因组重测序, 发现栽培大豆进化过程中丢失了野生大豆基因组的部分等位基因(Lam et al., 2010)。同年, 韩国首尔大学Kim等(2010)通过深度测序, 发现野生大豆与栽培大豆的基因组差异仅为0.31%。2014年, 中国农业科学院作物科学研究所Li等(2014)对7份野生大豆材料进行了从头测序和组装, 构建出首个野生大豆泛基因组, 发现野生大豆所特有的基因(主要与生物和非生物胁迫相关)占51.4%。2015年, 研究人员进一步对302份野生大豆、地方栽培大豆以及改良大豆材料进行重测序分析, 揭示了10个选定区域与9个驯化/改良性状之间的关联, 并鉴定了13个以前未表征的农艺性状位点(Zhou et al., 2015)。2019年, 香港大学Xie等(2019)对应用三代PacBio测序技术、Bionano Genomics双酶切光学图谱和高通量染色体构象捕获技术获得的数据进行组装, 并发布了野生大豆W05高质量参考基因组序列。随着基因组测序技术的日益成熟, 更多的种质材料将被重测序分析, 进而获得更多高质量的野生大豆基因组数据, 为挖掘野生大豆耐逆关键基因及解析耐逆分子机制提供有效信息。例如, Qi等(2014)以野生大豆和栽培大豆的重组自交系(recombinant inbred line, RIL)为材料, 利用全基因组测序进行了种子营养品质、产量和抗逆性等11个农艺性状的主效QTL (quantitative trait locus)定位分析, 并发现耐盐关键基因GmCHX1。此外, 通过对12个耐盐和11个盐敏感大豆基因组重测序, 发现耐盐品种中GmCHX1编码区和启动子区具有保守的SNP (single nucleotide polymorphism), 而盐敏感型呈多样化, 导致盐敏感型GmCHX1基因表达量低(Qi et al., 2014)。该研究揭示了野生大豆在驯化过程中的变异和进化规律, 为今后进一步精细解析野生大豆耐逆机理提供了理论依据。1.2 野生大豆耐逆的转录组
对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性。Ji等(2006)利用SMART (switching mechanism at 5′ end of the RNA transcript)技术构建了150 mmol·L-1 NaCl处理的野生大豆叶片cDNA文库, 对获得的2 003个高质量ESTs (expressed sequence tags)测序分析, 发现其中有2%的基因参与胁迫应答。Ali等(2012)采用数字基因表达谱(digital gene expression profiling, DGEP)分析了200 mmol·L-1 NaCl处理下, 耐盐野生大豆(STGoGS)以及盐敏感栽培大豆(SSGoGM)基因表达差异, 发现耐盐野生大豆基因的表达水平较高且上调基因较多。Ge等(2010, 2011)利用基因芯片技术对50 mmol·L-1 NaHCO3处理的野生大豆(G07256)根和叶转录组进行分析, 发现碱处理后根中差异表达基因出现时间早于叶。Duanmu等(2015)采用RNA-seq分析技术对50 mmol·L-1 NaHCO3处理的野生大豆(G07256)根进行分析, 发现处理1小时后有1 443个差异表达基因, 说明野生大豆对碱胁迫的响应非常迅速。此外, 该研究组还发现WRKY、NAC、bZIP和TIFY家族的转录因子以及氧化还原相关基因参与碱胁迫应答。与基因芯片技术(受探针长度限制)相比, RNA-seq分析可生成更完整的转录组图谱, 并更精确地估计基因表达水平。Zhang等(2016)通过RNA-Seq分析了耐碱野生大豆(N24852)根和叶在90 mmol·L-1 NaHCO3处理下的转录组数据, 发现碱处理12和24小时后大量bHLH、ERF、C2H2和C3H转录因子差异表达; Ge等(2010, 2011)研究也发现大量bHLH转录因子差异表达。张小芳等(2018)采用RNA-seq技术筛选了干旱胁迫下野生大豆(永46)叶片的差异表达基因, 发现胁迫12小时后差异表达基因数量达到最大, 且上调表达基因显著多于下调表达基因; 并从这些差异表达基因中鉴定到53类转录因子(包括MYB、bHLH、WRKY、NAC和ARF等家族)。多个转录组测序研究表明, 转录因子在野生大豆耐逆过程中发挥重要作用。除了对mRNA测序外, 研究人员还对逆境胁迫下野生大豆的microRNA表达进行了分析。Chen等(2009)以3周龄野生大豆为材料获得了2 880个高质量小RNA序列, 共鉴定出15个属于8个不同家族的保守miRNA, 为野生大豆miRNA的功能鉴定奠定了基础。Zeng等(2012)对铝胁迫下野生大豆幼苗根进行了高通量测序, 鉴定出128个miRNAs, 其中30个miRNAs的表达响应铝胁迫。随着野生大豆中越来越多的miRNA和靶基因被发现, miRNA参与的调控网络将会逐步完善, 这对人们进一步了解野生大豆抵御逆境胁迫的作用机制大有助益。
1.3 野生大豆耐逆的蛋白质组
蛋白质组分析技术与基因组和转录组测序技术相比起步较晚, 目前尚处于初期阶段。张宁(2015)以50 mmol·L-1 NaHCO3胁迫下野生大豆(G07256)叶片为材料, 利用双向凝胶电泳(two-dimensional electrophoresis, 2-DE)技术筛选出101个差异表达蛋白。转录组测序在碱处理1小时就能鉴定到差异表达基因, 而蛋白质组分析在24和48小时后得到的差异蛋白点最多。Ji等(2016a)采用同位素标记相对和绝对定量(isobaric tags for relative and absolute quantification, iTRAQ)技术分析了盐处理12小时大豆叶片和根的蛋白质组, 获得50个差异表达蛋白; 并分析了GsCBRLK过表达大豆和野生型叶片盐胁迫的蛋白质组, 获得了941个差异表达蛋白, 其中574个依赖GsCBRLK (Ji et al., 2016b)。Pi等(2016)分析了盐胁迫下大豆耐盐和盐敏感品种根的磷酸蛋白质组, 鉴定了1 163个差异磷酸化位点, 并发现磷酸化的MYB转录因子介导的查尔酮代谢途径参与盐胁迫应答。虽然已有关于大豆在不同逆境胁迫下蛋白质组和磷酸化蛋白质组变化的报道, 但对野生大豆蛋白质组的研究却报道较少。鉴于转录水平差异并不能代表蛋白质水平差异(Hossain et al., 2013), 因此研究野生大豆逆境下的蛋白质组对揭示其对逆境胁迫的响应至关重要。相信随着蛋白质组技术的逐步完善, 会建立不同条件下更全面的蛋白表达谱, 以更直接地了解野生大豆逆境下的信号转导途径和耐逆分子机制。
2 蛋白激酶调控野生大豆的耐逆应答
蛋白激酶通过磷酸化下游靶蛋白, 启动或关闭信号转导通路, 调控植物逆境应答。大豆中4.67%的基因编码蛋白激酶(protein kinase), 其中约65%属于类受体蛋白激酶(receptor like kinases, RLKs) (Zulawski et al., 2014; Liu et al., 2015b)。RLKs蛋白一般包含1个胞外结构域、1个跨膜结构域和1个胞内激酶结构域。LRR-RLKs (leucine-rich-repeat protein kinases)是一类富含亮氨酸的RLKs (表1)。Zhou等(2016)对大豆LRR-RLK基因家族进行了全基因组分析, 鉴定出467个LRR-RLK基因, 通过对比35个栽培大豆和21个野生大豆的序列多样性, 发现野生种群的基因多样性显著高于栽培种群, 表明挖掘野生大豆蛋白激酶的功能和进一步揭示其介导的野生大豆耐逆分子调控网络具有重要意义。2012年, 杨靓等(2012)克隆了1个受非生物逆境诱导表达的野生大豆LRR-RLK基因GsLRPK, 其在酵母和拟南芥(Arabidopsis thaliana)中过表达可提高冷应答基因的表达, 增强耐冷性。虽然对拟南芥和水稻中LRR-RLK激酶在逆境应答中的功能报道较多, 但目前关于野生大豆LRR-RLK的耐逆功能报道较少。
Table 1
表1
表1野生大豆耐逆应答相关的蛋白激酶
Table 1
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | 杨靓等, 2012; Yang et al., 2014 |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | Sun et al., 2013a |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | Yang et al., 2010; Bai et al., 2013; 赵阳等, 2014 |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | Sun et al., 2013b, 2018 |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | Yang et al., 2012 |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | 魏正巍等, 2013 |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | Sun et al., 2014a |
新窗口打开|下载CSV
胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(表1)。Sun等(2013a)分离了1个受逆境胁迫诱导的野生大豆RLCK基因GsRLCK, 研究发现该基因在拟南芥中过表达可降低对ABA的敏感性, 提高耐盐性和耐旱性。Yang等(2010)从野生大豆中分离了1个Ca2+/CaM结合的RLK基因GsCBRLK, 其表达受冷、盐、干旱和ABA诱导。GsCBRLK过表达可显著提高转基因拟南芥、苜蓿(Medicago sativa)和大豆对ABA、高盐和碱胁迫的耐受性(Bai et al., 2013; 赵阳等, 2014; Ji et al., 2016b)。后续, Sun等 (2014b, 2016b, 2019, 2021)进一步鉴定获得了4个GsCBRLK互作蛋白。其中, GsBET11a编码1个SNARE转运蛋白, 通过C端跨膜结构域与GsCBRLK互作, GsBET11a过表达可提高转基因拟南芥和大豆的耐盐性(Sun et al., 2021)。GsCBRLK通过N端可变结构域与GsMSRB5a (methionine sulfoxide reductase B5a)互作, 并通过调控ROS稳态参与盐碱胁迫应答(Sun et al., 2016b)。此外, GsCBRLK的N端可变域也能与GsPM30及多个Group 3 LEA (late-embryogenesis abundant protein)蛋白互作, GsPM30在拟南芥中过表达会增强幼苗期和成苗期对高盐和脱水的耐性(Sun et al., 2019)。GsCPI14 (Glycine soja cystatin protein 14)编码一个蛋白酶抑制剂, 正调控植物的耐碱性(Sun et al., 2014b)。另外, Sun等(2013b)获得1个受ABA、盐和干旱胁迫诱导表达的G型凝集素RLK基因GsSRK。该基因过表达促进转基因拟南芥盐胁迫下的种子萌发、幼苗生长和种子产量, 且当缺失N端信号肽和G型凝集素结构域的截短型GsSRK (GsSRK-t)转入苜蓿, 苜蓿的分枝和盐胁迫下的生物量积累增多。
研究人员还发现了其它参与逆境应答的野生大豆蛋白激酶基因(表1), 如GsAPK (Yang et al., 2012)、GsPPCK1 (魏正巍等, 2013)和GsPPCK3 (Sun et al., 2014a)。需要指出的是, 大豆4.67% (约2 166个)基因编码蛋白激酶(Liu et al., 2015b)。虽然已报道了多个调控野生大豆耐逆性的蛋白激酶, 但对蛋白激酶调控的耐逆性分子机制知之甚少, 尚待进一步探索。
3 转录因子介导的野生大豆耐逆应答
已报道的野生大豆转录组测序研究均表明转录因子在野生大豆耐逆过程中发挥重要作用(表2)。GsZFP1编码1个缺少N端QALGGH结构域的C2H2型锌指蛋白, 受冷、干旱、ABA和盐诱导表达(罗晓等, 2012; Luo et al., 2012a); 并可通过CBF依赖和CBF不依赖途径提高转基因拟南芥的耐冷性(Luo et al., 2012a); 还通过调控气孔关闭减少水分散失增强转基因拟南芥和苜蓿的抗旱性(Luo et al., 2012a, 2012b; Tang et al., 2013)。GsZFP1超表达增强转基因苜蓿的耐盐性(Tang et al., 2013)。因此, GsZFP1作为野生大豆耐逆应答信号通路中的关键基因, 需进一步解析其在野生大豆耐逆应答中的分子机制。Table 2
表2
表2野生大豆耐逆反应相关的转录因子
Table 2
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | 罗晓等, 2012; Luo et al., 2012a, 2012b; Tang et al., 2013 |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | Luo et al., 2013a, 2013b |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | 王岩岩等, 2019 |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | 朱娉慧等, 2017 |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | 阎文飞等, 2018 |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | Zhu et al., 2011, 2014 |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | 朱丹等, 2012 |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | Zhu et al., 2012 |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | Yu et al., 2016 |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | Yu et al., 2017 |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | 才华等, 2011b |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | Cao et al., 2017 |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | Cao et al., 2016 |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | 朱延明等, 2019 |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | 才华等, 2011a; 刘晶, 2012 |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | Wu et al., 2018 |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | Bian et al., 2020 |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 | Shen et al., 2018 |
新窗口打开|下载CSV
WRKY家族是一类重要的转录因子。大豆中有197个WRKY家族成员, 但仅有极少数功能被验证(李换丽等, 2019)。Luo等(2013b)发现GsWRKY20过表达显著降低气孔密度, 增强气孔对ABA的敏感性, 促使干旱胁迫下气孔关闭, 降低失水速率, 提高转基因拟南芥的抗旱性。此外, GsWRKY20能够促进角质层加厚, 减少非依赖气孔的水分散失, 提高植株的抗旱性。王岩岩等(2019)从野生大豆中克隆了基因GsWRKY57, 该基因超表达能够提高转基因拟南芥的抗旱性。GsWRKY15受NaHCO3胁迫显著上调表达, 在苜蓿中超表达GsWRKY15能够增强转基因苜蓿的耐碱性(朱娉慧等, 2017)。
TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域。Zhu等(2013)研究发现, 野生大豆包括34个TIFY转录因子, 根据其蛋白序列是否包含GATA锌指结构域分为2类(I和II), 并在NaHCO3胁迫下表现出不同的表达模式。其中, GsTIFY6b、GsTIFY10a、GsJAZ2和GsTIFY11b同时受到NaHCO3与NaCl诱导表达(Zhu et al., 2011, 2012; 朱丹等, 2012; 阎文飞等, 2018)。GsTIFY10a在拟南芥和苜蓿中超表达, 一方面上调质子转运相关marker基因(NADP-ME和H+-Ppase)表达, 提高NADP-ME酶活, 增加柠檬酸含量, 以维持胁迫下胞质pH平衡。另一方面上调其它非生物胁迫相关marker基因(RD29A、RD29B、RD22和KIN1)表达, 增加脯氨酸和MDA含量, 提高耐碱性(Zhu et al., 2011, 2014)。此外, GsTIFY10a能够形成同源二聚体, 也可与GsTIFY10e形成异源二聚体(Zhu et al., 2014)。GsJAZ2和GsTIFY11b通过上调盐胁迫下液泡膜NHX1、质膜SOS1的表达, 提高转基因拟南芥的耐盐性(Zhu et al., 2012; 朱丹等, 2012); 转GsJAZ2基因拟南芥通过促进质子转运相关marker基因的表达提高耐碱性(Zhu et al., 2012)。
AP2/ERF (APETALA2/ethylene-responsive element binding factor)是植物最大的转录因子家族之一, 因蛋白序列含有保守的AP2/ERF结构域而得名。根据结构域其可分为AP2、DREB、ERF以及RAV四个亚家族(高春艳等, 2017)。Yu等(2016)研究发现, GsERF6过表达会特异性提高转基因拟南芥对HCO3-胁迫的耐受性。GsERF71在拟南芥中过表达能提高碱胁迫下AHA2基因的表达, 并促进过表达拟南芥根部酸化, 提高对HCO3-胁迫的耐受性(Yu et al., 2017)。朱延明等(2019)研究表明, GsRAV3受碱和ABA诱导表达, 其过表达可降低拟南芥对ABA的敏感性。
此外, 研究人员还报道了NAC (GsNAC20和GsNAC019)、bZIP (GsbZIP33和GsbZIP67)以及MYB (GsMYB15)家族转录因子等参与野生大豆逆境应答过程(表2)。这些研究证实了转录因子在野生大豆逆境应答中发挥重要作用, 但转录因子参与的逆境应答分子机制及调控网络仍需进一步研究。
4 离子通道蛋白在野生大豆耐逆应答中的作用
植物细胞内游离的Ca2+是细胞信号转导中重要的第二信使。几乎所有逆境均会引起细胞内游离Ca2+的变化, 进而调控胞内生理生化变化。植物Ca2+-ATPase 也称钙泵, 是植物细胞内重要的Ca2+浓度调节器, 根据系统进化关系, 可分为P型IIA (ER-type calcium ATPase, ECA亚家族)和P型IIB (autoinhibited calcium ATPase, ACA亚家族) (Kamrul et al., 2013) (表3)。Sun等(2016a)研究表明, 野生大豆ACA1/4/14/ 22/24在NaHCO3胁迫早期显著上调表达(表3)。其中GsACA1在中性盐胁迫12小时表达量达到最大值。进一步在苜蓿中超表达GsACA1, 可显著提高转基因苜蓿Ca2+-ATPase及抗氧化酶SOD活性, 减轻细胞膜损伤, 增加渗透调节物质脯氨酸含量, 提高叶绿素含量, 进而增强耐盐碱性并增加产量。Table 3
表3
表3野生大豆耐逆应答的离子通道蛋白基因
Table 3
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | Sun et al., 2016a |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | Qi et al., 2014 |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | Jia et al., 2017 |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | Duan et al., 2018b |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 | Duan et al., 2018a |
新窗口打开|下载CSV
盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性。阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(才晓溪等, 2018)。GmCHX1是野生大豆应答盐碱的关键基因, Qi等(2014)发现耐盐野生大豆具有完整的GmCHX1序列, 而盐敏感栽培大豆GmCHX1序列中嵌入了逆转录转座子, 导致不成熟GmCHX1蛋白积累, 进而失去维持高盐胁迫下细胞内低水平钠钾离子的功能。GmCHX1过表达能够降低大豆毛状根中的Na+含量及Na+/K+值, 提高大豆的耐盐性。Jia等(2017)对碱胁迫下野生大豆转录组进行测序分析, 发现34个GsCHXs中只有IVa组成员在NaHCO3胁迫下表达量升高。对表达变化最大的GsCHX19.3进行深入研究, 发现GsCHX19.3在酵母突变体axt4k中表达可以提高其对低K+的耐受性。此外, 转GsCHX19.3基因拟南芥能够降低碱胁迫下细胞内的Na+浓度及Na+/K+值, 增强耐盐碱性。Duan等(2018b)基于转录组学数据, 从野生大豆中分离并鉴定了1个慢型阴离子通道(a Glycine soja slow type anion channel)基因GsSLAH3, 该基因的表达受NaHCO3诱导, 主要在野生大豆根、荚和茎中表达, 在酵母和拟南芥中过表达可提高对HCO3-的耐受性, 尤其是提高碱胁迫下过表达植株的NO3-和叶绿素含量, 并最终提高碱胁迫下的生物量和植株的耐碱性(Duan et al., 2018b)。此外, Duan等(2018a)报道了另一个碱诱导表达的硼转运体基因GsBOR2, 该基因过表达的转基因拟南芥表现出对HCO3-的耐受性更强。
离子通道蛋白可协助离子在植物体内跨膜吸收与转运, 并促进植物的生长发育。研究人员利用基因工程手段将离子转运基因导入拟南芥或野生大豆, 获得了转基因植株, 研究发现这些转基因植株的离子吸收效率均有所提高, 说明可通过过表达转运蛋白基因来提高植物对渗透胁迫的抗性。
5 氧化还原调控野生大豆耐逆应答
逆境条件下植物细胞内活性氧(reactive oxygen species, ROS)大量积累是植物逆境伤害的一个重要原因, 因此ROS调控是植物应答逆境胁迫的重要机制。谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(Wang et al., 2012)。Ji等(2010)从野生大豆中获得1个基因GsGST, 在干旱和盐胁迫条件下, 过表达GsGST的转基因烟草具有较强的耐旱和耐盐性, 表明GsGST可能在提高农作物的抗逆性上具有重要作用(表4)。王臻昱,等(2012)基于野生大豆盐碱胁迫表达谱, 筛选获得3个胁迫应答基因GsGST13、GsGST14以及GsGST19; 并证明其在苜蓿中过表达能够提高转基因苜蓿的耐盐碱性(林凡敏等, 2013)。此外, 转GsGST14基因大豆与野生型在蛋白质和油分含量等农艺性状上几乎无差异, 表明野生大豆基因可以在保持栽培大豆优良性状的基础上, 增加其耐逆性(林凡敏等, 2013)。吴婧等(2014)和Jia等(2016)通过将GsGST13和改造的高甲硫氨酸蛋白基因SCMRP共转化苜蓿, 增强了苜蓿的耐盐碱性并使其含硫氨酸量升高, 苜蓿的营养价值明显增加。2020年, Li等(2020)通过高度耐水淹野生大豆和水淹敏感型栽培大豆转录组筛选, 获得了水淹胁迫应答基因GsGSTU24和GsGSTU42, 其过表达可促进叶片中ROS产生和清除动态平衡重建, 维持叶片的光合能力, 增强转基因大豆毛状根复合植物和拟南芥的耐水淹性。
Table 4
表4
表4野生大豆耐逆应答相关的氧化还原反应基因
Table 4
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | Ji et al., 2010 |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 林凡敏等, 2013; 吴婧等, 2014; Jia et al., 2016 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 王臻昱等, 2012 |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | Li et al., 2020 |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | Chen et al., 2015 |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 | 陈晨等, 2015 |
新窗口打开|下载CSV
肌醇作为一种植物营养调节剂在植物胁迫响应中发挥重要作用(杨楠等, 2017)。Chen等(2015)获得了肌醇代谢通路中2个关键酶(肌醇加氧酶和肌醇-1-磷酸合酶)基因(GsMIPS2和GsMIOX1a) (陈晨等, 2015) (表4)。肌醇-1-磷酸合酶是肌醇合成反应的限速酶。肌醇加氧酶能催化肌醇形成D-葡萄糖醛酸, D-葡萄糖醛酸进一步形成细胞壁糖分的前体物质UDP-葡萄糖醛酸, 也可进一步形成抗坏血酸。GsMIPS2主要在野生大豆叶片和幼茎中表达, 碱胁迫1小时表达量最高, 过表达该基因可提高转基因拟南芥萌发期的耐碱性。而GsMIOX1a主要在花中表达, 碱胁迫6小时表达量最高, 过表达GsMIOX1a可增加碱胁迫下渗透调节物质的含量和抗氧化酶活性, 进而提高转基因拟南芥的耐碱性。此外, 过表达GsMIOX1a还可提高碱胁迫下胁迫诱导基因的表达(Chen et al., 2015)。
越来越多的研究表明, 氧化还原可通过复杂的氧化还原网络应答非生物胁迫, 但目前对野生大豆氧化还原网络中的关键基因知之甚少(表4), 有待进一步挖掘与鉴定。
6 总结和展望
大豆是我国重要的粮食作物之一, 干旱、水涝和高盐等胁迫会严重降低大豆的产量。野生大豆作为栽培大豆的近缘祖先, 具有极强的逆境适应能力, 是栽培大豆种质创新重要的亲本材料和基因资源。近年来, 随着新技术的不断涌现, 研究人员从多方面、全方位地对野生大豆的耐逆分子机制进行了研究。目前, 基因组学和转录组学的发展已相对成熟, 实验成本也大大降低, 并建立了相关数据库, 如Phytozome、Soybase和SoyKB。而野生大豆蛋白质组学研究尚处于发展阶段。除上述3种组学外, 目前在其它物种中已有代谢组、离子组学和表观组学的研究(Pecrix et al., 2018; Wei et al., 2018; Gurung et al., 2019)。相信随着研究平台的不断完善, 会有更多的研究人员将这些组学应用到野生大豆耐逆应答的研究中。然而, 面对如此庞大的组学数据, 如何分析整合多组学将是未来研究人员面临的一个巨大挑战。目前, 通过组学高通量挖掘逆境应答基因技术, 我们获得了大量野生大豆的耐逆基因, 完善了野生大豆逆境应答的分子机制及各通路之间的联系, 为培育和改良豆科作物新品种提供了新的基因资源。后续可通过转基因、基因编辑和分子标记辅助育种等技术, 培育具有优良耐逆性状的大豆新品种, 从而将理论研究成果应用于实践, 为我国农业发展带来巨大的生态和经济效益。
(责任编辑: 孙冬花)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
9,
[本文引用: 1]
37,
[本文引用: 1]
37,
[本文引用: 1]
41,
[本文引用: 2]
(
[本文引用: 1]
24(
[本文引用: 1]
45,
[本文引用: 1]
38,
[本文引用: 1]
32,
[本文引用: 3]
. pp.
[本文引用: 1]
43(
[本文引用: 2]
(
[本文引用: 1]
41,
[本文引用: 2]
38,
[本文引用: 2]
39,
[本文引用: 2]
23,
[本文引用: 2]
52,
[本文引用: 1]
33(
[本文引用: 2]
24,
[本文引用: 1]
31,
[本文引用: 2]
33,
[本文引用: 1]
. pp.
[本文引用: 1]
37,
[本文引用: 1]
40,
[本文引用: 2]
34,
[本文引用: 3]
43,
[本文引用: 2]
50(
[本文引用: 2]
7,
DOI:10.1371/journal.pone.0048819URL [本文引用: 1]
40,
DOI:10.1071/FP12377URL [本文引用: 2]
GsCBRLK encodes a novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase from Glycine soja Siebold & Zucc. In our previous study, GsCBRLK was found to be a positive regulator of plant tolerance to salt and abscisic acid (ABA) stress. In this study we transformed alfalfa (Medicago sativa L.) with GsCBRLK to assess whether forage legumes overexpressing GsCBRLK adapt to saline soils. Results showed that transgenic alfalfa plants overexpressing GsCBRLK exhibited enhanced salt tolerance. Transgenic alfalfa grew well in the presence of 300 mM NaCl for 15 days, whereas wild-type (WT) plants exhibited severe chlorosis and growth retardation. Although transgenic alfalfa grew slowly and even had yellow leaves under the 400 mM NaCl treatment, most of the WT plants exhibited more severe chlorosis and did not survive. In addition, samples from transgenic and WT plants treated with 300 mM NaCl for 0, 3, 6, 9, 12, and 15 days were selected for physiological analysis. Lower membrane leakage and malondialdehyde (MDA) content were observed in transgenic alfalfa compared with WT plants during salt treatment. The reduction of chlorophyll content in transgenic alfalfa was less than that in WT plants. Furthermore, the plants that overexpressed GsCBRLK showed enhanced superoxide dismutase (SOD) activity, less of a Na+ increase, and a greater K+ decrease than WT plants. These results indicated that the overexpression of GsCBRLK confers enhanced tolerance to salt stress in transgenic alfalfa.
225,
URLPMID:31400247 [本文引用: 1]
95,
URLPMID:28884328 [本文引用: 1]
16,
DOI:10.1186/s12870-016-0872-7URLPMID:27553065 [本文引用: 1]
BACKGROUND: Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. RESULTS: From our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants. CONCLUSIONS: We revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the mechanisms of high tolerance of wild soybean to saline-alkaline stresses.
10, e0129-998.
URLPMID:26720417 [本文引用: 3]
51,
URLPMID:20021554 [本文引用: 1]
274,
DOI:10.1016/j.plantsci.2018.05.032URLPMID:30080614 [本文引用: 2]
Soil alkalization severely restricts agricultural production and economic development worldwide, this problem is far more serious in Songnen Plain, the largest commodity grain base of China. However, little research has been done concerning the mechanisms of plant responses to alkaline stress to date. In this study, we isolated an alkali inducible gene GsBOR2 from Glycine soja on the basis of RNA seq data. GsBOR2 sh high protein sequence similarity with the known boron transporters in other species. The expression of GsBOR2 was highly up-regulated by 50mM NaHCO3 treatment and displayed tissue specificity. We then generated the transgenic Arabidopsis overexpressing GsBOR2 and found that the transgenic lines exhibited enhanced alkaline tolerance compared to wild type plants, as illustrated by longer roots and greater shoot biomass. Moreover, GsBOR2 overexpression was also capable of increasing plant resistance to KHCO3 treatment but not to high-pH stress. Functional complementation of Scbor1 mutant yeasts suggested that GsBOR2 could likely mediate the efflux of boron from cells. Taken together, the alkali responsive gene GsBOR2 is a positive regulator of plant bicarbonate tolerance.
164,
DOI:10.1111/ppl.12683URLPMID:29243826 [本文引用: 3]
Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3(-) than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.
15,
[本文引用: 1]
11,
URLPMID:20938706 [本文引用: 2]
10,
URLPMID:20653984 [本文引用: 2]
20,
DOI:10.1186/s12864-019-6354-1URLPMID:31847812 [本文引用: 1]
BACKGROUND: Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS: A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS: We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.
12,
URLPMID:24016329 [本文引用: 1]
65,
URLPMID:23416494
7,
URLPMID:27200046 [本文引用: 1]
402,
[本文引用: 2]
6,
[本文引用: 1]
32,
URLPMID:20383560 [本文引用: 2]
7,
[本文引用: 2]
156,
[本文引用: 2]
51,
[本文引用: 1]
42,
DOI:10.1038/ng.715URLPMID:21076406 [本文引用: 1]
We report a large-scale analysis of the patterns of genome-wide genetic variation in soybeans. We re-sequenced a total of 17 wild and 14 cultivated soybean genomes to an average of approximately x5 depth and >90% coverage using the Illumina Genome Analyzer II platform. We compared the patterns of genetic variation between wild and cultivated soybeans and identified higher allelic diversity in wild soybeans. We identified a high level of linkage disequilibrium in the soybean genome, suggesting that marker-assisted breeding of soybean will be less challenging than map-based cloning. We report linkage disequilibrium block location and distribution, and we identified a set of 205,614 tag SNPs that may be useful for QTL mapping and association studies. The data here provide a valuable resource for the analysis of wild soybeans and to facilitate future breeding and quantitative trait analysis.
171,
[本文引用: 2]
32,
[本文引用: 1]
87,
DOI:10.1007/s11103-014-0264-zURLPMID:25477077
Plant SKP1-like family proteins, components of the SCF complex E3 ligases, are involved in the regulation of plant development and stress responses. Little is known about the precise function of SKP genes in plant responses to environmental stresses. GsSKP21 was initially identified as a potential stress-responsive gene based on the transcriptome sequencing of Glycine soja. In this study, we found that GsSKP21 protein contains highly conserved SKP domains in its N terminus and an extra unidentified domain in its C terminus. The transcript abundance of GsSKP21, detected by quantitative real-time PCR, was induced under the treatment of alkali and salt stresses. Overexpression of GsSKP21 in Arabidopsis dramatically increased plant tolerance to alkali stress. Furthermore, we found that overexpression of GsSKP21 resulted in decreased ABA sensitivity during both the seed germination and early seedling growth stages. GsSKP21 mediated ABA signaling by altering the expression levels of the ABA signaling-related and ABA-induced genes. We also investigated the tissue expression specificity and subcellular localization of GsSKP21. These results suggest that GsSKP21 is important for plant tolerance to alkali stress and plays a critical regulatory role in the ABA-mediated stress response.
66,
DOI:10.1093/jxb/eru537URLPMID:25614662 [本文引用: 2]
The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean.
235,
DOI:10.1007/s00425-011-1563-0URLPMID:22160567 [本文引用: 4]
Plant acclimation to environmental stress is controlled by a complex network of regulatory genes that compose distinct stress-response regulons. The C2H2-type zinc-finger proteins (ZFPs) have been implicated in different cellular processes involved in plant development and stress responses. Through microarray analysis, an alkaline (NaHCO(3))-responsive ZFP gene GsZFP1 was identified and subsequently cloned from Glyycine soja. GsZFP1 encodes a 35.14 kDa protein with one C2H2-type zinc-finger motif. The QALGGH domain, conserved in most plant C2H2-type ZFPs, is absent in the GsZFP1 protein sequence. A subcellular localization study using a GFP fusion protein indicated that GsZFP1 is localized to the nucleus. Real-time RT-PCR analysis showed that GsZFP1 was induced in the leaf by ABA (100 muM), salt (200 mM NaCl), and cold (4 degrees C), and in the root by ABA (100 muM), cold (4 degrees C), and drought (30% PEG 6000). Over-expression of GsZFP1 in transgenic Arabidopsis resulted in a greater tolerance to cold and drought stress, a decreased water loss rate, and an increase in proline irrespective of environmental conditions. The over-expression of GsZFP1 also increased the expression of a number of stress-response marker genes, including CBF1, CBF2, CBF3, NCED3, COR47, and RD29A in response to cold stress and RAB18, NCED3, P5CS, RD22, and RD29A in response to drought stress, especially early during stress treatments. Our studies suggest that GsZFP1 plays a crucial role in the plant response to cold and drought stress.
169,
DOI:10.1016/j.jplph.2012.03.019URLPMID:22705253 [本文引用: 2]
A cDNA of the gene GsZFP1 was cloned from Glycine soja. GsZFP1 encodes a protein with one C2H2-type zinc finger motif. The QALGGH motif, which exists in most plant C2H2-type zinc finger proteins (ZFPs), does not exist in GsZFP1. Real-time RT-PCR revealed that GsZFP1 expression was significantly up-regulated by exogenous ABA, both in leaves and roots. Over-expression of this gene, in Arabidopsis thaliana, resulted in a reduced sensitivity to ABA during seed germination and seedling growth. Transcript levels of some stress and ABA marker genes, including RD29A, RD22, NCED3, COR47, COR15A and KIN1 were increased, in the GsZFP1 over-expression lines, when plants were treated with exogenous ABA. We further studied the effects of GsZFP1 over-expression on the regulation of genes involved in ABA signaling. Negative ABA signaling regulators, such as ABI1 and ABI2, were up-regulated in over-expression lines, while positive ABA signaling regulators, such as ABF4, ABI5, GTG1, GTG2, PYR1/RCAR11, PYL2/RCAR13, SnRK2.2 and SnRK2.3, were down-regulated, in comparison to wild type plants. GsZFP1 over-expression lines also exhibited small stomata, impairment of ABA-induced stomata closure. The data presented, herein, suggests that GsZFP1 plays a crucial role in ABA signaling in A. thaliana, GsZFP1 may be a promising gene for negative regulating ABA signaling. Our findings broaden our understanding of this C2H2 ZFP subtype's function, and add to the body of evidence that has been developed in earlier studies.
8,
[本文引用: 1]
8,
[本文引用: 2]
4,
URLPMID:30397259 [本文引用: 1]
15,
DOI:10.1074/mcp.M115.051961URLPMID:26407991 [本文引用: 1]
Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).
5,
[本文引用: 4]
463,
DOI:10.1038/nature08670URLPMID:20075913 [本文引用: 1]
Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
19,
[本文引用: 1]
90,
DOI:10.1007/s11103-015-0426-7URLPMID:26801329 [本文引用: 2]
It is widely accepted that Ca(2+)ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca(2+)ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca(2+)ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca(2+)ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca(2+)ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses.
9,
DOI:10.3389/fpls.2018.00226URLPMID:29520291 [本文引用: 1]
Receptor-like kinases (RLK) play fundamental roles in plant growth and stress responses. Compared with other RLKs, little information is provided concerning the S-locus LecRLK subfamily, which is characterized by an extracellular G-type lectin domain and an S-locus-glycop domain. Until now, the function of the G-type lectin domain is still unknown. In a previous research, we identified a Glycine soja S-locus LecRLK gene GsSRK, which conferred increased salt stress tolerance in transgenic Arabidopsis. In this study, to investigate the role of the G-type lectin domain and to breed transgenic alfalfa with superior salt stress tolerance, we transformed the full-length GsSRK (GsSRK-f) and a truncated version of GsSRK (GsSRK-t) deleting the G-type lectin domain into alfalfa. Our results showed that overexpression of GsSRK-t, but not GsSRK-f, resulted in changes of plant architecture, as evidenced by more branches but shorter shoots of GsSRK-t transgenic alfalfa, indicating a potential role of the extracellular G-type lectin domain in regulating plant architecture. Furthermore, we also found that transgenic alfalfa overexpressing either GsSRK-f or GsSRK-t showed increased salt stress tolerance, and GsSRK-t transgenic alfalfa displayed better growth (more branches and higher fresh weight) than GsSRK-f lines under salt stress. In addition, our results suggested that both GsSRK-f and GsSRK-t were involved in ion homeostasis, ROS scavenging, and osmotic regulation. Under salt stress, the Na(+) content in the transgenic lines was significantly lower, while the K(+) content was slightly higher than that in WT. Moreover, the transgenic lines displayed reduced ion leakage and MDA content, but increased SOD activity and proline content than WT. Notably, no obvious difference in these physiological indices was observed between GsSRK-f and GsSRK-t transgenic lines, implying that deletion of the GsSRK G-type lectin domain does not affect its physiological function in salt stress responses. In conclusion, results in this research reveal the dual role of GsSRK in regulating both plant architecture and salt stress responses.
283,
[本文引用: 2]
9,
DOI:10.1371/journal.pone.0089578URLPMID:24586886 [本文引用: 2]
So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H(+)-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops.
105,
DOI:10.1111/tpj.15072URLPMID:33160290 [本文引用: 2]
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca(2+) /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
86,
DOI:10.1111/tpj.13187URLPMID:27121031 [本文引用: 2]
Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress.
237,
DOI:10.1007/s00425-013-1864-6URLPMID:23494614 [本文引用: 2]
Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.
85,
DOI:10.1007/s11103-013-0167-4URLPMID:24407891 [本文引用: 2]
It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.
170,
DOI:10.1016/j.jplph.2012.11.017URLPMID:23276523 [本文引用: 2]
Receptor-like protein kinases (RLKs) play vital roles in sensing outside signals, yet little is known about RLKs functions and roles in stress signal perception and transduction in plants, especially in wild soybean. Through the microarray analysis, GsSRK was identified as an alkaline (NaHCO3)-responsive gene, and was subsequently isolated from Glycine soja by homologous cloning. GsSRK encodes a 93.22kDa protein with a highly conserved serine/threonine protein kinase catalytic domain, a G-type lectin region, and an S-locus region. Real-time PCR results showed that the expression levels of GsSRK were largely induced by ABA, salt, and drought stresses. Over expression of GsSRK in Arabidopsis promoted seed germination, as well as primary root and rosette leaf growth during the early stages of salt stress. Compared to the wild type Arabidopsis, GsSRK overexpressors exhibited enhanced salt tolerance and higher yields under salt stress, with higher chlorophyll content, lower ion leakage, higher plant height, and more siliques at the adult developmental stage. Our studies suggest that GsSRK plays a crucial role in plant response to salt stress.
71,
URLPMID:23867600 [本文引用: 3]
56,
[本文引用: 1]
18,
[本文引用: 1]
18,
DOI:10.1186/s12870-018-1466-3URLPMID:30316294 [本文引用: 1]
BACKGROUND: Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. RESULTS: GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. CONCLUSIONS: Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses.
10,
DOI:10.1038/s41467-019-09142-9URLPMID:30872580 [本文引用: 1]
Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.
3,
[本文引用: 2]
61,
DOI:10.1093/jxb/erq084URLPMID:20400529 [本文引用: 2]
Calcium/calmodulin-dependent kinases play vital roles in protein phosphorylation in eukaryotes, yet little is known about the phosphorylation process of calcium/calmodulin-dependent protein kinase and its role in stress signal transduction in plants. A novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase (GsCBRLK) has been isolated from Glycine soja. A subcellular localization study using GFP fusion protein indicated that GsCBRLK is localized in the plasma membrane. Binding assays demonstrated that calmodulin binds to GsCBRLK with an affinity of 25.9 nM in a calcium-dependent manner and the binding motif lies between amino acids 147 to169 within subdomain II of the kinase domain. GsCBRLK undergoes autophosphorylation and Myelin Basis Protein phosphorylation in the presence of calcium. It was also found that calcium/calmodulin positively regulates GsCBRLK kinase activity through direct interaction between the calmodulin-binding domain and calmodulin. So, it is likely that GsCBRLK responds to an environmental stimulus in two ways: by increasing the protein expression level and by regulating its kinase activity through the calcium/calmodulin complex. Furthermore, cold, salinity, drought, and ABA stress induce GsCBRLK gene transcripts. Over-expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced plant tolerance to high salinity and ABA and increased the expression pattern of a number of stress gene markers in response to ABA and high salt. These results identify GsCBRLK as a molecular link between the stress- and ABA-induced calcium/calmodulin signal and gene expression in plant cells.
215-216,
DOI:10.1016/j.plantsci.2013.10.009URLPMID:24388511 [本文引用: 1]
Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers.
94,
DOI:10.1007/s11103-017-0623-7URLPMID:28681139 [本文引用: 2]
KEY MESSAGE: Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H(+)-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H(+)-ATPase and by modifying auxin accumulation in transgenic plants.
244,
[本文引用: 2]
12,
DOI:10.1186/1471-2229-12-182URLPMID:23040172 [本文引用: 1]
BACKGROUND: MicroRNAs (miRNAs) play important regulatory roles in development and stress response in plants. Wild soybean (Glycine soja) has undergone long-term natural selection and may have evolved special mechanisms to survive stress conditions as a result. However, little information about miRNAs especially miRNAs responsive to aluminum (Al) stress is available in wild soybean. RESULTS: Two small RNA libraries and two degradome libraries were constructed from the roots of Al-treated and Al-free G. soja seedlings. For miRNA identification, a total of 7,287,655 and 7,035,914 clean reads in Al-treated and Al-free small RNAs libraries, respectively, were generated, and 97 known miRNAs and 31 novel miRNAs were identified. In addition, 49 p3 or p5 strands of known miRNAs were found. Among all the identified miRNAs, the expressions of 30 miRNAs were responsive to Al stress. Through degradome sequencing, 86 genes were identified as targets of the known miRNAs and five genes were found to be the targets of the novel miRNAs obtained in this study. Gene ontology (GO) annotations of target transcripts indicated that 52 target genes cleaved by conserved miRNA families might play roles in the regulation of transcription. Additionally, some genes, such as those for the auxin response factor (ARF), domain-containing disease resistance protein (NB-ARC), leucine-rich repeat and toll/interleukin-1 receptor-like protein (LRR-TIR) domain protein, cation transporting ATPase, Myb transcription factors, and the no apical meristem (NAM) protein, that are known to be responsive to stress, were found to be cleaved under Al stress conditions. CONCLUSIONS: A number of miRNAs and their targets were detected in wild soybean. Some of them that were responsive to biotic and abiotic stresses were regulated by Al stress. These findings provide valuable information to understand the function of miRNAs in Al tolerance.
7,
URLPMID:28018382 [本文引用: 1]
16,
DOI:10.1186/s12870-016-0744-1URLPMID:26935840 [本文引用: 1]
BACKGROUND: Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases in plant. A number of reports have demonstrated that plant LRR-RLKs play important roles in growth, development, differentiation, and stress responses. However, no comprehensive analysis of this gene family has been carried out in legume species. RESULTS: Based on the principles of sequence similarity and domain conservation, a total of 467 LRR-RLK genes were identified in soybean genome. The GmLRR-RLKs are non-randomly distributed across all 20 chromosomes of soybean and about 73.3 % of them are located in segmental duplicated regions. The analysis of synonymous substitutions for putative paralogous gene pairs indicated that most of these gene pairs resulted from segmental duplications in soybean genome. Furthermore, the exon/intron organization, motif composition and arrangements were considerably conserved among members of the same groups or subgroups in the constructed phylogenetic tree. The close phylogenetic relationship between soybean LRR-RLK genes with identified Arabidopsis genes in the same group also provided insight into their putative functions. Expression profiling analysis of GmLRR-RLKs suggested that they appeared to be differentially expressed among different tissues and some of duplicated genes exhibited divergent expression patterns. In addition, artificial selected GmLRR-RLKs were also identified by comparing the SNPs between wild and cultivated soybeans and 17 genes were detected in regions previously reported to contain domestication-related QTLs. CONCLUSIONS: Comprehensive and evolutionary analysis of soybean LRR-RLK gene family was performed at whole genome level. The data provides valuable tools in future efforts to identify functional divergence of this gene family and gene diversity among different genotypes in legume species.
33,
URLPMID:25643055 [本文引用: 1]
77,
[本文引用: 3]
32,
DOI:10.1007/s00299-012-1360-7URLPMID:23090726 [本文引用: 1]
Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.
426,
DOI:10.1016/j.bbrc.2012.08.086URLPMID:22943855 [本文引用: 4]
Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.
9,
URLPMID:25375909 [本文引用: 3]
15,
DOI:10.1186/1471-2164-15-548URL [本文引用: 1]
野生大豆GsbZIP33基因的分离及胁迫耐性分析
1
2011
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析
1
2011
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
大豆CHX基因家族全基因组鉴定与生物信息学分析
1
2018
... 盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性.阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(
野生大豆碳酸盐胁迫应答基因GsMIPS2的克隆及功能分析
2
2015
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
... 肌醇作为一种植物营养调节剂在植物胁迫响应中发挥重要作用(
中国大豆产业、科技、种业和转基因育种的思考(I)
1
2011
... 大豆(Glycine max)原产于中国, 是仅次于水稻(Oryza sativa)、小麦(Triticum aestivum)和玉米(Zea mays)的第四大作物.我国大豆遗传基础狭窄, 加之受非生物胁迫(如盐碱、低温和干旱)和生物胁迫(病虫害)的影响, 致使其单位面积产值低于世界发达国家(
中国大豆育种的核心祖先亲本分析
1
2001
... 野生大豆(G. soja)是栽培大豆的祖先种(
植物AP2/ERF转录因子及其在非生物胁迫应答中的作用
1
2017
... AP2/ERF (APETALA2/ethylene-responsive element binding factor)是植物最大的转录因子家族之一, 因蛋白序列含有保守的AP2/ERF结构域而得名.根据结构域其可分为AP2、DREB、ERF以及RAV四个亚家族(
大豆WRKY转录因子及其生物学功能研究进展
1
2019
... WRKY家族是一类重要的转录因子.大豆中有197个WRKY家族成员, 但仅有极少数功能被验证(
转GsGST14耐盐碱基因大豆的农艺性状调查
3
2013
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... 基因大豆与野生型在蛋白质和油分含量等农艺性状上几乎无差异, 表明野生大豆基因可以在保持栽培大豆优良性状的基础上, 增加其耐逆性(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
GsbZIP33和GsCBRLK基因转化肇东苜蓿及其耐盐性分析
1
2012
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
野生大豆盐碱胁迫响应基因GsZFP1的克隆及序列分析
2
2012
... 已报道的野生大豆转录组测序研究均表明转录因子在野生大豆耐逆过程中发挥重要作用(
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
一年生野生大豆(Glycine soja)生理生态学和种群生态学研究进展
1
2008
... 野生大豆(G. soja)是栽培大豆的祖先种(
野生大豆转录因子GsWRKY57基因的克隆与抗旱性功能分析
2
2019
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... WRKY家族是一类重要的转录因子.大豆中有197个WRKY家族成员, 但仅有极少数功能被验证(
野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析
2
2012
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
转GsPPCKI基因苜蓿植株的获得及其耐碱性分析
2
2013
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 研究人员还发现了其它参与逆境应答的野生大豆蛋白激酶基因(
转GsGST13/SCMRP基因双价苜蓿的耐盐性分析
2
2014
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
大豆基因组解析与重要农艺性状基因克隆研究进展
1
2017
... 野生大豆(G. soja)是栽培大豆的祖先种(
野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析
2
2018
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
中国野生大豆资源的研究与利用综述. I. 地理分布、化学品质性状及在育种中的利用
1
1999
... 野生大豆(G. soja)是栽培大豆的祖先种(
野生大豆胁迫应答LRR类受体蛋白激酶基因的克隆及其表达特性分析
2
2012
... LRR-RLKs (leucine-rich-repeat protein kinases)是一类富含亮氨酸的RLKs (
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
肌醇及其代谢关键酶基因与植物逆境响应机制的研究进展
1
2017
... 肌醇作为一种植物营养调节剂在植物胁迫响应中发挥重要作用(
碱胁迫下野生大豆叶片蛋白质组的双向电泳分析
1
2015
... 蛋白质组分析技术与基因组和转录组测序技术相比起步较晚, 目前尚处于初期阶段.
PEG模拟干旱胁迫下野生大豆转录组分析
1
2018
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析
2
2014
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析
3
2012
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
... ;
碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析
2
2017
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... WRKY家族是一类重要的转录因子.大豆中有197个WRKY家族成员, 但仅有极少数功能被验证(
野生大豆AP2/RAV亚家族转录因子GsRAV3负调控拟南芥对ABA的敏感性
2
2019
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... AP2/ERF (APETALA2/ethylene-responsive element binding factor)是植物最大的转录因子家族之一, 因蛋白序列含有保守的AP2/ERF结构域而得名.根据结构域其可分为AP2、DREB、ERF以及RAV四个亚家族(
Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing
1
2012
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa)
2
2013
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis
1
2020
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity
1
2017
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis
1
2016
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Ectopic expression of a Glycine soja myo- inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress
3
2015
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
... 肌醇作为一种植物营养调节剂在植物胁迫响应中发挥重要作用(
... 还可提高碱胁迫下胁迫诱导基因的表达(
Identification of microRNAs in wild soybean (Glycine soja)
1
2009
... 除了对mRNA测序外, 研究人员还对逆境胁迫下野生大豆的microRNA表达进行了分析.
A potential efflux boron transporter gene GsBOR2, positively regulates Arabidopsis bicarbonate tolerance
2
2018
... Genes encoding ion channel proteins in stress response of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 |
... 盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性.阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(
GsSLAH3, a Glycine soja slow type anion channel homolog, positively modulates plant bicarbonate stress tolerance
3
2018
... Genes encoding ion channel proteins in stress response of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 |
... 盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性.阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(
... 和叶绿素含量, 并最终提高碱胁迫下的生物量和植株的耐碱性(
Wild soybean roots depend on specific transcription factors and oxidation reduction related genes in response to alkaline stress
1
2015
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors
2
2011
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
... ,
Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment
2
2010
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
... 处理下的转录组数据, 发现碱处理12和24小时后大量bHLH、ERF、C2H2和C3H转录因子差异表达;
Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species
1
2019
... 大豆是我国重要的粮食作物之一, 干旱、水涝和高盐等胁迫会严重降低大豆的产量.野生大豆作为栽培大豆的近缘祖先, 具有极强的逆境适应能力, 是栽培大豆种质创新重要的亲本材料和基因资源.近年来, 随着新技术的不断涌现, 研究人员从多方面、全方位地对野生大豆的耐逆分子机制进行了研究.目前, 基因组学和转录组学的发展已相对成熟, 实验成本也大大降低, 并建立了相关数据库, 如Phytozome、Soybase和SoyKB.而野生大豆蛋白质组学研究尚处于发展阶段.除上述3种组学外, 目前在其它物种中已有代谢组、离子组学和表观组学的研究(
Soybean proteomics for unraveling abiotic stress response mechanism
1
2013
... 虽然已有关于大豆在不同逆境胁迫下蛋白质组和磷酸化蛋白质组变化的报道, 但对野生大豆蛋白质组的研究却报道较少.鉴于转录水平差异并不能代表蛋白质水平差异(
Genome-wide analysis of plant-type II Ca2+ ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses
0
2013
Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress
1
2016
... 蛋白质组分析技术与基因组和转录组测序技术相比起步较晚, 目前尚处于初期阶段.
Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean
2
2016
... 蛋白质组分析技术与基因组和转录组测序技术相比起步较晚, 目前尚处于初期阶段.
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja
1
2006
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco
2
2010
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance
2
2017
... Genes encoding ion channel proteins in stress response of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 |
... 盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性.阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(
Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content
2
2016
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome
1
2010
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection
1
2010
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
Transcriptomic analysis of Glycine soja and G. max seedlings and functional characterization of GsGSTU24 and GsGSTU42 genes under submergence stress
2
2020
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
... Redox genes involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsGST | 谷胱甘肽s-转移酶 | 干旱和盐胁迫 | |
2 | GsGST13 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | 2014 |
3 | GsGST14 | 谷胱甘肽s-转移酶 | 盐和碱胁迫 | |
4 | GsGSTU24 | 谷胱甘肽s-转移酶 | 渗透胁迫 | |
5 | GsMIOX1a | 肌醇加氧酶和肌醇-1-磷酸合酶 | 碱胁迫 | |
6 | GsMIPS2 | 肌醇加氧酶和肌醇-1-磷酸合酶 | HCO3-胁迫 |
De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits
1
2014
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity
0
2015
Soybean kinome: functional classification and gene expression patterns
2
2015
... 蛋白激酶通过磷酸化下游靶蛋白, 启动或关闭信号转导通路, 调控植物逆境应答.大豆中4.67%的基因编码蛋白激酶(protein kinase), 其中约65%属于类受体蛋白激酶(receptor like kinases, RLKs) (
... 研究人员还发现了其它参与逆境应答的野生大豆蛋白激酶基因(
GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress
4
2012
... 已报道的野生大豆转录组测序研究均表明转录因子在野生大豆耐逆过程中发挥重要作用(
... ); 并可通过CBF依赖和CBF不依赖途径提高转基因拟南芥的耐冷性(
... ); 还通过调控气孔关闭减少水分散失增强转基因拟南芥和苜蓿的抗旱性(
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size
2
2012
... 已报道的野生大豆转录组测序研究均表明转录因子在野生大豆耐逆过程中发挥重要作用(
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis
1
2013
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling
2
2013
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... WRKY家族是一类重要的转录因子.大豆中有197个WRKY家族成员, 但仅有极少数功能被验证(
Whole-genome landscape of Medicago truncatula symbiotic genes
1
2018
... 大豆是我国重要的粮食作物之一, 干旱、水涝和高盐等胁迫会严重降低大豆的产量.野生大豆作为栽培大豆的近缘祖先, 具有极强的逆境适应能力, 是栽培大豆种质创新重要的亲本材料和基因资源.近年来, 随着新技术的不断涌现, 研究人员从多方面、全方位地对野生大豆的耐逆分子机制进行了研究.目前, 基因组学和转录组学的发展已相对成熟, 实验成本也大大降低, 并建立了相关数据库, 如Phytozome、Soybase和SoyKB.而野生大豆蛋白质组学研究尚处于发展阶段.除上述3种组学外, 目前在其它物种中已有代谢组、离子组学和表观组学的研究(
Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars
1
2016
... 蛋白质组分析技术与基因组和转录组测序技术相比起步较晚, 目前尚处于初期阶段.
Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing
4
2014
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
... 基因表达量低(
... Genes encoding ion channel proteins in stress response of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 |
... 盐碱胁迫下, 植物受到离子毒害, 离子通道蛋白可协助离子跨膜吸收与转运, 进而增强植物对盐碱胁迫的耐受性.阳离子质子转运体(cation/H+ exchanger, CHX)基因家族属于CP2 (cation proton antiporter 2)超家族基因, 主要参与调控植物体内Na+/K+平衡和pH稳态(
Genome sequence of the palaeopolyploid soybean
1
2010
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis
1
2018
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Functional characterization of a Glycine soja Ca2+ ATPase in salt-alkaline stress responses
2
2016
... 植物细胞内游离的Ca2+是细胞信号转导中重要的第二信使.几乎所有逆境均会引起细胞内游离Ca2+的变化, 进而调控胞内生理生化变化.植物Ca2+-ATPase 也称钙泵, 是植物细胞内重要的Ca2+浓度调节器, 根据系统进化关系, 可分为P型IIA (ER-type calcium ATPase, ECA亚家族)和P型IIB (autoinhibited calcium ATPase, ACA亚家族) (Kamrul et al., 2013) (
... Genes encoding ion channel proteins in stress response of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsACA1 | Ca2+-ATPase | 盐和碱胁迫 | |
2 | GsCHX1 | 阳离子质子转运体 | 盐胁迫 | |
3 | GsCHX19.3 | 阳离子质子转运体 | 碱胁迫 | |
4 | GsSLAH3 | 慢型阴离子通道 | 碱胁迫 | |
5 | GsBOR2 | 硼转运体 | HCO3-胁迫 |
Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress responses
1
2018
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses
2
2019
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
... 在拟南芥中过表达会增强幼苗期和成苗期对高盐和脱水的耐性(
Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content
2
2014
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 研究人员还发现了其它参与逆境应答的野生大豆蛋白激酶基因(
Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses
2
2021
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
... 过表达可提高转基因拟南芥和大豆的耐盐性(
A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress
2
2016
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
... ).GsCBRLK通过N端可变结构域与GsMSRB5a (methionine sulfoxide reductase B5a)互作, 并通过调控ROS稳态参与盐碱胁迫应答(
A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses
2
2013
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress
2
2014
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
... cystatin protein 14)编码一个蛋白酶抑制剂, 正调控植物的耐碱性(
GsSRK, a G-type lectin S-receptor- like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress
2
2013
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.)
3
2013
... 已报道的野生大豆转录组测序研究均表明转录因子在野生大豆耐逆过程中发挥重要作用(
... 超表达增强转基因苜蓿的耐盐性(
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa
1
2012
... 谷胱甘肽s-转移酶(glutathione s-transferase, GSTs)可催化有毒的外源性物质和氧化产生的化合物与还原型谷胱甘肽结合, 从而对其进行隔离或清除(
Physiological and proteome studies of maize (Z ea mays L.) in response to leaf removal under high plant density
1
2018
... 大豆是我国重要的粮食作物之一, 干旱、水涝和高盐等胁迫会严重降低大豆的产量.野生大豆作为栽培大豆的近缘祖先, 具有极强的逆境适应能力, 是栽培大豆种质创新重要的亲本材料和基因资源.近年来, 随着新技术的不断涌现, 研究人员从多方面、全方位地对野生大豆的耐逆分子机制进行了研究.目前, 基因组学和转录组学的发展已相对成熟, 实验成本也大大降低, 并建立了相关数据库, 如Phytozome、Soybase和SoyKB.而野生大豆蛋白质组学研究尚处于发展阶段.除上述3种组学外, 目前在其它物种中已有代谢组、离子组学和表观组学的研究(
A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa
1
2018
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
A reference-grade wild soybean genome
1
2019
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress
2
2012
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 研究人员还发现了其它参与逆境应答的野生大豆蛋白激酶基因(
GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress
2
2010
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
... 胞质类受体蛋白激酶RLCKs (receptor-like cytoplasmic kinases)是一类特殊的RLKs, 其缺少其它RLKs具有的胞外结构域(
GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance
1
2014
... Protein kinases implicated in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsLRPK | LRR类受体蛋白激酶 | 冷、干旱、盐和ABA胁迫 | |
2 | GsRLCK | 胞浆类受体蛋白激酶 | ABA、盐、碱和干旱胁迫 | |
3 | GsCBRLK | Ca2+/CaM结合类受体蛋白激酶 | 冷、盐、干旱和ABA胁迫 | |
4 | GsSRK | G型凝集素类受体蛋白激酶 | ABA、盐和干旱胁迫 | |
5 | GsAPK | 不依赖Ca2+的丝/苏氨酸类蛋白 激酶 | 冷、盐、干旱和ABA胁迫 | |
6 | GsPPCK1 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 | |
7 | GsPPCK3 | 磷酸烯醇式丙酮酸羧化酶激酶 | 碱胁迫 |
A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis
2
2017
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... AP2/ERF (APETALA2/ethylene-responsive element binding factor)是植物最大的转录因子家族之一, 因蛋白序列含有保守的AP2/ERF结构域而得名.根据结构域其可分为AP2、DREB、ERF以及RAV四个亚家族(
GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis
2
2016
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... AP2/ERF (APETALA2/ethylene-responsive element binding factor)是植物最大的转录因子家族之一, 因蛋白序列含有保守的AP2/ERF结构域而得名.根据结构域其可分为AP2、DREB、ERF以及RAV四个亚家族(
Identification of wild soybean miRNAs and their target genes responsive to aluminum stress
1
2012
... 除了对mRNA测序外, 研究人员还对逆境胁迫下野生大豆的microRNA表达进行了分析.
Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq
1
2016
... 对野生大豆进行转录组分析, 可快速且高通量地筛选逆境应答基因, 挖掘多途径信号转导通路的相关性.
Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean
1
2016
... LRR-RLKs (leucine-rich-repeat protein kinases)是一类富含亮氨酸的RLKs (
Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
1
2015
... 2010年, 美国能源部联合基因组研究所专家采用全基因组鸟枪测序法对大豆基因组进行了测序, 并且公布了完整的大豆基因组序列草图(
GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling
3
2011
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
... )表达, 增加脯氨酸和MDA含量, 提高耐碱性(
Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress
1
2013
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance
4
2012
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
... 的表达, 提高转基因拟南芥的耐盐性(
... 基因拟南芥通过促进质子转运相关marker基因的表达提高耐碱性(
The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress
3
2014
... Transcription factor involved in stress tolerance of wild soybean
编号 | 基因 | 编码蛋白 | 胁迫类型 | 参考文献 |
---|---|---|---|---|
1 | GsZFP1 | ZFP转录因子 | 冷、干旱、盐和ABA胁迫 | |
2 | GsWRKY20 | WRKY转录因子 | 盐、冷、干旱和ABA胁迫 | |
3 | GsWRKY57 | WRKY转录因子 | 干旱胁迫 | |
4 | GsWRKY15 | WRKY转录因子 | 碱胁迫 | |
5 | GsTIFY6b | TIFY转录因子 | 盐和碱胁迫 | |
6 | GsTIFY10a | TIFY转录因子 | 盐和碱胁迫 | |
7 | GsTIFY11b | TIFY转录因子 | 盐和碱胁迫 | |
8 | GsJAZ2 | JAZ转录因子 | 盐和碱胁迫 | |
9 | GsERF6 | ERF转录因子 | HCO3-胁迫 | |
10 | GsERF71 | ERF转录因子 | HCO3-胁迫 | |
11 | GsNAC20 | NAC转录因子 | 盐、干旱和低温胁迫 | |
12 | GsNAC019 | NAC转录因子 | ABA和碱胁迫 | |
13 | Gshdz4 | Gshdz4转录因子 | 干旱胁迫 | |
14 | GsRAV3 | RAV转录因子 | 碱和ABA胁迫 | |
15 | GsbZIP33 | bZIP转录因子 | 盐胁迫 | |
16 | GsbZIP67 | bZIP转录因子 | 碱胁迫 | |
17 | HSFB2b | B类热激转录因子 | 盐胁迫 | |
18 | GsMYB15 | MYB转录因子 | 盐、MeJA和SA胁迫 |
... TIFY是一类植物特有的新型转录因子, 包含高度保守的TIF[F/Y]XG结构域、GATA锌指结构和Jas结构域.
... 形成异源二聚体(
The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification
1
2014
... 蛋白激酶通过磷酸化下游靶蛋白, 启动或关闭信号转导通路, 调控植物逆境应答.大豆中4.67%的基因编码蛋白激酶(protein kinase), 其中约65%属于类受体蛋白激酶(receptor like kinases, RLKs) (