删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

芳香植物精油的抗菌性及在动物生产中的应用

本站小编 Free考研考试/2022-01-01

郝渊鹏1,2,?, 李静一1,?, 杨瑞1,2, 李慧1, 白红彤1, 石雷,1,*1中国科学院植物研究所, 北方资源植物重点实验室/北京植物园, 北京 100093
2中国科学院大学, 北京 100049

Antimicrobial Activity of Aromatic Plant Essential Oils and Their Application in Animal Production

Yuanpeng Hao1,2,?, Jingyi Li1,?, Rui Yang1,2, Hui Li1, Hongtong Bai1, Lei Shi,1,*1Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
2University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: E-mail:shilei_67@126.com

? 共同第一作者
责任编辑: 孙冬花
收稿日期:2020-02-24接受日期:2020-07-21网络出版日期:2020-09-01
基金资助:中国科学院A类战略性先导科技专项.XDA23080603


Corresponding authors: E-mail:shilei_67@126.com
? These authors contributed equally to this paper
Received:2020-02-24Accepted:2020-07-21Online:2020-09-01


摘要
芳香植物精油为具特征性气味的挥发性油状液体, 是从芳香植物中提取的一种重要次生代谢物质。芳香植物精油的抗菌活性由其化学成分和浓度决定, 其中酚类、含氧萜类和萜烯类在抗菌方面表现出较强的活性。芳香植物精油的抗菌机制主要涉及脂肪酸外膜的改变、细胞质膜的损坏、质子动力的消耗、代谢物及离子泄露。在畜牧业生产体系中, 抗生素的无序使用不仅可能引发“超级细菌”的产生, 其残留亦会造成畜产品不安全和环境污染。芳香植物精油作为一种天然植物抗菌剂, 毒性较低且无残留, 作为饲料添加剂可用于维持动物机体的健康, 有望成为重要的抗生素替代品。该文阐述了芳香植物精油的活性成分、抗菌作用机制及其在动物生产中的应用, 为抗菌机理研究和新技术开发利用提供了理论依据。
关键词: 芳香植物精油;化学成分;抗菌活性;抗生素替代品;动物生产

Abstract
Essential oils (EOs), volatile oily liquid extracted from aromatic plants, are vital secondary metabolites with the characteristic odor. The antimicrobial activities are determined by chemical compositions and concentrations of EOs. Of these, phenols, oxygenous terpenoids and terpenes possess significant antimicrobial activities. The antimicrobial mechanisms of EOs mainly involve in the alteration of fatty acids outer membrane, damaging of cytoplasmic membrane, depletion of proton-motive force and leakage of metabolites and ions. In the production systems of animal husbandry, misuse of antibiotics leads to the generation of “super bacteria”, and antibiotic residues cause the problems of animal by-products unsafety and environmental pollution. Aromatic EOs serve as natural antimicrobial agents with advantages of low toxicity and no residues, thus EOs can be used as feed additives to replace the antibiotics for animal health. This review article describes the active compounds and antimicrobial mechanisms of aromatic EOs as well as their applications in animal production, and emphasizes the application of new technologies in the research of antimicrobial mechanisms. This article will provide the theoretical basis for the application of aromatic EOs in the animal production.
Keywords:aromatic plant essential oil;chemical composition;antimicrobial activity;antibiotic alternatives;animal production


PDF (1652KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
郝渊鹏, 李静一, 杨瑞, 李慧, 白红彤, 石雷. 芳香植物精油的抗菌性及在动物生产中的应用. 植物学报, 2020, 55(5): 644-657 doi:10.11983/CBB20029
Hao Yuanpeng, Li Jingyi, Yang Rui, Li Hui, Bai Hongtong, Shi Lei. Antimicrobial Activity of Aromatic Plant Essential Oils and Their Application in Animal Production. Chinese Bulletin of Botany, 2020, 55(5): 644-657 doi:10.11983/CBB20029


在畜牧业生产体系中, 抗生素的无序使用不仅可能引发“超级细菌”的产生, 其残留亦会造成畜产品安全和环境污染问题。抗生素的滥用导致人类细菌耐药性增加, 直接或间接地影响了人类健康。有研究显示, 抗生素耐药性每年可导致70多万人死亡(Li et al., 2018)。病原菌对抗生素产生耐药性的途径多种多样, 包括酶降解、主动外排和靶标改变等。根据2013年《中国畜禽养殖中抗生素使用情况调查报告》数据, 国内年产抗生素为2.1×105 t, 国内消费量为1.8×105 t, 其中用于动物产业的抗生素为9.7×104 t, 约占54%, 饲料企业所用抗生素价值高达30-35亿元。中国科学院广州地球化学研究所应光国课题组首次公布了我国抗生素的使用量以及排放量清单, 环境中常见的36种抗生素的排放量高达5.38×104 t, 抗生素的使用量与细菌耐药率存在正相关, 大型养殖场的动物粪便和饲料中均检出多种抗生素, 广东和广西等养猪、养鸡大省抗生素的污染较为严重(Zhang et al., 2015a)。抗生素的滥用制约着我国养殖业的健康发展, 抗菌药的耐药性目前已发展成为全球面临的挑战性问题, 仅通过研发新的抗生素难以应对愈演愈烈的耐药性。因此, 减少抗生素的使用是畜牧业健康发展的重要措施, 寻找具有抗菌作用的抗生素替代品是保持当前畜牧生产效率的有效途径。2018年世界动物卫生组织发布的《兽用抗菌药物使用情况年报》显示, 全球有86个国家和地区禁止将抗菌药作为促生长剂。2019年, 世界卫生组织已将抗微生物耐药性列为全球十大健康威胁之一。自2015年起, 我国农业部已先后禁止6种兽用抗菌药用于食品动物生产(于洋等, 2019)。

芳香植物精油是植物自身合成的天然抗菌剂, 抗菌活性由其化学成分和浓度决定。目前, 芳香植物的抗菌、抗氧化和抗炎等特性已在大量研究中得到证实(Rao et al., 2019)。鉴于芳香植物精油的抗菌性, 芳香植物在动物生产中的应用越来越广泛。中华人民共和国农业部1773号和2038号公告中规定117种药食同源天然植物可作为饲料原料使用, 其中包含多种芳香植物(如薄荷(Mentha pulegium)和迷迭香(Rosmarinus officinalis))。农业农村部第194号公告规定, 自2020年1月1日起, 停止生产和进口除中药外的所有促生长类药物饲料添加剂。这些政策的出台有力推动了天然植物饲料原料产品的开发和利用。本文以芳香植物资源为基础, 探讨了不同芳香植物精油及其单体成分的抗菌性, 解析了不同化学结构与抗菌效果之间的相关性, 为开发利用芳香植物精油作为饲料添加剂提供理论依据。

1 芳香植物与植物精油

芳香植物全世界有3 600多种, 在地中海沿岸的欧洲诸国以及中国、中亚、印度和南美等地分布广泛(Bakkali et al., 2008), 主要集中于唇形科、菊科、芸香科、樟科、伞形科、百合科、蔷薇科、十字花科、姜科和豆科等。目前, 很多国家和地区都开展了芳香植物的引种和栽培, 形成了各具特色的芳香产业。中国对芳香植物的利用也有悠久的历史, 早在5000多年前炎帝神农时代, 芳香植物便被用于除瘟驱疫及清净身心,《诗经》、《楚辞》以及《山海经》等先秦历史典籍里存在较多芳香植物的记录。现代社会, 芳香植物作为一类新兴的经济作物, 因富含药用成分, 常被用于食品工业、日化工业和医药等, 随着“芳香疗法”和“园艺疗法”的兴起, 芳香植物的应用越来越受到人们的青睐。

芳香植物精油主要通过水蒸馏法从花序、茎、叶片、根以及种子等不同植物组织中获得。植物精油大多存在于特定的分泌组织, 如腺毛细胞(牛至(Origanum vulgare))、油管(茴香(Foeniculum vulgare))、分泌腔(柑橘(Citrus reticulata))和油细胞(肉桂(Cinnamo- mum cassia))等。植物精油是天然混合物, 包含萜类、萜烯类、醇类、醛类、酮类、酯类和酚类等约20-60种化学成分, 这些化学成分所占比例大不相同, 多数以微量形式存在, 其中2-3种主要组分含量达20%- 70%。例如, 牛至精油含24种化合物, 占精油总量的97.29%-98.63%, 其中香芹酚和百里香酚占精油总成分的74.59% (Kosakowska et al., 2019)。同种芳香植物因生长环境或采收时期不同, 所含精油的成分、性质和含量也不同(Bakkali et al., 2008)。此外, 植物的不同部位所含精油成分也存在差异, 牛至叶和花混合精油中香芹酚占30.73%、百里香酚占18.81%, 茎中香芹酚和百里香酚则分别占6.02%和3.46%, 根中二者分别占3.27%和1.08% (Han et al., 2017)。

2 芳香植物精油的抗菌活性比较

2.1 芳香植物精油的抗菌性

植物精油是重要的次生代谢产物, 主要是为其自身抵抗真菌、细菌和病毒的侵害以及防御昆虫和食草动物的咬食。据报道, 牛至、百里香(Thymus vulgaris)和肉桂等芳香植物精油具有广谱抗菌性, 精油含有的多种化学成分之间存在结构差异性, 这使其在抗菌功能方面具有多样性(表1)。抗菌评价系统中, 最低抑菌浓度(minimum inhibitory concentration, MIC) (即在体外培养细菌18-24小时后可抑制病原菌生长的最低药物浓度)是衡量抗菌差异最常用的指标, MIC越小表明药物的抗菌作用越强。

Table 1
表1
表1常见芳香植物精油的主要成分和依据MIC指标的抗菌性评价
Table 1Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
物种主要成分作用菌种MIC参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare)香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%)耐甲氧西林金黄色葡萄球菌0.4 mg·mL-1Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%)枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌0.075-1.1 mg· mL-1Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%)表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等0.03%-1.0% (v/v)Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%)金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides)α-萜品烯(40.73%)和对伞花烃(21.81%)金黄色葡萄球菌≥1.024 mg·mL-1de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%)蜡状芽孢杆菌和大肠杆菌0.94-1.87 (v/v%)Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium)大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%)金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等0.125-0.5 mg·mL-1Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%)表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%)鼠伤寒沙门氏菌和大肠杆菌0.0075-2.0 (v/v%)Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus)香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%)金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%)金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等0.075-0.6 mg·mL-1Ooi et al., 2006
山苍子(Litsea cubeba)β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%)耐甲氧西林金黄色葡萄球菌0.5? mg·mL-1Hu et al., 2019
猴樟(Cinnamomum bodinieri)芳樟醇(69.94%)和樟脑(10.90%)大肠杆菌200 μL·L-1Wu et al., 2019
桃金娘科(Myrtaceae)蓝桉(Eucalyptus globulus)对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%)金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等1-4 mg·mL-1Salem et al., 2018
MIC: Minimum inhibitory concentration
MIC: 抑菌浓度评价

新窗口打开|下载CSV

2.2 芳香植物精油的抗菌成分

植物精油独特的抗菌作用取决于其含有的化学成分, 植物精油的抗菌能力与其活性分子的官能团和结构排列有关, 其不同化学成分往往具有协同抗菌作用。在众多活性成分中, 酚类的抗菌性最强, 其次是醛类、醇类、酮类、酯类和烃类(Marinelli et al., 2018)。虽然精油成分的化学结构对其杀菌效果的影响还不完全清楚, 但大量研究表明化学结构的亲脂性以及羟基(-OH)、甲氧基(-OCH3)和烯烃键的存在对精油抗菌能力的发挥有重要作用, 这些官能团往往具有消耗质子动力、影响菌液pH值以及细菌氧化磷酸化等作用(Castillo-López et al., 2017; Zhang et al., 2020)。具有这些结构特征的化合物(如香芹酚、百里香酚、肉桂醛和丁子香酚)拥有显著的杀菌活性。牛至、百里香、肉桂和丁子香(Syzygium aromaticum)等芳香植物精油因此类化合物含量较高而具有较强的抑菌活性(Burt, 2004)。本文主要对植物精油中抗菌活性较好的酚类、含氧萜类和萜烯类进行抗菌活性的阐述(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1植物精油中主要抗菌成分(酚类、含氧萜类和萜烯类)的化学结构

Figure 1Chemical structures of major antimicrobial constituents (Phenols, oxygenous terpenoids, and terpenes) in plant essential oils



酚类化合物: 酚类中的游离羟基以及离域电子对精油的抗菌活性至关重要, 香芹酚、百里香酚和丁子香酚均因酚羟基的存在而具有显著的杀菌作用(图1)。两种化学型牛至精油对6种革兰氏阴性和阳性细菌的抑制结果显示, 香芹酚型牛至精油(主成分为香芹酚, 约占75%)对6种菌株的抑制作用均高于另一种化学型牛至精油(主成分为松油烯-4-醇, 约占25%) (Aligiannis et al., 2001)。3种化学型牛至精油对金黄色葡萄球菌和大肠杆菌等6种致病菌的抑制结果显示, 香芹酚含量占79%和60.8%的牛至精油抑制作用较强, 而香芹酚占比较低的牛至精油(以石竹烯及其氧化物为主要成分, 占49.4%)抗菌性较弱(Al Hafi et al., 2016)。香芹酚和百里香酚为同分异构体, 二者因酚羟基位置不同而对不同细菌的抑制活性和作用效果有所差别, 百里香酚对沙门氏菌的抑制作用高于香芹酚和丁子香酚(Burt, 2004; Miladi et al., 2017)。

含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015)。萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013)。萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019)。肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019)。通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018)。

萜烯类化合物: 以石竹烯为主要成分的大麻(Cannabis sativa)精油对金黄色葡萄球菌和枯草芽孢杆菌的抑制作用较显著, 且与抗生素环丙沙星存在协同作用(Nafis et al., 2019)。柠檬烯对金黄色葡萄球菌有显著的抑制活性, 与抗生素诺氟沙星对金黄色葡萄球菌和铜绿假单胞菌分别存在协同和拮抗作用(de Araújo et al., 2020)。月桂烯对金黄色葡萄球菌、大肠杆菌和肠炎沙门氏菌具有显著的抑制作用(Wang et al., 2019a)。

2.3 芳香植物精油的抗菌机理

植物精油的普遍疏水性促进其与细菌脂质双分子层互作, 精油化合物在双分子层中大量积累最终导致细胞破裂。大约90%-95%革兰氏阳性细菌的细胞壁由肽聚糖组成, 该特征可使疏水性化合物较易穿透细菌细胞。与革兰氏阳性细菌相比, 革兰氏阴性细菌由细胞外膜、肽聚糖和细胞内膜组成, 厚厚的外膜降低了渗透性, 并且具有亲水性脂多糖结构, 因此革兰氏阴性细菌对疏水性精油的抵抗力更强(Burt, 2004)。芳香植物精油通过不同的作用途径对致病菌活性产生抑制作用, 主要包括以下4个方面(图2A)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2精油的作用机制和包埋方式(改自Rao et al., 2019)

(A) 散装精油和不同的包埋方式; (B) 精油的作用机制和作用靶点。
Figure 2Mechanisms of action and delivery systems of essential oils (EOs) (modified by Rao et al., 2019)

(A) Bulk essential oils (EOs) and different types of EO encapsulation; (B) Proposed mechanisms of action and target sites of EOs.


(1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018)。精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018)。碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性。研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020)。Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动。月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020)。

(2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018)。用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018)。精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020)。肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011)。用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020)。

(3) 质子动力的消耗: 膜结构破坏后容易引起质子动力的消耗, 进而影响线粒体呼吸、电子转移链、底物氧化以及主动转运。质子动力通过ATP合酶可转化为ATP, 用于多种细胞功能, 而质子动力消耗后会抑制ATP的合成(Bajpai et al., 2013)。香芹酚以羟基作为跨膜离子交换剂, 消耗质子动力, 引起细菌细胞中阳离子的扰动, 从而增加细胞膜的渗透性, 最终导致细胞内容物流失(Saad et al., 2013)。Cao等(2020)研究表明, 柠檬醛和香芹酚可引起阪崎肠杆菌质子动力的消耗, 降低细胞内pH, 影响三羧酸循环, 同时激发细菌自卫反应, 噬菌体休克蛋白(phage shock protein, PSP)操纵子以及pspApspBpspCpspD基因表达上调, 以维持质子动力、减少细胞能量消耗和修复细胞膜。

(4) 代谢物和离子的泄露: 芳香植物精油引起的细菌细胞膜破坏会导致细胞内容物流失, 从而加剧细菌的死亡。用牛至精油处理耐甲氧西林金黄色葡萄球菌后溶液的电导率增高, 表明Na+和K+等泄露, 而K+在维持酶的活化和胞内pH方面有一定作用(Cui et al., 2019)。用百里香精油处理蜡状芽孢杆菌后, 胞外蛋白质和ATP含量明显增多, 表明细胞膜破裂引起内容物流失(Kang et al., 2018)。用野胡麻(Dodartia orientalis)精油处理大肠杆菌、金黄色葡萄球菌和肠炎链球菌12小时, 在260 nm下吸收值逐渐增强, 表明胞内核酸泄漏(Wang et al., 2017)。

此外, 精油中的成分也会影响细胞正常活动所必需的酶和蛋白等的合成。例如, 酚类化合物的羟基会抑制细菌ATP酶, 从而影响ATP的合成(Swamy et al., 2016)。香芹酚诱导大肠杆菌O157:H7产生大量的热激蛋白60 (heat shock protein 60, HSP60), 抑制鞭毛蛋白的合成, 导致细菌无法运动(Burt et al., 2007)。丁子香酚抑制蜡状芽孢杆菌中淀粉酶和蛋白酶的合成(Burt, 2004)以及细菌组氨酸脱羧酶活性(Swamy et al., 2016)。

3 芳香植物精油在动物生产中的应用

随着养殖业集约化和规模化发展, 动物因细菌感染而死亡给我国养殖业造成很大的经济损失, 抗生素虽能抑制畜禽某些疾病的发生, 但其带来的负面影响亦不容忽视。基于植物精油的抗菌性, 将其加入动物饲料中可有效替代抗生素以减弱病菌的致病性, 改善反刍动物瘤胃发酵。以香芹酚为主要成分的植物精油可抑

制猪体内的大肠杆菌及家禽产气荚膜梭菌, 改善坏死性肠炎, 促进猪、鸡和鹌鹑等禽畜的肠道健康, 净化养殖环境, 增强动物的免疫力, 促进动物生长, 为人类提供无污染和无残留的动物性食品。植物精油是多种化合物的混合物, 每种化学成分的生物活性和作用机理都有其自身特性, 致使植物精油在动物实验中的效果各不相同(表2)。

Table 2
表2
表2芳香植物精油在动物生产中的应用评价
Table 2Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
动物植物材料效果参考文献
牛至(Origanum vulgare ssp. hirtum)抑制产甲烷菌, 改善瘤胃发酵Paraskevakis, 2018
迷迭香(Rosmarinus officinalis)影响生物氢化细菌, 促进瘤胃发酵Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum)产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用Mullen et al., 2014
精油混合物抑制牛呼吸系统疾病相关的细菌病原体Amat et al., 2017
精油混合物直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多Zeng et al., 2015
精油混合物乳酸杆菌增多, 粪便中大肠杆菌数量减少Li et al., 2012
精油混合物乳酸杆菌增多Zhang et al., 2015b
精油混合物粪便中乳酸菌增多, 大肠杆菌数量减少Zhang et al., 2016
牛至(O. vulgare)盲肠大肠杆菌减少, 乳酸菌无影响Roofchaee et al., 2011
精油混合物乳酸菌等肠道菌群发生变化Liu et al., 2017
精油混合物抑制沙门氏菌繁殖, 减少交叉感染Alali et al., 2013
精油混合物抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎Jerzsele et al., 2012
精油混合物蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑西亚百里香(T. spicata)改善肠道微生物组成, 有利于其健康生长Aksu et al., 2014
迷迭香大肠杆菌和沙门氏菌等肠道致病菌减少Mahgoub et al., 2019
盆牛至(O. onites)促进生长, 有效避免加氏乳球菌感染Diler et al., 2017
冬牛至(O. heracleoticum)促进生长, 对嗜水气单胞菌感染的抵抗力增强Zheng et al., 2009
甜橙(Citrus sinensis)抑制链球菌感染, 具有免疫调节作用Acar et al., 2015

新窗口打开|下载CSV

3.1 提高动物的消化吸收能力

动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018)。高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019)。例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用)。因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012)。低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018)。

3.2 改善动物消化道菌群的分布

饲料中添加牛至和大蒜(Allium sativum)精油可以减少肉鸡肠道梭状芽孢杆菌和链球菌的数量(K?rkp?nar, 2011)。百里香、牛至以及肉桂等混合精油可降低瘤胃微生物的数量, 同时使甲烷产量以及乙酸盐与丙酸盐的比率降低, 进而调节瘤胃发酵(Lin et al., 2012)。香芹酚、肉桂醛以及辣椒油树脂的混合物可以增加早期断奶仔猪盲肠的乳杆菌数量, 提高空肠中乳酸杆菌与肠杆菌的比例(Manzanilla et al., 2006)。百里香酚和肉桂醛可以提高鸡肠道乳酸杆菌的数量, 降低大肠杆菌的数量(Jamroz et al., 2006)。总之, 芳香植物精油的添加可以提高肠道中益生菌与有害菌的比例。有害细菌的减少可有效避免动物被屠宰时的胴体污染, 且植物精油活性成分在代谢组织中的积累可以抑制腐败或致病细菌的生长, 从而延长肉类产品的货架期。

3.3 缓解动物病害

奶牛犊易因病原菌引起的腹泻而死亡, 植物混合精油的添加可以抑制肠道病原菌(乳酸菌、纤维素和淀粉分解菌等则不受影响), 缓解腹泻(Santos et al., 2015)。以柠檬烯为主要成分的柑橘精油对引起小猪腹泻的大肠杆菌有显著抑制作用, 而对肠道益生菌(乳酸杆菌)的抑制作用很小。同时, 细菌群落与体内氧化应激也存在相关性, 乳酸杆菌与氧化应激呈负相关, 而大肠杆菌与氧化应激呈强正相关, 精油的添加可降低体内的氧化应激反应(Ambrosio et al., 2019)。以肉桂醛为主要成分的肉桂精油对引起牛乳腺炎的金黄色葡萄球菌和大肠杆菌等致病菌有高效抑制作用(Zhu et al., 2016)。百里香和迷迭香精油可抑制鱼病原链球菌毒力基因SagA的表达, 减少溶血素产生, 从而缓解由链球菌引起的鱼类相关疾病(Soltani et al., 2014)。

3.4 增强动物的免疫力

肠道微生物群与黏膜免疫系统存在密切联系, 植物精油与微生物互作可改变肠道中淋巴细胞的分布及肠道免疫系统的发育和功能, 提高动物自身的免疫能力(Zhai et al., 2018)。百里香酚、香芹酚以及牛至精油作为鱼饲料添加剂, 可使食用8周后的鱼的嗜水气单胞菌感染率降低, 免疫系统相关酶(如溶菌酶、超氧化物歧化酶和过氧化氢酶)的活性升高(Zheng et al., 2009)。以百里香酚和肉桂醛为主要成分的混合精油可减少断奶仔猪肠道大肠杆菌的数量, 降低腹泻发生率, 同时增加淋巴细胞转化和白细胞吞噬率及提高血液中免疫球蛋白IgA和IgM的水平, 增强其免疫力(Li et al., 2012)。

4 植物精油功能研究的新技术

4.1 植物精油组配的抗菌性应用

植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用。牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008)。肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009)。肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007)。百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012)。除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016)。此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用。土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018)。椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011)。牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018)。

4.2 植物精油包被技术的抗菌性应用

植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题。包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术。香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012)。精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B)。纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019)。百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017)。牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017)。牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016)。丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019)。脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019)。牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009)。脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013)。此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统。植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010)。

4.3 植物精油功能的组学研究应用

快速发展的“组学”技术推进了精油的抗菌机制研究。利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油。微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS)。Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖。Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞。此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018)。Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能。Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放。

5 小结

在减抗和替抗政策下, 畜牧业开始向“绿色养殖”发展, 寻找抗生素替代品是目前畜牧业发展的当务之急。芳香植物精油因其独特的抗菌性能, 作为饲料添加剂的发展前景广阔, 但同时也存在一些问题。(1) 植物精油种类多样、成分复杂、易挥发且易氧化; 并且植物精油的化学成分、含量和活性会因物种、组织部位、地理位置、土壤条件、收获季节、气候条件和害虫等因素发生较大的变化(潘岩等, 2012; Asensio et al., 2015; Gerami et al., 2016)。例如, 冬季二次采收的迷迭香精油对大肠杆菌和金黄色葡萄球菌等的抑制作用更强(石雷等, 2015)。(2) 芳香植物精油添加剂进入动物体后需要经过胃肠道的消化吸收, 胃肠道通过具有许多神经和受体的化学感应系统感知化学物质和微生物, 而复杂的肠道生态系统导致芳香植物精油的抗菌机制目前并不十分清楚。(3) 缺乏芳香植物精油应用的新技术研发。例如, 不同植物精油的组配和包埋技术对抗菌功能效果的提升有重要作用, 组学技术对功能机制研究有很强的推动作用。基于上述问题, 提出以下3方面建议: (1) 在国家芳香植物种质资源库建设的基础上, 进一步完善芳香植物精油成分数据库, 为杀菌剂的选择提供基础性数据; (2) 针对动物生产中的主要病害进行更广范的芳香植物精油抗菌性评价, 运用多组学技术深入解析芳香植物精油的抗菌机制; (3) 加强芳香植物精油应用技术的开发利用, 包括精油组配技术、包埋技术和安全性评价技术等, 以解决动物生产中替代抗生素问题, 促进畜牧业的可持续发展。

(责任编辑: 孙冬花)

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

陈梦玲, 蓝蔚青, 李函笑, 任智楚, 芦子萱, 谢晶 ( 2020). 牛至精油对腐生葡萄球菌抑制作用机制
食品科学 41, 46-51.

[本文引用: 1]

李慧, 白红彤, 王晓, 姜闯道, 张金政, 石雷 ( 2011). 椒样薄荷、薄荷和苏格兰留兰香精油与抗生素的协同抑菌功能
植物学报 46, 37-43.

[本文引用: 1]

潘岩, 白红彤, 李慧, 姜闯道, 石雷 ( 2012). 栽培地区、采收季节和株龄对迷迭香精油成分和抑菌活性的影响
植物学报 47, 625-636.

[本文引用: 1]

石雷, 潘岩, 李慧, 白红彤 ( 2015). 一种采收迷迭香的方法和制备具有抑菌活性提取物的方法
中国专利, CN201210158838.4. 2015-07-01.

[本文引用: 1]

于洋, 方亮星, 周宇峰, 孙坚, 廖晓萍, 刘雅红 ( 2019). 畜牧业发展中抗菌药应用的“利”与“刃”
中国科学院院刊 34, 152-162.

[本文引用: 1]

张永刚 ( 2012). 植物源抗菌剂香芹酚定点释放包被技术的开发
博士论文. 长沙: 中国科学院亚热带农业生态研究所. pp. 1-194.

[本文引用: 1]

周洋, 彭艳, 周小秋 ( 2018). 植物精油对动物生长和免疫力的影响及其作用机制
动物营养学报 30, 37-43.

[本文引用: 1]

Abdelli M, Moghrani H, Aboun A, Maachi R ( 2016). Algerian Mentha pulegium L. leaves essential oil: chemical composition, antimicrobial, insecticidal and antioxidant activities
Ind Crops Prod 94, 197-205.

DOI:10.1016/j.indcrop.2016.08.042URL [本文引用: 1]

Acar ü, Kesbic OS, Y?lmaz S, Gültepe N, Türker A ( 2015). Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae
Aquaculture 437, 282-286.

DOI:10.1016/j.aquaculture.2014.12.015URL [本文引用: 1]

Aksu T, Aksu MI, ?nel SE, Yakan A, Kaya DA, Baylan M (2014). Effect of thyme oil (Thymbra spicata l. var. spicata) on meat quality in Japanese quails
Europ Poult Sci 78, https://www.chinbullbotany.com/article/2020/1674-3466/10.1399/eps.2013.6.

[本文引用: 1]

Al Hafi M, El Beyrouthy M, Ouaini N, Stien D, Rutledge D, Chaillou S ( 2016). Chemical composition and antimicrobial activity ofOriganum libanoticum, Origanum ehrenber- gii, and Origanum syriacum growing wild in Lebanon
Chem Biodivers 13, 555-560.

DOI:10.1002/cbdv.201500178URLPMID:27088763 [本文引用: 1]
The essential oils (EOs) of the aerial parts of Origanum libanoticum and Origanum ehrenbergii, endemic to Lebanon, and Origanum syriacum, endemic to the Levantine, were obtained by distillation with a Clevenger apparatus. GC and GC/MS allowed identification of 96.4%, 93.5%, and 95.2% of their constituents, respectively. Carvacrol was the major component of both O. syriacum EO (79%) and O. ehrenbergii EO (60.8%). This compound was absent in O. libanoticum EO and the major compounds were beta-caryophyllene (26.8%), caryophyllene oxide (22.6%), and germacrene D (17.2%). The assessment of their antimicrobial activity against Candida albicans and six pathogenic bacteria revealed that O. libanoticum EO was inactive, while O. syriacum and O. ehrenbergii showed moderate antimicrobial activity with minimal inhibitory concentrations varying from 400 to 1200 mug/ml. These results support the traditional use of these last two species in traditional herbal preparations in Lebanon.

Al Maqtari MAA, Alghalibi SM, Alhamzy EH ( 2011). Chemical composition and antimicrobial activity of essential oil ofThymus vulgaris from Yemen
Turk J Biochem 36, 342-349.

[本文引用: 1]

Alali WQ, Hofacre CL, Mathis GF, Faltys G ( 2013). Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers
Poult Sci 92, 836-841.

DOI:10.3382/ps.2012-02783URLPMID:23436536 [本文引用: 1]

Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB ( 2001). Composition and antimicrobial activity of the essential oils of two Origanum species
J Agric Food Chem 49, 4168-4170.

DOI:10.1021/jf001494mURLPMID:11559104 [本文引用: 1]
The essential oils obtained from the aerial parts of Origanum scabrum and Origaum microphyllum, both endemic species in Greece, were analyzed by means of GC and GC-MS. Forty-eight constituents were identified, representing 98.59 and 98.66% of the oils, respectively. Carvacrol, terpinen-4-ol, linalool, sabinene, alpha-terpinene, and gamma-terpinene were found as the major components. Furthermore, both samples exhibited a very interesting antimicrobial profile after they were tested against six Gram-negative and -positive bacteria and three pathogenic fungi.

Amat S, Baines D, Alexander TW ( 2017). Antimicrobial activities of commercial essential oils against the bovine respiratory pathogen Mannheimia haemolytica and analysis of their chemical composition and cytotoxicity on bovine turbinate cells
J Anim Sci 95, 122-123.

[本文引用: 1]

Ambrosio CMS, Ikeda NY, Miano AC, Salda?a E, Moreno AM, Stashenko E, Contreras-Castillo CJ, Da Gloria EM ( 2019). Unraveling the selective antibacterial activity and chemical composition of citrus essential oils
Sci Rep 9, 17719.

DOI:10.1038/s41598-019-54084-3URLPMID:31776388 [本文引用: 1]
Post-weaning diarrhea (PWD) is an often disease affecting piglets. It is caused mainly by enterotoxigenic Escherichia coli (ETEC) colonization in pig gut. Antibiotics has been used to prevent, combat and control PWD and its negative impact on the productivity of pig breeding sector. Nonetheless, antibiotics due to their wide antibacterial spectrum also can reach beneficial gut bacteria, such as Lactobacillus. Lately, essential oils (EOs) have emerged as a potential alternative to using antibiotics in animal breeding because of their effect on bacterial growth. Commonly, citrus EOs are by-products of food industry and the availability of these EOs in the worldwide market is huge. Thus, six commercials citrus EOs were evaluated on ETEC strains, as model of pathogenic bacteria, and on Lactobacillus species, as models of beneficial bacteria. In overall, citrus EOs exhibited a selective antibacterial activity with higher effect on pathogenic bacteria (ETECs) than beneficial bacteria (Lactobacillus). Brazilian orange terpenes (BOT) oil presented the highest selective performance and caused higher disturbances on the normal growth kinetic of ETEC than on Lactobacillus rhamnosus. The action was dose-dependent on the maximal culture density (A) and the lag phase duration (lambda) of the ETEC. The highest sub-inhibitory concentration (0.925 mg/mL) extended the lambda duration to ETEC eight times (14.6 h) and reduced A in 55.9%. For L. rhamnosus, the lambda duration was only extended 1.6 times. Despite the fact that limonene was detected as the major compound, the selective antibacterial activity of the citrus EOs could not be exclusively attributed to limonene since the presence of minor compounds could be implicated in conferring this feature.

Asensio CM, Grosso NR, Juliani HR ( 2015). Quality characters, chemical composition and biological activities of oregano (Origanum spp.) essential oils from central and Southern Argentina
Ind Crops Prod 63, 203-213.

DOI:10.1016/j.indcrop.2014.09.056URL [本文引用: 1]

Bajpai VK, Sharma A, Baek KH ( 2013). Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characterristics of food-borne pathogens
Food Control 32, 582-590.

DOI:10.1016/j.foodcont.2013.01.032URL [本文引用: 1]

Bakkali F, Averbeck S, Averbeck D, Idaomar M ( 2008). Biological effects of essential oils
Food Chem Toxicol 46, 446-475.

DOI:10.1016/j.fct.2007.09.106URLPMID:17996351 [本文引用: 2]
Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal and cosmetic applications, especially nowadays in pharmaceutical, sanitary, cosmetic, agricultural and food industries. Because of the mode of extraction, mostly by distillation from aromatic plants, they contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components. In vitro physicochemical assays characterise most of them as antioxidants. However, recent work shows that in eukaryotic cells, essential oils can act as prooxidants affecting inner cell membranes and organelles such as mitochondria. Depending on type and concentration, they exhibit cytotoxic effects on living cells but are usually non-genotoxic. In some cases, changes in intracellular redox potential and mitochondrial dysfunction induced by essential oils can be associated with their capacity to exert antigenotoxic effects. These findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.

Bassolé IHN, Juliani HR ( 2012). Essential oils in combination and their antimicrobial properties
Molecules 17, 3989-4006.

DOI:10.3390/molecules17043989URLPMID:22469594 [本文引用: 1]
Essential oils (EOs) have been long recognized for their antibacterial, antifungal, antiviral, insecticidal and antioxidant properties. They are widely used in medicine and the food industry for these purposes. The increased interest in alternative natural substances is driving the research community to find new uses and applications of these substances. EOs and their components show promising activities against many food-borne pathogens and spoilage microorganisms when tested in vitro. In food systems, higher concentrations of EOs are needed to exert similar antibacterial effects as those obtained in in vitro assays. The use of combinations of EOs and their isolated components are thus new approaches to increase the efficacy of EOs in foods, taking advantage of their synergistic and additive effects. The purpose of this review is to provide an overview on the antimicrobial efficacy of these combinations. A survey of the methods used for the determination of the interactions and mechanisms involved in the antimicrobial activities of these combinations are also reported.

Bisht DS, Menon KRK, Singhal MK ( 2014). Comparative antimicrobial activity of essential oils of Cuminum cymi-num L. andFoeniculum vulgare Mill. seeds against Sal- monella typhimurium and Escherichia coli
J Essent Oil Bear Plants 17, 617-622.

DOI:10.1080/0972060X.2014.956675URL [本文引用: 1]

Bouhaddouda N, Aouadi S, Labiod R ( 2016). Evaluation of chemical composition and biological activities of essential oil and methanolic extract of Origanum vulgare L. ssp. glandulosum (Desf.) Ietswaart from Algeria
Int J Pharmacogn Phytochem Res 8, 104-112.

[本文引用: 1]

Burt S ( 2004). Essential oils: their antibacterial properties and potential applications in foods
Int J Food Microbiol 94, 223-253.

DOI:10.1016/j.ijfoodmicro.2004.03.022URLPMID:15246235 [本文引用: 4]
In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.

Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, Haagsman HP, Veldhuizen EJA ( 2007). Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7
Appl Environ Microbiol 73, 4484-4490.

DOI:10.1128/AEM.00340-07URLPMID:17526792 [本文引用: 1]

Cao YF, Zhou AL, Zhou DG, Xiao XL, Yu YG, Li XF ( 2020). Cronobacter sakazakii CICC 21544 responds to the combination of carvacrol and citral by regulating proton motive force
LWT-Food Sci Technol 122, 109040.

DOI:10.1016/j.lwt.2020.109040URL [本文引用: 1]

Castillo-López RI, Gutiérrez-Grijalva EP, Leyva-López N, López-Martínez LX, Heredia JB ( 2017). Natural alternatives to growth-promoting antibiotics (GPA) in animal production
J Anim Plant Sci 27, 349-359.

[本文引用: 1]

Chen CH, Yin HB, Upadhayay A, Brown S, Venkitanarayanan K ( 2019). Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food
Int J Food Microbiol 296, 1-7.

DOI:10.1016/j.ijfoodmicro.2019.02.007URLPMID:30818250 [本文引用: 1]
0.05). Overall, 2% TC in vegetable oil or chitosan was the most effective treatment, where at least 3 to 3.5logCFU/g reduction in bacterial populations was observed during storage (P

Cheng CS, Xia M, Zhang XM, Wang C, Jiang SW, Peng J ( 2018). Supplementing oregano essential oil in a reduced- protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs
Animals 8, 159.

DOI:10.3390/ani8090159URL [本文引用: 1]

Cui HY, Zhang CH, Li CZ, Lin L ( 2019). Antibacterial mechanism of oregano essential oil
Ind Crops Prod 139, 111498.

DOI:10.1016/j.indcrop.2019.111498URL [本文引用: 2]

de Araújo ACJ, Freitas PR, Barbosa CRD, Muniz DF, Rocha JE, da Silva ACA, Oliveira-Tintino ADD, Jaime RF, da Silva LE, Confortin C, do Amaral W, Deschamps C, Barbosa JM, de Lima NTR, Tintino SR, Coutinho HDM ( 2020). GC-MS-FID characterization and antibacterial activity of the Mikania cordifolia essential oil and limonene against MDR strains
Food Chem Toxicol 136, 111023.

DOI:10.1016/j.fct.2019.111023URLPMID:31866146 [本文引用: 1]
The present study evaluated the effect of the essential oil of Mikania cordifolia (EOMc) and its major constituent limonene alone or associated with antibacterial drugs against Multidrug Resistant Bacteria (MDR). To evaluate the antibacterial activity, the minimum inhibitory concentrations (MIC) of the oil and limonene against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were determined. The antibiotic-modulating activity was assessed using subinhibitory concentrations (MIC/8) of these substances in combination with conventional antibacterial drugs. Although no relevant antibacterial activity of the natural products was detected, both substances modulated the action of antibiotics against resistant bacteria. The EOMc demonstrated the best modulating effect against P. aeruginosa, presenting synergistic effects when associated with gentamicin and norfloxacin. In addition, the oil reduced the MIC of norfloxacin against E. coli as well as reduced the MIC of gentamicin against S. aureus. On the other hand, the best effect of limonene was obtained against S. aureus. Thus, it is concluded that the essential oil Mikania cordifolia and the isolated compound limonene do not have clinically significant antibacterial effect, but modulate the action of antibiotics against MDR bacteria.

de Lange CFM, Pluske J, Gong J, Nyachoti CM ( 2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs
Livest Sci 134, 124-134.

DOI:10.1016/j.livsci.2010.06.117URL [本文引用: 1]

de Morais Oliveira-Tintino CD, Tintino SR, Limaverde PW, Figueredo FG, Campina FF, da Cunha FAB, da Costa RHS, Pereira PS, Lima LF, de Matos YMLS, Coutinho HDM, Siqueira-Júnior JP, Balbino VQ, da Silva TG ( 2018). Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus
Food Chem 262, 72-77.

DOI:10.1016/j.foodchem.2018.04.040URLPMID:29751924 [本文引用: 2]
This study was carried out to test the essential oil from C. ambrosioides leaves and its main constituent, alpha-Terpinene, in an antibacterial activity assay. As well, it was evaluated ability reduce resistance to norfloxacin and ethidium bromide was compared the Staphylococcus aureus 1199B whith 1199 wild type strain. The MIC of the C. ambrosioides essential oil and alpha-Terpinene were determined by microdilution method. The MIC of the essential oil and alpha-Terpinene presented a value>/=1024mug/mL. However, when associated with antibacterials, the essential oil from C. ambrosioides leaves significantly reduced the MIC of antibiotics and ethidium bromide, characterizing an efflux pump inhibition. The C. ambrosioides essential oil, despite having no direct antibacterial activity against the S. aureus 1199B strain, showed a potentiating action when associated with antibacterial agents, this being attributed to an inhibition of efflux pumps.

Diler O, Gormez O, Diler I, Metin S ( 2017). Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum)
Aquacult Nutr 23, 844-851.

DOI:10.1111/anu.2017.23.issue-4URL [本文引用: 1]

Garzoli S, Petralito S, Ovidi E, Turchetti G, Laghezza Masci V, Tiezzi A, Trilli J, Cesa S, Casadei MA, Giacomello P, Paolicelli P ( 2020). Lavandula x intermedia essential oil and hydrolate: evaluation of chemical composition and antibacterial activity before and after formulation in nanoemulsion
Ind Crops Prod 145, 112068.

DOI:10.1016/j.indcrop.2019.112068URL [本文引用: 1]

Gerami F, Moghaddam PR, Ghorbani R, Hassani A ( 2016). Effects of irrigation intervals and organic manure on morphological traits, essential oil content and yield of oregano (Origanum vulgare L.)
An Acad Bras Ciênc 88, 2375-2385.

DOI:10.1590/0001-3765201620160208URL [本文引用: 1]

Ghafari O, Sharifi A, Ahmadi A, Fasaei BN ( 2018). Antibacterial and anti-PmrA activity of plant essential oils against fluoroquinolone-resistant Streptococcus pneumoniae clinical isolates
Lett Appl Microbiol 67, 564-569.

DOI:10.1111/lam.13050URLPMID:30007082 [本文引用: 1]

Giannenas I, Bonos E, Filliousis G, Stylianaki I, Kumar P, Lazari D, Christaki E, Florou-Paneri P ( 2019). Effect of a polyherbal or an arsenic-containing feed additive on growth performance of broiler chickens, intestinal microbiota, intestinal morphology, and lipid oxidation of breast and thigh meat
J Appl Poult Res 28, 164-175.

DOI:10.3382/japr/pfy059URL [本文引用: 1]

Go?i P, López P, Sánchez C, Gómez-Lus R, Becerril R, Nerín C ( 2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils
Food Chem 116, 982-989.

DOI:10.1016/j.foodchem.2009.03.058URL [本文引用: 1]

Guimar?es AC, Meireles LM, Lemos MF, Guimaraes MCC, Endringer DC, Fronza M, Scherer R ( 2019). Antibacterial activity of terpenes and terpenoids present in essential oils
Molecules 24, 2471.

DOI:10.3390/molecules24132471URL [本文引用: 1]

Guo JJ, Gao ZP, Xia JL, Ritenour MA, Li GY, Shan Y ( 2018). Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China
LWT-Food Sci Technol 97, 825-839.

DOI:10.1016/j.lwt.2018.07.060URL [本文引用: 1]

Gutierrez J, Barry-Ryan C, Bourke R ( 2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients
Int J Food Microbiol 124, 91-97.

DOI:10.1016/j.ijfoodmicro.2008.02.028URLPMID:18378032 [本文引用: 1]
The objective of this study was to evaluate the efficacy of plant essential oils (EOs) in combination and to investigate the effect of food ingredients on their efficacy. The EOs assessed in combination included basil, lemon balm, marjoram, oregano, rosemary, sage and thyme. Combinations of EOs were initially screened against Bacillus cereus, Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa using the spot-on-agar test. The influence of varying concentrations of EO combinations on efficacy was also monitored using E. coli. These preliminary studies showed promising results for oregano in combination with basil, thyme or marjoram. The checkerboard method was then used to quantify the efficacy of oregano, marjoram or thyme in combination with the remainder of selected EOs. Fractional inhibitory concentrations (FIC) were calculated and interpreted as synergy, addition, indifference or antagonism. All the oregano combinations showed additive efficacy against B. cereus, and oregano combined with marjoram, thyme or basil also had an additive effect against E. coli and P. aeruginosa. The mixtures of marjoram or thyme also displayed additive effects in combination with basil, rosemary or sage against L. monocytogenes. The effect of food ingredients and pH on the antimicrobial efficacy of oregano and thyme was assessed by monitoring the lag phase and the maximum specific growth rate of L. monocytogenes grown in model media. The model media included potato starch (0, 1, 5 or 10%), beef extract (1.5, 3, 6 or 12%), sunflower oil (0, 1, 5 or 10%) and TSB at pH levels of 4, 5, 6 or 7. The antimicrobial efficacy of EOs was found to be a function of ingredient manipulation. Starch and oils concentrations of 5% and 10% had a negative impact on the EO efficacy. On the contrary, the EOs were more effective at high concentrations of protein, and at pH 5, by comparison with pH 6 or 7. This study suggests that combinations of EOs could minimize application concentrations and consequently reduce any adverse sensory impact in food. However, their application for microbial control might be affected by food composition, therefore, careful selection of EOs appropriate to the sensory and compositional status of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to ready to use foods containing a high protein level at acidic pH, as well as lower levels of fats or carbohydrates.

Han F, Ma GQ, Yang M, Yan L, Xiong W, Shu JC, Zhao ZD, Xu HL ( 2017). Chemical composition and antioxidant activities of essential oils from different parts of the oregano
J Zhejiang Univ Sci B 18, 79-84.

DOI:10.1631/jzus.B1600377URLPMID:28071000 [本文引用: 1]
This research was undertaken in order to characterize the chemical compositions and evaluate the antioxidant activities of essential oils obtained from different parts of the Origanum vulgare L. It is a medicinal plant used in traditional Chinese medicine for the treatment of heat stroke, fever, vomiting, acute gastroenteritis, and respiratory disorders. The chemical compositions of the three essential oils from different parts of the oregano (leaves-flowers, stems, and roots) were identified by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of each essential oil was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and reducing the power test. Among the essential oils from different parts of the oregano, the leaf-flower oils have the best antioxidant activities, whereas the stem oils are the worst. The results of the DPPH free radical scavenging assay showed that the half maximal inhibitory concentration (IC50) values of the essential oils were (0.332+/-0.040) mg/ml (leaves-flowers), (0.357+/-0.031) mg/ml (roots), and (0.501+/-0.029) mg/ml (stems), respectively. Interestingly, the results of reducing the power test also revealed that when the concentration exceeded 1.25 mg/ml, the leaf-flower oils had the highest reducing power; however, the stem oils were the lowest.

Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A ( 1998). Characterization of the action of selected essential oil components on gram-negative bacteria
J Agric Food Chem 46, 3590-3595.

DOI:10.1021/jf980154mURL [本文引用: 1]

Hu W, Li CZ, Dai JM, Cui HY, Lin L ( 2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA)
Ind Crops Prod 130, 34-41.

DOI:10.1016/j.indcrop.2018.12.078URL [本文引用: 1]

Jamroz D, Wertelecki T, Houszka M, Kamel C ( 2006). Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken
J Anim Physiol Anim Nutr 90, 255-268.

DOI:10.1111/jpn.2006.90.issue-5-6URL [本文引用: 1]

Jerzsele A, Szeker K, Csizinszky R, Gere E, Jakab C, Mallo JJ, Galfi P ( 2012). Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, andBacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers
Poult Sci 91, 837-843.

DOI:10.3382/ps.2011-01853URLPMID:22399722 [本文引用: 1]

Jia P, Xue YJ, Duan XJ, Shao SH ( 2011). Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus
Lett Appl Microbiol 53, 409-416.

DOI:10.1111/j.1472-765X.2011.03122.xURLPMID:21767279 [本文引用: 1]
AIMS: To investigate the antibiofilm effect of cinnamaldehyde on methicillin-resistant Staphylococcus aureus (MRSA) and analyse the effect of subminimum inhibitory concentrations (MICs) of cinnamaldehyde on the expression of the biofilm-related gene sarA. METHODS AND RESULTS: The MICs and minimum bactericidal concentrations (MBCs) were determined using a microtitre broth dilution method. Biofilm susceptibility was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining and colony forming unit (CFU) counting assays. Antibiofilm effects were studied with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). SarA expression was assessed by real-time PCR. MICs and MBCs were in the range 0.0625-0.5% (v/v). The killing effects were concentration dependent. At a concentration of 5x MIC, all strains in biofilm were decreased to lower than 20% of the control groups. SEM and CLSM images indicated that a 5x MIC concentration of cinnamaldehyde was able to detach and kill existing biofilms. Apart from strain JB-06, real-time PCR showed that the expression of sarA of all other strains was decreased upon exposure to sub-MICs of cinnamaldehyde. CONCLUSIONS: These data showed the strong killing effect of cinnamaldehyde against MRSA within biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicated the potential of cinnamaldehyde as an inhibitory agent for use in MRSA biofilm-related infections.

Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, Zu YG, Liu XL ( 2011). Chemical composition and antimicrobial activity of the essential oil of rosemary
Environ Toxicol Pharmacol 32, 63-68.

DOI:10.1016/j.etap.2011.03.011URLPMID:21787731 [本文引用: 1]
The composition of the essential oil of Rosemary was analyzed by gas chromatography-mass spectrometry (GC-MS). 22 components, which constitute 97.41% of the oil, were identified. The major constituents were 1,8-Cineole (26.54%) and alpha-Pinene (20.14%). Minimum inhibitory concentrations (MICs), minimal bactericidal concentration (MBC) and time-kill dynamic processes against three Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus and Bacillus subtilis), three Gram-negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and two fungi (Candida albicans and Aspergillus niger) were determined for the oil, 1,8-Cineole and alpha-Pinene. The oil showed pronounced antibacterial and antifungal activity than 1,8-Cineole and alpha-Pinene against all of the tested microbes. Furthermore, the survival rates and morphological changes of S. aureus after treatment with different concentrations of the essential oil were assessed by flow cytometry (FCM) and atomic force microscopy (AFM).

Kang JM, Liu L, Wu XX, Sun YY, Liu ZF ( 2018). Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation
Appl Microbiol Biotechnol 102, 10209-10218.

DOI:10.1007/s00253-018-9401-yURLPMID:30288586 [本文引用: 2]
The objective of this study was to determine the effect of thyme essential oil (TEO) on the planktonic growth and biofilm formation of Bacillus cereus (B. cereus). GC-MS analysis of TEO allowed the detection of 13 compounds, and the major constituents were p-cymene (29.7%), thymol (23.73%), gamma-terpinene (16.21%), and 1,8-cineole (9.74%). TEO exhibited a minimum inhibitory concentration (MIC) value against planktonic B. cereus of 0.25 mg/mL. The potent effect of TEO to inhibit the growth of planktonic B. cereus was due to cell membrane damage, as evidenced by reduced cell viability, protein changes, decreased intracellular ATP concentration, increased extracellular ATP concentration and cell membrane depolarization, and cellular morphological changes. In addition, TEO exerted a significant inhibitory effect on B. cereus biofilm formation, as confirmed by environmental scanning electron microscopic images. These findings suggested that TEO has the potential to be developed as a natural food additive to control foodborne contamination associated with B. cereus and its biofilm.

Kholif AE, Matloup OH, Morsy TA, Abdo MM, Abu Elella AA, Anele UY, Swanson KC ( 2017). Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats
Livest Sci 204, 39-46.

DOI:10.1016/j.livsci.2017.08.001URL [本文引用: 1]

Khorrami B, Vakili AR, Mesgaran MD, Klevenhusen F ( 2015). Thyme and cinnamon essential oils: potential alternatives for monensin as a rumen modifier in beef production systems
Anim Feed Sci Technol 200, 8-16.

DOI:10.1016/j.anifeedsci.2014.11.009URL [本文引用: 1]

Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE ( 2012). Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin
Proc Natl Acad Sci USA 109, 15485-15490.

DOI:10.1073/pnas.1205147109URLPMID:22955886 [本文引用: 1]
Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production.

K?rkp?nar F, ünlü HB, ?zdemir G ( 2011). Effects of oregano and garlic essential oils on performance, carcase, organ and blood characteristics and intestinal microflora of broilers
Livest Sci 137, 219-225.

DOI:10.1016/j.livsci.2010.11.010URL [本文引用: 1]

Kosakowska O, W?glarz Z, B?czek K ( 2019). Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate
Ind Crops Prod 141, 111782.

DOI:10.1016/j.indcrop.2019.111782URL [本文引用: 1]

Kot B, Sytykiewicz H, Sprawka I, Witeska M ( 2020). Effect of trans-cinnamaldehyde on methicillin-resistant Staphy-lococcus aureus biofilm formation: metabolic activity assessment and analysis of the biofilm-associated genes expression
Int J Mol Sci 21, 102.

DOI:10.3390/ijms21010102URL [本文引用: 1]

Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A ( 2017). Encapsulation of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): synthesis and characterization of the inclusion complexes
Bioengineering 4, 74.

DOI:10.3390/bioengineering4030074URL [本文引用: 1]

Kurekci C, Padmanabha J, Bishop-Hurley SL, Hassan E, Al Jassim RAM, McSweeney CS ( 2013). Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments
Int J Food Microbiol 166, 450-457.

DOI:10.1016/j.ijfoodmicro.2013.08.014URLPMID:24041998 [本文引用: 1]
The aim of this study was to examine the antimicrobial potential of three essential oils (EOs: tea tree oil, lemon myrtle oil and Leptospermum oil), five terpenoid compounds (alpha-bisabolol, alpha-terpinene, cineole, nerolidol and terpinen-4-ol) and polyphenol against two strains of Campylobacter jejuni (ACM 3393 and the poultry isolate C338), Campylobacter coli and other Gram negative and Gram positive bacteria. Different formulations of neem oil (Azadirachta indica) with these compounds were also tested for synergistic interaction against all organisms. Antimicrobial activity was determined by the use of disc diffusion and broth dilution assays. All EOs tested were found to have strong antimicrobial activity against Campylobacter spp. with inhibitory concentrations in the range 0.001-1% (v/v). Among the single compounds, terpinen-4-ol showed the highest activity against Campylobacter spp. and other reference strains. Based on the antimicrobial activity and potential commerciality of these agents, lemon myrtle oil, alpha-tops (alpha-terpineol+cineole+terpinen-4-ol) and terpinen-4-ol were also evaluated using an in vitro fermentation technique to test antimicrobial activity towards C. jejuni in the microbiota from the chicken-caecum. EO compounds (terpinen-4-ol and alpha-tops) were antimicrobial towards C. jejuni at high doses (0.05%) without altering the fermentation profile. EOs and terpenoid compounds can have strong anti-Campylobacter activity without adversely affecting the fermentation potential of the chicken-caeca microbiota. EOs and their active compounds may have the potential to control C. jejuni colonisation and abundance in poultry.

Lei ZM, Zhang K, Li C, Jiao T, Wu JP, Wei YB, Tian KC, Li C, Tang DF, Davis DI, Casper DP, Jiang H, Wang XL, Wang JF ( 2019). Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes
BMC Microbiol 19, 30.

DOI:10.1186/s12866-019-1400-3URLPMID:30717674 [本文引用: 1]
BACKGROUND: Essential Oils (EO) are complex mixtures of plant secondary metabolites that have been proposed as promising feed additives for mitigating methane and ammonia emissions. We have previously demonstrated that Essential Oil-Cobalt (EOC) supplementation resulted in increased average daily gain and improved phenotypes (cashmere fiber traits, carcass weight, and meat quality) when cashmere goats received supplementation at approximately 2 mg/kg of body weight. However, the ruminal microbiological effects of EO remain poorly understood with regard to the extent to which ruminal populations can adapt to EO presence as feed ingredients. The effects of varying levels of EO require additional study. RESULTS: In this study, we conducted metagenomic analyses using ruminal fluid samples from three groups (addition of 0, 52, and 91 mg) to evaluate the influence of dietary EOC supplementation on goat rumen bacterial community dynamics. EOC addition resulted in changes of ruminal fermentation types and the EOC dose strongly impacted the stability of ruminal microbiota. The Bacteroides sp. and Succinivibrio sp. type bacterial community was positively associated with improved volatile fatty acid production when the diet was supplemented with EOC. CONCLUSIONS: A clear pattern was found that reflected rapid fermentative improvement in the rumen, subsequent to butyrate metabolism and EOC based feed additives may affect rumen microbes to further improve feed conversion. This observation indicates that EOC can be safely used to enhance animal productivity and to reduce ammonia and waste gas emissions, thus positively impacting the environment.

Li SY, Ru YJ, Liu M, Xu B, Péron A, Shi XG ( 2012). The effect of essential oils on performance, immunity and gut microbial population in weaner pigs
Livest Sci 145, 119-123.

DOI:10.1016/j.livsci.2012.01.005URL [本文引用: 2]

Li Y, Fu XF, Ma X, Geng SJ, Jiang XM, Huang QC, Hu CH, Han XY ( 2018). Intestinal microbiome-metabolome responses to essential oils in piglets
Front Microbiol 9, 1988.

DOI:10.3389/fmicb.2018.01988URLPMID:30210470 [本文引用: 3]
This study investigated the effects of dietary essential oils (EOs) on intestinal microbial composition and metabolic profiles in weaned piglets. The piglets were fed the same basal diet supplemented with EOs (EO) or without EOs (Con) in the current study. The results showed that the body weight gain was significantly increased, while the diarrhea incidence was significantly reduced in the EO group. In addition, EOs could modify the intestinal microbial composition of weaned piglets. The relative abundances of some beneficial bacterial species such as Bacilli, Lactobacillales, Streptococcaceae, and Veillonellaceae were significantly increased in the EO group. Metabolomics analysis indicated that protein biosynthesis, amino acid metabolism, and lipid metabolism were enriched in the EO group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Taken together, this study indicated that dietary EOs not only altered microbial composition and function but modulated the microbial metabolic profiles in the colon, which might help us understand EOs' beneficial effects on intestinal health of weaned piglets.

Lin B, Lu Y, Wang JH, Liang Q, Liu JX ( 2012). The effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro
J Anim Feed Sci 21, 198-210.

DOI:10.22358/jafs/66064/2012URL [本文引用: 1]

Liolios CC, Gortzi O, Lalas S, Tsaknis J, Chinou I ( 2009). Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity
Food Chem 112, 77-83.

DOI:10.1016/j.foodchem.2008.05.060URL [本文引用: 1]

Liu Y, Yang X, Xin HL, Chen S, Yang CB, Duan YL, Yang XJ ( 2017). Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers
Anim Sci J 88, 1414-1424.

DOI:10.1111/asj.12782URLPMID:28317217 [本文引用: 1]

Liu Y, Zhang Y, Zhou YL, Wang TT, Deng XM, Chu X, Zhou TZ ( 2019). Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins
Vet Microbiol 239, 108463.

DOI:10.1016/j.vetmic.2019.108463URLPMID:31767076 [本文引用: 1]
The increasing understanding of bacterial pathogenesis has revealed many new targets for the development of non-traditional antibacterial drugs. Interference with bacterial virulence has become a new strategy to treat bacteria-mediated diseases. As an important food-borne pathogen, Salmonella enterica serovar Typhimurium uses type III secretion system (T3SS) to facilitate invasion of host cells. In this study, we identified cinnamaldehyde as a Salmonella pathogenicity island 1 (SPI-1) inhibitor which blocks the secretion of several SPI-1 associated effector proteins and consequently exhibits a strong inhibitory effect on SPI-1-mediated invasion of HeLa cells. Further study revealed that cinnamaldehyde significantly reduced the transcription of some SPI-1 genes, such as sipA and sipB, in S. Typhimurium by affecting multiple SPI-1 regulator genes. In an animal infection model, cinnamaldehyde effectively protected infected mice against S. Typhimurium-induced mortality and pathological damages. In summary, this study presented an effective SPI-1 inhibitor, cinnamaldehyde, which reduces the expression of SPI-1 effector proteins by regulating the transcription of main regulator genes.

Low WL, Martin C, Hill DJ, Kenward MA ( 2013). Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans
Lett Appl Microbiol 57, 33-39.

DOI:10.1111/lam.12082URLPMID:23581401 [本文引用: 1]
UNLABELLED: The activity of alternative antimicrobial agents such as tea tree oil (TTO) and silver ions (Ag(+) ) with multiple target sites impedes the development of antibacterial resistance and might be useful in improving the current treatment strategies for various chronic wound infections. In this study, liposome-encapsulated TTO, Ag(+) and TTO plus Ag(+) were added to suspension cultures of Pseudomonas aeruginosa (Ps. aeruginosa), Staphylococcus aureus (Staph. aureus) and Candida albicans (C. albicans). Treatment of these cultures using the agents in combination at subminimal lethal concentrations resulted in an enhanced loss of viability compared to treatment with individual agents. The effective concentration, elimination time (to the limit of detection, LOD) and fractional lethal concentration index (FLCI) of liposomal agents in combination were as follows: Candida albicans: 0.05% v/v TTO:PVA30-70 kDa : 8.9 x 10(-5) % w/v Ag(+) :PVA30-70 kDa : 2.0 h, FLCI = 0.73 (indifferent), Staphylococcus aureus: 0.05% v/v TTO:PVA30-70 kDa : 6.0 x 10(-4) % w/v Ag(+) :PVA30-70 kDa : 1.5 h, FLCI = 0.38 (synergistic), Pseudomonas aeruginosa: 0.25% v/v TTO:PVA30-70 kDa : 3.2 x 10(-4) % w/v Ag(+) :PVA30-70 kDa : 30 min, FLCI = 0.33 (synergistic). These results show the potential for improving antimicrobial efficacy by delivering lower effective concentrations of alternative agents, via controlled release systems. NB All values denoted as %w/vAg(+) refer to the concentration of silver ions. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we have shown that encapsulating silver (as the ion Ag(+) ) and tea tree oil (singly and in combination) in a controlled release liposomal carrier system can improve their antimicrobial efficacy as well as reduce the effective concentration required. These findings may impact on the problems of agent toxicity caused by the need for high effective doses or microbial resistance where long term application is required.

Mahgoub SAM, El-Hack MEA, Saadeldin IM, Hussein MA, Swelum AA, Alagawany M ( 2019). Impact of Ros-marinus officinalis cold-pressed oil on health, growth performance, intestinal bacterial populations, and immunocompetence of Japanese quail
Poult Sci 98, 2139-2149.

DOI:10.3382/ps/pey568URLPMID:30590789 [本文引用: 1]

Manzanilla EG, Nofrari?as M, Anguita M, Castillo M, Perez JF, Marti?n-Oru?e SM, Kamel C, Gasa J ( 2006). Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs
J Anim Sci 84, 2743-2751.

DOI:10.2527/jas.2005-509URLPMID:16971576 [本文引用: 2]
We evaluated the effects of 3 additives, sodium butyrate (AC), avilamycin (AB), and a combination of plant extracts (XT), on the productive performance and the intestinal environment of the early-weaned pig. The XT was a standardized mixture with 5% (wt/wt) carvacrol (from Origanum spp.), 3% cinnamaldehyde (from Cinnamonum spp.), and 2% capsicum oleoresin (from Capsicum annum). Pigs (n = 32) weaned at 18 to 22 d of age with an initial BW of 6.0 +/- 0.10 kg were allocated to 8 pens that, in turn, were allocated to 4 treatments. The treatments included a basal diet (CT) or the basal diet supplemented with 0.3% of AC, 0.04% of AB, or 0.03% of XT. Productive performance was determined during the initial 14 d postweaning. On d 19 and 21 of the experiment, the pigs were killed to allow collection of digesta and intestinal tissue to evaluate variables indicative of aspects of the gastrointestinal environment. Treatments AB and AC improved G:F (P = 0.012 and 0.003, respectively) compared with the CT. Butyrate included in the diet was only detected in the stomach but not in cranial jejunum. When compared with CT, AC produced a lower ileal starch digestibility (P = 0.002) and a lower whole-tract OM and starch digestibility (P = 0.001 and 0.003, respectively), related to a lower VFA concentration in the cranial colon (P = 0.082) and a numerically reduced branched VFA percentage in the rectum. The AB treatment diminished propionate production in caudal colon (P = 0.002) and rectum (P = 0.012) compared with CT. The AC group exhibited deeper crypt depth in the jejunum without variations in villus height compared with CT (P = 0.042). The AC and AB groups also increased goblet cell presence in the colon (P = 0.001 and 0.032, respectively). On the other hand, AB and XT diminished intraepithelial lymphocytes in the jejunum (P = 0.003 and 0.034, respectively). The XT increased lymphocyte presence in the colon (P = 0.003). These results show the important influence of AB and AC on productive performance and on pig gut dynamics. The intestinal modifications observed for AB and AC compared with CT suggest distinct modes of action for each additive.

Marinelli L, Di Stefano A, Cacciatore I ( 2018). Carvacrol and its derivatives as antibacterial agents
Phytochem Rev 17, 903-921.

DOI:10.1007/s11101-018-9569-xURL [本文引用: 3]

Miladi H, Zmantar T, Kouidhi B, Chaabouni Y, Mahdouani K, Bakhrouf A, Chaieb K ( 2017). Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid
Microb Pathog 104, 56-63.

DOI:10.1016/j.micpath.2017.01.012URLPMID:28062292 [本文引用: 1]
The Aims of the study was to evaluate the antibacterial susceptibility and the biofilm eradication of three natural compounds carvacrol (CAR), thymol (TH) and eugenol (EUG), alone or in combination with nalidixic acid (NA) against twelve Salmonella Typhimurium strains. The minimum inhibitory concentration (MIC) and the minimum biofilm eradication concentration (BEC50) of the tested compounds (CAR, TH and EUG) and their combinations with NA were evaluated. In order to assess whether these bacteria had active efflux pumps, ethidium bromide (EtBr) accumulation assays was achieved using spectrophotometric accumulation assays. Moreover, scanning electron microscopy was used to visualize the bacterial biofilm formation on stainless steel surfaces after exposed to NA, CAR, TH and EUG alone and in combination. TH was the most effective essential oil, with the lowest MICs values ranging from 32 to 128 mug/mL followed by EUG and CAR. In addition, the combination of NA with the different compounds enhances antibiotic susceptibility of the tested bacterial strains. These results were confirmed by EtBr accumulation assays. A pronounced effect in decreasing biofilm mass was also noticed. Moreover, SEM revealed that bacterial membrane was disrupted and a complete loss of membrane integrity was also evident. The combination of natural compounds with antibiotic enhances bacterial susceptibility to NA. This combination ameliorates eradication of biofilm formed by S. Typhimurium on polystyrene microtitre plates. Additionally, this synergy induces an alteration of the bacterial cell surface visualized by SEM.

Mullen KAE, Lee AR, Lyman RL, Mason SE, Washburn SP, Anderson KL ( 2014). An in vitro assessment of the antibacterial activity of plant-derived oils
J Dairy Sci 97, 5587-5591.

DOI:10.3168/jds.2013-7806URLPMID:25022682 [本文引用: 1]
Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations >/=2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy.

Nafis A, Kasrati A, Jamali CA, Mezrioui N, Setzer W, Abbad A, Hassani L ( 2019). Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards
Ind Crops Prod 137, 396-400.

DOI:10.1016/j.indcrop.2019.05.032URL [本文引用: 1]

Ooi LSM, Li YL, Kam SL, Wang H, Wong EYL, Ooi VEC ( 2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinna-momum cassia Blume
Am J Chin Med 34, 511-522.

DOI:10.1142/S0192415X06004041URLPMID:16710900 [本文引用: 1]
Both Cinnamomum verum J.S. Presl. and Cinnamomum cassia Blume are collectively called Cortex Cinnamonmi for their medicinal cinnamon bark. Cinnamomum verum is more popular elsewhere in the world, whereas C. cassia is a well known traditional Chinese medicine. An analysis of hydro-distilled Chinese cinnamon oil and pure cinnamaldehyde by gas chromatography/mass spectrometry revealed that cinnamaldehyde is the major component comprising 85% in the essential oil and the purity of cinnamaldehyde in use is high (> 98%). Both oil and pure cinnamaldehyde of C. cassia were equally effective in inhibiting the growth of various isolates of bacteria including Gram-positive (1 isolate, Staphylococcus aureus), and Gram-negative (7 isolates, E. coli, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa, Vibrio cholerae, Vibrio parahaemolyticus and Samonella typhymurium), and fungi including yeasts (four species of Candida, C. albicans, C. tropicalis, C. glabrata, and C. krusei), filamentous molds (4 isolates, three Aspergillus spp. and one Fusarium sp.) and dermatophytes (three isolates, Microsporum gypseum, Trichophyton rubrum and T. mentagraphytes). Their minimum inhibition concentrations (MIC) as determined by agar dilution method varied only slightly. The MICs of both oil and cinnamaldehyde for bacteria ranged from 75 microg/ml to 600 microg/ml, for yeasts from 100 microg/ml to 450 microg/ml, for filamentous fungi from 75 microg/ml to 150 microg/ml, and for dermatophytes from 18.8 microg/ml to 37.5 microg/ml. The antimicrobial effectiveness of C. cassia oil and its major constituent is comparable and almost equivalent, which suggests that the broad-spectrum antibiotic activities of C. cassia oil are due to cinnamaldehyde. The relationship between structure and function of the main components of cinnamon oil is also discussed.

Padalia RC, Verma RS, Chauhan A, Goswami P, Verma SK, Darokar MP ( 2015). Chemical composition of Melaleuca linarrifolia Sm. from India: a potential source of 1,8-cineole
Ind Crops Prod 63, 264-268.

DOI:10.1016/j.indcrop.2014.09.039URL [本文引用: 1]

Paraskevakis N ( 2018). Effects of dietary Greek oregano (Origanum vulgare ssp.hirtum) supplementation on rumen fermentation, enzyme profile and microbial communities in goats
J Anim Physiol Anim Nutr 102, 701-705.

DOI:10.1111/jpn.2018.102.issue-3URL [本文引用: 1]

Park JH, Kim IH ( 2018). Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks
Poult Sci 97, 2854-2860.

DOI:10.3382/ps/pey151URLPMID:29788490 [本文引用: 1]

Po?e? K, Broniatowski M, Wydro P, H?c-Wydro K ( 2020). The impact of β-myrcene—the main component of the hop essential oil on the lipid films
J Mol Liq 308, 113028.

DOI:10.1016/j.molliq.2020.113028URL [本文引用: 1]

Pontes EKU, Melo HM, Nogueira JWA, Firmino NCS, de Carvalho MG, Catunda FEA, Cavalcante TTA ( 2019). Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus
Food Sci Biotechnol 28, 633-639.

DOI:10.1007/s10068-018-0502-2URLPMID:31093420 [本文引用: 1]
Medicinal plants with antimicrobial action have been investigated for uses against biofilms, among which, Cymbopogon nardus, citronella, stands out as a promising species. The present study aims to evaluate the antimicrobial and antibiofilm action of the essential oil of C. nardus (EOCN) and geraniol on Gram-negative and positive bacteria from the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration and inhibition of biofilms. In the results, the EOCN produced a 41 mm halo on S. aureus, which was susceptible with MIC values of 0.5 and 0.25 mg/mL for the EOCN and geraniol respectively, both with bactericidal effect. The antibiofilm action was confirmed, the EOCN and geraniol reduced the biofilm biomass of S. aureus up to 100% between 0.5 and 4 mg/mL concentrations. The reduction of cell viability was 0.25 and 1 mg/mL, of EOCN and geraniol, respectively. EOCN and geraniol were shown to be promising antibiotic against S. aureus.

Radünz M, da Trindade MLM, Camargo TM, Radunz AL, Borges CD, Gandra EA, Helbig E ( 2019). Antimicrobial and antioxidant activity of unencapsulated and encap-sulated clove (Syzygium aromaticum L.) essential oil
Food Chem 276, 180-186.

DOI:10.1016/j.foodchem.2018.09.173URLPMID:30409582 [本文引用: 1]
Clove (Syzygium aromaticum, L.) essential oil is known for its antimicrobial activity against several pathogenic bacteria. Encapsulation of clove oil was proposed as a mean to disguise its strong odor that limits its uses in food industry. Thus, the aim of this study was extraction, encapsulation and assessment of the antimicrobial and antioxidant potential of clove essential oil. The essential oil showed high DPPH scavenging capacity and low hydroxyl radical inhibition. Clove essential oil showed in vitro inhibitory and bactericidal effect against S. aureus, E. coli, L. monocytogenes and S. Typhimurium. In addition, in situ antimicrobial activity of clove oil against S. aureus was superior to nitrite. The essential oil particles encapsulated with sodium alginate and emulsifiers, showed high encapsulation efficiency, low antioxidant activity and strong antimicrobial inhibition. Similar bacterial growth was observed in meat-like products after addition of either particles or nitrite.

Rao JJ, Chen BC, McClements DJ ( 2019). Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action
Annu Rev Food Sci Technol 10, 365-387.

DOI:10.1146/annurev-food-032818-121727URLPMID:30653350 [本文引用: 5]
The consumer preference for clean-label products is requiring the food industry to reformulate their products by replacing artificial additives with natural alternatives. Essential oils are natural antimicrobials isolated from plant sources that have the potential to combat many foodborne pathogens and spoilage organisms. This review begins by discussing the antimicrobial properties of essential oils, the relationships between their chemical structure and antimicrobial efficacy, and their potential limitations for commercial applications (such as strong flavor, volatility, and chemical instability). We then review the commonly used methods for screening the antimicrobial efficacy of essential oils and elucidating their mechanisms of action. Finally, potential applications of essential oils as antimicrobials in foods are reviewed and the major types of food-grade delivery systems available for improving their efficacy are discussed.

Reyer H, Zentek J, M?nner K, Youssef IMI, Aumiller T, Weghuber J, Wimmers K, Mueller AS ( 2017). Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers
J Agric Food Chem 65, 6821-6830.

DOI:10.1021/acs.jafc.7b01925URLPMID:28722406 [本文引用: 1]
Phytogenic feed additives represent a potential alternative to antibiotics with attributed health and growth-promoting effects. Chickens supplemented with an essential oil blend, a Quillaja saponin blend, or a combination of both phytogenic preparations showed a comprehensively and significantly improved apparent ileal digestibility of crude protein and amino acids compared to control birds. Accordingly, holistic transcriptomic analyses of jejunum and liver samples indicated alterations of macromolecule transporters and processing pathways likely culminating in an increased uptake and metabolizing of carbohydrates and fatty acids. Complementary analyses in Caco-2 showed a significant increase in transporter recruitment to the membrane (SGLT1 and PEPT1) after addition of essential oils and saponins. Although the penetrance of effects differed for the used phytogenic feed additives, the results indicate for an overlapping mode of action including local effects at the intestinal border and systemic alterations of macronutrient metabolism resulting in an improved performance of broilers.

Roofchaee A, Irani M, Ebrahimzadeh MA, Akbari MR ( 2011). Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens
Afr J Biotechnol 10, 6177-6183.

[本文引用: 1]

Saad NY, Muller CD, Lobstein A ( 2013). Major bioactivities and mechanism of action of essential oils and their components
Flavour Fragr J 28, 269-279.

DOI:10.1002/ffj.v28.5URL [本文引用: 1]

Sahingil D ( 2019). GC/MS-olfactometric characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of calendula (Calendula officinalis L.)
J Essent Oil Bear Plant 22, 1571-1580.

DOI:10.1080/0972060X.2019.1703829URL [本文引用: 1]

Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, del Mar Contreras M, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J ( 2018). Thymol, thyme, and other plant sources: health and potential uses
Phytother Res 32, 1688-1706.

DOI:10.1002/ptr.6109URLPMID:29785774 [本文引用: 1]
Thymol is a naturally occurring phenol monoterpene derivative of cymene and isomer of carvacrol. Thymol (10-64%) is one of the major constituent of essential oils of thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant with several therapeutic properties. This plant, native to Mediterranean regions, is commonly used as a culinary herb and also with a long history of use for different medicinal purposes. Nowadays, thymol and thyme present a wide range of functional possibilities in pharmacy, food, and cosmetic industry. The interest in the formulation of pharmaceuticals, nutraceuticals, and cosmeceuticals based on thymol is due to several studies that have evaluated the potential therapeutic uses of this compound for the treatment of disorders affecting the respiratory, nervous, and cardiovascular systems. Moreover, this compound also exhibits antimicrobial, antioxidant, anticarcinogenesis, anti-inflammatory, and antispasmodic activities, as well as a potential as a growth enhancer and immunomodulator. In the present review, these bioactivities have been covered because some of them can contribute to explain the ethnopharmacology of thymol and its main source, T. vulgaris. Other important aspects about thymol are discussed: its toxicity and bioavailability, metabolism, and distribution in animals and humans.

Salem N, Kefi S, Tabben O, Ayed A, Jallouli S, Feres N, Hammami M, Khammassi S, Hrigua I, Nefisi S, Sghaier A, Limam F, Elkahoui S ( 2018). Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards
Ind Crops Prod 124, 115-125.

DOI:10.1016/j.indcrop.2018.07.051URL [本文引用: 1]

Santos FHR, De Paula MR, Lezier D, Silva JT, Santos G, Bittar CMM ( 2015). Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna
Animal 9, 958-965.

DOI:10.1017/S175173111500018XURLPMID:25690024 [本文引用: 1]
UNLABELLED: The first cause of death of dairy calves is often diarrhea which is mainly caused by pathogenic bacteria, which can result in excessive use of antibiotics. However, facing the increase concern by the industry and consumers, the use of antibiotics not only to control pathogens, but also to manipulate growth, has become a challenge. Alternative additives, such essential oils, have the potential to decrease antibiotic use, without reducing performance or increasing mortality of dairy calves. The objective of this study was to evaluate the use of a commercial blend of essential oils, incorporated into the calf starter and/or milk replacer to monitor the effect on overall calf performance, fecal scores and rumen fermentation parameters. A total of 30 Holstein calves received 6 l/day of a liquid diet, consisting of a commercial milk replacer containing 20% CP : 15% fat (EE). Calves had free choice access to water and calf starter. Weaning occurred at week 8, and calves were followed until the 10th week of age. Calves were assigned to one of the three treatment groups in a randomized block design. TREATMENTS: (1) control without essential oils supplementation (C); (2) essential oils blend in the milk replacer at 400 mg/kg (MR) and (3) essential oils blend in the milk replacer (200 mg/kg) and starter feed (200 mg/kg) (MRS). From the 2nd week, calves were weighed and body measurements were taken, while concentrate intake and fecal scores were monitored daily. Blood samples were drawn weekly for determination of glucose and beta-hydroxybutyrate. Fecal samples were collected weekly and analyzed for lactic acid bacteria and Enterobacteria; and ruminal fluid for determination of pH, short chain fatty acids, ammonia-N and counts of amylolytic and cellulolytic bacteria, and protozoa. Performance, fecal scores and intestines microorganisms were not affected by the essential oils supplementation. Ruminal and blood parameters were also not affected, with the exception the rumen ammonia-N concentration, with higher values when essential oils were supplemented in a combination of milk replacer and starter feed. Most of the evaluated parameters were affected by age of calves, mainly as a response to the increase in concentrate intake as animals' aged. Essential oils are promising substitutes for antibiotics. However, the dose and routes of administration deserve further studies, allowing a better animal performance and health to be achieved.

Scandorieiro S, de Camargo LC, Lancheros CAC, Yamada-Ogatta SF, Nakamura CV, de Oliveira AG, Andrade CGTJ, Duran N, Nakazato G, Kobayashi RKT ( 2016). Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains
Front Microbiol 7, 760.

DOI:10.3389/fmicb.2016.00760URLPMID:27242772 [本文引用: 1]
Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 muM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and beta-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.

Sharifi A, Mohammadzadeh A, Zahraei Salehi T, Mahmoodi P ( 2018). Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates
J Appl Microbiol 124, 379-388.

DOI:10.1111/jam.13639URLPMID:29144601 [本文引用: 1]
AIMS: The present study was conducted to investigate the effects of Thymus daenensis and Satureja hortensis essential oils (EOs) on the planktonic growth, biofilm formation and quorum sensing (QS) of some Staphylococcus aureus isolates (strong biofilm producers). METHODS AND RESULTS: Minimum inhibitory concentration (MIC) of the EOs, inhibition of biofilm formation as well as disruption of preformed Staph. aureus biofilms were assessed. The antibiofilm activity of the EOs was determined using microtitre plate test (MtP) and scanning electron microscope (SEM). The QS inhibitory activity was also examined on the pregrown biofilms by gene expression analysis using quantitative real-time RT-polymerase chain reaction (PCR) of hld gene (RNAIII transcript). Moreover, tetrazolium-based colorimetric assay (MTT) was performed to detect cytotoxic effects of these EOs on the Vero cell line. Finally, the major components of the tested EOs were determined using Gas Chromatography-Mass Spectrometry (GC-MS). The MICs of T. daenensis and S. hortensis EOs against planktonic cells of the isolates were 0.0625 and 0.125 mul ml(-1) respectively. The minimum bactericidal concentrations for both of the EOs was 0.125 mul ml(-1) . The MtP test showed a significant inhibitory effect of the EOs on the biofilm formation and disruption at sub-MIC concentrations. These results were confirmed by SEM. Real-time PCR revealed a significant down-regulation of hld gene following treatment with MIC/2 concentration of S. hortensis EO. GC-MS analysis showed that carvacrol, terpinene and thymol were the major components of the applied EOs. CONCLUSIONS: As selected EOs did not show significant cytotoxic effects even up to tenfold of MIC concentration, the applied EOs seem to be good candidates for preventing of biofilm formation of Staph. aureus cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study introduced T. daenensis and S. hortensis EOs as new antibiofilm, and S. hortensis EO as anti-QS herbal agents with natural origin against Staph. aureus.

Soltani M, Ghodratnama M, Ebrahimzadeh-Mosavi HA, Nikbakht-Brujeni G, Mohamadian S, Ghasemian M ( 2014). Shirazi thyme (Zataria multiflora Boiss) and rosemary (Rosmarinus officinalis) essential oils repress expression of sagA, a streptolysin S-related gene in Streptococcus iniae
Aquaculture 430, 248-252.

DOI:10.1016/j.aquaculture.2014.04.012URL [本文引用: 1]

Sotelo-Boyás M, Correa-Pacheco Z, Bautista-Ba?os S, Gómezy YGY ( 2017). Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria
Int J Biol Macromol 103, 409-414.

DOI:10.1016/j.ijbiomac.2017.05.063URLPMID:28526346 [本文引用: 1]
The antibacterial property of thyme essential oil due to different volatile compounds, has been well documented in the literature. To overcome the high volatility of essential oil components, encapsulation has emerged as a new alternative. In this work, chitosan and thyme essential oil-loaded chitosan nanoparticles (TEO-CSNPs) and nanocapsules (TEO-CSNCs) were prepared by nanoprecipitation and nanoencapsulation, respectively. The morphology, encapsulation efficiency, release kinetics, and inhibitory activity were evaluated. Average size of nanocapsules (9.1+/-1.6nm) was slightly higher than nanoparticles (6.4+/-0.5nm). The percentage encapsulation of thymol and carvacrol, more than 68%, was similar for nanoparticles and nanocapsules. However, thymol and carvacrol release time from TEO-CSNPs was faster compared to TEO-CSNCs. The release kinetics data were fitted to three analytical kinetic models with no statistical differences among them. The inhibitory activity was higher for nanoparticles than for nanocapsules when tested against six foodborne bacteria. The inhibitory effect of TEO-CSNPs was the highest against Staphylococcus aureus (inhibition halo 4.3cm) and for TEO-CSNCs it was against Bacillus cereus (inhibition halo 1.9cm).

Swamy MK, Akhtar MS, Sinniah UR (2016). Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review
Evid Based Complement Alternat Med 2016, 3012462.

DOI:10.1155/2016/3012462URLPMID:28090211 [本文引用: 2]
A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.

Verma RS, Joshi N, Padalia RC, Goswami P, Singh VR, Chauhan A, Verma SK, Iqbal H, Verma RK, Chanda D, Sundaresan V, Darokar MP ( 2017). Chemical com-position and allelopathic, antibacterial, antifungal andin vitro acetylcholinesterase inhibitory activities of yarrow (Achillea millefolium L.) native to India
Ind Crops Prod 104, 144-155.

DOI:10.1016/j.indcrop.2017.04.046URL [本文引用: 1]

Wang CY, Chen YW, Hou CY ( 2019a). Antioxidant and antibacterial activity of seven predominant terpenoids
Int J Food Prop 22, 230-238.

DOI:10.1080/10942912.2019.1582541URL [本文引用: 1]

Wang F, Wei FY, Song CX, Jiang B, Tian SY, Yi JW, Yu CL, Song ZB, Sun LG, Bao YL, Wu Y, Huang YX, Li YX ( 2017). Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm
Ind Crops Prod 109, 358-366.

DOI:10.1016/j.indcrop.2017.08.058URL [本文引用: 1]

Wang YM, Dong WL, Odah KA, Kong LC, Ma HX ( 2019b). Transcriptome analysis reveals AI-2 relevant genes of multi-drug resistant Klebsiella pneumoniae in response to eugenol at Sub-MIC
Front Microbiol 10, 1159.

DOI:10.3389/fmicb.2019.01159URLPMID:31191486 [本文引用: 1]
Eugenol, the major active essential oil component of clove, was reported to possess QS (quorum sensing) inhibitory activity. A previous study found that eugenol could bind to quorum sensing receptors of Pseudomonas aeruginosa and down-regulate the expression of Streptococcus mutans virulence genes at sub-MIC (minimum inhibitory concentration) without affecting the bacterial growth. However, the alterations of QS signal molecules at transcription levels was not well understood. To better understand interactions of Klebsiella pneumoniae in response to eugenol and explore molecular regulations, transcriptome sequencing was performed. A total of 5779 differentially expressed genes (DEGs) enriched in a variety of biological processes and pathways were identified. The transcriptional data was validated by qPCR and the results showed that the expression profiles of 4 major genes involved in autoinducers-2 (AI-2) synthesis, including luxS, pfs, and lsrK were consistent with transcriptome analysis except for lsrR, a transcriptional repressor gene of lsr operon, which may repress the expression of following genes responsible for AI-2 signal transmission in vivo. In vitro AI-2 synthesis assay also revealed that eugenol could inhibit AI-2 generation. The results of our study offer insights into the mechanisms of QS inhibitory activity and K. pneumoniae AI-2 alterations after eugenol treatment.

Wu KG, Lin YH, Chai XH, Duan XJ, Zhao XX, Chun C ( 2019). Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli
Food Sci Nutr 7, 2546-2555.

DOI:10.1002/fsn3.1104URLPMID:31428342 [本文引用: 1]
The purpose of this study was to investigate antibacterial activity of essential oil from Cinnamomum camphora var. linaloofera Fujita (EOL) at vapor phase and its mechanism of bactericidal action against Escherichia coli. Results showed that the vapor-phase EOL had significant antibacterial activity with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 mul/L. Further analyses showed that treatment of E. coli with vapor-phase EOL resulted in partial degradation of cell membrane, increased membrane permeability, leakage of cytoplasm materials, and prominent distortion and shrinkage of bacterial cells. FTIR showed that EOL altered bacterial protein secondary and tertiary structures. GC/MS analysis showed that the components of vapor-phase EOL included linalool (69.94%), camphor (10.90%), nerolidol (10.92%), and safrole (8.24%), of which linalool had bactericidal activity. Quantum chemical analysis suggested that the antibacterial reactive center of linalool was oxygen atom (O10) which transferred electrons during antibacterial action by the donation of electrons.

Zeng ZK, Xu X, Zhang Q, Li P, Zhao PF, Li QY, Liu JD, Piao XS ( 2015). Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs
Anim Sci J 86, 279-285.

DOI:10.1111/asj.12277URLPMID:25302651 [本文引用: 1]

Zhai HX, Liu H, Wang SK, Wu JL, Kluenter AM ( 2018). Potential of essential oils for poultry and pigs
Anim Nutr 4, 179-186.

DOI:10.1016/j.aninu.2018.01.005URLPMID:30140757 [本文引用: 1]
The increasing pressure of abolishing and/or decreasing the use of antibiotics as antimicrobial growth promoters for livestock calls for alternative solutions to sustain the efficiency of current livestock production. Among the alternatives, essential oils have a great potential and are generally considered natural, less toxic, and free from residues. Essential oils have been proven in numerous in vitro studies to exert antimicrobial effects on various pathogens. The current review touched on the basics of essential oils, and the in vivo effects of essential oils on growth, intestinal microflora, anti-oxidation, immune functionality, meat qualities as well as the possible modes of action in poultry and pigs, and the future research areas were proposed.

Zhang D, Gan RY, Zhang JR, Farha AK, Li HB, Zhu F, Wang XH, Corke H ( 2020). Antivirulence properties and related mechanisms of spice essential oils: a comprehensive review
Compr Rev Food Sci Food Saf 19, 1018-1055.

DOI:10.1111/crf3.v19.3URL [本文引用: 2]

Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL ( 2015 a). Comprehensive evaluation of antibiotics emission and fate in the river Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
Environ Sci Technol 49, 6772-6782.

DOI:10.1021/acs.est.5b00729URLPMID:25961663 [本文引用: 1]
Antibiotics are widely used in humans and animals, but there is a big concern about their negative impacts on ecosystem and human health after use. So far there is a lack of information on emission inventory and environmental fate of antibiotics in China. We studied national consumption, emissions, and multimedia fate of 36 frequently detected antibiotics in China by market survey, data analysis, and level III fugacity modeling tools. Based on our survey, the total usage for the 36 chemicals was 92700 tons in 2013, an estimated 54000 tons of the antibiotics was excreted by human and animals, and eventually 53800 tons of them entered into the receiving environment following various wastewater treatments. The fugacity model successfully predicted environmental concentrations (PECs) in all 58 river basins of China, which are comparable to the reported measured environmental concentrations (MECs) available in some basins. The bacterial resistance rates in the hospitals and aquatic environments were found to be related to the PECs and antibiotic usages, especially for those antibiotics used in the most recent period. This is the first comprehensive study which demonstrates an alarming usage and emission of various antibiotics in China.

Zhang T, Zhou YF, Zou Y, Hu XM, Zheng LF, Wei HK, Giannenas I, Jin LZ, Peng J, Jiang SW ( 2015 b). Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs
Livest Sci 180, 143-149.

DOI:10.1016/j.livsci.2015.05.037URL [本文引用: 1]

Zhang ZF, Rolando AV, Kim IH ( 2016). Effects of benzoic acid, essential oils and Enterococcus faecium SF68 on growth performance, nutrient digestibility, blood profiles, faecal microbiota and faecal noxious gas emission in weanling pigs
J Appl Anim Res 44, 173-179.

DOI:10.1080/09712119.2015.1031765URL [本文引用: 1]

Zheng ZL, Tan JYW, Liu HY, Zhou XH, Xiang X, Wang KY ( 2009). Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus)
Aquaculture 292, 214-218.

DOI:10.1016/j.aquaculture.2009.04.025URL [本文引用: 2]

Zhou F, Ji BP, Zhang H, Jiang H, Yang ZW, Li JJ, Li JH, Yan WJ ( 2007). The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the foodborne pathogen Salmonella typhimurium
J Food Saf 27, 124-133.

DOI:10.1111/jfs.2007.27.issue-2URL [本文引用: 1]

Zhu HM, Du M, Fox L, Zhu MJ ( 2016). Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens
Food Control 66, 291-299.

DOI:10.1016/j.foodcont.2016.02.013URL [本文引用: 1]

牛至精油对腐生葡萄球菌抑制作用机制
1
2020

... (1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

椒样薄荷、薄荷和苏格兰留兰香精油与抗生素的协同抑菌功能
1
2011

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

栽培地区、采收季节和株龄对迷迭香精油成分和抑菌活性的影响
1
2012

... 在减抗和替抗政策下, 畜牧业开始向“绿色养殖”发展, 寻找抗生素替代品是目前畜牧业发展的当务之急.芳香植物精油因其独特的抗菌性能, 作为饲料添加剂的发展前景广阔, 但同时也存在一些问题.(1) 植物精油种类多样、成分复杂、易挥发且易氧化; 并且植物精油的化学成分、含量和活性会因物种、组织部位、地理位置、土壤条件、收获季节、气候条件和害虫等因素发生较大的变化(潘岩等, 2012; Asensio et al., 2015; Gerami et al., 2016).例如, 冬季二次采收的迷迭香精油对大肠杆菌和金黄色葡萄球菌等的抑制作用更强(石雷等, 2015).(2) 芳香植物精油添加剂进入动物体后需要经过胃肠道的消化吸收, 胃肠道通过具有许多神经和受体的化学感应系统感知化学物质和微生物, 而复杂的肠道生态系统导致芳香植物精油的抗菌机制目前并不十分清楚.(3) 缺乏芳香植物精油应用的新技术研发.例如, 不同植物精油的组配和包埋技术对抗菌功能效果的提升有重要作用, 组学技术对功能机制研究有很强的推动作用.基于上述问题, 提出以下3方面建议: (1) 在国家芳香植物种质资源库建设的基础上, 进一步完善芳香植物精油成分数据库, 为杀菌剂的选择提供基础性数据; (2) 针对动物生产中的主要病害进行更广范的芳香植物精油抗菌性评价, 运用多组学技术深入解析芳香植物精油的抗菌机制; (3) 加强芳香植物精油应用技术的开发利用, 包括精油组配技术、包埋技术和安全性评价技术等, 以解决动物生产中替代抗生素问题, 促进畜牧业的可持续发展. ...

一种采收迷迭香的方法和制备具有抑菌活性提取物的方法
1
2015

... 在减抗和替抗政策下, 畜牧业开始向“绿色养殖”发展, 寻找抗生素替代品是目前畜牧业发展的当务之急.芳香植物精油因其独特的抗菌性能, 作为饲料添加剂的发展前景广阔, 但同时也存在一些问题.(1) 植物精油种类多样、成分复杂、易挥发且易氧化; 并且植物精油的化学成分、含量和活性会因物种、组织部位、地理位置、土壤条件、收获季节、气候条件和害虫等因素发生较大的变化(潘岩等, 2012; Asensio et al., 2015; Gerami et al., 2016).例如, 冬季二次采收的迷迭香精油对大肠杆菌和金黄色葡萄球菌等的抑制作用更强(石雷等, 2015).(2) 芳香植物精油添加剂进入动物体后需要经过胃肠道的消化吸收, 胃肠道通过具有许多神经和受体的化学感应系统感知化学物质和微生物, 而复杂的肠道生态系统导致芳香植物精油的抗菌机制目前并不十分清楚.(3) 缺乏芳香植物精油应用的新技术研发.例如, 不同植物精油的组配和包埋技术对抗菌功能效果的提升有重要作用, 组学技术对功能机制研究有很强的推动作用.基于上述问题, 提出以下3方面建议: (1) 在国家芳香植物种质资源库建设的基础上, 进一步完善芳香植物精油成分数据库, 为杀菌剂的选择提供基础性数据; (2) 针对动物生产中的主要病害进行更广范的芳香植物精油抗菌性评价, 运用多组学技术深入解析芳香植物精油的抗菌机制; (3) 加强芳香植物精油应用技术的开发利用, 包括精油组配技术、包埋技术和安全性评价技术等, 以解决动物生产中替代抗生素问题, 促进畜牧业的可持续发展. ...

畜牧业发展中抗菌药应用的“利”与“刃”
1
2019

... 在畜牧业生产体系中, 抗生素的无序使用不仅可能引发“超级细菌”的产生, 其残留亦会造成畜产品安全和环境污染问题.抗生素的滥用导致人类细菌耐药性增加, 直接或间接地影响了人类健康.有研究显示, 抗生素耐药性每年可导致70多万人死亡(Li et al., 2018).病原菌对抗生素产生耐药性的途径多种多样, 包括酶降解、主动外排和靶标改变等.根据2013年《中国畜禽养殖中抗生素使用情况调查报告》数据, 国内年产抗生素为2.1×105 t, 国内消费量为1.8×105 t, 其中用于动物产业的抗生素为9.7×104 t, 约占54%, 饲料企业所用抗生素价值高达30-35亿元.中国科学院广州地球化学研究所应光国课题组首次公布了我国抗生素的使用量以及排放量清单, 环境中常见的36种抗生素的排放量高达5.38×104 t, 抗生素的使用量与细菌耐药率存在正相关, 大型养殖场的动物粪便和饲料中均检出多种抗生素, 广东和广西等养猪、养鸡大省抗生素的污染较为严重(Zhang et al., 2015a).抗生素的滥用制约着我国养殖业的健康发展, 抗菌药的耐药性目前已发展成为全球面临的挑战性问题, 仅通过研发新的抗生素难以应对愈演愈烈的耐药性.因此, 减少抗生素的使用是畜牧业健康发展的重要措施, 寻找具有抗菌作用的抗生素替代品是保持当前畜牧生产效率的有效途径.2018年世界动物卫生组织发布的《兽用抗菌药物使用情况年报》显示, 全球有86个国家和地区禁止将抗菌药作为促生长剂.2019年, 世界卫生组织已将抗微生物耐药性列为全球十大健康威胁之一.自2015年起, 我国农业部已先后禁止6种兽用抗菌药用于食品动物生产(于洋等, 2019). ...

植物源抗菌剂香芹酚定点释放包被技术的开发
1
2012

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

植物精油对动物生长和免疫力的影响及其作用机制
1
2018

... 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Algerian Mentha pulegium L. leaves essential oil: chemical composition, antimicrobial, insecticidal and antioxidant activities
1
2016

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae
1
2015

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effect of thyme oil (Thymbra spicata l. var. spicata) on meat quality in Japanese quails
1
2014

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Chemical composition and antimicrobial activity ofOriganum libanoticum, Origanum ehrenber- gii, and Origanum syriacum growing wild in Lebanon
1
2016

... 酚类化合物: 酚类中的游离羟基以及离域电子对精油的抗菌活性至关重要, 香芹酚、百里香酚和丁子香酚均因酚羟基的存在而具有显著的杀菌作用(图1).两种化学型牛至精油对6种革兰氏阴性和阳性细菌的抑制结果显示, 香芹酚型牛至精油(主成分为香芹酚, 约占75%)对6种菌株的抑制作用均高于另一种化学型牛至精油(主成分为松油烯-4-醇, 约占25%) (Aligiannis et al., 2001).3种化学型牛至精油对金黄色葡萄球菌和大肠杆菌等6种致病菌的抑制结果显示, 香芹酚含量占79%和60.8%的牛至精油抑制作用较强, 而香芹酚占比较低的牛至精油(以石竹烯及其氧化物为主要成分, 占49.4%)抗菌性较弱(Al Hafi et al., 2016).香芹酚和百里香酚为同分异构体, 二者因酚羟基位置不同而对不同细菌的抑制活性和作用效果有所差别, 百里香酚对沙门氏菌的抑制作用高于香芹酚和丁子香酚(Burt, 2004; Miladi et al., 2017). ...

Chemical composition and antimicrobial activity of essential oil ofThymus vulgaris from Yemen
1
2011

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers
1
2013

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Composition and antimicrobial activity of the essential oils of two Origanum species
1
2001

... 酚类化合物: 酚类中的游离羟基以及离域电子对精油的抗菌活性至关重要, 香芹酚、百里香酚和丁子香酚均因酚羟基的存在而具有显著的杀菌作用(图1).两种化学型牛至精油对6种革兰氏阴性和阳性细菌的抑制结果显示, 香芹酚型牛至精油(主成分为香芹酚, 约占75%)对6种菌株的抑制作用均高于另一种化学型牛至精油(主成分为松油烯-4-醇, 约占25%) (Aligiannis et al., 2001).3种化学型牛至精油对金黄色葡萄球菌和大肠杆菌等6种致病菌的抑制结果显示, 香芹酚含量占79%和60.8%的牛至精油抑制作用较强, 而香芹酚占比较低的牛至精油(以石竹烯及其氧化物为主要成分, 占49.4%)抗菌性较弱(Al Hafi et al., 2016).香芹酚和百里香酚为同分异构体, 二者因酚羟基位置不同而对不同细菌的抑制活性和作用效果有所差别, 百里香酚对沙门氏菌的抑制作用高于香芹酚和丁子香酚(Burt, 2004; Miladi et al., 2017). ...

Antimicrobial activities of commercial essential oils against the bovine respiratory pathogen Mannheimia haemolytica and analysis of their chemical composition and cytotoxicity on bovine turbinate cells
1
2017

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Unraveling the selective antibacterial activity and chemical composition of citrus essential oils
1
2019

... 奶牛犊易因病原菌引起的腹泻而死亡, 植物混合精油的添加可以抑制肠道病原菌(乳酸菌、纤维素和淀粉分解菌等则不受影响), 缓解腹泻(Santos et al., 2015).以柠檬烯为主要成分的柑橘精油对引起小猪腹泻的大肠杆菌有显著抑制作用, 而对肠道益生菌(乳酸杆菌)的抑制作用很小.同时, 细菌群落与体内氧化应激也存在相关性, 乳酸杆菌与氧化应激呈负相关, 而大肠杆菌与氧化应激呈强正相关, 精油的添加可降低体内的氧化应激反应(Ambrosio et al., 2019).以肉桂醛为主要成分的肉桂精油对引起牛乳腺炎的金黄色葡萄球菌和大肠杆菌等致病菌有高效抑制作用(Zhu et al., 2016).百里香和迷迭香精油可抑制鱼病原链球菌毒力基因SagA的表达, 减少溶血素产生, 从而缓解由链球菌引起的鱼类相关疾病(Soltani et al., 2014). ...

Quality characters, chemical composition and biological activities of oregano (Origanum spp.) essential oils from central and Southern Argentina
1
2015

... 在减抗和替抗政策下, 畜牧业开始向“绿色养殖”发展, 寻找抗生素替代品是目前畜牧业发展的当务之急.芳香植物精油因其独特的抗菌性能, 作为饲料添加剂的发展前景广阔, 但同时也存在一些问题.(1) 植物精油种类多样、成分复杂、易挥发且易氧化; 并且植物精油的化学成分、含量和活性会因物种、组织部位、地理位置、土壤条件、收获季节、气候条件和害虫等因素发生较大的变化(潘岩等, 2012; Asensio et al., 2015; Gerami et al., 2016).例如, 冬季二次采收的迷迭香精油对大肠杆菌和金黄色葡萄球菌等的抑制作用更强(石雷等, 2015).(2) 芳香植物精油添加剂进入动物体后需要经过胃肠道的消化吸收, 胃肠道通过具有许多神经和受体的化学感应系统感知化学物质和微生物, 而复杂的肠道生态系统导致芳香植物精油的抗菌机制目前并不十分清楚.(3) 缺乏芳香植物精油应用的新技术研发.例如, 不同植物精油的组配和包埋技术对抗菌功能效果的提升有重要作用, 组学技术对功能机制研究有很强的推动作用.基于上述问题, 提出以下3方面建议: (1) 在国家芳香植物种质资源库建设的基础上, 进一步完善芳香植物精油成分数据库, 为杀菌剂的选择提供基础性数据; (2) 针对动物生产中的主要病害进行更广范的芳香植物精油抗菌性评价, 运用多组学技术深入解析芳香植物精油的抗菌机制; (3) 加强芳香植物精油应用技术的开发利用, 包括精油组配技术、包埋技术和安全性评价技术等, 以解决动物生产中替代抗生素问题, 促进畜牧业的可持续发展. ...

Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characterristics of food-borne pathogens
1
2013

... (3) 质子动力的消耗: 膜结构破坏后容易引起质子动力的消耗, 进而影响线粒体呼吸、电子转移链、底物氧化以及主动转运.质子动力通过ATP合酶可转化为ATP, 用于多种细胞功能, 而质子动力消耗后会抑制ATP的合成(Bajpai et al., 2013).香芹酚以羟基作为跨膜离子交换剂, 消耗质子动力, 引起细菌细胞中阳离子的扰动, 从而增加细胞膜的渗透性, 最终导致细胞内容物流失(Saad et al., 2013).Cao等(2020)研究表明, 柠檬醛和香芹酚可引起阪崎肠杆菌质子动力的消耗, 降低细胞内pH, 影响三羧酸循环, 同时激发细菌自卫反应, 噬菌体休克蛋白(phage shock protein, PSP)操纵子以及pspApspBpspCpspD基因表达上调, 以维持质子动力、减少细胞能量消耗和修复细胞膜. ...

Biological effects of essential oils
2
2008

... 芳香植物全世界有3 600多种, 在地中海沿岸的欧洲诸国以及中国、中亚、印度和南美等地分布广泛(Bakkali et al., 2008), 主要集中于唇形科、菊科、芸香科、樟科、伞形科、百合科、蔷薇科、十字花科、姜科和豆科等.目前, 很多国家和地区都开展了芳香植物的引种和栽培, 形成了各具特色的芳香产业.中国对芳香植物的利用也有悠久的历史, 早在5000多年前炎帝神农时代, 芳香植物便被用于除瘟驱疫及清净身心,《诗经》、《楚辞》以及《山海经》等先秦历史典籍里存在较多芳香植物的记录.现代社会, 芳香植物作为一类新兴的经济作物, 因富含药用成分, 常被用于食品工业、日化工业和医药等, 随着“芳香疗法”和“园艺疗法”的兴起, 芳香植物的应用越来越受到人们的青睐. ...

... 芳香植物精油主要通过水蒸馏法从花序、茎、叶片、根以及种子等不同植物组织中获得.植物精油大多存在于特定的分泌组织, 如腺毛细胞(牛至(Origanum vulgare))、油管(茴香(Foeniculum vulgare))、分泌腔(柑橘(Citrus reticulata))和油细胞(肉桂(Cinnamo- mum cassia))等.植物精油是天然混合物, 包含萜类、萜烯类、醇类、醛类、酮类、酯类和酚类等约20-60种化学成分, 这些化学成分所占比例大不相同, 多数以微量形式存在, 其中2-3种主要组分含量达20%- 70%.例如, 牛至精油含24种化合物, 占精油总量的97.29%-98.63%, 其中香芹酚和百里香酚占精油总成分的74.59% (Kosakowska et al., 2019).同种芳香植物因生长环境或采收时期不同, 所含精油的成分、性质和含量也不同(Bakkali et al., 2008).此外, 植物的不同部位所含精油成分也存在差异, 牛至叶和花混合精油中香芹酚占30.73%、百里香酚占18.81%, 茎中香芹酚和百里香酚则分别占6.02%和3.46%, 根中二者分别占3.27%和1.08% (Han et al., 2017). ...

Essential oils in combination and their antimicrobial properties
1
2012

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Comparative antimicrobial activity of essential oils of Cuminum cymi-num L. andFoeniculum vulgare Mill. seeds against Sal- monella typhimurium and Escherichia coli
1
2014

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Evaluation of chemical composition and biological activities of essential oil and methanolic extract of Origanum vulgare L. ssp. glandulosum (Desf.) Ietswaart from Algeria
1
2016

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Essential oils: their antibacterial properties and potential applications in foods
4
2004

... 植物精油独特的抗菌作用取决于其含有的化学成分, 植物精油的抗菌能力与其活性分子的官能团和结构排列有关, 其不同化学成分往往具有协同抗菌作用.在众多活性成分中, 酚类的抗菌性最强, 其次是醛类、醇类、酮类、酯类和烃类(Marinelli et al., 2018).虽然精油成分的化学结构对其杀菌效果的影响还不完全清楚, 但大量研究表明化学结构的亲脂性以及羟基(-OH)、甲氧基(-OCH3)和烯烃键的存在对精油抗菌能力的发挥有重要作用, 这些官能团往往具有消耗质子动力、影响菌液pH值以及细菌氧化磷酸化等作用(Castillo-López et al., 2017; Zhang et al., 2020).具有这些结构特征的化合物(如香芹酚、百里香酚、肉桂醛和丁子香酚)拥有显著的杀菌活性.牛至、百里香、肉桂和丁子香(Syzygium aromaticum)等芳香植物精油因此类化合物含量较高而具有较强的抑菌活性(Burt, 2004).本文主要对植物精油中抗菌活性较好的酚类、含氧萜类和萜烯类进行抗菌活性的阐述(图1). ...

... 酚类化合物: 酚类中的游离羟基以及离域电子对精油的抗菌活性至关重要, 香芹酚、百里香酚和丁子香酚均因酚羟基的存在而具有显著的杀菌作用(图1).两种化学型牛至精油对6种革兰氏阴性和阳性细菌的抑制结果显示, 香芹酚型牛至精油(主成分为香芹酚, 约占75%)对6种菌株的抑制作用均高于另一种化学型牛至精油(主成分为松油烯-4-醇, 约占25%) (Aligiannis et al., 2001).3种化学型牛至精油对金黄色葡萄球菌和大肠杆菌等6种致病菌的抑制结果显示, 香芹酚含量占79%和60.8%的牛至精油抑制作用较强, 而香芹酚占比较低的牛至精油(以石竹烯及其氧化物为主要成分, 占49.4%)抗菌性较弱(Al Hafi et al., 2016).香芹酚和百里香酚为同分异构体, 二者因酚羟基位置不同而对不同细菌的抑制活性和作用效果有所差别, 百里香酚对沙门氏菌的抑制作用高于香芹酚和丁子香酚(Burt, 2004; Miladi et al., 2017). ...

... 植物精油的普遍疏水性促进其与细菌脂质双分子层互作, 精油化合物在双分子层中大量积累最终导致细胞破裂.大约90%-95%革兰氏阳性细菌的细胞壁由肽聚糖组成, 该特征可使疏水性化合物较易穿透细菌细胞.与革兰氏阳性细菌相比, 革兰氏阴性细菌由细胞外膜、肽聚糖和细胞内膜组成, 厚厚的外膜降低了渗透性, 并且具有亲水性脂多糖结构, 因此革兰氏阴性细菌对疏水性精油的抵抗力更强(Burt, 2004).芳香植物精油通过不同的作用途径对致病菌活性产生抑制作用, 主要包括以下4个方面(图2A). ...

... 此外, 精油中的成分也会影响细胞正常活动所必需的酶和蛋白等的合成.例如, 酚类化合物的羟基会抑制细菌ATP酶, 从而影响ATP的合成(Swamy et al., 2016).香芹酚诱导大肠杆菌O157:H7产生大量的热激蛋白60 (heat shock protein 60, HSP60), 抑制鞭毛蛋白的合成, 导致细菌无法运动(Burt et al., 2007).丁子香酚抑制蜡状芽孢杆菌中淀粉酶和蛋白酶的合成(Burt, 2004)以及细菌组氨酸脱羧酶活性(Swamy et al., 2016). ...

Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7
1
2007

... 此外, 精油中的成分也会影响细胞正常活动所必需的酶和蛋白等的合成.例如, 酚类化合物的羟基会抑制细菌ATP酶, 从而影响ATP的合成(Swamy et al., 2016).香芹酚诱导大肠杆菌O157:H7产生大量的热激蛋白60 (heat shock protein 60, HSP60), 抑制鞭毛蛋白的合成, 导致细菌无法运动(Burt et al., 2007).丁子香酚抑制蜡状芽孢杆菌中淀粉酶和蛋白酶的合成(Burt, 2004)以及细菌组氨酸脱羧酶活性(Swamy et al., 2016). ...

Cronobacter sakazakii CICC 21544 responds to the combination of carvacrol and citral by regulating proton motive force
1
2020

... (3) 质子动力的消耗: 膜结构破坏后容易引起质子动力的消耗, 进而影响线粒体呼吸、电子转移链、底物氧化以及主动转运.质子动力通过ATP合酶可转化为ATP, 用于多种细胞功能, 而质子动力消耗后会抑制ATP的合成(Bajpai et al., 2013).香芹酚以羟基作为跨膜离子交换剂, 消耗质子动力, 引起细菌细胞中阳离子的扰动, 从而增加细胞膜的渗透性, 最终导致细胞内容物流失(Saad et al., 2013).Cao等(2020)研究表明, 柠檬醛和香芹酚可引起阪崎肠杆菌质子动力的消耗, 降低细胞内pH, 影响三羧酸循环, 同时激发细菌自卫反应, 噬菌体休克蛋白(phage shock protein, PSP)操纵子以及pspApspBpspCpspD基因表达上调, 以维持质子动力、减少细胞能量消耗和修复细胞膜. ...

Natural alternatives to growth-promoting antibiotics (GPA) in animal production
1
2017

... 植物精油独特的抗菌作用取决于其含有的化学成分, 植物精油的抗菌能力与其活性分子的官能团和结构排列有关, 其不同化学成分往往具有协同抗菌作用.在众多活性成分中, 酚类的抗菌性最强, 其次是醛类、醇类、酮类、酯类和烃类(Marinelli et al., 2018).虽然精油成分的化学结构对其杀菌效果的影响还不完全清楚, 但大量研究表明化学结构的亲脂性以及羟基(-OH)、甲氧基(-OCH3)和烯烃键的存在对精油抗菌能力的发挥有重要作用, 这些官能团往往具有消耗质子动力、影响菌液pH值以及细菌氧化磷酸化等作用(Castillo-López et al., 2017; Zhang et al., 2020).具有这些结构特征的化合物(如香芹酚、百里香酚、肉桂醛和丁子香酚)拥有显著的杀菌活性.牛至、百里香、肉桂和丁子香(Syzygium aromaticum)等芳香植物精油因此类化合物含量较高而具有较强的抑菌活性(Burt, 2004).本文主要对植物精油中抗菌活性较好的酚类、含氧萜类和萜烯类进行抗菌活性的阐述(图1). ...

Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food
1
2019

... 含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015).萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013).萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019).肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019).通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018). ...

Supplementing oregano essential oil in a reduced- protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs
1
2018

... 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Antibacterial mechanism of oregano essential oil
2
2019

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

... (4) 代谢物和离子的泄露: 芳香植物精油引起的细菌细胞膜破坏会导致细胞内容物流失, 从而加剧细菌的死亡.用牛至精油处理耐甲氧西林金黄色葡萄球菌后溶液的电导率增高, 表明Na+和K+等泄露, 而K+在维持酶的活化和胞内pH方面有一定作用(Cui et al., 2019).用百里香精油处理蜡状芽孢杆菌后, 胞外蛋白质和ATP含量明显增多, 表明细胞膜破裂引起内容物流失(Kang et al., 2018).用野胡麻(Dodartia orientalis)精油处理大肠杆菌、金黄色葡萄球菌和肠炎链球菌12小时, 在260 nm下吸收值逐渐增强, 表明胞内核酸泄漏(Wang et al., 2017). ...

GC-MS-FID characterization and antibacterial activity of the Mikania cordifolia essential oil and limonene against MDR strains
1
2020

... 萜烯类化合物: 以石竹烯为主要成分的大麻(Cannabis sativa)精油对金黄色葡萄球菌和枯草芽孢杆菌的抑制作用较显著, 且与抗生素环丙沙星存在协同作用(Nafis et al., 2019).柠檬烯对金黄色葡萄球菌有显著的抑制活性, 与抗生素诺氟沙星对金黄色葡萄球菌和铜绿假单胞菌分别存在协同和拮抗作用(de Araújo et al., 2020).月桂烯对金黄色葡萄球菌、大肠杆菌和肠炎沙门氏菌具有显著的抑制作用(Wang et al., 2019a). ...

Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs
1
2010

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus
2
2018

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum)
1
2017

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Lavandula x intermedia essential oil and hydrolate: evaluation of chemical composition and antibacterial activity before and after formulation in nanoemulsion
1
2020

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Effects of irrigation intervals and organic manure on morphological traits, essential oil content and yield of oregano (Origanum vulgare L.)
1
2016

... 在减抗和替抗政策下, 畜牧业开始向“绿色养殖”发展, 寻找抗生素替代品是目前畜牧业发展的当务之急.芳香植物精油因其独特的抗菌性能, 作为饲料添加剂的发展前景广阔, 但同时也存在一些问题.(1) 植物精油种类多样、成分复杂、易挥发且易氧化; 并且植物精油的化学成分、含量和活性会因物种、组织部位、地理位置、土壤条件、收获季节、气候条件和害虫等因素发生较大的变化(潘岩等, 2012; Asensio et al., 2015; Gerami et al., 2016).例如, 冬季二次采收的迷迭香精油对大肠杆菌和金黄色葡萄球菌等的抑制作用更强(石雷等, 2015).(2) 芳香植物精油添加剂进入动物体后需要经过胃肠道的消化吸收, 胃肠道通过具有许多神经和受体的化学感应系统感知化学物质和微生物, 而复杂的肠道生态系统导致芳香植物精油的抗菌机制目前并不十分清楚.(3) 缺乏芳香植物精油应用的新技术研发.例如, 不同植物精油的组配和包埋技术对抗菌功能效果的提升有重要作用, 组学技术对功能机制研究有很强的推动作用.基于上述问题, 提出以下3方面建议: (1) 在国家芳香植物种质资源库建设的基础上, 进一步完善芳香植物精油成分数据库, 为杀菌剂的选择提供基础性数据; (2) 针对动物生产中的主要病害进行更广范的芳香植物精油抗菌性评价, 运用多组学技术深入解析芳香植物精油的抗菌机制; (3) 加强芳香植物精油应用技术的开发利用, 包括精油组配技术、包埋技术和安全性评价技术等, 以解决动物生产中替代抗生素问题, 促进畜牧业的可持续发展. ...

Antibacterial and anti-PmrA activity of plant essential oils against fluoroquinolone-resistant Streptococcus pneumoniae clinical isolates
1
2018

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Effect of a polyherbal or an arsenic-containing feed additive on growth performance of broiler chickens, intestinal microbiota, intestinal morphology, and lipid oxidation of breast and thigh meat
1
2019

... 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils
1
2009

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Antibacterial activity of terpenes and terpenoids present in essential oils
1
2019

... 含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015).萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013).萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019).肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019).通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018). ...

Comparative analysis of chemical composition, antimicrobial and antioxidant activity of citrus essential oils from the main cultivated varieties in China
1
2018

... 含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015).萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013).萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019).肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019).通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018). ...

The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients
1
2008

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Chemical composition and antioxidant activities of essential oils from different parts of the oregano
1
2017

... 芳香植物精油主要通过水蒸馏法从花序、茎、叶片、根以及种子等不同植物组织中获得.植物精油大多存在于特定的分泌组织, 如腺毛细胞(牛至(Origanum vulgare))、油管(茴香(Foeniculum vulgare))、分泌腔(柑橘(Citrus reticulata))和油细胞(肉桂(Cinnamo- mum cassia))等.植物精油是天然混合物, 包含萜类、萜烯类、醇类、醛类、酮类、酯类和酚类等约20-60种化学成分, 这些化学成分所占比例大不相同, 多数以微量形式存在, 其中2-3种主要组分含量达20%- 70%.例如, 牛至精油含24种化合物, 占精油总量的97.29%-98.63%, 其中香芹酚和百里香酚占精油总成分的74.59% (Kosakowska et al., 2019).同种芳香植物因生长环境或采收时期不同, 所含精油的成分、性质和含量也不同(Bakkali et al., 2008).此外, 植物的不同部位所含精油成分也存在差异, 牛至叶和花混合精油中香芹酚占30.73%、百里香酚占18.81%, 茎中香芹酚和百里香酚则分别占6.02%和3.46%, 根中二者分别占3.27%和1.08% (Han et al., 2017). ...

Characterization of the action of selected essential oil components on gram-negative bacteria
1
1998

... (1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA)
1
2019

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken
1
2006

... 饲料中添加牛至和大蒜(Allium sativum)精油可以减少肉鸡肠道梭状芽孢杆菌和链球菌的数量(K?rkp?nar, 2011).百里香、牛至以及肉桂等混合精油可降低瘤胃微生物的数量, 同时使甲烷产量以及乙酸盐与丙酸盐的比率降低, 进而调节瘤胃发酵(Lin et al., 2012).香芹酚、肉桂醛以及辣椒油树脂的混合物可以增加早期断奶仔猪盲肠的乳杆菌数量, 提高空肠中乳酸杆菌与肠杆菌的比例(Manzanilla et al., 2006).百里香酚和肉桂醛可以提高鸡肠道乳酸杆菌的数量, 降低大肠杆菌的数量(Jamroz et al., 2006).总之, 芳香植物精油的添加可以提高肠道中益生菌与有害菌的比例.有害细菌的减少可有效避免动物被屠宰时的胴体污染, 且植物精油活性成分在代谢组织中的积累可以抑制腐败或致病细菌的生长, 从而延长肉类产品的货架期. ...

Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, andBacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers
1
2012

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus
1
2011

... (2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018).用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018).精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020).肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011).用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020). ...

Chemical composition and antimicrobial activity of the essential oil of rosemary
1
2011

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation
2
2018

... (2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018).用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018).精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020).肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011).用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020). ...

... (4) 代谢物和离子的泄露: 芳香植物精油引起的细菌细胞膜破坏会导致细胞内容物流失, 从而加剧细菌的死亡.用牛至精油处理耐甲氧西林金黄色葡萄球菌后溶液的电导率增高, 表明Na+和K+等泄露, 而K+在维持酶的活化和胞内pH方面有一定作用(Cui et al., 2019).用百里香精油处理蜡状芽孢杆菌后, 胞外蛋白质和ATP含量明显增多, 表明细胞膜破裂引起内容物流失(Kang et al., 2018).用野胡麻(Dodartia orientalis)精油处理大肠杆菌、金黄色葡萄球菌和肠炎链球菌12小时, 在260 nm下吸收值逐渐增强, 表明胞内核酸泄漏(Wang et al., 2017). ...

Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats
1
2017

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Thyme and cinnamon essential oils: potential alternatives for monensin as a rumen modifier in beef production systems
1
2015

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin
1
2012

... 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effects of oregano and garlic essential oils on performance, carcase, organ and blood characteristics and intestinal microflora of broilers
1
2011

... 饲料中添加牛至和大蒜(Allium sativum)精油可以减少肉鸡肠道梭状芽孢杆菌和链球菌的数量(K?rkp?nar, 2011).百里香、牛至以及肉桂等混合精油可降低瘤胃微生物的数量, 同时使甲烷产量以及乙酸盐与丙酸盐的比率降低, 进而调节瘤胃发酵(Lin et al., 2012).香芹酚、肉桂醛以及辣椒油树脂的混合物可以增加早期断奶仔猪盲肠的乳杆菌数量, 提高空肠中乳酸杆菌与肠杆菌的比例(Manzanilla et al., 2006).百里香酚和肉桂醛可以提高鸡肠道乳酸杆菌的数量, 降低大肠杆菌的数量(Jamroz et al., 2006).总之, 芳香植物精油的添加可以提高肠道中益生菌与有害菌的比例.有害细菌的减少可有效避免动物被屠宰时的胴体污染, 且植物精油活性成分在代谢组织中的积累可以抑制腐败或致病细菌的生长, 从而延长肉类产品的货架期. ...

Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate
1
2019

... 芳香植物精油主要通过水蒸馏法从花序、茎、叶片、根以及种子等不同植物组织中获得.植物精油大多存在于特定的分泌组织, 如腺毛细胞(牛至(Origanum vulgare))、油管(茴香(Foeniculum vulgare))、分泌腔(柑橘(Citrus reticulata))和油细胞(肉桂(Cinnamo- mum cassia))等.植物精油是天然混合物, 包含萜类、萜烯类、醇类、醛类、酮类、酯类和酚类等约20-60种化学成分, 这些化学成分所占比例大不相同, 多数以微量形式存在, 其中2-3种主要组分含量达20%- 70%.例如, 牛至精油含24种化合物, 占精油总量的97.29%-98.63%, 其中香芹酚和百里香酚占精油总成分的74.59% (Kosakowska et al., 2019).同种芳香植物因生长环境或采收时期不同, 所含精油的成分、性质和含量也不同(Bakkali et al., 2008).此外, 植物的不同部位所含精油成分也存在差异, 牛至叶和花混合精油中香芹酚占30.73%、百里香酚占18.81%, 茎中香芹酚和百里香酚则分别占6.02%和3.46%, 根中二者分别占3.27%和1.08% (Han et al., 2017). ...

Effect of trans-cinnamaldehyde on methicillin-resistant Staphy-lococcus aureus biofilm formation: metabolic activity assessment and analysis of the biofilm-associated genes expression
1
2020

... (2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018).用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018).精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020).肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011).用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020). ...

Encapsulation of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): synthesis and characterization of the inclusion complexes
1
2017

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments
1
2013

... 含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015).萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013).萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019).肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019).通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018). ...

Ruminal metagenomic analyses of goat data reveals potential functional microbiota by supplementation with essential oil-cobalt complexes
1
2019

... 快速发展的“组学”技术推进了精油的抗菌机制研究.利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油.微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS).Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖.Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞.此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

The effect of essential oils on performance, immunity and gut microbial population in weaner pigs
2
2012

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

... 肠道微生物群与黏膜免疫系统存在密切联系, 植物精油与微生物互作可改变肠道中淋巴细胞的分布及肠道免疫系统的发育和功能, 提高动物自身的免疫能力(Zhai et al., 2018).百里香酚、香芹酚以及牛至精油作为鱼饲料添加剂, 可使食用8周后的鱼的嗜水气单胞菌感染率降低, 免疫系统相关酶(如溶菌酶、超氧化物歧化酶和过氧化氢酶)的活性升高(Zheng et al., 2009).以百里香酚和肉桂醛为主要成分的混合精油可减少断奶仔猪肠道大肠杆菌的数量, 降低腹泻发生率, 同时增加淋巴细胞转化和白细胞吞噬率及提高血液中免疫球蛋白IgA和IgM的水平, 增强其免疫力(Li et al., 2012). ...

Intestinal microbiome-metabolome responses to essential oils in piglets
3
2018

... 在畜牧业生产体系中, 抗生素的无序使用不仅可能引发“超级细菌”的产生, 其残留亦会造成畜产品安全和环境污染问题.抗生素的滥用导致人类细菌耐药性增加, 直接或间接地影响了人类健康.有研究显示, 抗生素耐药性每年可导致70多万人死亡(Li et al., 2018).病原菌对抗生素产生耐药性的途径多种多样, 包括酶降解、主动外排和靶标改变等.根据2013年《中国畜禽养殖中抗生素使用情况调查报告》数据, 国内年产抗生素为2.1×105 t, 国内消费量为1.8×105 t, 其中用于动物产业的抗生素为9.7×104 t, 约占54%, 饲料企业所用抗生素价值高达30-35亿元.中国科学院广州地球化学研究所应光国课题组首次公布了我国抗生素的使用量以及排放量清单, 环境中常见的36种抗生素的排放量高达5.38×104 t, 抗生素的使用量与细菌耐药率存在正相关, 大型养殖场的动物粪便和饲料中均检出多种抗生素, 广东和广西等养猪、养鸡大省抗生素的污染较为严重(Zhang et al., 2015a).抗生素的滥用制约着我国养殖业的健康发展, 抗菌药的耐药性目前已发展成为全球面临的挑战性问题, 仅通过研发新的抗生素难以应对愈演愈烈的耐药性.因此, 减少抗生素的使用是畜牧业健康发展的重要措施, 寻找具有抗菌作用的抗生素替代品是保持当前畜牧生产效率的有效途径.2018年世界动物卫生组织发布的《兽用抗菌药物使用情况年报》显示, 全球有86个国家和地区禁止将抗菌药作为促生长剂.2019年, 世界卫生组织已将抗微生物耐药性列为全球十大健康威胁之一.自2015年起, 我国农业部已先后禁止6种兽用抗菌药用于食品动物生产(于洋等, 2019). ...

... 快速发展的“组学”技术推进了精油的抗菌机制研究.利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油.微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS).Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖.Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞.此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

... 通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

The effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro
1
2012

... 饲料中添加牛至和大蒜(Allium sativum)精油可以减少肉鸡肠道梭状芽孢杆菌和链球菌的数量(K?rkp?nar, 2011).百里香、牛至以及肉桂等混合精油可降低瘤胃微生物的数量, 同时使甲烷产量以及乙酸盐与丙酸盐的比率降低, 进而调节瘤胃发酵(Lin et al., 2012).香芹酚、肉桂醛以及辣椒油树脂的混合物可以增加早期断奶仔猪盲肠的乳杆菌数量, 提高空肠中乳酸杆菌与肠杆菌的比例(Manzanilla et al., 2006).百里香酚和肉桂醛可以提高鸡肠道乳酸杆菌的数量, 降低大肠杆菌的数量(Jamroz et al., 2006).总之, 芳香植物精油的添加可以提高肠道中益生菌与有害菌的比例.有害细菌的减少可有效避免动物被屠宰时的胴体污染, 且植物精油活性成分在代谢组织中的积累可以抑制腐败或致病细菌的生长, 从而延长肉类产品的货架期. ...

Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity
1
2009

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Effects of a protected inclusion of organic acids and essential oils as antibiotic growth promoter alternative on growth performance, intestinal morphology and gut microflora in broilers
1
2017

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Cinnamaldehyde inhibits type three secretion system in Salmonella enterica serovar Typhimurium by affecting the expression of key effector proteins
1
2019

... 快速发展的“组学”技术推进了精油的抗菌机制研究.利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油.微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS).Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖.Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞.此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans
1
2013

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Impact of Ros-marinus officinalis cold-pressed oil on health, growth performance, intestinal bacterial populations, and immunocompetence of Japanese quail
1
2019

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs
2
2006

... 饲料中添加牛至和大蒜(Allium sativum)精油可以减少肉鸡肠道梭状芽孢杆菌和链球菌的数量(K?rkp?nar, 2011).百里香、牛至以及肉桂等混合精油可降低瘤胃微生物的数量, 同时使甲烷产量以及乙酸盐与丙酸盐的比率降低, 进而调节瘤胃发酵(Lin et al., 2012).香芹酚、肉桂醛以及辣椒油树脂的混合物可以增加早期断奶仔猪盲肠的乳杆菌数量, 提高空肠中乳酸杆菌与肠杆菌的比例(Manzanilla et al., 2006).百里香酚和肉桂醛可以提高鸡肠道乳酸杆菌的数量, 降低大肠杆菌的数量(Jamroz et al., 2006).总之, 芳香植物精油的添加可以提高肠道中益生菌与有害菌的比例.有害细菌的减少可有效避免动物被屠宰时的胴体污染, 且植物精油活性成分在代谢组织中的积累可以抑制腐败或致病细菌的生长, 从而延长肉类产品的货架期. ...

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Carvacrol and its derivatives as antibacterial agents
3
2018

... 植物精油独特的抗菌作用取决于其含有的化学成分, 植物精油的抗菌能力与其活性分子的官能团和结构排列有关, 其不同化学成分往往具有协同抗菌作用.在众多活性成分中, 酚类的抗菌性最强, 其次是醛类、醇类、酮类、酯类和烃类(Marinelli et al., 2018).虽然精油成分的化学结构对其杀菌效果的影响还不完全清楚, 但大量研究表明化学结构的亲脂性以及羟基(-OH)、甲氧基(-OCH3)和烯烃键的存在对精油抗菌能力的发挥有重要作用, 这些官能团往往具有消耗质子动力、影响菌液pH值以及细菌氧化磷酸化等作用(Castillo-López et al., 2017; Zhang et al., 2020).具有这些结构特征的化合物(如香芹酚、百里香酚、肉桂醛和丁子香酚)拥有显著的杀菌活性.牛至、百里香、肉桂和丁子香(Syzygium aromaticum)等芳香植物精油因此类化合物含量较高而具有较强的抑菌活性(Burt, 2004).本文主要对植物精油中抗菌活性较好的酚类、含氧萜类和萜烯类进行抗菌活性的阐述(图1). ...

... (1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

... ).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid
1
2017

... 酚类化合物: 酚类中的游离羟基以及离域电子对精油的抗菌活性至关重要, 香芹酚、百里香酚和丁子香酚均因酚羟基的存在而具有显著的杀菌作用(图1).两种化学型牛至精油对6种革兰氏阴性和阳性细菌的抑制结果显示, 香芹酚型牛至精油(主成分为香芹酚, 约占75%)对6种菌株的抑制作用均高于另一种化学型牛至精油(主成分为松油烯-4-醇, 约占25%) (Aligiannis et al., 2001).3种化学型牛至精油对金黄色葡萄球菌和大肠杆菌等6种致病菌的抑制结果显示, 香芹酚含量占79%和60.8%的牛至精油抑制作用较强, 而香芹酚占比较低的牛至精油(以石竹烯及其氧化物为主要成分, 占49.4%)抗菌性较弱(Al Hafi et al., 2016).香芹酚和百里香酚为同分异构体, 二者因酚羟基位置不同而对不同细菌的抑制活性和作用效果有所差别, 百里香酚对沙门氏菌的抑制作用高于香芹酚和丁子香酚(Burt, 2004; Miladi et al., 2017). ...

An in vitro assessment of the antibacterial activity of plant-derived oils
1
2014

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards
1
2019

... 萜烯类化合物: 以石竹烯为主要成分的大麻(Cannabis sativa)精油对金黄色葡萄球菌和枯草芽孢杆菌的抑制作用较显著, 且与抗生素环丙沙星存在协同作用(Nafis et al., 2019).柠檬烯对金黄色葡萄球菌有显著的抑制活性, 与抗生素诺氟沙星对金黄色葡萄球菌和铜绿假单胞菌分别存在协同和拮抗作用(de Araújo et al., 2020).月桂烯对金黄色葡萄球菌、大肠杆菌和肠炎沙门氏菌具有显著的抑制作用(Wang et al., 2019a). ...

Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinna-momum cassia Blume
1
2006

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Chemical composition of Melaleuca linarrifolia Sm. from India: a potential source of 1,8-cineole
1
2015

... 含氧萜类化合物: 以1,8-桉树脑为主要成分的白千层精油对大肠杆菌、鼠伤寒沙门氏菌和枯草芽孢杆菌具有较强的抑制活性, 对表皮葡萄球菌、金黄色葡萄球菌和变形链球菌具有中等抑制活性(Padalia et al., 2015).萜品烯-4-醇相较于α-甜没药醇、α-萜品烯、桉树脑以及橙花叔醇对弯曲杆菌的抑制作用更强(Kurekci et al., 2013).萜品醇对金黄色葡萄球菌具极强的杀菌活性, 香茅醇和香叶醇对大肠杆菌的抑制作用显著(Guimaraes et al., 2019).肉桂醛对沙门氏菌的抑制作用最强, 其次是百里香酚、丁子香酚和香芹酚(Chen et al., 2019).通过成分标准品以及14种柑橘精油抑菌实验表明, 芳樟醇对大肠杆菌和金黄色葡萄球菌等的抑制活性最强, 显著高于柠檬烯、月桂烯、α-蒎烯和β-蒎烯(Guo et al., 2018). ...

Effects of dietary Greek oregano (Origanum vulgare ssp.hirtum) supplementation on rumen fermentation, enzyme profile and microbial communities in goats
1
2018

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks
1
2018

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

The impact of β-myrcene—the main component of the hop essential oil on the lipid films
1
2020

... (1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus
1
2019

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Antimicrobial and antioxidant activity of unencapsulated and encap-sulated clove (Syzygium aromaticum L.) essential oil
1
2019

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action
5
2019

... 芳香植物精油是植物自身合成的天然抗菌剂, 抗菌活性由其化学成分和浓度决定.目前, 芳香植物的抗菌、抗氧化和抗炎等特性已在大量研究中得到证实(Rao et al., 2019).鉴于芳香植物精油的抗菌性, 芳香植物在动物生产中的应用越来越广泛.中华人民共和国农业部1773号和2038号公告中规定117种药食同源天然植物可作为饲料原料使用, 其中包含多种芳香植物(如薄荷(Mentha pulegium)和迷迭香(Rosmarinus officinalis)).农业农村部第194号公告规定, 自2020年1月1日起, 停止生产和进口除中药外的所有促生长类药物饲料添加剂.这些政策的出台有力推动了天然植物饲料原料产品的开发和利用.本文以芳香植物资源为基础, 探讨了不同芳香植物精油及其单体成分的抗菌性, 解析了不同化学结构与抗菌效果之间的相关性, 为开发利用芳香植物精油作为饲料添加剂提供理论依据. ...

... 植物精油的普遍疏水性促进其与细菌脂质双分子层互作, 精油化合物在双分子层中大量积累最终导致细胞破裂.大约90%-95%革兰氏阳性细菌的细胞壁由肽聚糖组成, 该特征可使疏水性化合物较易穿透细菌细胞.与革兰氏阳性细菌相比, 革兰氏阴性细菌由细胞外膜、肽聚糖和细胞内膜组成, 厚厚的外膜降低了渗透性, 并且具有亲水性脂多糖结构, 因此革兰氏阴性细菌对疏水性精油的抵抗力更强(Burt, 2004).芳香植物精油通过不同的作用途径对致病菌活性产生抑制作用, 主要包括以下4个方面(图2A).
10.11983/CBB20029.F002 精油的作用机制和包埋方式(改自<xref ref-type="bibr" rid="b79">Rao et al., 2019</xref>)(A) 散装精油和不同的包埋方式; (B) 精油的作用机制和作用靶点. ...

... (A) 散装精油和不同的包埋方式; (B) 精油的作用机制和作用靶点.
Mechanisms of action and delivery systems of essential oils (EOs) (modified by <xref ref-type="bibr" rid="b79">Rao et al., 2019</xref>)(A) Bulk essential oils (EOs) and different types of EO encapsulation; (B) Proposed mechanisms of action and target sites of EOs. ...

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

... ).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers
1
2017

... 快速发展的“组学”技术推进了精油的抗菌机制研究.利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油.微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS).Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖.Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞.此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens
1
2011

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Major bioactivities and mechanism of action of essential oils and their components
1
2013

... (3) 质子动力的消耗: 膜结构破坏后容易引起质子动力的消耗, 进而影响线粒体呼吸、电子转移链、底物氧化以及主动转运.质子动力通过ATP合酶可转化为ATP, 用于多种细胞功能, 而质子动力消耗后会抑制ATP的合成(Bajpai et al., 2013).香芹酚以羟基作为跨膜离子交换剂, 消耗质子动力, 引起细菌细胞中阳离子的扰动, 从而增加细胞膜的渗透性, 最终导致细胞内容物流失(Saad et al., 2013).Cao等(2020)研究表明, 柠檬醛和香芹酚可引起阪崎肠杆菌质子动力的消耗, 降低细胞内pH, 影响三羧酸循环, 同时激发细菌自卫反应, 噬菌体休克蛋白(phage shock protein, PSP)操纵子以及pspApspBpspCpspD基因表达上调, 以维持质子动力、减少细胞能量消耗和修复细胞膜. ...

GC/MS-olfactometric characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of calendula (Calendula officinalis L.)
1
2019

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Thymol, thyme, and other plant sources: health and potential uses
1
2018

... (1) 脂肪酸外膜的改变: 亲脂性化合物与磷脂膜成分互作导致膜结构发生巨大变化, 物理结构扭曲引起膜的膨胀和不稳定, 增加膜的流动性和渗透性(Marinelli et al., 2018).精油中酚类化合物的抗菌性主要通过酚羟基起作用, 它们极易进入由脂肪酸链组成的细胞外膜, 造成细胞膜膨胀以及流动性增强(Marinelli et al., 2018; Salehi et al., 2018).碱性磷酸酶(alkaline phosphatase, AKP)存在于脂肪酸外膜和细胞质膜之间, 其活性可以反映细胞的完整性.研究发现牛至精油处理后的菌体AKP酶活性显著升高, 表明脂肪酸外膜的完整性受到破坏(陈梦玲等, 2020).Helander等(1998)研究了同分异构体香芹酚和百里香酚以及肉桂醛对大肠杆菌和鼠伤寒沙门氏菌的抑制机理, 阐明香芹酚和百里香酚以类似的方式分解脂肪酸外膜, 并推测肉桂醛渗透进入脂肪酸外膜进而影响细胞的内部活动.月桂烯通过渗入脂肪酸外膜导致脂质缩合并使稳定性降低, 膜的破坏进一步导致细菌死亡(Po?e? et al., 2020). ...

Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards
1
2018

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna
1
2015

... 奶牛犊易因病原菌引起的腹泻而死亡, 植物混合精油的添加可以抑制肠道病原菌(乳酸菌、纤维素和淀粉分解菌等则不受影响), 缓解腹泻(Santos et al., 2015).以柠檬烯为主要成分的柑橘精油对引起小猪腹泻的大肠杆菌有显著抑制作用, 而对肠道益生菌(乳酸杆菌)的抑制作用很小.同时, 细菌群落与体内氧化应激也存在相关性, 乳酸杆菌与氧化应激呈负相关, 而大肠杆菌与氧化应激呈强正相关, 精油的添加可降低体内的氧化应激反应(Ambrosio et al., 2019).以肉桂醛为主要成分的肉桂精油对引起牛乳腺炎的金黄色葡萄球菌和大肠杆菌等致病菌有高效抑制作用(Zhu et al., 2016).百里香和迷迭香精油可抑制鱼病原链球菌毒力基因SagA的表达, 减少溶血素产生, 从而缓解由链球菌引起的鱼类相关疾病(Soltani et al., 2014). ...

Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains
1
2016

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates
1
2018

... (2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018).用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018).精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020).肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011).用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020). ...

Shirazi thyme (Zataria multiflora Boiss) and rosemary (Rosmarinus officinalis) essential oils repress expression of sagA, a streptolysin S-related gene in Streptococcus iniae
1
2014

... 奶牛犊易因病原菌引起的腹泻而死亡, 植物混合精油的添加可以抑制肠道病原菌(乳酸菌、纤维素和淀粉分解菌等则不受影响), 缓解腹泻(Santos et al., 2015).以柠檬烯为主要成分的柑橘精油对引起小猪腹泻的大肠杆菌有显著抑制作用, 而对肠道益生菌(乳酸杆菌)的抑制作用很小.同时, 细菌群落与体内氧化应激也存在相关性, 乳酸杆菌与氧化应激呈负相关, 而大肠杆菌与氧化应激呈强正相关, 精油的添加可降低体内的氧化应激反应(Ambrosio et al., 2019).以肉桂醛为主要成分的肉桂精油对引起牛乳腺炎的金黄色葡萄球菌和大肠杆菌等致病菌有高效抑制作用(Zhu et al., 2016).百里香和迷迭香精油可抑制鱼病原链球菌毒力基因SagA的表达, 减少溶血素产生, 从而缓解由链球菌引起的鱼类相关疾病(Soltani et al., 2014). ...

Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria
1
2017

... 植物精油易挥发, 有效成分不稳定, 这些缺点限制了其应用, 而精油包被技术的发展可解决此类问题.包被是将一种或几种材料的混合物嵌入(或表面上覆盖)另一种或几种材料混合物的技术.香芹酚包被后可实现在消化道内定点释放, 更好地发挥其抗菌作用, 拓展了其应用范围(张永刚, 2012).精油常见包埋方式包括通过纳米乳液、脂质双分子层和生物聚合物薄膜等手段(图2B).纳米乳液比其它类型的包埋方式物理稳定性更好, 与散装精油相比抗菌活性更强(Rao et al., 2019).百里香精油与壳聚糖复合形成纳米颗粒后抗菌能力显著升高(Sotelo-Boyás et al., 2017).牛至精油在β-环糊精中包封成纳米微胶囊后具有长达11天的连续缓释过程, 极大地拓宽了其应用领域(Kotronia et al., 2017).牛至精油与生物银纳米粒子结合, 对金黄色葡萄球菌的抑制作用存在协同增效功能(Scandorieiro et al., 2016).丁香精油经海藻酸钠和乳化剂包封后, 对金黄色葡萄球菌及鼠伤寒沙门氏菌的抑制活性显著增强(Radünz et al., 2019).脂质体是自发形成的表面活性剂传递系统, 能够在水溶液中将植物精油包封于脂质双分子层的非极性区域(Rao et al., 2019).牛至精油中分离出的香芹酚和百里香酚经脂质体包封后, 对金黄色葡萄球菌和铜绿假单胞菌等的抑制作用显著增强(Liolios et al., 2009).脂质体包裹的茶树(Camellia sinensis)精油和银离子对铜绿假单胞菌、金黄色葡萄球菌及白色念珠菌具有显著抑制作用(Low et al., 2013).此外, 有研究表明精油成分香芹酚、百里香酚、丁子香酚和肉桂醛在饲喂动物2小时后, 会被它们的胃和近端小肠几乎完全吸收(Manzanilla et al., 2006), 而精油微胶囊化可有效避免其被前肠完全吸收, 使得精油可在后肠行使抗菌功能并改变微生物群落的生态系统.植物精油微胶囊化后可实现在动物肠道中定点释放, 进而在消化道不同部位发挥作用(de Lange et al., 2010). ...

Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review
2
2016

... 此外, 精油中的成分也会影响细胞正常活动所必需的酶和蛋白等的合成.例如, 酚类化合物的羟基会抑制细菌ATP酶, 从而影响ATP的合成(Swamy et al., 2016).香芹酚诱导大肠杆菌O157:H7产生大量的热激蛋白60 (heat shock protein 60, HSP60), 抑制鞭毛蛋白的合成, 导致细菌无法运动(Burt et al., 2007).丁子香酚抑制蜡状芽孢杆菌中淀粉酶和蛋白酶的合成(Burt, 2004)以及细菌组氨酸脱羧酶活性(Swamy et al., 2016). ...

... )以及细菌组氨酸脱羧酶活性(Swamy et al., 2016). ...

Chemical com-position and allelopathic, antibacterial, antifungal andin vitro acetylcholinesterase inhibitory activities of yarrow (Achillea millefolium L.) native to India
1
2017

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Antioxidant and antibacterial activity of seven predominant terpenoids
1
2019

... 萜烯类化合物: 以石竹烯为主要成分的大麻(Cannabis sativa)精油对金黄色葡萄球菌和枯草芽孢杆菌的抑制作用较显著, 且与抗生素环丙沙星存在协同作用(Nafis et al., 2019).柠檬烯对金黄色葡萄球菌有显著的抑制活性, 与抗生素诺氟沙星对金黄色葡萄球菌和铜绿假单胞菌分别存在协同和拮抗作用(de Araújo et al., 2020).月桂烯对金黄色葡萄球菌、大肠杆菌和肠炎沙门氏菌具有显著的抑制作用(Wang et al., 2019a). ...

Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm
1
2017

... (4) 代谢物和离子的泄露: 芳香植物精油引起的细菌细胞膜破坏会导致细胞内容物流失, 从而加剧细菌的死亡.用牛至精油处理耐甲氧西林金黄色葡萄球菌后溶液的电导率增高, 表明Na+和K+等泄露, 而K+在维持酶的活化和胞内pH方面有一定作用(Cui et al., 2019).用百里香精油处理蜡状芽孢杆菌后, 胞外蛋白质和ATP含量明显增多, 表明细胞膜破裂引起内容物流失(Kang et al., 2018).用野胡麻(Dodartia orientalis)精油处理大肠杆菌、金黄色葡萄球菌和肠炎链球菌12小时, 在260 nm下吸收值逐渐增强, 表明胞内核酸泄漏(Wang et al., 2017). ...

Transcriptome analysis reveals AI-2 relevant genes of multi-drug resistant Klebsiella pneumoniae in response to eugenol at Sub-MIC
1
2019

... 快速发展的“组学”技术推进了精油的抗菌机制研究.利用转录组学、蛋白质组学、代谢组学和宏基因组等手段, 可揭示植物精油作用于细菌后基因、蛋白、代谢物水平以及细菌群落的改变, 并可确定其潜在的细胞靶标, 以筛选有效植物精油.微生物通过小信号分子进行胞间通信和信息共享(包括抗生素抗性以及生物膜形成)的能力被称为群体感应(quorum sensing, QS).Wang等(2019b)通过转录组分析发现, 用丁子香酚处理耐药肺炎克雷伯菌后群体感应信号分子AI-2相关基因的表达下调, 进而抑制细菌的生长繁殖.Liu等(2019)通过转录组和蛋白质组联合分析揭示了肉桂醛可通过调节沙门氏菌SIPASIPB基因的转录表达, 抑制毒力蛋白SPI-1产生, 从而保护被沙门氏菌感染的宿主细胞.此外, Li等(2018)通过对猪肠道微生物组和代谢组联合分析, 发现饲料中添加精油后, 猪肠道内芽孢杆菌和乳杆菌等有益菌数量明显增加, 结肠中的微生物代谢谱发生变化, 氨基酸、脂质和蛋白质代谢加快(Li et al., 2018).Reyer等(2017)对空肠和肝组织进行转录组分析, 发现精油会引起肉鸡的碳水化合物和脂肪酸代谢增强, 进而改善肉鸡的生产性能.Lei等(2019)对山羊瘤胃进行了宏基因组学分析, 发现精油-钴配合物可影响瘤胃微生物群落的分布, 提高饲料转化率和减少氨气排放. ...

Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli
1
2019

... Major components of essential oils (EOs) extracted from common aromatic plants and their antimicrobial activities based on MIC values
Table 1
物种 主要成分 作用菌种 MIC 参考文献
唇形科
(Lamiaceae)
牛至(Origanum vulgare) 香芹酚(64.86%)、对伞花烃(8.35%)和百里香酚(4.22%) 耐甲氧西林金黄色葡萄球菌 0.4 mg·mL-1 Cui et al., 2019
百里香(Thymus vulga-
ris
)
百里香酚(51.34%)、对伞花烃(18.35%)和石竹烯(4.26%) 枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和耻垢分枝杆菌 0.075-1.1 mg· mL-1 Al Maqtari, 2011
迷迭香(Rosmarinus of-
ficinalis
)
1,8-桉树脑(26.54%)、α-蒎烯(20.14%)和樟脑(12.88%) 表皮葡萄球菌、金黄色葡萄球菌和枯草芽孢杆菌等 0.03%-1.0% (v/v) Jiang et al., 2011
唇萼薄荷(Mentha pule-
gium
)
长叶薄荷酮(70.66%)和新薄荷醇(11.21%) 金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌等 1.25-10 μL·
mL-1
Abdelli et al., 2016
土荆芥(Chenopodium ambrosioides) α-萜品烯(40.73%)和对伞花烃(21.81%) 金黄色葡萄球菌 ≥1.024 mg·mL-1 de Morais Oliveira-Tintino et al., 2018
薰衣草(Lavandula x in-
termedia lavandin
‘G-
rosso’)
芳樟醇(35.8%)、1,8-桉树脑(19.8%)和α-蒎烯(8.7%) 蜡状芽孢杆菌和大肠杆菌 0.94-1.87 (v/v%) Garzoli et al., 2020
菊科
(Asteraceae)
蓍(Achillea millefolium) 大根香叶烯(1.1%-46.6%)、桧烯(4.0%-38.9%)和冰片(4.7%-24.9%) 金黄色葡萄球菌、表皮葡萄球菌、变形链球菌和肺炎克雷伯菌等 0.125-0.5 mg·mL-1 Verma et al., 2017
金盏花(Calendula offi-
cinalis
)
α-杜松醇(20.6%)、香芹酮(17.9%)和荜澄茄烯(10.1%) 表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌等 10-200 mg·
mL-1
Sahingil, 2019
伞形科
(Apiaceae)
茴香(Foeniculum vul-
gare
)
茴香脑(50.4%)、甲基胡椒酚(22.4%)和柠檬烯(11.4%) 鼠伤寒沙门氏菌和大肠杆菌 0.0075-2.0 (v/v%) Bisht, 2014
禾本科
(Poaceae)
亚香茅(Cymbopogon nardus) 香叶醇(33.88%)、香茅醛(27.55%)和香茅醇(14.40%) 金黄色葡萄球菌、表皮葡萄球菌和粪肠球菌 0.125-8 mg·
mL-1
Pontes et al., 2019
樟科
(Lauraceae)
肉桂(Cinnamomum c-
assia
)
肉桂醛(85.06%)和甲氧基肉桂醛(8.79%) 金黄色葡萄球菌、大肠杆菌、产气肠杆菌、铜绿假单胞菌和霍乱弧菌等 0.075-0.6 mg·mL-1 Ooi et al., 2006
山苍子(Litsea cubeba) β-柠檬醛(39.25%)、α-柠檬醛(30.9%)和柠檬烯(8.28%) 耐甲氧西林金黄色葡萄球菌 0.5? mg·mL-1 Hu et al., 2019
猴樟(Cinnamomum bodinieri) 芳樟醇(69.94%)和樟脑(10.90%) 大肠杆菌 200 μL·L-1 Wu et al., 2019
桃金娘科(Myrtaceae) 蓝桉(Eucalyptus globulus) 对伞花烃(12.58%-37.82%)、α-蒎烯(10.41%-13.39%)和1,8-桉树脑(7.71%-13.23%) 金黄色葡萄球菌、耐甲氧西林金黄色葡萄球菌和蜡状芽孢杆菌等 1-4 mg·mL-1 Salem et al., 2018
MIC: Minimum inhibitory concentration ...

Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs
1
2015

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Potential of essential oils for poultry and pigs
1
2018

... 肠道微生物群与黏膜免疫系统存在密切联系, 植物精油与微生物互作可改变肠道中淋巴细胞的分布及肠道免疫系统的发育和功能, 提高动物自身的免疫能力(Zhai et al., 2018).百里香酚、香芹酚以及牛至精油作为鱼饲料添加剂, 可使食用8周后的鱼的嗜水气单胞菌感染率降低, 免疫系统相关酶(如溶菌酶、超氧化物歧化酶和过氧化氢酶)的活性升高(Zheng et al., 2009).以百里香酚和肉桂醛为主要成分的混合精油可减少断奶仔猪肠道大肠杆菌的数量, 降低腹泻发生率, 同时增加淋巴细胞转化和白细胞吞噬率及提高血液中免疫球蛋白IgA和IgM的水平, 增强其免疫力(Li et al., 2012). ...

Antivirulence properties and related mechanisms of spice essential oils: a comprehensive review
2
2020

... 植物精油独特的抗菌作用取决于其含有的化学成分, 植物精油的抗菌能力与其活性分子的官能团和结构排列有关, 其不同化学成分往往具有协同抗菌作用.在众多活性成分中, 酚类的抗菌性最强, 其次是醛类、醇类、酮类、酯类和烃类(Marinelli et al., 2018).虽然精油成分的化学结构对其杀菌效果的影响还不完全清楚, 但大量研究表明化学结构的亲脂性以及羟基(-OH)、甲氧基(-OCH3)和烯烃键的存在对精油抗菌能力的发挥有重要作用, 这些官能团往往具有消耗质子动力、影响菌液pH值以及细菌氧化磷酸化等作用(Castillo-López et al., 2017; Zhang et al., 2020).具有这些结构特征的化合物(如香芹酚、百里香酚、肉桂醛和丁子香酚)拥有显著的杀菌活性.牛至、百里香、肉桂和丁子香(Syzygium aromaticum)等芳香植物精油因此类化合物含量较高而具有较强的抑菌活性(Burt, 2004).本文主要对植物精油中抗菌活性较好的酚类、含氧萜类和萜烯类进行抗菌活性的阐述(图1). ...

... (2) 细胞质膜的破坏: 芳香植物精油可以抑制并破坏细胞质膜, 百里香精油对金黄色葡萄球菌的生物膜形成具有明显的抑制作用(Sharifi et al., 2018).用百里香精油处理蜡状芽孢杆菌后, 细胞膜电位明显下降, 表明细胞膜去极化, 细胞的代谢活动受到影响(Kang et al., 2018).精油单体成分香芹酚、肉桂醛、丁子香酚以及芳樟醇均会破坏已经形成的细胞质膜(Zhang et al., 2020).肉桂醛可以抑制耐甲氧西林金黄色葡萄球菌生物膜的形成以及膜合成基因sarA的表达(Jia et al., 2011).用肉桂醛处理耐甲氧西林金黄色葡萄球菌后, 层黏连蛋白结合蛋白(laminin binding protein, LBP)、弹性蛋白结合蛋白(elastin binding protein, EBP)以及纤维蛋白原结合蛋白(fibrinogen binding protein, FIB)等细胞膜相关编码基因表达下调, 细胞膜代谢活动显著降低(Kot et al., 2020). ...

a). Comprehensive evaluation of antibiotics emission and fate in the river Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
1
2015

... 在畜牧业生产体系中, 抗生素的无序使用不仅可能引发“超级细菌”的产生, 其残留亦会造成畜产品安全和环境污染问题.抗生素的滥用导致人类细菌耐药性增加, 直接或间接地影响了人类健康.有研究显示, 抗生素耐药性每年可导致70多万人死亡(Li et al., 2018).病原菌对抗生素产生耐药性的途径多种多样, 包括酶降解、主动外排和靶标改变等.根据2013年《中国畜禽养殖中抗生素使用情况调查报告》数据, 国内年产抗生素为2.1×105 t, 国内消费量为1.8×105 t, 其中用于动物产业的抗生素为9.7×104 t, 约占54%, 饲料企业所用抗生素价值高达30-35亿元.中国科学院广州地球化学研究所应光国课题组首次公布了我国抗生素的使用量以及排放量清单, 环境中常见的36种抗生素的排放量高达5.38×104 t, 抗生素的使用量与细菌耐药率存在正相关, 大型养殖场的动物粪便和饲料中均检出多种抗生素, 广东和广西等养猪、养鸡大省抗生素的污染较为严重(Zhang et al., 2015a).抗生素的滥用制约着我国养殖业的健康发展, 抗菌药的耐药性目前已发展成为全球面临的挑战性问题, 仅通过研发新的抗生素难以应对愈演愈烈的耐药性.因此, 减少抗生素的使用是畜牧业健康发展的重要措施, 寻找具有抗菌作用的抗生素替代品是保持当前畜牧生产效率的有效途径.2018年世界动物卫生组织发布的《兽用抗菌药物使用情况年报》显示, 全球有86个国家和地区禁止将抗菌药作为促生长剂.2019年, 世界卫生组织已将抗微生物耐药性列为全球十大健康威胁之一.自2015年起, 我国农业部已先后禁止6种兽用抗菌药用于食品动物生产(于洋等, 2019). ...

b). Effects of dietary oregano essential oil supplementation on the stress response, antioxidative capacity, and HSPs mRNA expression of transported pigs
1
2015

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Effects of benzoic acid, essential oils and Enterococcus faecium SF68 on growth performance, nutrient digestibility, blood profiles, faecal microbiota and faecal noxious gas emission in weanling pigs
1
2016

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus)
2
2009

... Evaluation of the effects of essential oils extracted from common aromatic plants on animal production
Table 2
动物 植物材料 效果 参考文献
牛至(Origanum vulgare ssp. hirtum) 抑制产甲烷菌, 改善瘤胃发酵 Paraskevakis, 2018
迷迭香(Rosmarinus officinalis) 影响生物氢化细菌, 促进瘤胃发酵 Kholif et al., 2017
百里香(Thymus vulgaris)和锡兰肉桂(Cinnamomum zeylanicum) 产甲烷菌的相对丰度降低, 琥珀酸纤维杆菌和白色瘤胃球菌的
数量下降, 植物精油添加剂可作为瘤胃发酵调节剂
Khorrami et al., 2015
百里香 对引起牛乳腺炎的金黄色葡萄球菌和乳房链球菌等有抑制作用 Mullen et al., 2014
精油混合物 抑制牛呼吸系统疾病相关的细菌病原体 Amat et al., 2017
精油混合物 直肠大肠杆菌和总厌氧菌数量降低, 免疫球蛋白增多 Zeng et al., 2015
精油混合物 乳酸杆菌增多, 粪便中大肠杆菌数量减少 Li et al., 2012
精油混合物 乳酸杆菌增多 Zhang et al., 2015b
精油混合物 粪便中乳酸菌增多, 大肠杆菌数量减少 Zhang et al., 2016
牛至(O. vulgare) 盲肠大肠杆菌减少, 乳酸菌无影响 Roofchaee et al., 2011
精油混合物 乳酸菌等肠道菌群发生变化 Liu et al., 2017
精油混合物 抑制沙门氏菌繁殖, 减少交叉感染 Alali et al., 2013
精油混合物 抑制产气荚膜梭状芽孢杆菌, 治疗坏死性肠炎 Jerzsele et al., 2012
精油混合物 蛋白酶与精油具有协同作用, 回肠中乳杆菌密度增加而大肠
杆菌减少
Park and Kim, 2018
鹌鹑 西亚百里香(T. spicata) 改善肠道微生物组成, 有利于其健康生长 Aksu et al., 2014
迷迭香 大肠杆菌和沙门氏菌等肠道致病菌减少 Mahgoub et al., 2019
盆牛至(O. onites) 促进生长, 有效避免加氏乳球菌感染 Diler et al., 2017
冬牛至(O. heracleoticum) 促进生长, 对嗜水气单胞菌感染的抵抗力增强 Zheng et al., 2009
甜橙(Citrus sinensis) 抑制链球菌感染, 具有免疫调节作用 Acar et al., 2015
3.1 提高动物的消化吸收能力 动物肠道内菌群平衡是影响消化吸收能力的重要因素, 植物精油可选择性地影响肠道微生物群落, 而肠道菌群平衡有助于提高动物的消化吸收能力(周洋等, 2018).高酚含量的饲料添加剂组分之间存在协同作用, 可促进动物生长并影响肠道菌群, 进而影响动物的生长代谢(Giannenas et al., 2019).例如, 反刍动物中的纤维素分解细菌可将纤维素消化成能发酵的葡萄糖, 进而用于微生物发酵及提供动物使用的底物(否则纤维素不会被宿主利用).因此, 植物精油可通过定向选择有助于动物代谢的特定菌群, 增强饲料转化, 促进动物生长(Kim et al., 2012).低蛋白饲料中添加牛至精油可调节肠道细菌, 从而改善动物的生长性能和营养消化率(Cheng et al., 2018). ...

... 肠道微生物群与黏膜免疫系统存在密切联系, 植物精油与微生物互作可改变肠道中淋巴细胞的分布及肠道免疫系统的发育和功能, 提高动物自身的免疫能力(Zhai et al., 2018).百里香酚、香芹酚以及牛至精油作为鱼饲料添加剂, 可使食用8周后的鱼的嗜水气单胞菌感染率降低, 免疫系统相关酶(如溶菌酶、超氧化物歧化酶和过氧化氢酶)的活性升高(Zheng et al., 2009).以百里香酚和肉桂醛为主要成分的混合精油可减少断奶仔猪肠道大肠杆菌的数量, 降低腹泻发生率, 同时增加淋巴细胞转化和白细胞吞噬率及提高血液中免疫球蛋白IgA和IgM的水平, 增强其免疫力(Li et al., 2012). ...

The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the foodborne pathogen Salmonella typhimurium
1
2007

... 植物精油的抗菌活性不是一种特定作用模式的结果, 而是多种活性成分对细菌细胞不同细胞器各种靶标的协同作用.牛至与百里香混合精油比各自单方精油对蜡状芽孢杆菌、大肠杆菌、单核细胞增生李斯特菌和铜绿假单胞菌的抑制作用更强(Gutierrez et al., 2008).肉桂和丁香(Syzygium aromaticum)精油配合使用对大肠杆菌的生长具有拮抗作用, 但二者协同抑制单核细胞增生李斯特菌、蜡状芽孢杆菌和小肠结肠炎耶尔森氏菌的生长(Go?i et al., 2009).肉桂醛与百里香酚(或香芹酚)合用对鼠伤寒沙门氏菌具有协同抑制作用(Zhou et al., 2007).百里香酚、丁子香酚和香芹酚的结构相似, 三者低浓度组合具有协同抗菌作用(Bassolé and Juliani, 2012).除百里香酚和香芹酚外, ρ-伞花烃作为香芹酚合成前体, 是牛至精油的另一主要成分, 其抗菌作用较弱, 但可促使细菌细胞膜膨胀从而协助香芹酚透过细胞质膜, 这表明精油不同成分之间存在协同抑菌作用(Bouhaddouda et al., 2016).此外, 植物精油与抗生素结合使用对致病菌的生长也往往具有协同抑制作用.土荆芥(Chenopodium ambrosioides)精油与抗生素诺氟沙星组合对金黄色葡萄球菌有协同抑制作用(de Morais Oliveira-Tintino et al., 2018).椒样薄荷(Mentra piperita)精油与头孢他啶配合使用可协同抑制绿脓杆菌的生长(李慧等, 2011).牛至、百里香精油与氟喹诺酮类抗生素组合可抑制耐氟喹诺酮肺炎链球菌的生长(Ghafari et al., 2018). ...

Bactericidal effects of Cinnamon cassia oil against bovine mastitis bacterial pathogens
1
2016

... 奶牛犊易因病原菌引起的腹泻而死亡, 植物混合精油的添加可以抑制肠道病原菌(乳酸菌、纤维素和淀粉分解菌等则不受影响), 缓解腹泻(Santos et al., 2015).以柠檬烯为主要成分的柑橘精油对引起小猪腹泻的大肠杆菌有显著抑制作用, 而对肠道益生菌(乳酸杆菌)的抑制作用很小.同时, 细菌群落与体内氧化应激也存在相关性, 乳酸杆菌与氧化应激呈负相关, 而大肠杆菌与氧化应激呈强正相关, 精油的添加可降低体内的氧化应激反应(Ambrosio et al., 2019).以肉桂醛为主要成分的肉桂精油对引起牛乳腺炎的金黄色葡萄球菌和大肠杆菌等致病菌有高效抑制作用(Zhu et al., 2016).百里香和迷迭香精油可抑制鱼病原链球菌毒力基因SagA的表达, 减少溶血素产生, 从而缓解由链球菌引起的鱼类相关疾病(Soltani et al., 2014). ...




相关话题/植物 动物 微生物 细胞 精油