Morphology and Genetic Diversity of Phragmites australis in Beijing
Xi Zhang, Tianhang Qiu, Anan Wang, Huajian Zhou, Min Yuan, Li Li, Sulan Bai, Suxia Cui,*College of Life Sciences, Capital Normal University, Beijing 100048, China
Abstract To understand the distribution and diversity of Phragmites australis in Beijing, we carried out field investigation to Beijing’s major rivers, wetlands and reservoirs, which reveals that the total area of reed populations has reached more than 600 hm 2 in Beijing. The ploidy level is dominated by octaploid, followed by tetraploid. In larger wetlands, the single community of octoploid occupies a dominant position; while in shallow urban rivers, the mixed populations with different morphological, ploidy and genetic diversity are common. There is no significant correlation between the plant traits and ploidy level variation. Six different reed clones were found in Xiaoqing River, all belonging to P haplotypes. The haploid genome size of all clones ranged from (0.499±0.019) pg, with a coefficient of variation of 3.8%. These results show that there is no correlation between phenotype and haplotype. In addition, a reed variant with versicolor leaf characteristics was discovered and named as Phragmites australis var. australis f. Goldstripe. The morphology and genetic diversity of Phragmites in Beijing provide valuable resources for future study of the relationship between reed genotypes and environmental adaptability. Keywords:ploidy level;haplotype;Phragmites australis;polymorphism;variant
PDF (15803KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞. 北京地区芦苇资源状态及其多样性. 植物学报, 2020, 55(6): 693-704 doi:10.11983/CBB20006 Zhang Xi, Qiu Tianhang, Wang Anan, Zhou Huajian, Yuan Min, Li Li, Bai Sulan, Cui Suxia. Morphology and Genetic Diversity of Phragmites australis in Beijing. Chinese Bulletin of Botany, 2020, 55(6): 693-704 doi:10.11983/CBB20006
芦苇(Phragmites australis)是一种典型的湿地水生植物, 但能生长在盐渍干旱的恶劣环境以及富营养化的污染水域, 并成为其生境内的优势物种(Clevering and Lissner, 1999; Saltonstall, 2002; Cui et al., 2009)。由于强大的环境适应能力, 芦苇成功地分布于全世界。鉴于芦苇生境的广布性、强大的环境适应性以及对环境的高度敏感性, 使其成为一个可选的环境监测物种。一项大规模的综合研究证明, 芦苇的一些生态种群能对全球生态变化, 如温度、大气中CO2浓度、干旱、洪涝、盐渍以及富营养化做出响应(Eller et al., 2017)。北京地处海河流域, 境内有永定河、潮白河、北运河、大清河和蓟运河五大水系, 自古以来就有大面积的芦苇分布。近年来, 随着湿地恢复、河流整治、污染治理的需求增大, 芦苇的生长恢复面积越来越大。但对北京地区芦苇的研究尚属空白, 其分布面积、生境、染色体倍性、遗传多样性和环境可塑性等生物学问题基本无资料记述, 成为环境监测和开发利用的首要障碍。
(A) 北京地区芦苇分布(芦苇的主要分布区域以红点标注, 并依照水系进行编号: 永定河水系(Y)、潮白河水系(C)、北运河水系(B)、大运河水系(D)和蓟运河水系(J); 蓝色表示河流、湖泊或人造水库); (B)-(E) 用流式细胞术检测芦苇染色体倍性(横坐标为通道的荧光强度, 纵坐标为细胞核数目; G1和G2期分别用深红色和浅红色表示; 碎片和聚集体分别用灰紫色和绿色表示)。图(B)和(C)以水稻为内参, 检测四倍体芦苇; 图(D)和(E)以四倍体芦苇为内参, 检测八倍体芦苇。 Figure 1Distribution and chromosome ploidy of Phragmites australis in Beijing
(A) Distribution of reeds in Beijing (The main distribution areas of reeds are marked by red dots and numbered according to the water system: Yongding River System (Y), Chaobai River System (C), North Canal System (B), Grand Canal System (D), Ji Canal System (J); Blue indicates rivers, lakes or artificial reservoirs); (B)-(E) Detection of reed chromosome ploidy by flow cytometry (The abscissa is the fluorescence intensity of the channel, and the ordinate is the number of nuclei; G1 and G2 phases are indicated by dark red and light red, respectively; fragments and aggregates are indicated by gray-purple and green, respectively). Figures (B) and (C) detected the tetraploid reeds using rice as the internal reference; Figures (D) and (E) detected the octaploid reeds using the tetraploid reeds as the internal reference.
Table 1 表1 表1北京地区芦苇的分布地点、面积和染色体倍性 Table 1The distribution, area and ploidy level of Phragmites australis in Beijing
Water system
Distribution location
Distribution description
Area (hm2)
Proportion (%)
Ploidy level
Origin
Yongding River System
304.11
47.16
Y01
Weishui River
Distributed at both sides of the west of the Weishui River Tunnel passes th- rough the World Horticultural, exposition to Yankang Road
5.14
0.80
NA
115.95°E, 40.45°N
Y02
Guanting Reservoir (in Beijing)
Scattered along the bank about 15 km west of the Guanting Bridge
0.21
0.03
8x/4x
115.87°E, 40.44°N
Y03
Wild Duck Lake National Wetland Park
Distributed in patches in the core area, buffer zone, and test area
257.40
39.92
8x
115.86°E, 40.41°N
Water system
Distribution location
Distribution description
Area (hm2)
Proportion (%)
Ploidy level
Origin
Y04
Shanxia Section of Yongding River
Distributed along the river bank
8.31
1.29
NA
116.09°E, 39.99°N
Y05
Sanjiadian Rush Wetland Park
Distributed in patches
4.60
0.71
8x
116.10°E, 39.97°N
Y06
Lianshi Lake Park
Distributed along both banks of the river
2.12
0.33
8x
116.15°E, 39.90°N
Y07
Yuanbo Lake Wetland
Distributed in patches
16.30
2.53
NA
116.21°E, 39.87°N
Y08
Ludi Park
Distributed in patches along the coast
9.71
1.51
NA
116.22°E, 39.84°N
Y09
Niantan Park
Distributed around the shore of a lake in the park
0.32
0.05
NA
116.31°E, 39.71°N
Daqing River System
58.63
9.09
D01
Chongqing Reservoir
Distributed in patches in the southwest corner of the reservoir
13.17
2.04
NA
116.08°E, 39.79°N
D02
Jiuzi River
Distributed in the upper reaches of Xiaoqing River
5.42
0.84
8x
116.19°E, 39.75°N
D03
Xiaoqing River
Distributed in patches along the river from the south of Shuisi Road to the junction of Hedgehog River
20.02
3.10
8x/4x
116.20°E, 39.72°N
D04
Dashi River
Distributed along the north and south rivers of Jingzhou Road
16.41
2.54
NA
116.03°E, 39.70°N
D05
Juma River
Sporadic distribution from Shidu to Yesanpo
0.31
0.05
8x
115.51°E, 39.66°N
D06
Beijuma River
Distributed in patches at the Beijing border of the North Juma River Estuary
3.30
0.51
NA
115.76°E, 39.53°N
Chaobai River System
196.83
30.52
C01
Qinglong Gorge
Sporadically distributed from the upper reaches of Qinglong Gorge to Baiquan Mountain
0.06
0.01
4x
116.66°E, 40.48°N
C02
Yanqi Lake
Artificial reed landscape at the northwest corner of the lake
0.83
0.13
8x
116.60°E, 40.40°N
C03
Chao River
Distributed in patches about 7 km along the river near Miyun Service Area of Dachang Expressway
38.23
5.93
8x/4x
116.94°E, 40.40°N
C04
The estuary of Chaobai River
Upper reaches of Chao River and Bai River cross estuary
7.08
1.10
8x
116.83°E, 40.35°N
C05
Huai River
About 4.5 km from Huairou Reservoir to Yanqi River junction
10.83
1.68
8x
116.63°E, 40.31°N
C06
Chaobai River Bridge
Piled up along the bank of Fuxing Bridge/Fengbo Bridge/Chaobai River Bridge in Shunping Road
18.94
2.94
NA
116.69°E, 40.12°N
C07
Hanshiqiao Wetland Park
Distributed in pieces of the core area, buffer zone and recovery area
83.95
13.02
8x
116.80°E, 40.12°N
C08
Binhe Forest Park
Distributed along the north and south banks of Chaobai River
36.91
5.72
NA
116.72°E, 40.11°N
North Canal Water System
82.91
12.86
B01
Lily Reservoir
Distributed in upstream area of the reservoir
0.05
0.01
8x
116.38°E, 40.32°N
B02
Taoyukou Reservoir
Distributed in periphery and upstream areas of the east and west sides of the reservoir
9.46
1.47
8x
116.45°E, 40.24°N
B03
Wenyu River
Scattered along the middle and upper banks of Wenyu River
0.21
0.03
NA
116.42°E, 40.15°N
B04
Shahezha Park
Distributed in patches in the west bank of the lake in the park
0.34
0.05
8x
116.31°E, 40.13°N
Water system
Distribution location
Distribution description
Area (hm2)
Proportion (%)
Ploidy level
Origin
B05
Cuihu Wetland Park
Uneven distribution on the wet land in protected areas and open areas
45.38
7.04
8x
116.19°E, 40.11°N
B06
Shangzhuang Reservoir
Evenly distributed along the bank of Shangzhuang Reservoir and scattered along the downstream bank
0.81
0.13
8x/4x
116.21°E, 40.11°N
B07
Nansha River
Discontinuous distribution in the 10 km section near Daoxiang Lake
8.29
1.29
8x
116.15°E, 40.10°N
B08
Olympic Forest Park
Distributed at the west side of Wetland in Southern District and the east side around the lake
5.04
0.78
8x/4x
116.39°E, 40.01°N
B09
Summer Palace
Mixed distribution of calamus on the shore near Zaojiantang site
0.12
0.02
NA
116.27°E, 39.99°N
B10
Grand Canal Forest Park
Distributed on the semi-arid coastal wetlands in popular reeds
6.51
1.01
NA
116.75°E, 39.87°N
B11
Nanhaizi Park
Distribution of small pieces of lakeshore in the park
6.70
1.04
8x/4x
116.47°E, 39.77°N
Jiyun River System
2.37
0.37
J01
Ju River and Ru River
Sporadically distributed at the confluence of the Ru River and the Ju River
2.03
0.31
NA
117.06°E, 40.11°N
J02
Jinji River
The junction of Jinji River and Yanghe River to the vicinity of Yingcheng Village
(A) 小清河样地全景图(6个芦苇克隆群体C1-C6分别用不同颜色的矩形虚线框标出); (B) 6个芦苇群体的株高和基径的相关性分析(灰色阴影部分为回归区间, 红色虚线为最佳回归曲线); (C) 芦苇多态性的主成分分析(依据表2中8项形态学指标绘制), 按照置信概率95%框选每种芦苇群体; (D) 芦苇小穗的代表性照片(bars=5 mm) Figure 2Polymorphism analysis of Phragmites australis in the Xiaoqing River plot
(A) Panoramic view of the Xiaoqing River plot (six different reed clones C1-C6 are marked by rectangular dashed boxes of different colors); (B) Correlation analysis of height and base diameter of six different reed clones (The gray shaded part is the regression interval, and the red dotted line is the best regression curve); (C) Principal component analysis of polymorphism in the reed plot of Xiaoqing River (based on eight morphological indicators of six species of reed clones in Table 2), selecting each reed clone according to 95% confidence probability; (D) Representative photos of spikelets (bars=5 mm)
The most significant difference between goldstripe reeds and common reeds is that the leaves have white or light yellow stripes, and a lower growth rate and a late flowering time. Goldstripe reeds are 2-3 meters tall, stem diameter 0.4-1.0 cm, leaves lanceolate linear, 15-28 cm long, 4-10 cm wide, flowering period delayed 1-2 weeks compared to common reeds, panicle purple or brown, and the number of seeds has decreased. Goldstripe reeds have well-developed rhizomes, erect stems, and dense spikelets on panicles. Spikelets are about 8-10 mm long and contain 3-6 florets; glumes on the spikelets, lemma and palea of the floret are purple or brown. The glume and lemma has 3 veins. The apex of lemma is long and acuminate, the base plate is extended, and the dense filamentous pubescence on both sides are slightly longer than the lemma, and it is easy to fall off from the joint when mature; pistil 1, stamen 3, anther 1-1.5 mm, purple or yellow. Mature seeds are brown with filiform pubescence at the base. The presently found goldstripe reeds are all octoploid, with a genome size of (3.98±0.17) pg.
(A) 自然生境中的金条芦苇; (B) 金条芦苇的小穗(bars=5 mm); (C) 金条芦苇细胞核的流式细胞分析结果; (D) 金条芦苇和变叶芦竹叶绿体基因片段(从trnG-UCC到trnT-GGU)大小的差异, 变叶芦竹(Ad)产生607 bp的条带; 芦苇产生1069 bp的条带(Pa为小清河芦苇克隆C6, DR和SR是河西走廊生长的沙丘芦苇和沼泽芦苇, G1-G3均为金条芦苇)(M: 分子标记); (E) 金条芦苇模式标本 Figure 3Identification of a new form of Phragmites australis
(A) Phragmites australis f. Goldstripe in natural habitats; (B) Spikelets of goldstripe reed (bars=5 mm); (C) Identification of ploidy level by the flow cytometric analysis on the goldstripe reed nuclei; (D) The size difference of a DNA fragment (from trnG-UCC to trnT-GGU) as revealed by PCR between goldstripe reed and Arundo donax var. versicolor, A. donax (Ad) produced a 607 bp band; common reeds and goldstripe reed produced 1069 bp bands (Pa indicates Xiaoqinghe reed C6, DR and SR indicate desert dune reeds and swamp reeds growing in the Hexi Corridor, and G1-G3 are all goldstripe reeds)(M: Molecular marker); (E) A type specimen of goldstripe reed
Table 4 表4 表4北京翠湖湿地普通芦苇和金条芦苇表型差异分析(平均值±标准差, n≥16) Table 4Phenotype comparison of common reed and goldstripe reed in Cuihu Wetland Park, Beijing (means±SD, n≥16)
AhmedMJ (2017). Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments Ecol Eng 102, 262-269. [本文引用: 1]
AnJX, WangQ, YangJ, LiuJQ (2012). Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America J Syst Evol 50, 334-340. [本文引用: 2]
BurdickDM, KoniskyRA (2003). Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes Estuaries 26, 407-416. [本文引用: 1]
ClaytonWD (1967). Studies in the Gramineae: XIV Kew Bull 21, 111-117. [本文引用: 1]
CleveringOA, LissnerJ (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis Aquat Bot 64, 185-208. [本文引用: 4]
CuiSX, HuJ, YangB, ShiL, HuangF, TsaiSN, NgaiSM, HeYK, ZhangJH (2009). Proteomic characterization of Phragmites communis in ecotypes of swamp and desert dune Proteomics 9, 3950-3967. DOI:10.1002/pmic.200800654URLPMID:19701903 [本文引用: 2] Phragmites communis Trin. (common reed) is a recognized model plant for studying its adaptation to contrasting and harsh environments. To understand the inherent molecular basis for its remarkable resistance to combined stresses, we performed a comprehensive proteomic analysis of the leaf proteins from two ecotypes, i.e. swamp and desert dune, naturally growing in the desert region of northwestern China. First, a proteome reference map of Phragmites was established based on the swamp ecotype. Proteins were resolved by 2-D/SDS-PAGE and identified by MALDI-TOF/TOF MS. In total, 177 spots were identified corresponding to 51 proteins. The major proteins identified are proteins involved in photosynthesis, glutathione and ascorbic acid metabolism as well as protein synthesis and quality control. Second, the 2-DE profiles of the two ecotypes were compared quantitatively via DIGE analysis. Compared with swamp ecotype, 51 proteins spots are higher-expressed and 58 protein spots are lower-expressed by twofold or more in desert dune ecotype. Major differences were found for the proteins involved in light reaction of photosynthesis, protein biosynthesis and quality control and antioxidative reactions. The physiological significance of such differences is discussed in the context of a flow of complex events in relation to plant adaptation to combined environmental stresses.
CuiSX, WangW, ZhangCL (2002). Plant regeneration from callus cultures in two ecotypes of reed ( Phragmites communis Trinius) In Vitro Cell Dev Biol Plant 38, 325-329. [本文引用: 2]
Dole?elJ, GreilhuberJ, SudaJ (2007). Estimation of nuclear DNA content in plants using flow cytometry Nat Protoc 2, 2233-2244. URLPMID:17853881 [本文引用: 1]
DykyjováD, PazourkováZ (1979). A diploid form of Phragmites communis, as a possible result of cytogenetical response to ecological stress Folia Geobot Phytotax 14, 113-120. [本文引用: 1]
EllerF, SkálováH, CaplanJS, BhattaraiGP, BurgerMK, CroninJT, GuoWY, GuoX, HazeltonELG, KettenringKM, LambertiniC, McCormickMK, MeyersonLA, MozdzerTJ, Py?ekP, SorrellBK, WhighamDF, BrixH (2017). Cosmopolitan species as models for ecophysiological responses to global change: the common reed Phragmites australis Front Plant Sci 8, 1833. URLPMID:29250081 [本文引用: 4]
GorenflotR (1986). Degrés et niveaux de la variation du nombre chromosomique chez Phragmites australis (Cav.) Trin. ex Steud. Ver?ff. Geobot. Inst. ETH, Stiftung Rübel Zürich 87, 53-65. [本文引用: 1]
HaslamSM (1970). Variation of population type in Phragmites communis Trin Ann Bot 34, 147-158. [本文引用: 1]
HaslamSM (1971). Community regulation in Phragmites communis Trin. I. monodominant stands J Ecol 59, 65-73. [本文引用: 1]
LiL, ChenXD, ShiL, WangCJ, FuB, QiuTH, CuiSX (2017). A proteome translocation response to complex desert stress environments in perennial Phragmites sympatric ecotypes with contrasting water availability Front Plant Sci 8, 511. DOI:10.3389/fpls.2017.00511URLPMID:28450873 [本文引用: 1] After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites. The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.
MeyersonLA, CroninJT, BhattaraiGP, BrixH, LambertiniC, Lu?anováM, RinehartS, SudaJ, Py?ekP (2016). Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biol Invasions 18, 2531-2549. [本文引用: 2]
MeyersonLA, SaltonstallK, ChambersRM, SillimanBR, BertnessMD, StrongD (2009). Phragmites australis in eastern North America: a historical and ecological perspective In: Silliman BR, Grosholz ED, Bertness MD, eds. Human Impacts on Salt Marshes: A Global Perspective. Berkeley: University of California Press. pp. 57-82. [本文引用: 1]
PorebskiS, BaileyLG, BaumBR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components Plant Mol Biol Rep 15, 8-15. [本文引用: 1]
RaicuP, StaicuS, StoianV, RomanT (1972). The Phragmites communis Trin. chromosome complement in the Danube delta Hydrobiologia 39, 83-89. [本文引用: 1]
SaltonstallK (2001). A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses Mol Ecol Notes 1, 76-78. [本文引用: 1]
SaltonstallK (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America Proc Natl Acad Sci USA 99, 2445-2449. DOI:10.1073/pnas.032477999URLPMID:11854535 [本文引用: 4] Cryptic invasions are a largely unrecognized type of biological invasion that lead to underestimation of the total numbers and impacts of invaders because of the difficulty in detecting them. The distribution and abundance of Phragmites australis in North America has increased dramatically over the past 150 years. This research tests the hypothesis that a non-native strain of Phragmites is responsible for the observed spread. Two noncoding chloroplast DNA regions were sequenced for samples collected worldwide, throughout the range of Phragmites. Modern North American populations were compared with historical ones from herbarium collections. Results indicate that an introduction has occurred, and the introduced type has displaced native types as well as expanded to regions previously not known to have Phragmites. Native types apparently have disappeared from New England and, while still present, may be threatened in other parts of North America.
SaltonstallK (2003). Microsatellite variation within and among North American lineages of Phragmites australis Mol Ecol 12, 1689-1702. URLPMID:12803624 [本文引用: 1]
SaltonstallK (2016). The naming of Phragmites haplotypes Biol Invasions 18, 2433-2441. [本文引用: 2]
TaberletP, GiellyL, PautouG, BouvetJ (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA Plant Mol Biol 17, 1105-1109. URLPMID:1932684 [本文引用: 1]
TanakaTST, IrbisC, InamuraT (2017). Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids Plant Syst Evol 303, 699-707. [本文引用: 2]
WangWS, MauleonR, HuZQ, ChebotarovD, TaiSS, WuZC, LiM, ZhengTQ, FuentesRR, ZhangF, MansuetoL, CopettiD, SanciangcoM, PalisKC, XuJL, SunC, FuBY, ZhangHL, GaoYM, ZhaoXQ, ShenF, CuiX, YuH, LiZC, ChenML, DetrasJ, ZhouYL, ZhangXY, ZhaoY, KudrnaD, WangCC, LiR, JiaB, LuJY, HeXC, DongZT, XuJB, LiYH, WangM, ShiJX, LiJ, ZhangDB, LeeS, HuWS, PoliakovA, DubchakI, UlatVJ, BorjaFN, MendozaJR, AliJ, LiJ, GaoQ, NiuYC, YueZ, NaredoMEB, TalagJ, WangXQ, LiJJ, FangXD, YinY, GlaszmannJC, ZhangJW, LiJY, HamiltonRS, WingRA, RuanJ, ZhangGY, WeiCC, AlexandrovN, McNallyKL, LiZK, LeungH (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice Nature 557, 43-49. DOI:10.1038/s41586-018-0063-9URLPMID:29695866 [本文引用: 1] Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding. 论中国古代芦苇资源的自然分布、社会利用和文化反映 1 2013
Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America 2 2012
... 芦苇是具有高倍性染色体组的物种, 从已消失的二倍体(Dykyjová and Pazourková, 1979)到三倍体、四倍体、六倍体、八倍体、十倍体, 甚至十二倍体的芦苇均有报道(Gorenflflot, 1986; Clevering and Lissner, 1999).四倍体和八倍体芦苇占据主要地位.在美洲, 芦苇常被列为入侵物种, 这与其染色体组的高倍性以及强大的环境适应性密切相关(Meyerson et al., 2009).在中国, 芦苇的生长和分布面积极广, 有14个主要分布区, 总面积约1.3×106 hm2 (郭春秀等, 2012), 其中八倍体芦苇占绝对优势(Clevering and Lissner, 1999; Cui et al., 2002).然而, 这种全球分布广泛、自然生长面积巨大的物种在种内的分类依然不清楚.有的以生境特点命名为各类生态型, 如沼泽芦苇和沙丘芦苇(张承烈和陈国仓, 1991); 有些则直接以栖息地为名, 如白洋淀苇、博斯腾苇、黑龙江苇和盘锦苇(李建国等, 2004).其主要原因是芦苇在株高、叶片形态、花序及群落等方面都有极高的环境可塑性(Haslam, 1970), 在种内多呈现形态上的重叠, 因此很难依据形态特征加以区分(Clayton, 1967).近年来, 以分子标记为分类依据的研究已逐渐展开.其中, 以叶绿体基因组非编码区片段变异的单倍型分类方法(Saltonstall, 2002)受到普遍认可.在此基础上, 研究者完成了中国北方芦苇和西南芦苇的叶绿体DNA片段单倍型分类, 发现西北地区的芦苇以单倍型O和M型为主; 东北和华北地区则主要以M和P型为主(An et al., 2012); 但西南芦苇以I、P、Q和U型为主(Tanaka et al., 2017).遗憾的是, 这种分类方式缺乏芦苇单倍型与表型之间的对应关系描述, 在研究和实践中都难以应用. ...
... 以小清河为例, 我们详细观察并检测芦苇混合种群的情况.在面积约0.15 hm2的样地上生长着至少6种形态差异明显的芦苇克隆(图2D).它们的单倍体基因组大小(Cx值)为(0.499±0.019) pg, 变异系数达3.8%.这与来源于欧洲和北美洲的166个芦苇群体的基因组变异系数相当(Meyerson et al., 2016).其中, C1克隆是北京地区罕见的四倍体克隆群体, 基因组大小为(2.01±0.09) pg, 是基因组测序的可选材料.据报道, 四倍体芦苇是欧洲和美洲的优势种群, 但在亚洲却以八倍体芦苇为主(Clevering and Lissner, 1999).由于这6个芦苇群体的生长环境相似, 使得它们在外部形态和内在遗传上都具有可比性.我们发现, 四倍体芦苇C1在株高和基径上显著高于其它5个八倍体芦苇(C2-C6).上述结果与Meyerson等(2016)对主要源于欧洲和北美洲四倍体芦苇的统计结果一致, 但与Raicu等(1972)报道八倍体芦苇具有较高的株型和粗壮根状茎的结果不符.根据我们的观察结合一些未发表数据, 我们认为芦苇染色体倍性与表型之间不具有较好的对应关系.然而, 值得注意的是, 芦苇花序的多态性非常高.这些花序除了大小和疏密不同之外, 小穗的颖片、小花的外稃和内稃以及花药的颜色都有明显差异, 主要有黄色、褐色或紫色(图2, 图3).预测这些多态性的花序可以作为芦苇种内分类的基础.遗憾的是, 时至今日芦苇的种内分类依然不清晰.无论是采用叶绿体单倍型分类方法(Saltonstall, 2002)还是微卫星分子标记(Saltonstall, 2003)都很难将表型和遗传信息相统一.我们根据叶绿体DNA片段进行单倍型分类, 结果表明小清河中6个形态差异巨大、染色体倍性不同且基因组大小有变异的芦苇群体都是P型(表2, 表3).这说明受到普遍认可的单倍型分类法(Saltonstall, 2002; An et al., 2012; Tanaka et al., 2017)只适用于大尺度的种内系统地理学研究.探明芦苇种内多样的表型与遗传特性之间的关系尚需开发新的研究方法. ...
Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes 1 2003
... 芦苇是一类具有形态和遗传多态性的禾本科植物, 具有巨大的生物量和全球分布性, 处于生态上的有利位置.由于基因组中丰富的遗传多样性, 其在水生生境、陆地生境、盐碱生境、沙漠边缘和污染水域都可以形成大型单一性种群, 是湿地和城市水域不可替代的景观植物, 更有可能成为监测环境气候变化的有力工具(Eller et al., 2017).但遗憾的是, 芦苇至今尚无基因组参考序列信息, 这极大地限制了其强大环境适应能力的遗传基础研究(Cui et al., 2009; Li et al., 2017), 也限制了其形态可塑性与遗传信息之间的关联研究.因此, 本研究获得的一些天然四倍体和八倍体材料十分珍贵, 是芦苇基因组测序以及多倍体植物环境适应性研究的好材料.自古以来北京地区芦苇生长繁茂, 随着近些年湿地建设力度加大, 芦苇的恢复和种植面积也越来越大, 但目前尚未见详细的调查报告.随着基因组序列的破解, 各类研究也会逐步展开.这些研究包括芦苇形态多样性和环境可塑性的分子基础、遗传因子与生态因子之间的关系、芦苇对环境修复的能力、芦苇纤维质量的改善和芦苇景观能力的提升等.我们希望北京地区丰富的芦苇资源和多态性研究可以成为解决这一系列问题的开始. ...
Degrés et niveaux de la variation du nombre chromosomique chez Phragmites australis (Cav.) Trin. ex Steud. Ver?ff. Geobot. Inst. ETH, Stiftung Rübel 1 1986
... 芦苇是具有高倍性染色体组的物种, 从已消失的二倍体(Dykyjová and Pazourková, 1979)到三倍体、四倍体、六倍体、八倍体、十倍体, 甚至十二倍体的芦苇均有报道(Gorenflflot, 1986; Clevering and Lissner, 1999).四倍体和八倍体芦苇占据主要地位.在美洲, 芦苇常被列为入侵物种, 这与其染色体组的高倍性以及强大的环境适应性密切相关(Meyerson et al., 2009).在中国, 芦苇的生长和分布面积极广, 有14个主要分布区, 总面积约1.3×106 hm2 (郭春秀等, 2012), 其中八倍体芦苇占绝对优势(Clevering and Lissner, 1999; Cui et al., 2002).然而, 这种全球分布广泛、自然生长面积巨大的物种在种内的分类依然不清楚.有的以生境特点命名为各类生态型, 如沼泽芦苇和沙丘芦苇(张承烈和陈国仓, 1991); 有些则直接以栖息地为名, 如白洋淀苇、博斯腾苇、黑龙江苇和盘锦苇(李建国等, 2004).其主要原因是芦苇在株高、叶片形态、花序及群落等方面都有极高的环境可塑性(Haslam, 1970), 在种内多呈现形态上的重叠, 因此很难依据形态特征加以区分(Clayton, 1967).近年来, 以分子标记为分类依据的研究已逐渐展开.其中, 以叶绿体基因组非编码区片段变异的单倍型分类方法(Saltonstall, 2002)受到普遍认可.在此基础上, 研究者完成了中国北方芦苇和西南芦苇的叶绿体DNA片段单倍型分类, 发现西北地区的芦苇以单倍型O和M型为主; 东北和华北地区则主要以M和P型为主(An et al., 2012); 但西南芦苇以I、P、Q和U型为主(Tanaka et al., 2017).遗憾的是, 这种分类方式缺乏芦苇单倍型与表型之间的对应关系描述, 在研究和实践中都难以应用. ...
Variation of population type in Phragmites communis Trin 1 1970
... 芦苇是具有高倍性染色体组的物种, 从已消失的二倍体(Dykyjová and Pazourková, 1979)到三倍体、四倍体、六倍体、八倍体、十倍体, 甚至十二倍体的芦苇均有报道(Gorenflflot, 1986; Clevering and Lissner, 1999).四倍体和八倍体芦苇占据主要地位.在美洲, 芦苇常被列为入侵物种, 这与其染色体组的高倍性以及强大的环境适应性密切相关(Meyerson et al., 2009).在中国, 芦苇的生长和分布面积极广, 有14个主要分布区, 总面积约1.3×106 hm2 (郭春秀等, 2012), 其中八倍体芦苇占绝对优势(Clevering and Lissner, 1999; Cui et al., 2002).然而, 这种全球分布广泛、自然生长面积巨大的物种在种内的分类依然不清楚.有的以生境特点命名为各类生态型, 如沼泽芦苇和沙丘芦苇(张承烈和陈国仓, 1991); 有些则直接以栖息地为名, 如白洋淀苇、博斯腾苇、黑龙江苇和盘锦苇(李建国等, 2004).其主要原因是芦苇在株高、叶片形态、花序及群落等方面都有极高的环境可塑性(Haslam, 1970), 在种内多呈现形态上的重叠, 因此很难依据形态特征加以区分(Clayton, 1967).近年来, 以分子标记为分类依据的研究已逐渐展开.其中, 以叶绿体基因组非编码区片段变异的单倍型分类方法(Saltonstall, 2002)受到普遍认可.在此基础上, 研究者完成了中国北方芦苇和西南芦苇的叶绿体DNA片段单倍型分类, 发现西北地区的芦苇以单倍型O和M型为主; 东北和华北地区则主要以M和P型为主(An et al., 2012); 但西南芦苇以I、P、Q和U型为主(Tanaka et al., 2017).遗憾的是, 这种分类方式缺乏芦苇单倍型与表型之间的对应关系描述, 在研究和实践中都难以应用. ...
Community regulation in Phragmites communis Trin. I. monodominant stands 1 1971
A proteome translocation response to complex desert stress environments in perennial Phragmites sympatric ecotypes with contrasting water availability 1 2017
... 芦苇是一类具有形态和遗传多态性的禾本科植物, 具有巨大的生物量和全球分布性, 处于生态上的有利位置.由于基因组中丰富的遗传多样性, 其在水生生境、陆地生境、盐碱生境、沙漠边缘和污染水域都可以形成大型单一性种群, 是湿地和城市水域不可替代的景观植物, 更有可能成为监测环境气候变化的有力工具(Eller et al., 2017).但遗憾的是, 芦苇至今尚无基因组参考序列信息, 这极大地限制了其强大环境适应能力的遗传基础研究(Cui et al., 2009; Li et al., 2017), 也限制了其形态可塑性与遗传信息之间的关联研究.因此, 本研究获得的一些天然四倍体和八倍体材料十分珍贵, 是芦苇基因组测序以及多倍体植物环境适应性研究的好材料.自古以来北京地区芦苇生长繁茂, 随着近些年湿地建设力度加大, 芦苇的恢复和种植面积也越来越大, 但目前尚未见详细的调查报告.随着基因组序列的破解, 各类研究也会逐步展开.这些研究包括芦苇形态多样性和环境可塑性的分子基础、遗传因子与生态因子之间的关系、芦苇对环境修复的能力、芦苇纤维质量的改善和芦苇景观能力的提升等.我们希望北京地区丰富的芦苇资源和多态性研究可以成为解决这一系列问题的开始. ...
Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? 2 2016
... 采用流式细胞仪分析芦苇基因组大小及染色体倍性 (Dole?el, 2007; Meyerson et al., 2016).在野外采集幼嫩的芦苇叶片, 用湿纱布包裹后置于4°C冰箱.分析时用刀片切碎叶片, 加入特制的缓冲液(北京蔬菜研究所提供)混匀并过滤以获得细胞核, 进行DAPI染色.测试仪器为FACSCalibur流式细胞仪(BD公司, 美国), 用CellQuest软件获取数据, 并用ModFit软件(Verity Software House公司)进行结果分析.因芦苇群体之间基因组差异较大, 本研究采用二次内参法计算基因组大小并推算染色体倍性.首先用基因组大小已知的水稻日本晴(Oryza sativa L. cv. ‘Nipponbare’)为内参(Wang et al., 2018, 2C=0.795 pg), 检测并计算出1个四倍体芦苇的基因组大小(4x=2.253 pg); 再以此为内参, 检测八倍体芦苇.以染色体压片确定的四倍体芦苇(4x=48)和八倍体芦苇(8x=96)为参考(Cui et al., 2002), 推测所有分析样品的倍性水平.基因组大小(pg DNA)=(样品G1峰平均值/内参G1峰平均值)×内参基因组大小; 单倍体基因组大小(即单倍体染色体组的DNA含量Cx值)为基因组大小/倍性水平. ...
... 以小清河为例, 我们详细观察并检测芦苇混合种群的情况.在面积约0.15 hm2的样地上生长着至少6种形态差异明显的芦苇克隆(图2D).它们的单倍体基因组大小(Cx值)为(0.499±0.019) pg, 变异系数达3.8%.这与来源于欧洲和北美洲的166个芦苇群体的基因组变异系数相当(Meyerson et al., 2016).其中, C1克隆是北京地区罕见的四倍体克隆群体, 基因组大小为(2.01±0.09) pg, 是基因组测序的可选材料.据报道, 四倍体芦苇是欧洲和美洲的优势种群, 但在亚洲却以八倍体芦苇为主(Clevering and Lissner, 1999).由于这6个芦苇群体的生长环境相似, 使得它们在外部形态和内在遗传上都具有可比性.我们发现, 四倍体芦苇C1在株高和基径上显著高于其它5个八倍体芦苇(C2-C6).上述结果与Meyerson等(2016)对主要源于欧洲和北美洲四倍体芦苇的统计结果一致, 但与Raicu等(1972)报道八倍体芦苇具有较高的株型和粗壮根状茎的结果不符.根据我们的观察结合一些未发表数据, 我们认为芦苇染色体倍性与表型之间不具有较好的对应关系.然而, 值得注意的是, 芦苇花序的多态性非常高.这些花序除了大小和疏密不同之外, 小穗的颖片、小花的外稃和内稃以及花药的颜色都有明显差异, 主要有黄色、褐色或紫色(图2, 图3).预测这些多态性的花序可以作为芦苇种内分类的基础.遗憾的是, 时至今日芦苇的种内分类依然不清晰.无论是采用叶绿体单倍型分类方法(Saltonstall, 2002)还是微卫星分子标记(Saltonstall, 2003)都很难将表型和遗传信息相统一.我们根据叶绿体DNA片段进行单倍型分类, 结果表明小清河中6个形态差异巨大、染色体倍性不同且基因组大小有变异的芦苇群体都是P型(表2, 表3).这说明受到普遍认可的单倍型分类法(Saltonstall, 2002; An et al., 2012; Tanaka et al., 2017)只适用于大尺度的种内系统地理学研究.探明芦苇种内多样的表型与遗传特性之间的关系尚需开发新的研究方法. ...
Phragmites australis in eastern North America: a historical and ecological perspective 1 2009
... 芦苇是具有高倍性染色体组的物种, 从已消失的二倍体(Dykyjová and Pazourková, 1979)到三倍体、四倍体、六倍体、八倍体、十倍体, 甚至十二倍体的芦苇均有报道(Gorenflflot, 1986; Clevering and Lissner, 1999).四倍体和八倍体芦苇占据主要地位.在美洲, 芦苇常被列为入侵物种, 这与其染色体组的高倍性以及强大的环境适应性密切相关(Meyerson et al., 2009).在中国, 芦苇的生长和分布面积极广, 有14个主要分布区, 总面积约1.3×106 hm2 (郭春秀等, 2012), 其中八倍体芦苇占绝对优势(Clevering and Lissner, 1999; Cui et al., 2002).然而, 这种全球分布广泛、自然生长面积巨大的物种在种内的分类依然不清楚.有的以生境特点命名为各类生态型, 如沼泽芦苇和沙丘芦苇(张承烈和陈国仓, 1991); 有些则直接以栖息地为名, 如白洋淀苇、博斯腾苇、黑龙江苇和盘锦苇(李建国等, 2004).其主要原因是芦苇在株高、叶片形态、花序及群落等方面都有极高的环境可塑性(Haslam, 1970), 在种内多呈现形态上的重叠, 因此很难依据形态特征加以区分(Clayton, 1967).近年来, 以分子标记为分类依据的研究已逐渐展开.其中, 以叶绿体基因组非编码区片段变异的单倍型分类方法(Saltonstall, 2002)受到普遍认可.在此基础上, 研究者完成了中国北方芦苇和西南芦苇的叶绿体DNA片段单倍型分类, 发现西北地区的芦苇以单倍型O和M型为主; 东北和华北地区则主要以M和P型为主(An et al., 2012); 但西南芦苇以I、P、Q和U型为主(Tanaka et al., 2017).遗憾的是, 这种分类方式缺乏芦苇单倍型与表型之间的对应关系描述, 在研究和实践中都难以应用. ...
Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components 1 1997