删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

纳米农药在植物中的吸收转运研究进展

本站小编 Free考研考试/2022-01-01

李晶, 郭亮, 崔海信, 崔博,*, 刘国强,*中国农业科学院农业环境与可持续发展研究所, 北京 100081

Research Progress on Uptake and Transport of Nanopesticides in Plants

Jing Li, Liang Guo, Haixin Cui, Bo Cui,*, Guoqiang Liu,*Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

通讯作者: *E-mail: cuibo@caas.cn; E-mail: liuguoqiang@caas.cn

责任编辑: 朱亚娜
收稿日期:2020-01-14接受日期:2020-06-5网络出版日期:2020-07-01
基金资助:国家重点研发计划(2018YFD0200304)
国家重点研发计划(2017YFD0201207)
国家自然科学基金(31901912)
中国农业科学院重大科研任务(CAAS-ZDRW202008)
中央级公益性科研院所基本科研业务费专项(BSRF201913)


Corresponding authors: *E-mail: cuibo@caas.cn; E-mail: liuguoqiang@caas.cn
Received:2020-01-14Accepted:2020-06-5Online:2020-07-01


摘要
农药是一类用于防治作物病虫草害、保障粮食生产与安全的化学物质。传统农药剂型载药粒子粒径粗大, 有效利用率低, 用量大, 对生态环境造成严重危害。农药纳米剂型可以提高载药系统的分散性、稳定性及生物活性, 是克服传统剂型功能缺陷、提高农药有效利用率、减少环境污染的重要科学途径。研究纳米农药粒子在植物体内的吸收与转运行为, 对于理解纳米农药与植物的互作方式, 揭示其在植物体内的吸收作用机制及生物累积效应, 以及明确其生物安全性具有重要意义。该文从纳米农药在植物体内的吸收转运影响因素、机制、分析方法及其生物安全性4个方面进行综述, 阐明了无机和有机纳米农药在植物体内的吸收转运模式及研究手段, 并展望了其应用前景, 以期为纳米农药的设计、构建及合理安全使用提供理论与技术支撑。
关键词: 纳米农药;植物;吸收转运;分析方法

Abstract
Pesticide is a kind of chemicals to control crop diseases, pests and weeds for ensuring crop yields and food safety. Large particles, low effective utilization rate and large dosage are the major defects of the traditional pesticide formulations, leading to the destruction of the ecological environment. Pesticide nanoformulations can improve the dispersibility, stability and biological activity of traditional formulations. This is an important scientific approach to overcome the defects of traditional formulations, enhance the effective utilization rate of pesticides, and reduce environmental pollution. Elucidating the uptake and transport behavior of nanopesticides in plants is useful for understanding the interaction between nanopesticides and plants, revealing their uptake mechanism and bioaccumulation effect, and clarifying their biological safety. This article reviews the uptake and transport studies of nanopesticides in plants in four aspects: factors affecting the uptake and transport of nanopesticides in plants, mechanisms of uptake and transport, related analysis methods and their biological safety. This article also elaborates the modes and research methods of the uptake and transport of inorganic and organic nanopesticides in plants, and further proposes their potential applications. This piece will provide theoretical and technical basis for the design, construction and reasonable application of nanopesticides.
Keywords:nanopesticide;plants;uptake and transport;analytical methods


PDF (968KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
李晶, 郭亮, 崔海信, 崔博, 刘国强. 纳米农药在植物中的吸收转运研究进展. 植物学报, 2020, 55(4): 513-528 doi:10.11983/CBB20008
Li Jing, Guo Liang, Cui Haixin, Cui Bo, Liu Guoqiang. Research Progress on Uptake and Transport of Nanopesticides in Plants. Chinese Bulletin of Botany, 2020, 55(4): 513-528 doi:10.11983/CBB20008


据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019)。我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国。然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主。粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007)。此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016)。农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017)。

纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014)。根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998)。纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017)。纳米农药的制备模式主要包括2种(Zhao et al., 2018c)。(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体。朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016)。(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系。载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019)。通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017)。

近年来, 纳米农药的相关研究备受关注, 主要集中在农药纳米剂型的创制和生物活性评价方面, 而纳米农药在植物体内的吸收、转运和分布研究相对较少。了解农药纳米粒子在植物体内的吸收与转运行为有助于阐明纳米农药与植物的互作方式, 为高效绿色纳米载药系统的优化设计奠定理论基础(Bombo et al., 2019)。此外, 由于残留在植物食用部位的农药可以通过食物链进入人体, 因此研究农药纳米粒子在植物体内的吸收与转运还有利于揭示其作用机制及生物累积效应, 明确其生物安全性, 为纳米农药的合理安全使用提供指导(Valletta et al., 2014; Stamm et al., 2016)。鉴于此, 本文对纳米农药在植物体中的吸收、转运及相关分析方法进行综述。

1 纳米农药在植物体内的吸收转运影响因素

纳米粒子与植物间的相互作用非常复杂, 其在植物中的吸收、转运及迁移行为受多种因素影响, 主要取决于植物种类、纳米粒子自身特性以及环境条件(Rico et al., 2011)。

不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同。例如, 单子叶植物有须根, 双子叶植物有初生根。比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019)。根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip)。凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014)。大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001)。植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007)。不同植物叶片孔隙大小存在差异。例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008)。此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019)。

纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019)。粒径大小是影响植物吸收的重要因素。纳米粒子主要通过植物细胞壁上的孔隙进入植物体内。蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016)。然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b)。纳米粒子表面化学性质也会影响其在植物体内的吸收。带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014)。表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018)。表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用。Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移。此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007)。不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016)。

除上述因素外, 土壤质地、培养基质、农药暴露方式和时间等环境条件都会影响纳米粒子在植物体内的吸收与转运。例如, 高暴露浓度可能影响土壤或根际微生物群落, 并由于土壤理化性质而导致纳米粒子团聚或聚集, 进而限制植物对纳米粒子的吸收(Raliya et al., 2018)。纳米Cu在纯水、有机质含量高的水中以及水培溶液中的迁移水平不同(Conway et al., 2015)。土壤水饱和度会不同程度地阻碍纳米粒子以非原生质体途径通过皮质(Su et al., 2019)。

2 纳米农药在植物体内的吸收转运机制

农药主要以叶面喷施和根部施药2种方式作用于植物。农药纳米粒子与植物的相互作用主要包括3个环节(Su et al., 2019): (1) 纳米粒子沉积或吸附于植物表面(根、茎、叶); (2) 纳米粒子吸附渗透进入角质层和表皮, 进而以共质体或质外体途径迁移到维管组织; (3) 纳米粒子通过维管组织转运到植物的其它部位(Judy et al., 2012; Lead et al., 2018)。

2.1 根部吸收转运机制

初生根层次结构由外到内依次为表皮、皮层(包括外皮层和内皮层)和维管柱(包括中柱鞘和维管组织)。内皮层与中柱鞘相连, 维管组织位于根的中间(Su et al., 2019)。纳米粒子在根部的迁移路径可能为: (1) 纳米粒子被根毛细胞吸收后选择性穿过细胞壁; (2) 以共质体途径或质外体途径从表皮进入内皮层; (3) 通过木质部导管向地上部运输纳米粒子(Hischem?ller et al., 2009; Anjum et al., 2016; Tripathi et al., 2017a)。

纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012)。植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子。此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012)。侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017)。侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015)。

粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径。质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017)。在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010)。农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层。然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014)。农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014)。Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移。共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径。纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017)。

纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011)。有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010)。内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012)。网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a)。Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用。

木质部是纳米粒子迁移和转运的重要载体(Aslani et al., 2014)。根压和蒸腾拉力是木质部运输的动力, 纳米粒子进入木质部后随蒸腾流向地上部转运。木质部是由无数个导管或管胞以及内部的纹孔和穿孔板相互连通构成的三维拓扑结构(张红霞等, 2017), 其纹孔孔径为43-340 nm (Jansen et al., 2009; Zhang et al., 2017)。纹孔膜能阻碍溶质的流动, 而穿孔板允许纳米粒子通过。

2.2 叶面吸收转运机制

农药纳米粒子在植物叶片中的吸收转运途径为: 首先, 纳米粒子沉积于叶面上, 然后通过角质层或气孔进入植物叶肉细胞, 随后以质外体途径(通过细胞壁)或共质体途径“装入”到韧皮部筛管细胞中进行长距离运输(刘支前, 1992)。质外体途径运输较大的粒子(直径200 nm左右), 共质体途径运输较小的粒子(直径<50 nm) (Raliya et al., 2018)。纳米粒子进一步沿中柱鞘和韧皮部向其它部位内化迁移(Anjum et al., 2016; Avellan et al., 2019)。

纳米粒子在叶片表面的黏附主要取决于叶面固有特征及纳米粒子表面官能团等理化特性。通常情况下, 作物叶片表面有一层蜡质, 其由各种高级脂肪醇、脂肪酸和脂肪醛组成(Liang et al., 2018a)。不同叶面结构亲脂性能不同, 通过修饰纳米粒子改变其表面结构及特性可以促进纳米粒子的黏附与吸收。Yu等(2017)构建了3种不同官能团修饰的阿维菌素-聚乳酸纳米粒子(CH3CO-PLA-NS、HOOC-PLA-NS和H2N-PLA-NS), 3种纳米粒子在黄瓜(Cucumis sativus)叶片上的黏附力大小为H2N-PLA-NS>CH3CO- PLA-NS>HOOC-PLA-NS (图1)。Liang等(2018a)以苯乙烯-甲基丙烯酸共聚物为载体, 并以邻苯二酚为表面黏附基团制备了粒径为120 nm的阿维菌素纳米粒子, 纳米粒子表面覆盖的邻苯二酚基团可以使酚羟基与叶片表面的羧基或羟基形成较强氢键, 从而显著增强粒子与黄瓜和甘蓝(Brassica oleracea)叶面的黏附性。

图1

新窗口打开|下载原图ZIP|生成PPT
图1荧光强度法和高效液相色谱法(HPLC)测定阿维菌素-聚乳酸纳米粒子(CH3CO-PLA-NS、HOOC-PLA-NS和H2N- PLA-NS)及市售阿维菌素制剂(WDG和EC)在黄瓜叶片上的保留率(Yu et al., 2017)

Figure 1Retention rates of abamectin-PLA nanoparticles (CH3CO-PLA-NS, HOOC-PLA-NS and H2N-PLA-NS) and commercial formulations (WDG and EC) on cucumber leaves as determined by fluorescence intensity and HPLC method (Yu et al., 2017)



纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内。植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015)。角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019)。脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006)。亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008)。

除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019)。气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005)。气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016)。气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019)。当气孔开放后, 纳米粒子能从气孔渗透进入植物体内。用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008)。Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织。然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019)。

3 无机纳米粒子在植物中的吸收转运

农药活性成分中无机化合物占比较小, 然而纳米银(AgNPs)、铜基和TiO2纳米粒子因其能有效抑制植物细菌和真菌的生长而被用于农业杀菌剂(Kah and Hofmann, 2014; Su et al., 2019)。

3.1 纳米银

研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018)。然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999)。因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义。AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014)。AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b)。小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c)。然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008)。

Geisler-Lee等(2012)发现, AgNPs可以在拟南芥根尖吸收并逐渐积累, 从边缘细胞到根冠、表皮、维管柱和前端根分生区均有分布。进一步研究发现, AgNPs附着在拟南芥主根表面, 于暴露早期进入根尖, 14天后逐渐转移入根, 同时进入侧根原基和根毛。多重侧根发育后, 17天后观察到在维管组织以及从根到茎的整个植株中均有AgNPs分布。Torrent等(2020)取生菜(Lactuca sativa var. ramosa)根部经不同涂层(柠檬酸盐、聚乙烯吡咯烷酮、聚乙二醇)、不同粒径(60、75和100 nm)以及不同浓度(1、3、5、7、10和15 mg·L-1) AgNPs体系处理后, 探究AgNPs在生菜体内的吸收、迁移和生物累积。结果表明, AgNPs的积累受粒径和浓度的影响, 但不受纳米粒子涂层的影响。在较高浓度下, 中性电荷和粒径大的AgNPs向芽迁移程度更明显。

AgNPs也可以通过喷施于植物叶片表面被吸收。Geisler-Lee等(2014)发现, 浸泡在含AgNPs的培养基中的拟南芥幼苗子叶气孔保卫细胞能吸收并积累AgNPs (Geisler-Lee et al., 2014)。Larue等(2014a)发现, AgNPs经叶面喷施后, 可被生菜叶片角质层有效地捕获, 并通过气孔渗透进入叶片组织。此外, 不同暴露方式下, AgNPs在植物体内的迁移状况也有所不同。Li等(2017)比较了根部暴露和叶片暴露方式下, 大豆(Glycine max)和水稻(Oryza sativa)对AgNPs的吸收情况, 结果表明, 叶片暴露方式下Ag生物积累量是根暴露的17-200倍。

3.2 铜基纳米粒子

铜基纳米粒子被广泛用于抗菌活性制剂(Anjum et al., 2015), 作为农药可用于预防作物的各种真菌和细菌病害(Peng et al., 2015)。铜基纳米粒子对番茄(Lycopersicon esculentum)实腐茎点霉菌、互隔交链孢霉、尖孢镰刀菌和弯孢霉叶枯菌均表现出潜在的抗菌性, 且抗菌性高于农药多菌灵(Ouda, 2014)。

3.2.1 纳米CuO

Peng等(2015)检测了100 mg·L-1纳米CuO处理水稻根部14天后在水稻体内的迁移行为。结果表明, 纳米CuO能进入根表皮、外皮层以及皮质, 最终到达内皮层, 但不能轻易通过凯氏带。此外, 该研究组利用透射电子显微镜(transmission electron microscope, TEM)和能谱仪(energy dispersive spectrometer, EDS)观察纳米CuO在玉米(Zea mays)体内的转运和分布。结果表明, 纳米CuO不仅存在于细胞壁内的表皮细胞, 也存在于皮质细胞的细胞间隙、细胞质以及细胞核中。说明纳米粒子可能通过质外体途径穿过表皮和皮质。纳米CuO也可以通过喷施于植物叶片表面被叶片吸收。Adhikari等(2016)发现, 在玉米叶片喷施纳米CuO (0.1 mmol·L-1), 可在叶片表皮外壁上观察到电子致密沉积物, 其大小与CuO纳米粒子大致相同。此外, 将纳米CuO暴露于玉米根部, 结果显示纳米粒子沉积在根表皮细胞内, 表明纳米CuO能通过表皮细胞和皮质细胞进入植物体内。进入细胞后, 纳米粒子通过胞间连丝在细胞间迁移(Adhikari et al., 2016)。

铜的状态也会影响其在植物体内的吸收和迁移。Wang等(2016b)比较了玉米根部暴露于0.15 mg·L-1 Cu2+、100 mg·L-1纳米CuO和100 mg·L-1块体CuO 14天后根部和地上部的铜生物累积量。结果表明, 100 mg·L-1纳米CuO处理组根部和地上部铜含量均高于其它处理组。Shi等(2014)检测了1 000 mg·L-1纳米CuO处理水培耐铜植物海州香薷(Elsholtzia splendens)根部后, 纳米粒子在植物体内的分布。结果表明, 叶片中铜的含量远高于同等处理的0.5 mg·L-1可溶性铜和块体CuO, 也表明纳米CuO可被根吸收并迁移到叶片。

3.2.2 纳米Cu

Zhao等(2016)用10和20 mg·L-1纳米Cu处理黄瓜根部7天后, 发现纳米Cu主要分布于黄瓜根部(89%- 92%), 其次是茎(8%-11%)和叶(0.2%-0.5%)。此外, 随着纳米Cu浓度的增加, Tstem/root (茎与根中Cu浓度之比)呈增加趋势, 而Tleave/stem (叶与茎中Cu浓度之比)降低, 表明黄瓜类植物的茎中可保留或吸收更多的铜(Zhao et al., 2016)。

在土壤中增施不同粒径纳米Cu (60-80 nm; 小于25 nm) 65天后, 豇豆(Vigna unguiculata)根系铜含量随大粒径纳米Cu浓度的增加逐渐增加, 随小粒径纳米Cu浓度的增加铜的含量先增加后降低。豇豆叶片中铜的含量积累趋势与根中相似, 但叶片中的铜含量比根中低且小粒径纳米Cu (32.74%-34.45%)向叶片中的迁移率比大粒径纳米Cu (10.21%-24.44%)更为显著(Ogunkunle et al., 2018)。Tamez等(2019)在土壤中增施Kocide 3000 (Cu(OH)2)、纳米Cu、纳米CuO和微米CuO, 3周后, 发现所有状态的铜均可以从西葫芦(Cucurbita pepo)根组织转移到植株的地上部。

3.3 二氧化钛纳米粒子

二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011)。TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012)。

Servin等(2012)研究了500 mg·L-1 TiO2 NPs处理黄瓜根部15天后在黄瓜体内的吸收和迁移。结果表明, TiO2 NPs被根部吸收后可转运到地上部, 主要存在于根的表皮和皮质。此外, 在叶片、叶肉组织、维管系统及腺毛中也可观察到TiO2 NPs。

TiO2 NPs在植物体内的迁移转运受纳米粒子的粒径影响。研究表明, 粒径小于36 nm的TiO2 NPs能迁移到小麦(Triticum aestivum)根部中柱鞘, 进而迁移到芽和叶; 36-140 nm TiO2 NPs只能迁移转运到根部的皮质和薄壁组织; 大于140 nm TiO2 NPs则被根部表皮细胞阻隔(Larue et al., 2012)。不同浓度以及不同作用方式也会对TiO2 NPs在植物体内的迁移转运产生影响。Raliya等(2015)比较了不同浓度范围(0-1 000 mg·kg-1)以及不同作用方式下(气溶胶叶面喷施和土壤施药), TiO2 NPs在番茄体内的迁移行为。结果表明, 浓度为250 mg·kg-1的TiO2 NPs在番茄茎部积累较多, 且土壤施药方式下Ti的含量较高(Raliya et al., 2015)。

综上所述, 纳米银、铜基纳米粒子以及二氧化钛纳米粒子在适宜的浓度范围内使用均可作为农业杀菌剂, 其在植物体内的迁移及累积特性受粒子浓度、粒径及施药方式等因素的影响。值得注意的是, 当纳米粒子浓度超过一定范围后, 过量施用可能会对植物产生毒副作用, 并且无机纳米粒子进入植物体后也可能发生代谢溶解过程, 诱导一系列的代谢毒理反应。因此, 使用无机纳米农药时需综合考虑粒子特性、植物种类及使用条件等多种因素, 确保其合理安全使用。

4 有机纳米农药在植物中的吸收转运

大多数农药活性物质为有机化合物, 而目前关于有机纳米农药在植物中的吸收转运研究主要集中在载体包覆型载药体系上。大多数传统农药剂型的内吸特性与农药化合物本身的理化性质一致。然而, 有研究表明, 利用纳米材料对农药化合物进行负载和包覆后, 不仅可以增加难溶性活性成分的表观溶解度, 提高其稳定性, 实现农药的控制释放, 还可以改变农药的内吸行为(Kah et al., 2013)。Wang等(2018)研究了甘氨酸甲酯修饰的聚琥珀酰亚胺聚合物包覆的阿维菌素纳米粒子(AVM-PGA)在水稻叶片上的迁移和分布。经AVM-PGA处理叶片后, 在水稻的茎和叶中均可检测到阿维菌素, 而未包覆的裸药处理组中, 只能在水稻叶片上检测到少量阿维菌素, 其它部位未检测到。表明使用PGA负载阿维菌素可以促进其在水稻植株不同部位(茎部、近端叶、远端叶和处理叶片)的迁移, 即纳米载体能改善非内吸性农药的吸收和迁移特性。

近年来, 介孔二氧化硅(SiO2)载药粒子备受关注, 其具有成本低、环境相容性好、比表面积大、孔径可调及负载能力高等优点, 并且通过表面修饰可以实现活性化合物的控制释放(Popat et al., 2011; 何顺等, 2016)。Zhao等(2018b)研究表明, 螺虫乙酯(spirotetramat)-介孔二氧化硅纳米粒子可以从黄瓜表皮进入处理组叶片内, 进而迁移到叶柄和茎, 最后运输到根等其它部位。剂量转移研究表明, 螺虫乙酯分布于处理组下方叶片及根部, 上方叶片较下方叶片含量少, 即螺虫乙酯能向上及向下迁移, 但倾向于向下迁移(图2)。与传统剂型相比, 使用介孔二氧化硅作为农药载体能增加螺虫乙酯剂量转移2-3倍, 表明介孔二氧化硅可以增强农药在植物体内的剂量传递。

图2

新窗口打开|下载原图ZIP|生成PPT
图2在200 (A)和1 000 mg·L-1 (B)剂量浓度下, 螺虫乙酯在黄瓜植株不同部位的浓度水平(Zhao et al., 2018b)

Figure 2Concentration levels of spirotetramat in different parts of cucumber plants under corresponding dose concentrations of 200 (A) and 1 000 mg·L-1 (B) (Zhao et al., 2018b)



介孔二氧化硅纳米粒子可以通过共质体和质外体途径进入根, 随后通过木质部输导组织进入茎叶等进行迁移(Sun et al., 2014)。农药在其包覆作用下将随载体共同转运和迁移, 从而影响农药本身的剂量转移特性。Zhao等(2018a)研究表明, 与市售咪鲜胺(prochloraz)悬浮剂相比, 咪鲜胺-介孔二氧化硅纳米粒子在黄瓜叶片和根部的吸收迁移性能更佳。

除二氧化硅载药体系外, Bombo等(2019)研究了聚己内酯包覆的莠去津(atrazine)纳米粒子在芥菜(B. juncea)叶上的吸收与渗透行为。结果表明, 导管分子以及完整的叶肉细胞中均可观察到莠去津-聚己内酯纳米粒子。纳米粒子主要从排水器的气孔渗透到叶肉组织, 通过维管组织进入细胞内释放活性物质使叶绿体降解, 进而发挥除草效果。Tong等(2017)研究了单甲醚聚乙二醇-聚乳酸-羟基乙酸共聚物(mPEG- PLGA)负载异丙甲草胺(metolachlor)的纳米粒子在水稻体内的迁移分布。结果表明, 花青素5荧光染料(Cy5)负载于纳米粒子上可在根部观察到明显的荧光信号。mPEG-PLGA纳米粒子增强了疏水性异丙甲草胺的水溶性, 且Cy5标记的纳米粒子可能通过质外体途径内化进入植物体内。

载药体系的结构及性质影响纳米农药在植物体内的渗透和迁移。Nguyen等(2016)以玉米油(液体脂质)和蜂蜡(固体脂质)为原料, 以尼罗红为荧光活性成分构建了3种表观相似(粒径、多分散系数以及zeta电位)的脂质纳米剂型, 即脂基纳米乳(NE)、固体脂质纳米粒(SLN)、纳米脂质载体(NLC), 并研究了这3种纳米剂型在大豆根部的渗透和迁移行为(Nguyen et al., 2016)。结果表明, NE仅需1天就可以渗透到根的中心位置, 并向上运输到茎的4 cm位置, 而SLN和NLC分别需要6和3天才能达到同样的效果, 即NE渗透进入根部及向上转运的速度更快, 其原因可能在于脂基纳米乳的流动性相对较高。

综上所述, 有机纳米农药包括载体包覆型和非载体包覆型。载体包覆型传递与释放系统的优点是介孔二氧化硅等纳米载体在植物体内具有良好的迁移能力, 可以有效地提高非内吸性农药在植物中的吸收和迁移效率, 从而提高农药有效利用率。非载体包覆型纳米农药中活性成分与载体处于分离状态, 其在植物体内的吸收迁移研究相对较少, 需进一步明确该类型纳米农药在植物体内迁移转运的影响因素及相关机制。

5 研究纳米农药在植物中的吸收转运分析方法

纳米农药在植物体内的迁移转运研究方法包括定性及定量分析。定性分析主要利用同位素示踪法和荧光标记法等, 并借助荧光显微镜、共聚焦显微镜、透射电镜、光热显微镜和原子力显微镜等显微技术实现其在植物体内的可视化, 观察其在植物体内的吸收迁移路径(王润生等, 2018)。定量分析主要利用高效液相色谱法(HPLC)、高效液相串联质谱法(HPLC-MS)以及电感耦合等离子体质谱法等将各植物组织部位农药有效成分的含量进行量化, 从而获得其在植物体内的转运和累积特性。

5.1 迁移指标

根据纳米农药的不同作用方式, 可以选用不同迁移指标衡量其在植物体内的迁移水平。

5.1.1 根部迁移指标

根部浓度因子(root concentration factor, RCF)用于描述植物根系从土壤中吸收农药的能力, 即:

RCF=Croot/Csoil

其中, CrootCsoil分别为植物根和土壤干重中农药浓度(mg·kg-1)。RCF值大于1表示该化合物从土壤进入植物根系的能力较强(Gao et al., 2000; Ge et al., 2017)。

根部迁移因子(root translocation factor, TFroot)用于评估农药从根迁移到茎叶的能力, 定义为:

TFroot=Cshoot/Croot

其中, CshootCroot分别为化合物在植物叶和根中的浓度(mg·kg-1)。TFroot值大于1表示化合物从植物根到枝叶的迁移能力较强(Ge et al., 2016)。

Ge等(2016)比较了不同浓度毒死蜱(chlorpyrifos)以灌根方式作用于白菜(Brassica rapa var. glabra)和生菜5天后, 毒死蜱在2种蔬菜中的TFroot。结果表明, 当浓度较低时, 白菜和生菜TFroot无显著差异, 表明低浓度下毒死蜱在白菜和生菜中从根迁移到叶的能力相当。当浓度较高时, 白菜的TFroot高于生菜, 表明白菜在高浓度毒死蜱处理下从根向叶的转运能力更强。

5.1.2 叶部迁移指标

叶片迁移因子(foliage translocation factor, TFfoliage)为:

TFfoliage=Croot/Cshoot

其中, CrootCshoot分别为化合物在植物根和茎叶中的浓度(mg·kg-1)。TFfoliage值大于1表示化合物从植物枝叶到根的迁移能力较强(Gao et al., 2000; Ge et al., 2017)。

Wu等(2019)研究了吡虫啉(imidacloprid)、啶虫脒(acetamiprid)和噻虫嗪(thiamethoxam)在棉花(Gossypium spp.)不同部位的吸收、代谢和降解。TFfoliage约为0.004, 表明叶面施药方式下, 3种农药基本没有从地上部迁移到地下部。

5.2 同位素示踪法

同位素示踪法是利用同位素对纳米粒子进行标记和追踪的一种灵敏技术(Nath et al., 2018)。利用同位素示踪技术结合扫描电子显微镜和能量色散光谱, 能够直观地确定农药在植物体内的分布情况。Alsayeda等(2008)14C标记的吡虫啉添加于土壤后培养番茄, 然后对其叶片和果实进行吡虫啉总放射性和代谢物分析。结果表明, 近85%的放射性物质转移到地上部, 而在根中只检测到少量的放射性物质, 且放射性浓度从下叶到上叶呈下降趋势。Davis等(2017)利用放射性同位素标记Cu纳米粒子, 以无创方式跟踪和量化生菜幼苗体内的Cu纳米粒子的转运和积累。结果发现, 64Cu纳米粒子出现在子叶中, 表明大部分放射性64Cu纳米粒子存在于根部较低位置, 且纳米粒子可以沿根组织向上运输到根轴, 随后迁移到地上部。

5.3 荧光标记法

荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016)。其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化。常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等。Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布。Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运。

5.4 表面增强拉曼光谱

表面增强拉曼光谱法(SERS)是将拉曼光谱和纳米技术相结合, 监测农药在植物体内动态分布状况的一种方法, 是探测界面特性、分子间相互作用和分子结构的一种高灵敏度的分析检测技术(Hou et al., 2017; 王世芳等, 2019)。相较于色谱技术, SERS能实现更低检测限的农药含量测定, 并且操作简单, 检测速度快, 可以实现原位取样而对植物无侵害性。近年来, 研究主要集中于利用SERS实时监测农药在植物体内的渗透和迁移行为(Yang et al., 2016b; Hou et al., 2017)。Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布。结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动。随着施药浓度的增加, 检测信号所需的时间减少。

5.5 色谱分析方法

5.5.1 高效液相色谱法

高效液相色谱(HPLC)法是测定植物中农药含量的常用方法, 具有高灵敏度和高选择性等优点。Wang等(2018)利用HPLC测定了PGA包覆的阿维菌素纳米粒子在水稻根、茎及叶部的含量。Ge等(2017)利用HPLC测定了吡虫啉、噻虫嗪和苯醚甲环唑(difenoconazole)添加于土壤后在水稻植株中的吸收和转运。

5.5.2 高效液相色谱串联质谱

高效液相色谱串联质谱(HPLC-MS)是以液相色谱作为分离系统, 质谱为检测系统, 将分离与检测联结起来的一种新型技术, 具有分析范围广、灵敏度高、检测限低和分析快等特点(曹海微, 2014)。Zhu等(2018)利用HPLC-MS测定了介孔二氧化硅纳米粒子包覆的氰菌胺(fenoxanil)暴露于水稻根部后, 根部、茎部、叶片、土壤以及水中氰菌胺的含量。Zhao等(2017)利用HPLC-MS研究了嘧霉胺-介孔二氧化硅纳米粒子在黄瓜叶片上的迁移和分布。结果表明, 嘧霉胺-介孔二氧化硅纳米粒子在黄瓜植株中可能更倾向于向上迁移。

5.6 其它方法

除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移。Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布。Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累。Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为。电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014)。Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量。未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障。

6 纳米农药的生物安全性

纳米农药以灌根或叶面喷施方式作用于植物不同部位, 经植物吸收、迁移和转运, 最终分布于植物的不同组织器官。残留于植物体表或体内的纳米农药有可能会对作物、农产品和生态系统产生不利影响(Masciangioli and Zhang, 2003)。因此, 对于纳米农药与植物相互作用的研究不应局限于纳米农药在植物体内迁移路径及作用机制, 还应对其在植物体内的动态消解、残留行为及毒理学进行深入研究。

农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c)。Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感。Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性。暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响。Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险。Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长。纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019)。

7 前景与展望

2019年4月, 国际纯粹与应用化学联合会首次公布了未来将改变世界的十大化学新兴技术, 其中纳米农药居首。我国也将纳米药物列入国家《农业绿色发展技术导则》。利用纳米技术创制高效、安全、低残留的纳米农药已成为绿色农药创新发展的必然趋势。揭示纳米农药在植物中的吸收与转运特征, 阐明纳米农药与植物的互作方式, 可为高效绿色的纳米载药系统的优化设计、纳米农药提质增效机制及其环境效应与毒理学研究奠定理论基础, 对提高农药在植物保护中的有效利用率、降低残留污染及建立合理的施药方式具有重要意义(Wibowo et al., 2014; Athanassiou et al., 2018; Yan et al., 2019)。然而, 目前研究纳米农药在植物体内的吸收与转运存在一定的困难。首先, 在测定植物体内纳米农药含量时, 基于样品种类的多样性、样品基质的复杂性以及农药活性成分含量的痕量性, 样品的前处理技术至关重要。目前, 较为新型的方法有固相萃取法、QuEChERS和凝胶渗透色谱等 (郑永权, 2013)。其次, 农药进入植物体内后, 与植物间的互作机制较为复杂, 其有效成分会在植物体内发生降解代谢等一系列生物化学过程, 导致有效成分的含量在植物体内呈动态变化, 增加了检测难度。因此, 需要多种手段联合使用、发展新型检测技术来提高药物动态测量的准确性, 或者建立数学模型来模拟纳米农药在植物体内的动态消解过程, 从而更加精准地分析纳米农药的吸收迁移行为。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

曹海微 (2014). 高效液相色谱-质谱联用技术测定食品中有害物质残留分析方法的研究
硕士论文. 长春: 吉林大学. pp. 1-92.

[本文引用: 1]

陈娟妮, 蔡璘, 李石力, 杨亮, 丁伟 (2019). 纳米技术在植物病害防控中应用的研究进展
植物保护学报 46, 142-150.

[本文引用: 1]

何顺, 高云昊, 万虎, 马洪菊, 李建洪 (2016). 基于介孔二氧化硅纳米粒子的农药可控释放研究进展
农药学学报 18, 416-423.

[本文引用: 1]

李云桂 (2011). 典型有机污染物在植物角质层上的吸附行为与跨膜过程
博士论文. 杭州: 浙江大学. pp. 1-130.

[本文引用: 1]

刘支前 (1992). 除草剂在植物体内的传导机理
植物生理学通讯 28, 226-229.

[本文引用: 3]

钱玲 (2005). 环境化学物的生殖毒性研究进展
环境与职业医学 22, 167-171.

[本文引用: 1]

陶琦 (2017). 质外体途径在超积累植物东南景天镉吸收与运输中的作用及其调控机制
博士论文. 杭州: 浙江大学. pp. 1-148.

[本文引用: 3]

王润生, 刘义灏, 毛克亚 (2018). 磁性纳米颗粒细胞内吞评价方法研究及进展
中国组织工程研究 22, 2921-2926.

[本文引用: 1]

王世芳, 韩平, 刘珊珊, 罗娜 (2019). 表面增强拉曼散射基底的制备及其在农药残留检测中的应用
食品安全质量检测学报 10, 394-399.

[本文引用: 1]

谢寅峰, 姚晓华 (2009). 纳米TiO2对油松种子萌发及幼苗生长生理的影响
西北植物学报 29, 2013-2018.

[本文引用: 1]

姚安庆, 杨健 (2012). 农药在植物体内的传导方式和农药传导生物学
中国植保导刊 32, 14-18, 22.

[本文引用: 1]

张红霞, 袁凤辉, 关德新, 王安志, 吴家兵, 金昌杰 (2017). 维管植物木质部水分传输过程的影响因素及研究进展
生态学杂志 36, 3281-3288.

[本文引用: 1]

郑永权 (2013). 农药残留研究进展与展望
植物保护 39, 90-98.

[本文引用: 1]

Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016). Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles
J Plant Nutr 39, 99-105.

[本文引用: 2]

Alsayeda H, Pascal-Lorber S, Nallanthigal C, Debrauwer L, Laurent F (2008). Transfer of the insecticide [14C] imidacloprid from soil to tomato plants
Environ Chem Lett 6, 229-234.

[本文引用: 1]

Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015). Nanoscale copper in the soil-plant system-toxicity and underlying potential mechanisms
Environ Res 138, 306-325.

URLPMID:25749126 [本文引用: 1]

Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016). Transport phenomena of nanoparticles in plants and animals/humans
Environ Res 151, 233-243.

URLPMID:27504871 [本文引用: 2]

Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014). Effects of engineered nanomaterials on plants growth: an overview
Sci World J 2014,641759.

[本文引用: 1]

Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018). Nanoparticles for pest control: current status and future perspectives
J Pest Sci 91, 1-15.

[本文引用: 1]

Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F (2012). Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters
J Hazard Mater 219-222, 111-118.

[本文引用: 1]

Avellan A, Yun J, Zhang YL, Spielman-Sun E, Unrine JM, Thieme J, Li JR, Lombi E, Bland G, Lowry GV (2019). Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat
Acs Nano 13, 5291-5305.

[本文引用: 3]

Baruah S, Dutta J (2009). Nanotechnology applications in pollution sensing and degradation in agriculture: a review
Environ Chem Lett 7, 191-204.

[本文引用: 1]

Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, de Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS (2019). A mechanistic view of interactions of a nanoherbicide with target organism
J Agric Food Chem 67, 4453-4462.

URLPMID:30933503 [本文引用: 3]

Buchholz A (2006). Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway
J Exp Bot 57, 2501-2513.

DOI:10.1093/jxb/erl023URLPMID:16829545 [本文引用: 1]
Systemic crop protection products are commonly sprayed onto foliage, whereupon the active substances must penetrate into the leaves in order to become biologically active. Penetration of the plant cuticle is the rate-limiting step. The diffusion of organic non-electrolytes within cuticles is a purely physical process that can be described and analysed in the same way as is done for diffusion in synthetic polymer membranes. Solute mobilities in cuticles vary considerably between plant species. For a given species they decrease with increasing solute size, and this size selectivity holds for all of the plant species investigated so far. Wax extraction from leaf cuticles increases the mobility of solutes tremendously, but size selectivity is not affected. Furthermore, diffusion within plant cuticles is extremely temperature dependent. An analogous increase in solute mobility can be achieved by using accelerators, which enhance the fluidity of the polymer matrix and of the waxes. The effects of temperature and plasticizers on the diffusion of non-electrolytes in wax and the cutin matrix have been used to characterize the nature of the lipophilic pathway. The 'free volume' theory can be used to explain the influence of the size and shape of the solute, and its dependence on temperature. The physico-chemical nature of the diffusion pathway has been shown, by thermodynamic analysis, to be identical for a wide range of solute lipophilicities. This approach also explains the mode of action and the intrinsic activity of plasticizers.

Campos EVR, Oliveira JL, Zavala-Betancourt SA, Ledezma AS, Arias E, Moggio I, Romero J, Fraceto LF (2016). Development of stained polymeric nanocapsules loaded with model drugs: use of a fluorescent poly (phenyleneethynylene)
Colloids Surf B Biointerfaces 147, 442-449.

DOI:10.1016/j.colsurfb.2016.08.031URLPMID:27573038 [本文引用: 1]
A phenyleneethynylene polymer (here denoted pPy3E-sqS) was synthesized and characterized by UV-vis spectroscopy, fluorescence spectroscopy, and TEM, and was used for the staining of polymeric nanocapsules. The nanocapsules presented good temporal stability, without changes in shape or fluorescence, and were suitable for use in drug release systems. The mean particle size was around 430nm, the polydispersity index was below 0.2, and the zeta potential was around -13mV. The release kinetics is one of the most important factors to consider in drug delivery systems, and here it was observed that nanocapsules containing the fluorescent polymer still maintained the ability to modulate the release of the fungicides tebuconazole and carbendazim (used as model drugs) after 4days. Preliminary results indicated that staining with the fluorescent pPy3E-sqS polymer could be used as a valuable tool to track the behavior of polymeric systems in the environment. However, further studies will be needed to clarify the environmental behavior and possible toxicity.

Carpita N, Sabularse D, Montezinos D, Delmer DP (1979). Determination of the pore size of cell walls of living plant cells
Science 205, 1144-1147.

DOI:10.1126/science.205.4411.1144URLPMID:17735052 [本文引用: 1]
The limiting diameter of pores in the walls of living plant cells through which molecules can freely pass has been determined by a solute exclusion technique to be 35 to 38 angstroms for hair cells of Raphanus sativus roots and fibers of Gossypium hirsutum, 38 to 40 angstroms for cultured cells of Acer pseudoplatanus, and 45 to 52 angstroms for isolated palisade parenchyma cells of the leaves of Xanthium strumarium and Commelina communis. These results indicate that molecules with diameters larger than these pores would be restricted in their ability to penetrate such a cell wall, and that such a wall may represent a more significant barrier to cellular communication than has been previously assumed.

Chen XB, Mao SS (2007). Titanium dioxide nanomaterials:? synthesis, properties, modifications, and applications
Chem Rev 107, 2891-2959.

DOI:10.1021/cr0500535URLPMID:17590053 [本文引用: 1]

Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015). Aggregation, dissolution, and transformation of copper nanoparticles in natural waters
Environ Sci Technol 49, 2749-2756.

URLPMID:25664878 [本文引用: 1]

Cui B, Feng L, Wang CX, Yang DS, Yu ML, Zeng ZH, Wang Y, Sun CJ, Zhao X, Cui HX (2016). Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization
PLoS One 11, e0160877.

URLPMID:27500828 [本文引用: 1]

Davis RA, Rippner DA, Hausner SH, Parikh SJ, McElrone AJ, Sutcliffe JL (2017). In vivo tracking of copper-64 radiolabeled nanoparticles in Lactuca sativa
Environ Sci Technol 51, 12537-12546.

DOI:10.1021/acs.est.7b03333URLPMID:28954194 [本文引用: 1]
Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a

Dawkar VV, Chikate YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP (2013). Molecular insights into resistance mechanisms of lepidopteran insect pests against toxicants
J Proteome Res 12, 4727-4737.

[本文引用: 1]

de la Rosa G, García-Casta?eda C, Vázquez-Nú?ez E, Alonso-Castro áJ, Basurto-Islas G, Mendoza á, Cruz-Jiménez G, Molina C (2017). Physiological and biochemical response of plants to engineered NMs: implications on future design
Plant Physiol Biochem 110, 226-235.

DOI:10.1016/j.plaphy.2016.06.014URLPMID:27328789 [本文引用: 1]
Engineered nanomaterials (ENMs) form the basis of a great number of commodities that are used in several areas including energy, coatings, electronics, medicine, chemicals and catalysts, among others. In addition, these materials are being explored for agricultural purposes. For this reason, the amount of ENMs present as nanowaste has significantly increased in the last few years, and it is expected that ENMs levels in the environment will increase even more in the future. Because plants form the basis of the food chain, they may also function as a point-of-entry of ENMs for other living systems. Understanding the interactions of ENMs with the plant system and their role in their potential accumulation in the food chain will provide knowledge that may serve as a decision-making framework for the future design of ENMs. The purpose of this paper was to provide an overview of the current knowledge on the transport and uptake of selected ENMs, including Carbon Based Nanomaterials (CBNMs) in plants, and the implication on plant exposure in terms of the effects at the macro, micro, and molecular level. We also discuss the interaction of ENMs with soil microorganisms. With this information, we suggest some directions on future design and areas where research needs to be strengthened. We also discuss the need for finding models that can predict the behavior of ENMs based on their chemical and thermodynamic nature, in that few efforts have been made within this context.

Deng YH, Zhao HJ, Qian Y, L, Wang BB, Qiu XQ (2016). Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance
Ind Crops Prod 87, 191-197.

[本文引用: 1]

Deng YQ, White JC, Xing BS (2014). Interactions between engineered nanomaterials and agricultural crops: implications for food safety
J Zhejiang Univ Sci A 15, 552-572.

[本文引用: 2]

Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006). Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves
J Exp Bot 57, 381-390.

URLPMID:16371401 [本文引用: 1]

Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017). Nanotechnology: the new perspective in precision agriculture
Biotechnol Rep 15, 11-23.

[本文引用: 1]

Eichert T, Goldbach HE (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway
Physiol Plant 132, 491-502.

[本文引用: 3]

Eichert T, Kurtz A, Steiner U, Goldbach HE (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and watersuspended nanoparticles
Physiol Plant 134, 151-160.

URLPMID:18494856 [本文引用: 1]

Elmer W, White JC (2018). The future of nanotechnology in plant pathology
Annu Rev Phytopathol 56, 111-133.

DOI:10.1146/annurev-phyto-080417-050108URLPMID:30149792 [本文引用: 1]
Engineered nanoparticles are materials between 1 and 100 nm and exist as metalloids, metallic oxides, nonmetals, and carbon nanomaterials and as functionalized dendrimers, liposomes, and quantum dots. Their small size, large surface area, and high reactivity have enabled their use as bactericides/ fungicides and nanofertilizers. Nanoparticles can be designed as biosensors for plant disease diagnostics and as delivery vehicles for genetic material, probes, and agrichemicals. In the past decade, reports of nanotechnology in phytopathology have grown exponentially. Nanomaterials have been integrated into disease management strategies and diagnostics and as molecular tools. Most reports summarized herein are directed toward pathogen inhibition using metalloid/metallic oxide nanoparticles as bactericides/fungicides and as nanofertilizers to enhance health. The use of nanoparticles as biosensors in plant disease diagnostics is also reviewed. As global demand for food production escalates against a changing climate, nanotechnology could sustainably mitigate many challenges in disease management by reducing chemical inputs and promoting rapid detection of pathogens.

Gao JP, Garrison AW, Hoehamer C, Mazur CS, Lee WN (2000). Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants
J Agric Food Chem 48, 6114-6120.

DOI:10.1021/jf9904968URLPMID:11312784 [本文引用: 2]
The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (Elodea canadensis). The decay profile of these OP pesticides from the aqueous medium adhered to first-order kinetics. However, extent of decay and rate constants depended on both the physicochemical properties of the OP compounds and the nature of the plant species. Malathion and demeton-S-methyl exhibited similar transformation patterns in all three plants: 29-48 and 83-95% phytotransformation, respectively, when calculated by mass recovery balance during an 8-day incubation. No significant disappearance and phytotransformation of crufomate occurred in elodea over 14 days, whereas 17-24% degraded in the other plants over the same incubation period. Using enzyme extracts derived from duckweed, 15-25% of the three pesticides were transformed within 24 h of incubation, which provided evidence for the degradation of the OP compounds by an organophosphorus hydrolase (EC 3.1.8.1) or multiple enzyme systems. The results of this study showed that selected aquatic plants have the potential to accumulate and to metabolize OP compounds; it also provided knowledge for potential use in phytoremediation processes.

Ge J, Cui K, Yan HQ, Li Y, Chai YY, Liu XJ, Cheng JF, Yu XY (2017). Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants
Environ Pollut 226, 479-485.

DOI:10.1016/j.envpol.2017.04.043URLPMID:28454637 [本文引用: 3]
Uptake and translocation of imidacloprid (IMI), thiamethoxam (THX) and difenoconazole (DFZ) in rice plants (Oryza sativa L.) were investigated with a soil-treated experiment at two application rates: field rate (FR) and 10*FR under laboratory conditions. The dissipation of the three compounds in soil followed the first-order kinetics and DFZ showed greater half-lives than IMI and THX. Detection of the three compounds in rice tissues indicated that rice plants could take up and accumulate these pesticides. The concentrations of IMI and THX detected in leaves (IMI, 10.0 and 410 mg/kg dw; THX, 23.0 and 265 mg/kg dw) were much greater than those in roots (IMI, 1.37 and 69.3 mg/kg dw; THX, 3.19 and 30.6 mg/kg dw), which differed from DFZ. The DFZ concentrations in roots (15.6 and 79.1 mg/kg dw) were much greater than those in leaves (0.23 and 3.4 mg/kg dw). The bioconcentration factor (BCF), representing the capability of rice to accumulate contaminants from soil into plant tissues, ranged from 1.9 to 224.3 for IMI, from 2.0 to 72.3 for THX, and from 0.4 to 3.2 for DFZ at different treated concentrations. Much higher BCFs were found for IMI and THX at 10*FR treatment than those at FR treatment, however, the BCFs of DFZ at both treatments were similar. The translocation factors (TFs), evaluating the capability of rice to translocate contaminants from the roots to the aboveground parts, ranged from 0.02 to 0.2 for stems and from 0.02 to 9.0 for leaves. The tested compounds were poorly translocated from roots to stems, with a TF below 1. However, IMI and THX were well translocated from roots to leaves. Clothianidin (CLO), the main metabolite of THX, was detected at the concentrations from 0.02 to 0.5 mg kg(-1) in soil and from 0.07 to 7.0 mg kg(-1) in plants. Concentrations of CLO in leaves were almost 14 times greater than those in roots at 10*FR treatment.

Ge J, Lu MX, Wang DL, Zhang ZY, Liu XJ, Yu XY (2016). Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake
Chemosphere 144, 201-206.

DOI:10.1016/j.chemosphere.2015.08.072URLPMID:26363321 [本文引用: 2]
Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment.

Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma XM, Berg RH, Geisler M (2014). Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana
Nanomaterials 4, 301-318.

DOI:10.3390/nano4020301URLPMID:28344224 [本文引用: 3]
Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes) and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 mug/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 mug/L AgNPs. AgNPs followed three routes: (1) At seven days after planting (DAP) at S1.0 (stages defined by Boyes et al. 2001 [41]), AgNPs attached to the surface of primary roots and then entered their root tips; (2) At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3) At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ.

Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li KG, Huang Y, Chen YS, Kolmakov A, Ma XM (2012). Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana
Nanotoxicology 7, 323-337.

DOI:10.3109/17435390.2012.658094URLPMID:22263604 [本文引用: 3]
The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.

Gogos A, Knauer K, Bucheli TD (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities
J Agric Food Chem 60, 9781-9792.

DOI:10.1021/jf302154yURL [本文引用: 1]

Guan WX, Tang LM, Wang Y, Cui HX (2018). Fabrication of an effective avermectin nanoemulsion using a cleavable succinic ester emulsifier
J Agric Food Chem 66, 7568-7576.

URLPMID:29976065 [本文引用: 1]

Hischem?ller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009). In vivo imaging of the uptake of upconversion nanoparticles by plant roots
J Biomed Nanotechnol 5, 278-284.

DOI:10.1166/jbn.2009.1032URLPMID:20055009 [本文引用: 1]
Watering of Phalaenopsis and Arabidopsis plants with an aqueous colloidal solution of NaYF4:Yb,Er nanoparticles leads to uptake and transport of nanoparticles into the plants within a few days. Characteristic upconversion emission of the particles can be excited in the shoot and the leaves of the plants. Uptake of particles by the root was studied by confocal laser-scanning microscopy using excitation in the near-infrared. We demonstrated that nanoparticles are able to enter the stele of the plant root and thus the long distance transport system despite their relatively large size in comparison to the size of the structures responsible for the transport.

Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001). The exodermis: a variable apoplastic barrier
J Exp Bot 52, 2245-2264.

DOI:10.1093/jexbot/52.365.2245URLPMID:11709575 [本文引用: 1]
The exodermis (hypodermis with Casparian bands) of plant roots represents a barrier of variable resistance to the radial flow of both water and solutes and may contribute substantially to the overall resistance. The variability is a result largely of changes in structure and anatomy of developing roots. The extent and rate at which apoplastic exodermal barriers (Casparian bands and suberin lamellae) are laid down in radial transverse and tangential walls depends on the response to conditions in a given habitat such as drought, anoxia, salinity, heavy metal or nutrient stresses. As Casparian bands and suberin lamellae form in the exodermis, the permeability to water and solutes is differentially reduced. Apoplastic barriers do not function in an all-or-none fashion. Rather, they exhibit a selectivity pattern which is useful for the plant and provides an adaptive mechanism under given circumstances. This is demonstrated for the apoplastic passage of water which appears to have an unusually high mobility, ions, the apoplastic tracer PTS, and the stress hormone ABA. Results of permeation properties of apoplastic barriers are related to their chemical composition. Depending on the growth regime (e.g. stresses applied) barriers contain aliphatic and aromatic suberin and lignin in different amounts and proportion. It is concluded that, by regulating the extent of apoplastic barriers and their chemical composition, plants can effectively regulate the uptake or loss of water and solutes. Compared with the uptake by root membranes (symplastic and transcellular pathways), which is under metabolic control, this appears to be an additional or compensatory strategy of plants to acquire water and solutes.

Hou RY, Tong MM, Gao WJ, Wang L, Yang TX, He LL (2017). Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS
Food Chem 237, 305-311.

URLPMID:28764001 [本文引用: 2]

Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms
Am J Bot 96, 409-419.

DOI:10.3732/ajb.0800248URLPMID:21628196 [本文引用: 1]
Pit membranes between xylem vessels have been suggested to have functional adaptive traits because of their influence on hydraulic resistance and vulnerability to embolism in plants. Observations of intervessel pit membranes in 26 hardwood species using electron microscopy showed significant variation in their structure, with a more than 25-fold difference in thickness (70-1892 nm) and observed maximum pore diameter (10-225 nm). In some SEM images, pit membrane porosity was affected by sample preparation, although pores were resolvable in intact pit membranes of many species. A significant relationship (r(2) = 0.7, P = 0.002) was found between pit membrane thickness and maximum pore diameter, indicating that the thinner membranes are usually more porous. In a subset of nine species, maximum pore diameter determined from SEM was correlated with pore diameter calculated from air-seeding thresholds (r(2) = 0.8, P < 0.001). Our data suggest that SEM images of intact pit membranes underestimate the porosity of pit membranes in situ. Pit membrane porosity based on SEM offers a relative estimate of air-seeding thresholds, but absolute pore diameters must be treated with caution. The implications of variation in pit membrane thickness and porosity to plant function are discussed.

Judy JD, Bertsch PM (2014). Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems
Adv Agron 123, 1-64.

DOI:10.1016/B978-0-12-420225-2.00001-7URL [本文引用: 2]
The use of manufactured nanomaterials (MNMs) in consumer products has increased steadily over the past decade. MNMs from these consumer products are being discharged into waste streams and subsequently entering terrestrial ecosystems, primarily via land application of biosolids. As a result, the concentrations of MNMs in terrestrial ecosystems are increasing exponentially. Despite this, the majority of research investigating the bioavailability, fate, and effects of MNMs has focused on aquatic ecosystems. We review the current state of the knowledge on the fate of MNMs in terrestrial ecosystems as well as their effects on critical terrestrial ecoreceptors, including plants, bacteria, fungi, and soil invertebrates. While research on the bioavailability, toxicity, and ultimate fate of MNMs in terrestrial ecosystems is in its infancy, we conclude that there are critical knowledge gaps and an incomplete picture is emerging, with many studies reporting contradictory results. We also conclude that major discrepancies in the literature are primarily related to methodological and experimental shortcomings, such as inadequate MNM characterization, lack of consideration of MNM aggregation or dissolution, lack of proper controls, or the use of environmentally irrelevant MNM concentrations and/or exposure conditions. However, it is now evident that, under certain circumstances, MNMs are bioavailable and toxic to several key terrestrial ecoreceptors. It is also evident that additional systematic research focusing on the most environmentally relevant MNMs, including MNM transformation products and exposure conditions, is required to assess the risks posed to terrestrial ecosystems by nanotechnology.

Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating
Environ Sci Technol 46, 8467-8474.

DOI:10.1021/es3019397URLPMID:22784043 [本文引用: 1]
We used the model organisms Nicotiana tabacum L. cv Xanthi (tobacco) and Triticum aestivum (wheat) to investigate plant uptake of 10-, 30-, and 50-nm diameter Au manufactured nanomaterials (MNMs) coated with either tannate (T-MNMs) or citrate (C-MNMs). Primary particle size, hydrodynamic size, and zeta potential were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and electrophoretic mobility measurements, respectively. Plants were exposed to NPs hydroponically for 3 or 7 days for wheat and tobacco, respectively. Volume averaged Au concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). Spatial distribution of Au in tissue samples was determined using laser ablation ICP-MS (LA-ICP-MS) and scanning X-ray fluorescence microscopy (muXRF). Both C-MNMs and T-MNMs of each size treatment bioaccumulated in tobacco, but no bioaccumulation of MNMs was observed for any treatment in wheat. These results indicate that MNMs of a wide range of size and with different surface chemistries are bioavailable to plants, provide mechanistic information regarding the role of cell wall pores in plant uptake of MNMs, and raise questions about the importance of plant species to MNM bioaccumulation.

Kah M, Beulke S, Tiede K, Hofmann T (2013). Nanopesticides: state of knowledge, environmental fate, and exposure modeling
Crit Rev Environ Sci Technol 43, 1823-1867.

[本文引用: 1]

Kah M, Hofmann T (2014). Nanopesticide research: current trends and future priorities
Environ Int 63, 224-235.

DOI:10.1016/j.envint.2013.11.015URLPMID:24333990 [本文引用: 2]
The rapid developments in nanopesticide research over the last two years have motivated a number of international organizations to consider potential issues relating to the use of nanotechnology for crop protection. This analysis of the latest research trends provides a useful basis for identifying research gaps and future priorities. Polymer-based formulations have received the greatest attention over the last two years, followed by formulations containing inorganic nanoparticles (e.g., silica, titanium dioxide) and nanoemulsions. Investigations have addressed the lack of information on the efficacy of nanopesticides and a number of products have been demonstrated to have greater efficacy than their commercial counterparts. However, the mechanisms involved remain largely unknown and further research is required before any generalizations can be made. There is now increased motivation to develop nanopesticides that are less harmful to the environment than conventional formulations, and future investigations will need to assess whether any promising products developed are able to compete with existing formulations, in terms of both cost and performance. Investigations into the environmental fate of nanopesticides remain scarce, and the current state of knowledge does not appear to be sufficient for a reliable assessment to be made of their associated benefits and risks. A great deal of research will therefore be required over the coming years, and will need to include (i) the development of experimental protocols to generate reliable fate properties, (ii) investigations into the bioavailability and durability of nanopesticides, and (iii) evaluation of current environmental risk assessment approaches, and their refinement where appropriate.

Knowles A (2007). Recent developments of safer formulations of agrochemicals
Environmentalist 28, 35-44.

[本文引用: 1]

Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N (2015). Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid
Int J Biol Macromol 81, 631-637.

URLPMID:26321424 [本文引用: 1]

Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019). Nano-based smart pesticide formulations: emerging opportunities for agriculture
J Control Release 294, 131-153.

DOI:10.1016/j.jconrel.2018.12.012URLPMID:30552953 [本文引用: 1]
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.

Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, Wanzer MB, Woloschak GE, Smalle JA (2010). Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana
Nano Lett 10, 2296-2302.

URLPMID:20218662 [本文引用: 1]

Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014a). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation
J Hazard Mater 264, 98-106.

[本文引用: 1]

Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L, Ouerdane L, Legros S, Sarret G (2014b). Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure
J Hazard Mater 273, 17-26.

DOI:10.1016/j.jhazmat.2014.03.014URLPMID:24709478 [本文引用: 1]
Engineered TiO2 nanoparticles (TiO2-NPs) are present in a large variety of consumer products, and are produced in largest amount. The building industry is a major sector using TiO2-NPs, especially in paints. The fate of NPs after their release in the environment is still largely unknown, and their possible transfer in plants and subsequent impacts have not been studied in detail. The foliar transfer pathway is even less understood than the root pathway. In this study, lettuces were exposed to pristine TiO2-NPs and aged paint leachate containing TiO2-NPs and microparticles (TiO2-MPs). Internalization and in situ speciation of Ti were investigated by a combination of microscopic and spectroscopic techniques. Not only TiO2-NPs pristine and from aged paints, but also TiO2-MPs were internalized in lettuce leaves, and observed in all types of tissues. No change in speciation was noticed, but an organic coating of TiO2-NPs is likely. Phytotoxicity markers were tested for plants exposed to pristine TiO2-NPs. No acute phytotoxicity was observed; variations were only observed in glutathione and phytochelatin levels but remained low as compared to typical values. These results obtained on the foliar uptake mechanisms of nano- and microparticles are important in the perspective of risk assessment of atmospheric contaminations.

Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase
Sci Total Environ 431, 197-208.

URLPMID:22684121 [本文引用: 2]

Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018). Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review
Environ Toxicol Chem 37, 2029-2063.

DOI:10.1002/etc.4147URLPMID:29633323 [本文引用: 1]
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. (c) 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

Lee WM, An YJ, Yoon H, Kweon HS (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat(Triticum aestivum): plant agar test for water-insoluble nanoparticles
Environ Toxicol Chem 27, 1915-1921.

URLPMID:19086317 [本文引用: 1]

Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017). Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice
Nanotoxicology 11, 699-709.

DOI:10.1080/17435390.2017.1344740URLPMID:28627335 [本文引用: 1]
The widespread use of silver nanoparticles (AgNPs) raises concerns both about their accumulation in crops and human exposure via crop consumption. Plants take up AgNPs through their leaves and roots, but foliar uptake has been largely ignored. To better understand AgNPs-plant interactions, we compared the uptake, phytotoxicity and size distribution of AgNPs in soybean and rice following root versus foliar exposure. At similar AgNP application levels, foliar exposure led to 17-200 times more Ag bioaccumulation than root exposure. Root but not foliar exposure significantly reduced plant biomass, while root exposure increased the malondialdehyde and H2O2 contents of leaves to a larger extent than did foliar exposure. Following either root or foliar exposure, Ag-containing NPs larger (36.0-48.9 nm) than the originally dosed NPs (17-18 nm) were detected within leaves. These particles were detected using a newly developed macerozyme R-10 tissue extraction method followed by single-particle inductively coupled plasma mass spectrometry. In response to foliar exposure, these NPs were stored in the cell wall and plamalemma of leaves. NPs were also detected in planta following Ag ion exposure, indicating their in vivo formation. Leaf-to-leaf and root-to-leaf translocation of NPs in planta was observed but the former did not alter the size distribution of the NPs. Our observations point to the possibility that fruits, seeds and other edible parts may become contaminated by translocation processes in plants exposed to AgNPs. These results are an important contribution to improve the risk assessment of NPs under environmental exposure scenarios.

Liang J, Yu ML, Guo LY, Cui B, Zhao X, Sun CJ, Wang Y, Liu GQ, Cui HX, Zeng ZH (2018a). Bioinspired development of P(St-MAA)-Avermectin nanoparticles with high affinity for foliage to enhance folia retention
J Agric Food Chem 66, 6578-6584.

URLPMID:28727420 [本文引用: 2]

Liang WL, Yu AX, Wang GD, Zheng F, Hu PT, Jia JL, Xu HH (2018b). A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth
Carbohydr Polym 199, 437-444.

DOI:10.1016/j.carbpol.2018.07.042URLPMID:30143149 [本文引用: 1]
To relieve the environmental pressure from overusing conventional pesticides formulations, the study of a new environmentally friendly and multifunctional formulation is so very urgent. Here, we firstly reported a lanthanum-modified chitosan oligosaccharide nanoparticles (Cos-La) prepared by a simple ionic cross-linking method to load avermectin (AVM). The loading capacity of AVM-loaded Cos-La was up to 46.3%. As a water-based formulation, Cos-La could effectively improve the persistence of AVM over 25% and reduce the photolysis rate of AVM around 20%. Furthermore, different concentrations of Cos-La were used to cultivate rice. The treated rice exhibited growth promotion effects in terms of plant height and fresh weight. With the increase in the treating concentration of Cos-La nanoparticles, the wettability of rice tended to reduce, which indicated it might lower the risk of plant diseases and pests. Further, Cos-La treated rice showed significant defense response for rice blast and the effect was two times more than equivalent Cos and LaCl3.7H2O mixture solution. These results showed that Cos-La not only could improve the stability and persistence of pesticides, but also could effectively promote the growth and improve the disease resistance of crops. Cos-La nanoparticles would be a promising and environmentally friendly nanocarrier of pesticides in agricultural scenarios.

Liu Y, Wei FL, Wang YY, Zhu GN (2011). Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants
Colloids Surf A Physicochem Eng Asp 389, 90-96.

[本文引用: 1]

Lossbroek TG, den Ouden H (1988). Tests with a solid solution of permethrin in a degradable polymer formulation as stomach and contact poison on Mamestra brassicae (Lep., Noctuidae) and Calandra granaria (Col., Curculionidae)
J Appl Entomol 105, 355-359.

[本文引用: 1]

Lucas WJ, Lee JY (2004). Plasmodesmata as a supracellular control network in plants
Nat Rev Mol Cell Biol 5, 712-726.

DOI:10.1038/nrm1470URLPMID:15340379 [本文引用: 1]
The evolution of intercellular communication had an important role in the increasing complexity of both multicellular and supracellular organisms. Plasmodesmata, the intercellular organelles of the plant kingdom, establish an effective pathway for local and long-distance signalling. In higher plants, this pathway involves the trafficking of proteins and various forms of RNA that function non-cell-autonomously to affect developmental programmes.

Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation
Sci Total Environ 408, 3053-3061.

DOI:10.1016/j.scitotenv.2010.03.031URLPMID:20435342 [本文引用: 3]
The rapid development and potential release of engineered nanoparticles (ENPs) have raised considerable concerns due to the unique properties of nanomaterials. An important aspect of the risk assessment of ENPs is to understand the interactions of ENPs with plants, an essential base component of all ecosystems. The impact of ENPs on plant varies, depending on the composition, concentration, size and other important physical chemical properties of ENPs and plant species. Both enhancive and inhibitive effects of ENPs on plant growth at different developmental stages have been documented. ENPs could be potentially taken up by plant roots and transported to shoots through vascular systems depending upon the composition, shape, size of ENPs and plant anatomy. Despite the insights gained through many previous studies, many questions remain concerning the fate and behavior of ENPs in plant systems such as the role of surface area or surface activity of ENPs on phytotoxicity, the potential route of entrance to plant vascular tissues and the role of plant cell walls in internalization of ENPs. This article reviewed the current knowledge on the phytotoxicity and interactions of ENPs with plants at seedling and cellular levels and discussed the information gap and some immediate research needs to further our knowledge on this topic.

Masciangioli T, Zhang WX (2003). Peer reviewed: environmental technologies at the nanoscale
Environ Sci Technol 37, 102A-108A.

URLPMID:12666906 [本文引用: 1]

Miralles P, Church TL, Harris AT (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants
Environ Sci Technol 46, 9224-9239.

URLPMID:22892035 [本文引用: 2]

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016). Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients
Biol Fertil Soils 52, 423-437.

[本文引用: 1]

Müller RH, Peters K (1998). Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique
Int J Pharm 160, 229-237.

[本文引用: 1]

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010). Nanoparticulate material delivery to plants
Plant Sci 179, 154-163.

[本文引用: 1]

Nath J, Dror I, Landa P, Motkova K, Vanek T, Berkowitz B (2019). Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil
Environ Chem 16, 391-400.

[本文引用: 1]

Nath J, Dror I, Landa P, Vanek T, Kaplan-Ashiri I, Berkowitz B (2018). Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants
Environ Pollut 242, 1827-1837.

DOI:10.1016/j.envpol.2018.07.084URLPMID:30076052 [本文引用: 1]
In parallel to technological advances and ever-increasing use of nanoparticles in industry, agriculture and consumer products, the potential ecotoxicity of nanoparticles and their potential accumulation in ecosystems is of increasing concern. Because scientific reports raise a concern regarding nanoparticle toxicity to plants, understanding of their bioaccumulation has become critical and demands more research. Here, the synthesis of isotopically-labeled nanoparticles of silver, copper and zinc oxide is reported; it is demonstrated that while maintaining the basic properties of the same unlabeled (

Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi
Ecotoxicology 17, 372-386.

DOI:10.1007/s10646-008-0214-0URLPMID:18461442 [本文引用: 1]
Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated.

Nguyen MH, Lee JS, Hwang IC, Park HJ (2014). Evaluation of penetration of nanocarriers into red pepper leaf using confocal laser scanning microscopy
Crop Prot 66, 61-66.

[本文引用: 2]

Nguyen MH, Nguyen THN, Hwang IC, Bui CB, Park HJ (2016). Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy
Crop Prot 87, 25-30.

[本文引用: 3]

Ogunkunle CO, Jimoh MA, Asogwa NT, Viswanathan K, Vishwakarma V, Fatoba PO (2018). Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate
Ecotox Environ Safe 155, 86-93.

[本文引用: 2]

Ouda SM (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens,Alternaria alternata and Botrytis cinerea
Res J Microbiol 9, 34-42.

[本文引用: 1]

Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, Baldan B, Pasqua G (2017). Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection
Plant Cell Rep 36, 1917-1928.

URLPMID:28913707 [本文引用: 1]

Pan ZZ, Cui B, Zeng ZH, Feng L, Liu GQ, Cui HX, Pan HY (2015). Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method
J Nanomater 2015,123496.

[本文引用: 1]

Peng C, Duan DC, Xu C, Chen YS, Sun LJ, Zhang H, Yuan XF, Zheng LR, Yang YQ, Yang JJ, Zhen XJ, Chen YX, Shi JY (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants
Environ Pollut 197, 99-107.

DOI:10.1016/j.envpol.2014.12.008URLPMID:25521412 [本文引用: 3]
Metal-based nanoparticles (MNPs) may be translocated and biochemically modified in vivo, which may influence the fate of MNPs in the environment. Here, synchrotron-based techniques were used to investigate the behavior of CuO NPs in rice plants exposed to 100 mg/L CuO NPs for 14 days. Micro X-ray fluorescence (mu-XRF) and micro X-ray absorption near edge structure (mu-XANES) analysis revealed that CuO NPs moved into the root epidermis, exodermis, and cortex, and they ultimately reached the endodermis but could not easily pass the Casparian strip; however, the formation of lateral roots provided a potential pathway for MNPs to enter the stele. Moreover, bulk-XANES data showed that CuO NPs were transported from the roots to the leaves, and that Cu (II) combined with cysteine, citrate, and phosphate ligands and was even reduced to Cu (I). CuO NPs and Cu-citrate were observed in the root cells using soft X-ray scanning transmission microscopy (STXM).

Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014). Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment
J Hazard Mater 268, 207-215.

DOI:10.1016/j.jhazmat.2014.01.025URLPMID:24508945 [本文引用: 1]
Nanoparticles of poly(epsilon-caprolactone) containing the herbicide atrazine were prepared, characterized, and evaluated in terms of their herbicidal activity and genotoxicity. The stability of the nanoparticles was evaluated over a period of three months, considering the variables: size, polydispersion index, pH, and encapsulation efficiency. Tests on plants were performed with target (Brassica sp.) and non-target (Zea mays) organisms, and the nanoparticle formulations were shown to be effective for the control of the target species. Experiments using soil columns revealed that the use of nanoparticles reduced the mobility of atrazine in the soil. Application of the Allium cepa chromosome aberration assay demonstrated that the nanoparticle systems were able to reduce the genotoxicity of the herbicide. The formulations developed offer a useful means of controlling agricultural weeds, while at the same time reducing the risk of harm to the environment and human health.

Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009). Arabidopsis lateral root development: an emerging story
Trends Plant Sci 14, 399-408.

[本文引用: 1]

Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQM (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers
Nanoscale 3, 2801-2818.

DOI:10.1039/c1nr10224aURLPMID:21547299 [本文引用: 1]
Mesoporous silica nanoparticles (MSNs) provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. The creation of smart, stimuli-responsive systems that respond to subtle changes in the local cellular environment are likely to yield long term solutions to many of the current drug/gene/DNA/RNA delivery problems. In addition, MSNs have proven to be promising supports for enzyme immobilisation, enabling the enzymes to retain their activity, affording them greater potential for wide applications in biocatalysis and energy. This review provides a comprehensive summary of the advances made in the last decade and a future outlook on possible applications of MSNs as nanocontainers for storage and delivery of biomolecules. We discuss some of the important factors affecting the adsorption and release of biomolecules in MSNs and review of the cytotoxicity aspects of such nanomaterials. The review also highlights some promising work on enzyme immobilisation using mesoporous silica nanoparticles.

Prasad A, Astete CE, Bodoki AE, Windham M, Bodoki E, Sabliov CM (2018). Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants
J Agric Food Chem 66, 6544-6551.

DOI:10.1021/acs.jafc.7b02487URLPMID:28767239 [本文引用: 2]
The main objective of this study was to investigate the uptake and translocation of positively charged zein nanoparticles (ZNPs) in hydroponically grown sugar cane plants. Fluorescent ZNPs (spherical and measuring an average diameter 135 +/- 3 nm) were synthesized by emulsion-diffusion method from FITC-tagged zein. Fluorescent measurement following digestion of plant tissue indicated that sugar cane roots had a significant adhesion of ZNPs, 342.5 +/- 24.2 mug NPs/mg of dry matter, while sugar cane leaves contained a very limited amount, 12.9 +/- 1.2 mug NPs/mg dry matter for high dose(1.75 mg/ml) after 12 h. Confocal microscopy studies confirmed presence of fluorescent ZNPs in the epidermis and endodermis of the root system. Given their ability to adhere to roots for extended periods of time, ZNPs are proposed as effective delivery systems for agrochemicals to sugar cane plants, but more studies are needed to identify effect of nanoparticle exposure to health of the plant.

Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant
Metallomics 7, 1584-1594.

DOI:10.1039/c5mt00168dURLPMID:26463441 [本文引用: 2]
Sustainable use of nanotechnology for agricultural practice requires an understanding of the plant's life cycle and potential toxicological impacts of nanomaterials. The main objective of this study was to compare the impact of TiO2 and ZnO nanoparticles of similar size (25 +/- 3.5 nm) over a range of concentrations (0 to 1000 mg kg(-1)) on translocation and accumulation of nanoparticles in different plant sections; as well as to establish physiological impact on tomato plants. The results indicated that there is a critical concentration of TiO2 and ZnO nanoparticles upto which the plant's growth and development are promoted; with no improvement beyond that. Aerosol mediated application was found to be more effective than the soil mediated application on the uptake of the nanoparticles was in plants. A mechanistic description of nanoparticle uptake, translocation and resultant plant response is unraveled. The present investigation demonstrates the concept of nanoparticle farming by understanding plant - nanoparticle interaction and biodistribution.

Raliya R, Saharan V, Dimkpa C, Biswas P (2018). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives
J Agric Food Chem 66, 6487-6503.

DOI:10.1021/acs.jafc.7b02178URLPMID:28835103 [本文引用: 2]
The increasing food demand as a result of the rising global population has prompted the large-scale use of fertilizers. As a result of resource constraints and low use efficiency of fertilizers, the cost to the farmer is increasing dramatically. Nanotechnology offers great potential to tailor fertilizer production with the desired chemical composition, improve the nutrient use efficiency that may reduce environmental impact, and boost the plant productivity. Furthermore, controlled release and targeted delivery of nanoscale active ingredients can realize the potential of sustainable and precision agriculture. A review of nanotechnology-based smart and precision agriculture is discussed in this paper. Scientific gaps to be overcome and fundamental questions to be answered for safe and effective development and deployment of nanotechnology are addressed.

Ratte HT (1999). Bioaccumulation and toxicity of silver compounds: a review
Environ Toxicol Chem 18, 89-108.

DOI:10.1002/etc.v18:1URL [本文引用: 1]

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain
J Agric Food Chem 59, 3485-3498.

DOI:10.1021/jf104517jURLPMID:21405020 [本文引用: 4]
The uptake, bioaccumulation, biotransformation, and risks of nanomaterials (NMs) for food crops are still not well understood. Very few NMs and plant species have been studied, mainly at the very early growth stages of the plants. Most of the studies, except one with multiwalled carbon nanotubes performed on the model plant Arabidopsis thaliana and another with ZnO nanoparticles (NPs) on ryegrass, reported the effect of NMs on seed germination or 15-day-old seedlings. Very few references describe the biotransformation of NMs in food crops, and the possible transmission of the NMs to the next generation of plants exposed to NMs is unknown. The possible biomagnification of NPs in the food chain is also unknown.

Rudall PJ, Bateman RM (2019). Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales
Biol Rev 94, 1179-1194.

DOI:10.1111/brv.12497URLPMID:30714286 [本文引用: 1]
Stomata play a critical ecological role as an interface between the plant and its environment. Although the guard-cell pair is highly conserved in land plants, the development and patterning of surrounding epidermal cells follow predictable pathways in different taxa that are increasingly well understood following recent advances in the developmental genetics of the plant epidermis in model taxa. Similarly, other aspects of leaf development and evolution are benefiting from a molecular-genetic approach. Applying this understanding to extinct taxa known only from fossils requires use of extensive comparative morphological data to infer 'fossil fingerprints' of developmental evolution (a 'palaeo-evo-devo' perspective). The seed-plant order Bennettitales, which flourished through the Mesozoic but became extinct in the Late Cretaceous, displayed a consistent and highly unusual combination of epidermal traits, despite their diverse leaf morphology. Based on morphological evidence (including possession of flower-like structures), bennettites are widely inferred to be closely related to angiosperms and hence inform our understanding of early angiosperm evolution. Fossil bennettites - even purely vegetative material - can be readily identified by a combination of epidermal features, including distinctive cuticular guard-cell thickenings, lobed abaxial epidermal cells ('puzzle cells'), transverse orientation of stomata perpendicular to the leaf axis, and a pair of lateral subsidiary cells adjacent to each guard-cell pair (termed paracytic stomata). Here, we review these traits and compare them with analogous features in living taxa, aiming to identify homologous - and hence phylogenetically informative - character states and to increase understanding of developmental mechanisms in land plants. We propose a range of models addressing different aspects of the bennettite epidermis. The lobed abaxial epidermal cells indicate adaxial-abaxial leaf polarity and associated differentiated mesophyll that could have optimised photosynthesis. The typical transverse orientation of the stomata probably resulted from leaf expansion similar to that of a broad-leaved monocot such as Lapageria, but radically different from that of broad-leafed eudicots such as Arabidopsis. Finally, the developmental origin of the paired lateral subsidiary cells - whether they are mesogene cells derived from the same cell lineage as the guard-mother cell, as in some eudicots, or perigene cells derived from an adjacent cell lineage, as in grasses - represents an unusually lineage-specific and well-characterised developmental trait. We identify a close similarity between the paracytic stomata of Bennettitales and the 'living fossil' Gnetum, strongly indicating that (as in Gnetum) the pair of lateral subsidiary cells of bennettites are both mesogene cells. Together, these features allow us to infer development in this diverse and relatively derived lineage that co-existed with the earliest recognisable angiosperms, and suggest that the use of these characters in phylogeny reconstruction requires revision.

Sanzari I, Leone A, Ambrosone A (2019). Nanotechnology in plant science: to make a long story short
Front Bioeng Biotech 7, 120.

[本文引用: 1]

Sarkar DJ, Singh A (2017). Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites
Carbohyd Polym 156, 303-311.

DOI:10.1016/j.carbpol.2016.09.045URL [本文引用: 1]

Schwab F, Zhai GS, Kern M, Turner A, Schnoor JL, Wiesner MR (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review
Nanotoxicology 10, 257-278.

DOI:10.3109/17435390.2015.1048326URLPMID:26067571 [本文引用: 1]
Uptake, transport and toxicity of engineered nanomaterials (ENMs) into plant cells are complex processes that are currently still not well understood. Parts of this problem are the multifaceted plant anatomy, and analytical challenges to visualize and quantify ENMs in plants. We critically reviewed the currently known ENM uptake, translocation, and accumulation processes in plants. A vast number of studies showed uptake, clogging, or translocation in the apoplast of plants, most notably of nanoparticles with diameters much larger than the commonly assumed size exclusion limit of the cell walls of approximately 5-20 nm. Plants that tended to translocate less ENMs were those with low transpiration, drought-tolerance, tough cell wall architecture, and tall growth. In the absence of toxicity, accumulation was often linearly proportional to exposure concentration. Further important factors strongly affecting ENM internalization are the cell wall composition, mucilage, symbiotic microorganisms (mycorrhiza), the absence of a cuticle (submerged plants) and stomata aperture. Mostly unexplored are the roles of root hairs, leaf repellency, pit membrane porosity, xylem segmentation, wounding, lateral roots, nodes, the Casparian band, hydathodes, lenticels and trichomes. The next steps towards a realistic risk assessment of nanoparticles in plants are to measure ENM uptake rates, the size exclusion limit of the apoplast and to unravel plant physiological features favoring uptake.

Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012). Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants
Environ Sci Technol 46, 7637-7643.

DOI:10.1021/es300955bURLPMID:22715806 [本文引用: 2]
Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.

Shi JY, Peng C, Yang YQ, Yang JJ, Zhang H, Yuan XF, Chen YX, Hu TD (2014). Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens
Nanotoxicology 8, 179-188.

URLPMID:23311584 [本文引用: 1]

Song SJ, Wang YL, Xie J, Sun BH, Zhou NL, Shen H, Shen J (2019). Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control
ACS Appl Mater Interfaces 11, 34258-34267.

DOI:10.1021/acsami.9b12564URLPMID:31461267 [本文引用: 1]
Environmentally friendly pesticide delivery systems have drawn extensive attention in recent years, and they show great promise in sustainable development of agriculture. We herein report a multifunctional nanoplatform, carboxymethyl chitosan modified carbon nanoparticles (CMC@CNP), as the carrier for emamectin benzoate (EB, a widely used insecticide), and investigate its sustainable antipest activity. EB was loaded on CMC@CNP nanocarrier via simple physisorption process, with a high loading ratio of 55.56%. The EB@CMC@CNP nanoformulation showed improved solubility and dispersion stability in aqueous solution, which is of vital importance to its practical application. Different from free EB, EB@CMC@CNP exhibited pH-responsive controlled release performance, leading to sustained and steady EB release and prolonged persistence time. In addition, the significantly enhanced anti-UV property of EB@CMC@CNP further ensured its antipest activity. Therefore, EB@CMC@CNP exhibited superior pest control performance than free EB. In consideration of its low cost, easy preparation, free of organic solution, and enhanced bioactivity, we expect, CMC@CNP will have a brilliant future in pest control and green agriculture.

Stamm MD, Heng-Moss TM, Baxendale FP, Siegfried BD, Blankenship EE, Nauen R (2016). Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans
Pest Manag Sci 72, 1099-1109.

DOI:10.1002/ps.4152URLPMID:26373258 [本文引用: 1]
BACKGROUND: Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. RESULTS: Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. CONCLUSIONS: This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. (c) 2015 Society of Chemical Industry.

Stampoulis D, Sinha SK, White JC (2009). Assaydependent phytotoxicity of nanoparticles to plants
Environ Sci Technol 43, 9473-9479.

DOI:10.1021/es901695cURLPMID:19924897 [本文引用: 1]
The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1-1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0-1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.

Su YM, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis
Environ Sci Nano 6, 2311-2331.

[本文引用: 8]

Sun DQ, Hussain HI, Yi ZF, Siegele R, Cresswell T, Kong LX, Cahill DM (2014). Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles
Plant Cell Rep 33, 1389-1402.

DOI:10.1007/s00299-014-1624-5URLPMID:24820127 [本文引用: 1]
KEY MESSAGE: We report the uptake of MSNs into the roots and their movement to the aerial parts of four plant species and their quantification using fluorescence, TEM and proton-induced x - ray emission (micro - PIXE) elemental analysis. Monodispersed mesoporous silica nanoparticles (MSNs) of optimal size and configuration were synthesized for uptake by plant organs, tissues and cells. These monodispersed nanoparticles have a size of 20 nm with interconnected pores with an approximate diameter of 2.58 nm. There were no negative effects of MSNs on seed germination or when transported to different organs of the four plant species tested in this study. Most importantly, for the first time, a combination of confocal laser scanning microscopy, transmission electron microscopy and proton-induced X-ray emission (micro-PIXE) elemental analysis allowed the location and quantification MSNs in tissues and in cellular and sub-cellular locations. Our results show that MSNs penetrated into the roots via symplastic and apoplastic pathways and then via the conducting tissues of the xylem to the aerial parts of the plants including the stems and leaves. The translocation and widescale distribution of MSNs in plants will enable them to be used as a new delivery means for the transport of different sized biomolecules into plants.

Tamez C, Hernandez-Molina M, Hernandez-Viezcas JA, Gardea-Torresdey JL (2019). Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo)
Sci Total Environ 665, 100-106.

DOI:10.1016/j.scitotenv.2019.02.029URLPMID:30772537 [本文引用: 1]
Numerous studies on short term effects of copper-based nanomaterials on plants have been published, however investigations with plants grown in a complex soil medium are lacking. In this study Grey Zucchini (Cucurbita pepo) was grown in an environmental growth chamber using a 1:1 (v/v) potting mix native soil mixture amended with Kocide 3000, nCuO, bCuO, or Cu NPs. After 3weeks Cu concentrations in the root, stem, and leaves of treated plants were significantly higher than control plants. This increase in Cu concentration did not adversely affect plant growth or chlorophyll production. The activity ascorbate peroxidase (APX) in the roots tissues of plants treated with Kocide 3000, nCuO, and bCuO decreased by at least 45%. Catalase (CAT) activity in root tissues of plants treated with 50mg/kg of Cu NP decreased by 77%, while those treated at 200mg/kg were reduced by 80%, compared to controls. The activity of APX and CAT in the leaves of all treated plants remained similar to control plants. Based on the endpoints used in this study, with the exception of a decrease in the accumulation of Zn and B in the roots, the exposure of zucchini to the tested copper compounds resulted in no negative effects.

Tepfer M, Taylor IE (1981). The permeability of plant cell walls as measured by gel filtration chromatography
Science 213, 761-763.

DOI:10.1126/science.213.4509.761URLPMID:17834583 [本文引用: 1]
The permeability of plant cell walls to macromolecules may limit the ability of enzymes to alter the biochemical and physical properties of the wall. Proteins of molecular weight up to 60,000 can permeate a substantial portion of the cell wall. Measurements of wall permeability in which cells are exposed to hypertonic solutions of macromolecules may seriously underestimate wall permeability.

Thomas J, Kumar K, Praveen CKR (2011). Synthesis of Ag doped nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan
Adv Sci Lett 4, 108-114.

[本文引用: 1]

Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991). The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion
J Cell Biol 112, 739-747.

URLPMID:1993740 [本文引用: 1]

Tong YJ, Wu Y, Zhao CY, Xu Y, Lu JQ, Xiang S, Zong FL, Wu XM (2017). Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants
J Agric Food Chem 65, 7371-7378.

DOI:10.1021/acs.jafc.7b02197URLPMID:28783335 [本文引用: 1]
Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced

Torney F, Trewyn BG, Lin VSY, Wang K (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants
Nat Nanotechnol 2, 295-300.

DOI:10.1038/nnano.2007.108URLPMID:18654287 [本文引用: 1]
Surface-functionalized silica nanoparticles can deliver DNA and drugs into animal cells and tissues. However, their use in plants is limited by the cell wall present in plant cells. Here we show a honeycomb mesoporous silica nanoparticle (MSN) system with 3-nm pores that can transport DNA and chemicals into isolated plant cells and intact leaves. We loaded the MSN with the gene and its chemical inducer and capped the ends with gold nanoparticles to keep the molecules from leaching out. Uncapping the gold nanoparticles released the chemicals and triggered gene expression in the plants under controlled-release conditions. Further developments such as pore enlargement and multifunctionalization of these MSNs may offer new possibilities in target-specific delivery of proteins, nucleotides and chemicals in plant biotechnology.

Torrent L, Iglesias M, Marguí E, Hidalgo M, Verdaguer D, Llorens L, Kodre A, Kav?i? A, Vogel-Miku? K (2020). Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration
J Hazard Mater 384, 121201.

DOI:10.1016/j.jhazmat.2019.121201URLPMID:31586917 [本文引用: 1]
The broad use of silver nanoparticles (AgNPs) in daily life products enhances their possibilities to reach the environment. Therefore, it is important to understand the uptake, translocation and biotransformation in plants and the toxicological impacts derived from these biological processes. In this work, Lactuca sativa (lettuce) was exposed during 9 days to different coated (citrate, polyvinylpyrrolidone, polyethylene glycol) and sized (60, 75, 100nm) AgNPs at different concentrations (1, 3, 5, 7, 10, 15mgL(-1)). Total silver measurements in lettuce roots indicated that accumulation of AgNPs is influenced by size and concentration, but not by nanoparticle coating. On the other hand, nanosilver translocation to shoots was more pronounced for neutral charged and large sized NPs at higher NP concentrations. Single particle inductively coupled plasma mass spectrometry analysis, after an enzymatic digestion of lettuce tissues indicated the dissolution of some NPs. Ag K-edge X-ray absorption spectroscopy analysis corroborated the AgNPs dissolution due to the presence of less Ag-Ag bonds and appearance of Ag-O and/or Ag-S bonds in lettuce roots. Toxicological effects on lettuces were observed after exposure to nanosilver, especially for transpiration and stomatal conductance. These findings indicated that AgNPs can enter to edible plants, exerting toxicological effects on them.

Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017a). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity
Plant Physiol Biochem 110, 2-12.

URLPMID:27601425 [本文引用: 3]

Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017b). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings
Plant Physiol Biochem 110, 167-177.

URLPMID:27449300 [本文引用: 1]

Tripathi DK, Tripathi A, Shweta, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017c). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review
Front Microbiol 8, 07.

DOI:10.3389/fmicb.2017.00007URLPMID:28184215 [本文引用: 1]
Nanotechnology is a cutting-edge field of science with the potential to revolutionize today's technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes.

Valletta A, Chronopoulou L, Palocci C, Baldan B, Donati L, Pasqua G (2014). Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi
J Nanopart Res 16, 2744.

[本文引用: 2]

Volova T, Zhila N, Vinogradova O, Shumilova A, Prudnikova S, Shishatskaya E (2016). Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole
Environ Sci Pollut Res Int 23, 5243-5254.

DOI:10.1007/s11356-015-5739-1URLPMID:26561327 [本文引用: 1]
Biodegradable polymer poly(3-hydroxybutyrate) (P3HB) has been used as a matrix to construct slow-release formulations of the fungicide tebuconazole (TEB). P3HB/TEB systems constructed as films and pellets have been studied using differential scanning calorimetry, X-ray structure analysis, and Fourier transform infrared spectroscopy. TEB release from the experimental formulations has been studied in aqueous and soil laboratory systems. In the soil with known composition of microbial community, polymer was degraded, and TEB release after 35 days reached 60 and 36 % from films and pellets, respectively. That was 1.23 and 1.8 times more than the amount released to the water after 60 days in a sterile aqueous system. Incubation of P3HB/TEB films and pellets in the soil stimulated development of P3HB-degrading microorganisms of the genera Pseudomonas, Stenotrophomonas, Variovorax, and Streptomyces. Experiments with phytopathogenic fungi F. moniliforme and F. solani showed that the experimental P3HB/TEB formulations had antifungal activity comparable with that of free TEB.

Wang CJ, Liu ZQ (2007). Foliar uptake of pesticides— present status and future challenge
Pestic Biochem Physiol 87, 1-8.

DOI:10.1016/j.pestbp.2006.04.004URL [本文引用: 1]

Wang GD, Xiao YY, Xu HH, Hu PT, Liang WL, Xie LJ, Jia JL (2018). Development of multifunctional avermectin poly (succinimide) nanoparticles to improve bioactivity and transportation in rice
J Agric Food Chem 66, 11244-11253.

DOI:10.1021/acs.jafc.8b03295URL [本文引用: 2]

Wang J, Lei ZW, Wen YJ, Mao GL, Wu HX, Xu HH (2014). A novel fluorescent conjugate applicable to visualize the translocation of glucose-fipronil
J Agric Food Chem 62, 8791-8798.

DOI:10.1021/jf502838mURLPMID:25134020 [本文引用: 1]
The ability to visualize the movement of glycosyl insecticides contributes to learning their translocation and distribution in plants. In our present work, a novel fluorescent glucose-fipronil conjugate N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-beta-D-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (2-NBDGTF), was obtained via click chemistry. Disk uptake experiments showed that an active carrier-mediated system was involved in the 2-NBDGTF uptake process. Meanwhile, 2-NBDGTF exhibited comparable phloem mobility with GTF in castor bean seedlings. Visualization of 2-NBDGTF uptake and transport experiment showed that this fluorescent glucose-fipronil conjugate could be loaded into sieve tubes after transiting through epidermal cells and mesophyll cells and then translocate from cotyledon to hypocotyl via phloem in castor bean seedlings. The results above determined that it is a promising fluorescence tagging approach for revealing the activities of glycosyl insecticides and 2-NBDGTF is a reasonable and feasible fluorescent surrogate of GTF for tracing the distribution of glucose-fipronil conjugates.

Wang LJ, Li XF, Zhang GY, Dong JF, Eastoe J (2007). Oil-in-water nanoemulsions for pesticide formulations
J Colloid Interface Sci 314, 230-235.

DOI:10.1016/j.jcis.2007.04.079URLPMID:17612555 [本文引用: 1]
A two-step process for formation of nanoemulsions in the system water/poly(oxyethylene) nonionic surfactant/methyl decanoate at 25 degrees C is described. First, all the components were mixed at a certain composition to prepare a microemulsion concentrate, which was rapidly subjected into a large dilution into water to generate an emulsion. Bluish transparent oil-in-water (O/W) nanoemulsions were formed only when the concentrate was located in the bicontinuous microemulsion (BC) or oil-in-water microemulsion (Wm) region. The existence of an optimum oil-to-surfactant ratio (R(os)) in the BC or Wm region indicates that both the phase behavior and the composition of the concentrate are important factors in nanoemulsion formation. To demonstrate potential applications of these systems, they were employed to formulate a water-insoluble pesticide, beta-cypermethrin (beta-CP). The nanoemulsion was compared with a commercial beta-CP microemulsion in terms of the stability of sprayed formulations.

Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a). Nanotechnology: a new opportunity in plant sciences
Trends Plant Sci 21, 699-712.

DOI:10.1016/j.tplants.2016.04.005URLPMID:27130471 [本文引用: 1]
The agronomic application of nanotechnology in plants (phytonanotechnology) has the potential to alter conventional plant production systems, allowing for the controlled release of agrochemicals (e.g., fertilizers, pesticides, and herbicides) and target-specific delivery of biomolecules (e.g., nucleotides, proteins, and activators). An improved understanding of the interactions between nanoparticles (NPs) and plant responses, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Herewith, we review potential applications of phytonanotechnology and the key processes involved in the delivery of NPs to plants. To ensure both the safe use and social acceptance of phytonanotechnology, the adverse effects, including the risks associated with the transfer of NPs through the food chain, are discussed.

Wang ZY, Xie XY, Zhao J, Liu XY, Feng WQ, White JC, Xing BS (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)
Environ Sci Technol 46, 4434-4441.

DOI:10.1021/es204212zURLPMID:22435775 [本文引用: 2]
This work reports on the toxicity of CuO nanoparticles (NPs) to maize (Zea mays L.) and their transport and redistribution in the plant. CuO NPs (100 mg L(-1)) had no effect on germination, but inhibited the growth of maize seedlings; in comparison the dissolved Cu(2+) ions and CuO bulk particles had no obvious effect on maize growth. CuO NPs were present in xylem sap as examined by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), showing that CuO NPs were transported from roots to shoots via xylem. Split-root experiments and high-resolution TEM observation further showed that CuO NPs could translocate from shoots back to roots via phloem. During this translocation, CuO NPs could be reduced from Cu (II) to Cu (I). To our knowledge, this is the first report of root-shoot-root redistribution of CuO NPs within maize. The current study provides direct evidence for the bioaccumulation and biotransformation of CuO NPs (20-40 nm) in maize, which has significant implications on the potential risk of NPs and food safety.

Wang ZY, Xu LN, Zhao J, Wang XK, White JC, Xing BS (2016b). CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression
Environ Sci Technol 50, 6008-6016.

DOI:10.1021/acs.est.6b01017URLPMID:27226046 [本文引用: 1]
CuO nanoparticles (NPs) (20, 50 mg L(-1)) inhibited seedling growth of different Arabidopsis thaliana ecotypes (Col-0, Bay-0, and Ws-2), as well as the germination of their pollens and harvested seeds. For most of growth parameters (e.g., biomass, relative growth rate, root morphology change), Col-0 was the more sensitive ecotype to CuO NPs compared to Bay-0 and Ws-2. Equivalent Cu(2+) ions and CuO bulk particles had no effect on Arabidopsis growth. After CuO NPs (50 mg L(-1)) exposure, Cu was detected in the roots, leaves, flowers and harvested seeds of Arabidopsis, and its contents were significantly higher than that in CuO bulk particles (50 mg L(-1)) and Cu(2+) ions (0.15 mg L(-1)) treatments. Based on X-ray absorption near-edge spectroscopy analysis (XANES), Cu in the harvested seeds was confirmed as being mainly in the form of CuO (88.8%), which is the first observation on the presence of CuO NPs in the plant progeny. Moreover, after CuO NPs exposure, two differentially expressed genes (C-1 and C-3) that regulated root growth and reactive oxygen species generation were identified, which correlated well with the physiological root inhibition and oxidative stress data. This current study provides direct evidence for the negative effects of CuO NPs on Arabidopsis, including accumulation and parent-progeny transfer of the particles, which may have significant implications with regard to the risk of NPs to food safety and security.

Wibowo D, Zhao CX, Peters BC, Middelberg APJ (2014). Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules
J Agric Food Chem 62, 12504-12511.

DOI:10.1021/jf504455xURLPMID:25479362 [本文引用: 1]
A pesticide delivery system made of biocompatible components and having sustained release properties is highly desirable for agricultural applications. In this study, we report a new biocompatible oil-core silica-shell nanocapsule for sustained release of fipronil insecticide. Silica nanocapsules were prepared by a recently reported emulsion and biomimetic dual-templating approach under benign conditions and without using any toxic chemicals. The loading of fipronil was achieved by direct dissolution in the oil core prior to biomimetic growth of a layer of silica shell surrounding the core, with encapsulation efficiency as high as 73%. Sustained release of fipronil in vitro was tunable through control of the silica-shell thickness (i.e., 8-44 nm). In vivo laboratory tests showed that the insecticidal effect of the fipronil-encapsulated silica nanocapsules against economically important subterranean termites could be controlled by tuning the shell thickness. These studies demonstrated the effectiveness and tunability of an environmentally friendly sustained release system for insecticide, which has great potential for broader agricultural applications with minimal environmental risks.

Wu CC, Dong FS, Mei XD, Ning J, She DM (2019). Distribution, dissipation, and metabolism of neonicotinoid insecticides in the cotton ecosystem under foliar spray and root irrigation
J Agric Food Chem 67, 12374-12381.

DOI:10.1021/acs.jafc.9b04664URLPMID:31613611 [本文引用: 1]
The uptake, distribution, metabolism, and degradation of three neonicotinoid insecticides (NIs)-imidacloprid (IMI), acetamiprid (ACE), and thiamethoxam (THI) in different parts of cotton plants were investigated under field conditions. Insecticides were either applied by foliar spraying or root irrigation. Foliar application resulted in high tissue concentration (average tissue concentration ratio, TCR: 46.78-68.61% for leaves and 12.2-31.40% for flowers). The flowers showed high NI residual. The metabolism and trends of NIs in different parts of cotton were reported here for the first time. Metabolites, toxic to bees, were detected in the flowers. The translocation factor was around 0.004 for the spray treatment and 0.2-0.7 for the root irrigation treatment. The average root concentration factors of IMI, ACE, and THI were 0.838, 8.027, and 1.014, respectively, indicating that the three NIs can be transported from the soil to the plant. The high concentrations of NIs and their metabolites in flowers indicate exposure risk to pollinators, such as bees.

Yan S, Hu Q, Li JH, Chao ZJ, Cai C, Yin MZ, Du XG, Shen J (2019). A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides
ACS Sustainable Chem Eng 7, 17406-17413.

[本文引用: 1]

Yang CY, Powell CA, Duan YP, Shatters R, Zhang MQ (2015). Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing
PLoS One 10, e0133826.

DOI:10.1371/journal.pone.0133826URLPMID:26207823 [本文引用: 1]
Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 +/- 0.04 nm and 94 +/- 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

Yang DS, Cui B, Wang CX, Zhao X, Zeng ZH, Wang Y, Sun CJ, Liu GQ, Cui HX (2017). Preparation and characterization of emamectin benzoate solid nanodispersion
J Nanomater 2017,6560780.

[本文引用: 1]

Yang TX, Doherty J, Guo HY, Zhao B, Clark JM, Xing BS, Hou RY, He LL (2019). Real-time monitoring of pesticide translocation in tomato plants by Surface-Enhanced Raman Spectroscopy
Anal Chem 91, 2093-2099.

DOI:10.1021/acs.analchem.8b04522URLPMID:30628431 [本文引用: 1]
Understanding the behavior of pesticide translocation is significant for effectively applying pesticides and reducing pesticide exposures from treated plants. Herein, we applied surface enhanced Raman spectroscopy (SERS) for real-time monitoring of pesticide translocation in tomato plant tissues, including leaves and flowers, following root exposure in hydroponic and soil systems. Various concentrations of the systemic pesticide, thiabendazole, was introduced into hydroponic systems used for growing tomato plants. At selected time intervals, tomato leaves and flowers were picked and thiabendazole was measured directly under a Raman microscope after pipetting gold nanoparticle-containing solution onto the plant tissue. We found that the pesticide signals first appeared along the midrib in the lowest leaves and moved distally to the edge of the leaves. As the concentration of pesticide applied to the root was increased, the time necessary to detect the signal was decreased. The SERS surface mapping method was also able to detect thiabendazole in the trichomes of the leaves. In addition, we found a unique SERS peak at 737 cm(-1) on both leaves and flowers at 4 and 6 days following the application of 200 mg/L thiabendazole to the hydroponic system. This peak appears to be coming from adenine-containing materials and may be related to the plant's response to pesticide toxicity, which could be used as a potential marker for monitoring plant responses to stresses. These results demonstrate a successful application of SERS as a rapid and effective way to study the real-time translocation behavior of pesticides in a plant system.

Yang TX, Zhang ZY, Zhao B, Hou RY, Kinchla A, Clark JM, He LL (2016a). Real-time and in situ monitoring of pesticide penetration in edible leaves by Surface-Enhanced Raman Scattering Mapping
Anal Chem 88, 5243-5250.

DOI:10.1021/acs.analchem.6b00320URLPMID:27099952
Understanding of the penetration behaviors of pesticides in fresh produce is of great significance for effectively applying pesticides and minimizing pesticide residues in food. There is lack, however, of an effective method that can measure pesticide penetration. Herein, we developed a novel method for real-time and in situ monitoring of pesticide penetration behaviors in spinach leaves based on surface-enhanced Raman scattering (SERS) mapping. Taking advantage of penetrative gold nanoparticles (AuNPs) as probes to enhance the internalized pesticide signals in situ, we have successfully obtained the internal signals from thiabendazole, a systemic pesticide, following its penetration into spinach leaves after removing surface pesticide residues. Comparatively, ferbam, a nonsystemic pesticide, did not show internal signals after removing surface pesticide residues, demonstrating its nonsystemic behavior. In both cases, if the surface pesticides were not removed, copenetration of both AuNPs and pesticides was observed. These results demonstrate a successful application of SERS as an effective method for measuring pesticides penetration in fresh produce in situ. The information obtained could provide useful guidance for effective and safe applications of pesticides on plants.

Yang TX, Zhao B, Hou RY, Zhang ZY, Kinchla AJ, Clark JM, He LL (2016b). Evaluation of the penetration of multiple classes of pesticides in fresh produce using Surface-Enhanced Raman Scattering Mapping
J Food Sci 81, T2891-T2901.

DOI:10.1111/1750-3841.13520URLPMID:27711977 [本文引用: 1]
Understanding pesticide penetration is important for effectively applying pesticides and in reducing pesticide exposures from food. This study aims to evaluate multiclass systemic and nonsystemic pesticide penetration in 3 representative fresh produce (apples, grapes, and spinach leaves). Surface-enhanced Raman scattering mapping was applied for in situ and real-time tracking of pesticide penetration over time. The results show that 100 mg/L of systemic pesticides, thiabendazole and acetamiprid, penetrated more rapidly and deeply with maximum depth around 220 mum after 48-h exposure into the tested fresh produce than 100 mg/L of nonsystemic pesticides, ferbam and phosmet, with maximum depth about 80 mum. The fact that 2 nonsystemic pesticides were also able to penetrate over time into all 3 fresh produce tested may raise additional food safety concerns. Comparatively, grapes were generally more resistant for pesticide penetration with all pesticides penetration depth below 80 mum compared to apples and spinach leaves. The information obtained here could provide technical support and guidance for accurate, effective, and safe application of pesticides and for the reduction of pesticide exposure from fresh produce.

Yu ML, Yao JW, Liang J, Zeng ZH, Cui B, Zhao X, Sun CJ, Wang Y, Liu GQ, Cui HX (2017). Development of functionalized abamectin poly (lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention
RSC Adv 7, 11271-11280.

[本文引用: 3]

Zhang P, Ma YH, Zhang ZY (2015). Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, eds. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants
Cham: Springer. pp. 77-99.

[本文引用: 1]

Zhang Y, Klepsch M, Jansen S (2017). Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates
Plant Cell Environ 40, 2133-2146.

DOI:10.1111/pce.13014URLPMID:28667823 [本文引用: 1]
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel-bearing angiosperms, with a mean thickness of 245 nm (+/- 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried-and-rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried-and-rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.

Zhao LJ, Huang YX, Hu J, Zhou HJ, Adeleye AS, Keller AA (2016). 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress
Environ Sci Technol 50, 2000-2010.

DOI:10.1021/acs.est.5b05011URLPMID:26751164 [本文引用: 2]
Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

Zhao LJ, Peralta-Videa JR, Ren MH, Varela-Ramirez A, Li CQ, Hernandez-Viezcas JA, Aguilera RJ, Gardea- Torresdey JL (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies
Chem Eng J 184, 1-8.

[本文引用: 1]

Zhao PY, Cao LD, Ma DK, Zhou ZL, Huang QL, Pan CP (2017). Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants
Molecules 22, 817.

[本文引用: 3]

Zhao PY, Cao LD, Ma DK, Zhou ZL, Huang QL, Pan CP (2018a). Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants
Nanoscale 10, 1798-1806.

DOI:10.1039/c7nr08107cURLPMID:29308814 [本文引用: 3]
The application of nanotechnology in pesticide loading can improve the uptake and transportation behavior in plants, which helps to increase the utilization efficiency of pesticides. In this work, prochloraz-loading mesoporous silica nanoparticles were prepared to study the translocation, distribution and degradation of the target pesticide in cucumber plants. Fluorescein isothiocyanate labeled nanoparticles were used to track the distribution of the carriers in plants. Four hours after the treatment on the leaves, the nanoparticles could be found in the leaves, stem, petioles and roots. Fourteen days later the concentration levels of prochloraz and its metabolite were measured in different parts of cucumber using high performance liquid chromatography tandem mass spectrometry. Compared to the conventional suspension concentrate, prochloraz-loaded mesoporous silica nanoparticles had almost the same fungicidal activity, and they tend to be absorbed by cucumber plants with a better deposition performance. The final residue levels of prochloraz in cucumbers were lower than the maximum residue levels, which indicated the low risk of p-MSN application on the plant.

Zhao PY, Yuan WL, Xu CL, Li FM, Cao LD, Huang QL (2018b). Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers
J Agric Food Chem 66, 11592-11600.

DOI:10.1021/acs.jafc.8b04415URLPMID:30350969 [本文引用: 4]
Pesticides will be used for a long period of time, and their use may cause environmental contamination and adverse effects on human health. The aim of this study was to improve the utilization rate of pesticides and reduce the risk to the environment using mesoporous silica nanoparticles (MSNs) as carriers. Compared to the conventional formulation, spirotetramat-loading MSNs improved deposition, uptake, and translocation performance in cucumber plants. MSNs may hold spirotetramat in their mesoporous structure and prevent its degradation in plants. The final residue of spirotetramat and its metabolites demonstrated that spirotetramat-loading MSNs had low risk to the edible parts of plants under foliar application. This study added our knowledge of MSNs controlling pesticide release and transfer in plant.

Zhao X, Cui HX, Wang Y, Sun CJ, Cui B, Zeng ZH (2018c). Development strategies and prospects of nano-based smart pesticide formulation
J Agric Food Chem 66, 6504-6512.

DOI:10.1021/acs.jafc.7b02004URLPMID:28654254 [本文引用: 2]
Pesticides are important inputs for enhancing crop productivity and preventing major biological disasters. However, more than 90% of pesticides run off into the environment and reside in agricultural products in the process of application as a result of the disadvantages of conventional pesticide formulation, such as the use of a harmful solvent, poor dispersion, dust drift, etc. In recent years, using nanotechnology to create novel formulations has shown great potential in improving the efficacy and safety of pesticides. The development of nano-based pesticide formulation aims at precise release of necessary and sufficient amounts of their active ingredients in responding to environmental triggers and biological demands through controlled release mechanisms. This paper discusses several scientific issues and strategies regarding the development of nano-based pesticide formulations: (i) construction of water-based dispersion pesticide nanoformulation, (ii) mechanism on leaf-targeted deposition and dose transfer of pesticide nanodelivery system, (iii) mechanism on increased bioavailability of nano-based pesticide formulation, and (iv) impacts of nanoformulation on natural degradation and biosafety of pesticide residues.

Zhu F, Liu XG, Cao LD, Cao C, Li FM, Chen CJ, Xu CL, Huang QL, Du FP (2018). Uptake and distribution of fenoxanil-loaded mesoporous silica nanoparticles in rice plants
Int J Mol Sci 19, 2854.

[本文引用: 1]

高效液相色谱-质谱联用技术测定食品中有害物质残留分析方法的研究
1
2014

... 高效液相色谱串联质谱(HPLC-MS)是以液相色谱作为分离系统, 质谱为检测系统, 将分离与检测联结起来的一种新型技术, 具有分析范围广、灵敏度高、检测限低和分析快等特点(曹海微, 2014).Zhu等(2018)利用HPLC-MS测定了介孔二氧化硅纳米粒子包覆的氰菌胺(fenoxanil)暴露于水稻根部后, 根部、茎部、叶片、土壤以及水中氰菌胺的含量.Zhao等(2017)利用HPLC-MS研究了嘧霉胺-介孔二氧化硅纳米粒子在黄瓜叶片上的迁移和分布.结果表明, 嘧霉胺-介孔二氧化硅纳米粒子在黄瓜植株中可能更倾向于向上迁移. ...

纳米技术在植物病害防控中应用的研究进展
1
2019

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

基于介孔二氧化硅纳米粒子的农药可控释放研究进展
1
2016

... 近年来, 介孔二氧化硅(SiO2)载药粒子备受关注, 其具有成本低、环境相容性好、比表面积大、孔径可调及负载能力高等优点, 并且通过表面修饰可以实现活性化合物的控制释放(Popat et al., 2011; 何顺等, 2016).Zhao等(2018b)研究表明, 螺虫乙酯(spirotetramat)-介孔二氧化硅纳米粒子可以从黄瓜表皮进入处理组叶片内, 进而迁移到叶柄和茎, 最后运输到根等其它部位.剂量转移研究表明, 螺虫乙酯分布于处理组下方叶片及根部, 上方叶片较下方叶片含量少, 即螺虫乙酯能向上及向下迁移, 但倾向于向下迁移(图2).与传统剂型相比, 使用介孔二氧化硅作为农药载体能增加螺虫乙酯剂量转移2-3倍, 表明介孔二氧化硅可以增强农药在植物体内的剂量传递. ...

典型有机污染物在植物角质层上的吸附行为与跨膜过程
1
2011

... 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

除草剂在植物体内的传导机理
3
1992

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... ; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... 农药纳米粒子在植物叶片中的吸收转运途径为: 首先, 纳米粒子沉积于叶面上, 然后通过角质层或气孔进入植物叶肉细胞, 随后以质外体途径(通过细胞壁)或共质体途径“装入”到韧皮部筛管细胞中进行长距离运输(刘支前, 1992).质外体途径运输较大的粒子(直径200 nm左右), 共质体途径运输较小的粒子(直径<50 nm) (Raliya et al., 2018).纳米粒子进一步沿中柱鞘和韧皮部向其它部位内化迁移(Anjum et al., 2016; Avellan et al., 2019). ...

环境化学物的生殖毒性研究进展
1
2005

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

质外体途径在超积累植物东南景天镉吸收与运输中的作用及其调控机制
3
2017

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... )植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... ; 陶琦, 2017). ...

磁性纳米颗粒细胞内吞评价方法研究及进展
1
2018

... 纳米农药在植物体内的迁移转运研究方法包括定性及定量分析.定性分析主要利用同位素示踪法和荧光标记法等, 并借助荧光显微镜、共聚焦显微镜、透射电镜、光热显微镜和原子力显微镜等显微技术实现其在植物体内的可视化, 观察其在植物体内的吸收迁移路径(王润生等, 2018).定量分析主要利用高效液相色谱法(HPLC)、高效液相串联质谱法(HPLC-MS)以及电感耦合等离子体质谱法等将各植物组织部位农药有效成分的含量进行量化, 从而获得其在植物体内的转运和累积特性. ...

表面增强拉曼散射基底的制备及其在农药残留检测中的应用
1
2019

... 表面增强拉曼光谱法(SERS)是将拉曼光谱和纳米技术相结合, 监测农药在植物体内动态分布状况的一种方法, 是探测界面特性、分子间相互作用和分子结构的一种高灵敏度的分析检测技术(Hou et al., 2017; 王世芳等, 2019).相较于色谱技术, SERS能实现更低检测限的农药含量测定, 并且操作简单, 检测速度快, 可以实现原位取样而对植物无侵害性.近年来, 研究主要集中于利用SERS实时监测农药在植物体内的渗透和迁移行为(Yang et al., 2016b; Hou et al., 2017).Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布.结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动.随着施药浓度的增加, 检测信号所需的时间减少. ...

纳米TiO2对油松种子萌发及幼苗生长生理的影响
1
2009

... 二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011).TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012). ...

农药在植物体内的传导方式和农药传导生物学
1
2012

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

维管植物木质部水分传输过程的影响因素及研究进展
1
2017

... 木质部是纳米粒子迁移和转运的重要载体(Aslani et al., 2014).根压和蒸腾拉力是木质部运输的动力, 纳米粒子进入木质部后随蒸腾流向地上部转运.木质部是由无数个导管或管胞以及内部的纹孔和穿孔板相互连通构成的三维拓扑结构(张红霞等, 2017), 其纹孔孔径为43-340 nm (Jansen et al., 2009; Zhang et al., 2017).纹孔膜能阻碍溶质的流动, 而穿孔板允许纳米粒子通过. ...

农药残留研究进展与展望
1
2013

... 2019年4月, 国际纯粹与应用化学联合会首次公布了未来将改变世界的十大化学新兴技术, 其中纳米农药居首.我国也将纳米药物列入国家《农业绿色发展技术导则》.利用纳米技术创制高效、安全、低残留的纳米农药已成为绿色农药创新发展的必然趋势.揭示纳米农药在植物中的吸收与转运特征, 阐明纳米农药与植物的互作方式, 可为高效绿色的纳米载药系统的优化设计、纳米农药提质增效机制及其环境效应与毒理学研究奠定理论基础, 对提高农药在植物保护中的有效利用率、降低残留污染及建立合理的施药方式具有重要意义(Wibowo et al., 2014; Athanassiou et al., 2018; Yan et al., 2019).然而, 目前研究纳米农药在植物体内的吸收与转运存在一定的困难.首先, 在测定植物体内纳米农药含量时, 基于样品种类的多样性、样品基质的复杂性以及农药活性成分含量的痕量性, 样品的前处理技术至关重要.目前, 较为新型的方法有固相萃取法、QuEChERS和凝胶渗透色谱等 (郑永权, 2013).其次, 农药进入植物体内后, 与植物间的互作机制较为复杂, 其有效成分会在植物体内发生降解代谢等一系列生物化学过程, 导致有效成分的含量在植物体内呈动态变化, 增加了检测难度.因此, 需要多种手段联合使用、发展新型检测技术来提高药物动态测量的准确性, 或者建立数学模型来模拟纳米农药在植物体内的动态消解过程, 从而更加精准地分析纳米农药的吸收迁移行为. ...

Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles
2
2016

... Peng等(2015)检测了100 mg·L-1纳米CuO处理水稻根部14天后在水稻体内的迁移行为.结果表明, 纳米CuO能进入根表皮、外皮层以及皮质, 最终到达内皮层, 但不能轻易通过凯氏带.此外, 该研究组利用透射电子显微镜(transmission electron microscope, TEM)和能谱仪(energy dispersive spectrometer, EDS)观察纳米CuO在玉米(Zea mays)体内的转运和分布.结果表明, 纳米CuO不仅存在于细胞壁内的表皮细胞, 也存在于皮质细胞的细胞间隙、细胞质以及细胞核中.说明纳米粒子可能通过质外体途径穿过表皮和皮质.纳米CuO也可以通过喷施于植物叶片表面被叶片吸收.Adhikari等(2016)发现, 在玉米叶片喷施纳米CuO (0.1 mmol·L-1), 可在叶片表皮外壁上观察到电子致密沉积物, 其大小与CuO纳米粒子大致相同.此外, 将纳米CuO暴露于玉米根部, 结果显示纳米粒子沉积在根表皮细胞内, 表明纳米CuO能通过表皮细胞和皮质细胞进入植物体内.进入细胞后, 纳米粒子通过胞间连丝在细胞间迁移(Adhikari et al., 2016). ...

... ), 可在叶片表皮外壁上观察到电子致密沉积物, 其大小与CuO纳米粒子大致相同.此外, 将纳米CuO暴露于玉米根部, 结果显示纳米粒子沉积在根表皮细胞内, 表明纳米CuO能通过表皮细胞和皮质细胞进入植物体内.进入细胞后, 纳米粒子通过胞间连丝在细胞间迁移(Adhikari et al., 2016). ...

Transfer of the insecticide [14C] imidacloprid from soil to tomato plants
1
2008

... 同位素示踪法是利用同位素对纳米粒子进行标记和追踪的一种灵敏技术(Nath et al., 2018).利用同位素示踪技术结合扫描电子显微镜和能量色散光谱, 能够直观地确定农药在植物体内的分布情况.Alsayeda等(2008)14C标记的吡虫啉添加于土壤后培养番茄, 然后对其叶片和果实进行吡虫啉总放射性和代谢物分析.结果表明, 近85%的放射性物质转移到地上部, 而在根中只检测到少量的放射性物质, 且放射性浓度从下叶到上叶呈下降趋势.Davis等(2017)利用放射性同位素标记Cu纳米粒子, 以无创方式跟踪和量化生菜幼苗体内的Cu纳米粒子的转运和积累.结果发现, 64Cu纳米粒子出现在子叶中, 表明大部分放射性64Cu纳米粒子存在于根部较低位置, 且纳米粒子可以沿根组织向上运输到根轴, 随后迁移到地上部. ...

Nanoscale copper in the soil-plant system-toxicity and underlying potential mechanisms
1
2015

... 铜基纳米粒子被广泛用于抗菌活性制剂(Anjum et al., 2015), 作为农药可用于预防作物的各种真菌和细菌病害(Peng et al., 2015).铜基纳米粒子对番茄(Lycopersicon esculentum)实腐茎点霉菌、互隔交链孢霉、尖孢镰刀菌和弯孢霉叶枯菌均表现出潜在的抗菌性, 且抗菌性高于农药多菌灵(Ouda, 2014). ...

Transport phenomena of nanoparticles in plants and animals/humans
2
2016

... 初生根层次结构由外到内依次为表皮、皮层(包括外皮层和内皮层)和维管柱(包括中柱鞘和维管组织).内皮层与中柱鞘相连, 维管组织位于根的中间(Su et al., 2019).纳米粒子在根部的迁移路径可能为: (1) 纳米粒子被根毛细胞吸收后选择性穿过细胞壁; (2) 以共质体途径或质外体途径从表皮进入内皮层; (3) 通过木质部导管向地上部运输纳米粒子(Hischem?ller et al., 2009; Anjum et al., 2016; Tripathi et al., 2017a). ...

... 农药纳米粒子在植物叶片中的吸收转运途径为: 首先, 纳米粒子沉积于叶面上, 然后通过角质层或气孔进入植物叶肉细胞, 随后以质外体途径(通过细胞壁)或共质体途径“装入”到韧皮部筛管细胞中进行长距离运输(刘支前, 1992).质外体途径运输较大的粒子(直径200 nm左右), 共质体途径运输较小的粒子(直径<50 nm) (Raliya et al., 2018).纳米粒子进一步沿中柱鞘和韧皮部向其它部位内化迁移(Anjum et al., 2016; Avellan et al., 2019). ...

Effects of engineered nanomaterials on plants growth: an overview
1
2014

... 木质部是纳米粒子迁移和转运的重要载体(Aslani et al., 2014).根压和蒸腾拉力是木质部运输的动力, 纳米粒子进入木质部后随蒸腾流向地上部转运.木质部是由无数个导管或管胞以及内部的纹孔和穿孔板相互连通构成的三维拓扑结构(张红霞等, 2017), 其纹孔孔径为43-340 nm (Jansen et al., 2009; Zhang et al., 2017).纹孔膜能阻碍溶质的流动, 而穿孔板允许纳米粒子通过. ...

Nanoparticles for pest control: current status and future perspectives
1
2018

... 2019年4月, 国际纯粹与应用化学联合会首次公布了未来将改变世界的十大化学新兴技术, 其中纳米农药居首.我国也将纳米药物列入国家《农业绿色发展技术导则》.利用纳米技术创制高效、安全、低残留的纳米农药已成为绿色农药创新发展的必然趋势.揭示纳米农药在植物中的吸收与转运特征, 阐明纳米农药与植物的互作方式, 可为高效绿色的纳米载药系统的优化设计、纳米农药提质增效机制及其环境效应与毒理学研究奠定理论基础, 对提高农药在植物保护中的有效利用率、降低残留污染及建立合理的施药方式具有重要意义(Wibowo et al., 2014; Athanassiou et al., 2018; Yan et al., 2019).然而, 目前研究纳米农药在植物体内的吸收与转运存在一定的困难.首先, 在测定植物体内纳米农药含量时, 基于样品种类的多样性、样品基质的复杂性以及农药活性成分含量的痕量性, 样品的前处理技术至关重要.目前, 较为新型的方法有固相萃取法、QuEChERS和凝胶渗透色谱等 (郑永权, 2013).其次, 农药进入植物体内后, 与植物间的互作机制较为复杂, 其有效成分会在植物体内发生降解代谢等一系列生物化学过程, 导致有效成分的含量在植物体内呈动态变化, 增加了检测难度.因此, 需要多种手段联合使用、发展新型检测技术来提高药物动态测量的准确性, 或者建立数学模型来模拟纳米农药在植物体内的动态消解过程, 从而更加精准地分析纳米农药的吸收迁移行为. ...

Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters
1
2012

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat
3
2019

... 农药纳米粒子在植物叶片中的吸收转运途径为: 首先, 纳米粒子沉积于叶面上, 然后通过角质层或气孔进入植物叶肉细胞, 随后以质外体途径(通过细胞壁)或共质体途径“装入”到韧皮部筛管细胞中进行长距离运输(刘支前, 1992).质外体途径运输较大的粒子(直径200 nm左右), 共质体途径运输较小的粒子(直径<50 nm) (Raliya et al., 2018).纳米粒子进一步沿中柱鞘和韧皮部向其它部位内化迁移(Anjum et al., 2016; Avellan et al., 2019). ...

... 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

Nanotechnology applications in pollution sensing and degradation in agriculture: a review
1
2009

... 二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011).TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012). ...

A mechanistic view of interactions of a nanoherbicide with target organism
3
2019

... 近年来, 纳米农药的相关研究备受关注, 主要集中在农药纳米剂型的创制和生物活性评价方面, 而纳米农药在植物体内的吸收、转运和分布研究相对较少.了解农药纳米粒子在植物体内的吸收与转运行为有助于阐明纳米农药与植物的互作方式, 为高效绿色纳米载药系统的优化设计奠定理论基础(Bombo et al., 2019).此外, 由于残留在植物食用部位的农药可以通过食物链进入人体, 因此研究农药纳米粒子在植物体内的吸收与转运还有利于揭示其作用机制及生物累积效应, 明确其生物安全性, 为纳米农药的合理安全使用提供指导(Valletta et al., 2014; Stamm et al., 2016).鉴于此, 本文对纳米农药在植物体中的吸收、转运及相关分析方法进行综述. ...

... 除二氧化硅载药体系外, Bombo等(2019)研究了聚己内酯包覆的莠去津(atrazine)纳米粒子在芥菜(B. juncea)叶上的吸收与渗透行为.结果表明, 导管分子以及完整的叶肉细胞中均可观察到莠去津-聚己内酯纳米粒子.纳米粒子主要从排水器的气孔渗透到叶肉组织, 通过维管组织进入细胞内释放活性物质使叶绿体降解, 进而发挥除草效果.Tong等(2017)研究了单甲醚聚乙二醇-聚乳酸-羟基乙酸共聚物(mPEG- PLGA)负载异丙甲草胺(metolachlor)的纳米粒子在水稻体内的迁移分布.结果表明, 花青素5荧光染料(Cy5)负载于纳米粒子上可在根部观察到明显的荧光信号.mPEG-PLGA纳米粒子增强了疏水性异丙甲草胺的水溶性, 且Cy5标记的纳米粒子可能通过质外体途径内化进入植物体内. ...

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway
1
2006

... 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

Development of stained polymeric nanocapsules loaded with model drugs: use of a fluorescent poly (phenyleneethynylene)
1
2016

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

Determination of the pore size of cell walls of living plant cells
1
1979

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Titanium dioxide nanomaterials:? synthesis, properties, modifications, and applications
1
2007

... 二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011).TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012). ...

Aggregation, dissolution, and transformation of copper nanoparticles in natural waters
1
2015

... 除上述因素外, 土壤质地、培养基质、农药暴露方式和时间等环境条件都会影响纳米粒子在植物体内的吸收与转运.例如, 高暴露浓度可能影响土壤或根际微生物群落, 并由于土壤理化性质而导致纳米粒子团聚或聚集, 进而限制植物对纳米粒子的吸收(Raliya et al., 2018).纳米Cu在纯水、有机质含量高的水中以及水培溶液中的迁移水平不同(Conway et al., 2015).土壤水饱和度会不同程度地阻碍纳米粒子以非原生质体途径通过皮质(Su et al., 2019). ...

Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization
1
2016

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

In vivo tracking of copper-64 radiolabeled nanoparticles in Lactuca sativa
1
2017

... 同位素示踪法是利用同位素对纳米粒子进行标记和追踪的一种灵敏技术(Nath et al., 2018).利用同位素示踪技术结合扫描电子显微镜和能量色散光谱, 能够直观地确定农药在植物体内的分布情况.Alsayeda等(2008)14C标记的吡虫啉添加于土壤后培养番茄, 然后对其叶片和果实进行吡虫啉总放射性和代谢物分析.结果表明, 近85%的放射性物质转移到地上部, 而在根中只检测到少量的放射性物质, 且放射性浓度从下叶到上叶呈下降趋势.Davis等(2017)利用放射性同位素标记Cu纳米粒子, 以无创方式跟踪和量化生菜幼苗体内的Cu纳米粒子的转运和积累.结果发现, 64Cu纳米粒子出现在子叶中, 表明大部分放射性64Cu纳米粒子存在于根部较低位置, 且纳米粒子可以沿根组织向上运输到根轴, 随后迁移到地上部. ...

Molecular insights into resistance mechanisms of lepidopteran insect pests against toxicants
1
2013

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

Physiological and biochemical response of plants to engineered NMs: implications on future design
1
2017

... 纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012).植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子.此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012).侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017).侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015). ...

Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance
1
2016

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

Interactions between engineered nanomaterials and agricultural crops: implications for food safety
2
2014

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... ; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves
1
2006

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

Nanotechnology: the new perspective in precision agriculture
1
2017

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway
3
2008

... 不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同.例如, 单子叶植物有须根, 双子叶植物有初生根.比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019).根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip).凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014).大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001).植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007).不同植物叶片孔隙大小存在差异.例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and watersuspended nanoparticles
1
2008

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

The future of nanotechnology in plant pathology
1
2018

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants
2
2000

... 其中, CrootCsoil分别为植物根和土壤干重中农药浓度(mg·kg-1).RCF值大于1表示该化合物从土壤进入植物根系的能力较强(Gao et al., 2000; Ge et al., 2017). ...

... 其中, CrootCshoot分别为化合物在植物根和茎叶中的浓度(mg·kg-1).TFfoliage值大于1表示化合物从植物枝叶到根的迁移能力较强(Gao et al., 2000; Ge et al., 2017). ...

Uptake and translocation of imidacloprid, thiamethoxam and difenoconazole in rice plants
3
2017

... 其中, CrootCsoil分别为植物根和土壤干重中农药浓度(mg·kg-1).RCF值大于1表示该化合物从土壤进入植物根系的能力较强(Gao et al., 2000; Ge et al., 2017). ...

... 其中, CrootCshoot分别为化合物在植物根和茎叶中的浓度(mg·kg-1).TFfoliage值大于1表示化合物从植物枝叶到根的迁移能力较强(Gao et al., 2000; Ge et al., 2017). ...

... 高效液相色谱(HPLC)法是测定植物中农药含量的常用方法, 具有高灵敏度和高选择性等优点.Wang等(2018)利用HPLC测定了PGA包覆的阿维菌素纳米粒子在水稻根、茎及叶部的含量.Ge等(2017)利用HPLC测定了吡虫啉、噻虫嗪和苯醚甲环唑(difenoconazole)添加于土壤后在水稻植株中的吸收和转运. ...

Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake
2
2016

... 其中, CshootCroot分别为化合物在植物叶和根中的浓度(mg·kg-1).TFroot值大于1表示化合物从植物根到枝叶的迁移能力较强(Ge et al., 2016). ...

... Ge等(2016)比较了不同浓度毒死蜱(chlorpyrifos)以灌根方式作用于白菜(Brassica rapa var. glabra)和生菜5天后, 毒死蜱在2种蔬菜中的TFroot.结果表明, 当浓度较低时, 白菜和生菜TFroot无显著差异, 表明低浓度下毒死蜱在白菜和生菜中从根迁移到叶的能力相当.当浓度较高时, 白菜的TFroot高于生菜, 表明白菜在高浓度毒死蜱处理下从根向叶的转运能力更强. ...

Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana
3
2014

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

... AgNPs也可以通过喷施于植物叶片表面被吸收.Geisler-Lee等(2014)发现, 浸泡在含AgNPs的培养基中的拟南芥幼苗子叶气孔保卫细胞能吸收并积累AgNPs (Geisler-Lee et al., 2014).Larue等(2014a)发现, AgNPs经叶面喷施后, 可被生菜叶片角质层有效地捕获, 并通过气孔渗透进入叶片组织.此外, 不同暴露方式下, AgNPs在植物体内的迁移状况也有所不同.Li等(2017)比较了根部暴露和叶片暴露方式下, 大豆(Glycine max)和水稻(Oryza sativa)对AgNPs的吸收情况, 结果表明, 叶片暴露方式下Ag生物积累量是根暴露的17-200倍. ...

... 发现, 浸泡在含AgNPs的培养基中的拟南芥幼苗子叶气孔保卫细胞能吸收并积累AgNPs (Geisler-Lee et al., 2014).Larue等(2014a)发现, AgNPs经叶面喷施后, 可被生菜叶片角质层有效地捕获, 并通过气孔渗透进入叶片组织.此外, 不同暴露方式下, AgNPs在植物体内的迁移状况也有所不同.Li等(2017)比较了根部暴露和叶片暴露方式下, 大豆(Glycine max)和水稻(Oryza sativa)对AgNPs的吸收情况, 结果表明, 叶片暴露方式下Ag生物积累量是根暴露的17-200倍. ...

Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana
3
2012

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

... Geisler-Lee等(2012)发现, AgNPs可以在拟南芥根尖吸收并逐渐积累, 从边缘细胞到根冠、表皮、维管柱和前端根分生区均有分布.进一步研究发现, AgNPs附着在拟南芥主根表面, 于暴露早期进入根尖, 14天后逐渐转移入根, 同时进入侧根原基和根毛.多重侧根发育后, 17天后观察到在维管组织以及从根到茎的整个植株中均有AgNPs分布.Torrent等(2020)取生菜(Lactuca sativa var. ramosa)根部经不同涂层(柠檬酸盐、聚乙烯吡咯烷酮、聚乙二醇)、不同粒径(60、75和100 nm)以及不同浓度(1、3、5、7、10和15 mg·L-1) AgNPs体系处理后, 探究AgNPs在生菜体内的吸收、迁移和生物累积.结果表明, AgNPs的积累受粒径和浓度的影响, 但不受纳米粒子涂层的影响.在较高浓度下, 中性电荷和粒径大的AgNPs向芽迁移程度更明显. ...

Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities
1
2012

... 二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011).TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012). ...

Fabrication of an effective avermectin nanoemulsion using a cleavable succinic ester emulsifier
1
2018

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

In vivo imaging of the uptake of upconversion nanoparticles by plant roots
1
2009

... 初生根层次结构由外到内依次为表皮、皮层(包括外皮层和内皮层)和维管柱(包括中柱鞘和维管组织).内皮层与中柱鞘相连, 维管组织位于根的中间(Su et al., 2019).纳米粒子在根部的迁移路径可能为: (1) 纳米粒子被根毛细胞吸收后选择性穿过细胞壁; (2) 以共质体途径或质外体途径从表皮进入内皮层; (3) 通过木质部导管向地上部运输纳米粒子(Hischem?ller et al., 2009; Anjum et al., 2016; Tripathi et al., 2017a). ...

The exodermis: a variable apoplastic barrier
1
2001

... 不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同.例如, 单子叶植物有须根, 双子叶植物有初生根.比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019).根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip).凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014).大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001).植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007).不同植物叶片孔隙大小存在差异.例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS
2
2017

... 表面增强拉曼光谱法(SERS)是将拉曼光谱和纳米技术相结合, 监测农药在植物体内动态分布状况的一种方法, 是探测界面特性、分子间相互作用和分子结构的一种高灵敏度的分析检测技术(Hou et al., 2017; 王世芳等, 2019).相较于色谱技术, SERS能实现更低检测限的农药含量测定, 并且操作简单, 检测速度快, 可以实现原位取样而对植物无侵害性.近年来, 研究主要集中于利用SERS实时监测农药在植物体内的渗透和迁移行为(Yang et al., 2016b; Hou et al., 2017).Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布.结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动.随着施药浓度的增加, 检测信号所需的时间减少. ...

... ; Hou et al., 2017).Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布.结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动.随着施药浓度的增加, 检测信号所需的时间减少. ...

Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms
1
2009

... 木质部是纳米粒子迁移和转运的重要载体(Aslani et al., 2014).根压和蒸腾拉力是木质部运输的动力, 纳米粒子进入木质部后随蒸腾流向地上部转运.木质部是由无数个导管或管胞以及内部的纹孔和穿孔板相互连通构成的三维拓扑结构(张红霞等, 2017), 其纹孔孔径为43-340 nm (Jansen et al., 2009; Zhang et al., 2017).纹孔膜能阻碍溶质的流动, 而穿孔板允许纳米粒子通过. ...

Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems
2
2014

... 不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同.例如, 单子叶植物有须根, 双子叶植物有初生根.比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019).根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip).凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014).大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001).植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007).不同植物叶片孔隙大小存在差异.例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating
1
2012

... 农药主要以叶面喷施和根部施药2种方式作用于植物.农药纳米粒子与植物的相互作用主要包括3个环节(Su et al., 2019): (1) 纳米粒子沉积或吸附于植物表面(根、茎、叶); (2) 纳米粒子吸附渗透进入角质层和表皮, 进而以共质体或质外体途径迁移到维管组织; (3) 纳米粒子通过维管组织转运到植物的其它部位(Judy et al., 2012; Lead et al., 2018). ...

Nanopesticides: state of knowledge, environmental fate, and exposure modeling
1
2013

... 大多数农药活性物质为有机化合物, 而目前关于有机纳米农药在植物中的吸收转运研究主要集中在载体包覆型载药体系上.大多数传统农药剂型的内吸特性与农药化合物本身的理化性质一致.然而, 有研究表明, 利用纳米材料对农药化合物进行负载和包覆后, 不仅可以增加难溶性活性成分的表观溶解度, 提高其稳定性, 实现农药的控制释放, 还可以改变农药的内吸行为(Kah et al., 2013).Wang等(2018)研究了甘氨酸甲酯修饰的聚琥珀酰亚胺聚合物包覆的阿维菌素纳米粒子(AVM-PGA)在水稻叶片上的迁移和分布.经AVM-PGA处理叶片后, 在水稻的茎和叶中均可检测到阿维菌素, 而未包覆的裸药处理组中, 只能在水稻叶片上检测到少量阿维菌素, 其它部位未检测到.表明使用PGA负载阿维菌素可以促进其在水稻植株不同部位(茎部、近端叶、远端叶和处理叶片)的迁移, 即纳米载体能改善非内吸性农药的吸收和迁移特性. ...

Nanopesticide research: current trends and future priorities
2
2014

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

... 农药活性成分中无机化合物占比较小, 然而纳米银(AgNPs)、铜基和TiO2纳米粒子因其能有效抑制植物细菌和真菌的生长而被用于农业杀菌剂(Kah and Hofmann, 2014; Su et al., 2019). ...

Recent developments of safer formulations of agrochemicals
1
2007

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid
1
2015

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Nano-based smart pesticide formulations: emerging opportunities for agriculture
1
2019

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana
1
2010

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation
1
2014

... AgNPs也可以通过喷施于植物叶片表面被吸收.Geisler-Lee等(2014)发现, 浸泡在含AgNPs的培养基中的拟南芥幼苗子叶气孔保卫细胞能吸收并积累AgNPs (Geisler-Lee et al., 2014).Larue等(2014a)发现, AgNPs经叶面喷施后, 可被生菜叶片角质层有效地捕获, 并通过气孔渗透进入叶片组织.此外, 不同暴露方式下, AgNPs在植物体内的迁移状况也有所不同.Li等(2017)比较了根部暴露和叶片暴露方式下, 大豆(Glycine max)和水稻(Oryza sativa)对AgNPs的吸收情况, 结果表明, 叶片暴露方式下Ag生物积累量是根暴露的17-200倍. ...

Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure
1
2014

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase
2
2012

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... TiO2 NPs在植物体内的迁移转运受纳米粒子的粒径影响.研究表明, 粒径小于36 nm的TiO2 NPs能迁移到小麦(Triticum aestivum)根部中柱鞘, 进而迁移到芽和叶; 36-140 nm TiO2 NPs只能迁移转运到根部的皮质和薄壁组织; 大于140 nm TiO2 NPs则被根部表皮细胞阻隔(Larue et al., 2012).不同浓度以及不同作用方式也会对TiO2 NPs在植物体内的迁移转运产生影响.Raliya等(2015)比较了不同浓度范围(0-1 000 mg·kg-1)以及不同作用方式下(气溶胶叶面喷施和土壤施药), TiO2 NPs在番茄体内的迁移行为.结果表明, 浓度为250 mg·kg-1的TiO2 NPs在番茄茎部积累较多, 且土壤施药方式下Ti的含量较高(Raliya et al., 2015). ...

Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review
1
2018

... 农药主要以叶面喷施和根部施药2种方式作用于植物.农药纳米粒子与植物的相互作用主要包括3个环节(Su et al., 2019): (1) 纳米粒子沉积或吸附于植物表面(根、茎、叶); (2) 纳米粒子吸附渗透进入角质层和表皮, 进而以共质体或质外体途径迁移到维管组织; (3) 纳米粒子通过维管组织转运到植物的其它部位(Judy et al., 2012; Lead et al., 2018). ...

Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat(Triticum aestivum): plant agar test for water-insoluble nanoparticles
1
2008

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice
1
2017

... AgNPs也可以通过喷施于植物叶片表面被吸收.Geisler-Lee等(2014)发现, 浸泡在含AgNPs的培养基中的拟南芥幼苗子叶气孔保卫细胞能吸收并积累AgNPs (Geisler-Lee et al., 2014).Larue等(2014a)发现, AgNPs经叶面喷施后, 可被生菜叶片角质层有效地捕获, 并通过气孔渗透进入叶片组织.此外, 不同暴露方式下, AgNPs在植物体内的迁移状况也有所不同.Li等(2017)比较了根部暴露和叶片暴露方式下, 大豆(Glycine max)和水稻(Oryza sativa)对AgNPs的吸收情况, 结果表明, 叶片暴露方式下Ag生物积累量是根暴露的17-200倍. ...

Bioinspired development of P(St-MAA)-Avermectin nanoparticles with high affinity for foliage to enhance folia retention
2
2018

... 纳米粒子在叶片表面的黏附主要取决于叶面固有特征及纳米粒子表面官能团等理化特性.通常情况下, 作物叶片表面有一层蜡质, 其由各种高级脂肪醇、脂肪酸和脂肪醛组成(Liang et al., 2018a).不同叶面结构亲脂性能不同, 通过修饰纳米粒子改变其表面结构及特性可以促进纳米粒子的黏附与吸收.Yu等(2017)构建了3种不同官能团修饰的阿维菌素-聚乳酸纳米粒子(CH3CO-PLA-NS、HOOC-PLA-NS和H2N-PLA-NS), 3种纳米粒子在黄瓜(Cucumis sativus)叶片上的黏附力大小为H2N-PLA-NS>CH3CO- PLA-NS>HOOC-PLA-NS (图1).Liang等(2018a)以苯乙烯-甲基丙烯酸共聚物为载体, 并以邻苯二酚为表面黏附基团制备了粒径为120 nm的阿维菌素纳米粒子, 纳米粒子表面覆盖的邻苯二酚基团可以使酚羟基与叶片表面的羧基或羟基形成较强氢键, 从而显著增强粒子与黄瓜和甘蓝(Brassica oleracea)叶面的黏附性. ...

... ).Liang等(2018a)以苯乙烯-甲基丙烯酸共聚物为载体, 并以邻苯二酚为表面黏附基团制备了粒径为120 nm的阿维菌素纳米粒子, 纳米粒子表面覆盖的邻苯二酚基团可以使酚羟基与叶片表面的羧基或羟基形成较强氢键, 从而显著增强粒子与黄瓜和甘蓝(Brassica oleracea)叶面的黏附性. ...

A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L.) growth
1
2018

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants
1
2011

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Tests with a solid solution of permethrin in a degradable polymer formulation as stomach and contact poison on Mamestra brassicae (Lep., Noctuidae) and Calandra granaria (Col., Curculionidae)
1
1988

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Plasmodesmata as a supracellular control network in plants
1
2004

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation
3
2010

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Peer reviewed: environmental technologies at the nanoscale
1
2003

... 纳米农药以灌根或叶面喷施方式作用于植物不同部位, 经植物吸收、迁移和转运, 最终分布于植物的不同组织器官.残留于植物体表或体内的纳米农药有可能会对作物、农产品和生态系统产生不利影响(Masciangioli and Zhang, 2003).因此, 对于纳米农药与植物相互作用的研究不应局限于纳米农药在植物体内迁移路径及作用机制, 还应对其在植物体内的动态消解、残留行为及毒理学进行深入研究. ...

Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants
2
2012

... 纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011).有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010).内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012).网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a).Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用. ...

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients
1
2016

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique
1
1998

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Nanoparticulate material delivery to plants
1
2010

... 纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011).有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010).内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012).网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a).Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用. ...

Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil
1
2019

... 除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移.Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布.Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累.Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants
1
2018

... 同位素示踪法是利用同位素对纳米粒子进行标记和追踪的一种灵敏技术(Nath et al., 2018).利用同位素示踪技术结合扫描电子显微镜和能量色散光谱, 能够直观地确定农药在植物体内的分布情况.Alsayeda等(2008)14C标记的吡虫啉添加于土壤后培养番茄, 然后对其叶片和果实进行吡虫啉总放射性和代谢物分析.结果表明, 近85%的放射性物质转移到地上部, 而在根中只检测到少量的放射性物质, 且放射性浓度从下叶到上叶呈下降趋势.Davis等(2017)利用放射性同位素标记Cu纳米粒子, 以无创方式跟踪和量化生菜幼苗体内的Cu纳米粒子的转运和积累.结果发现, 64Cu纳米粒子出现在子叶中, 表明大部分放射性64Cu纳米粒子存在于根部较低位置, 且纳米粒子可以沿根组织向上运输到根轴, 随后迁移到地上部. ...

Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi
1
2008

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Evaluation of penetration of nanocarriers into red pepper leaf using confocal laser scanning microscopy
2
2014

... 除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移.Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布.Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累.Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

... )叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

Effects of the physical state of nanocarriers on their penetration into the root and upward transportation to the stem of soybean plants using confocal laser scanning microscopy
3
2016

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

... 载药体系的结构及性质影响纳米农药在植物体内的渗透和迁移.Nguyen等(2016)以玉米油(液体脂质)和蜂蜡(固体脂质)为原料, 以尼罗红为荧光活性成分构建了3种表观相似(粒径、多分散系数以及zeta电位)的脂质纳米剂型, 即脂基纳米乳(NE)、固体脂质纳米粒(SLN)、纳米脂质载体(NLC), 并研究了这3种纳米剂型在大豆根部的渗透和迁移行为(Nguyen et al., 2016).结果表明, NE仅需1天就可以渗透到根的中心位置, 并向上运输到茎的4 cm位置, 而SLN和NLC分别需要6和3天才能达到同样的效果, 即NE渗透进入根部及向上转运的速度更快, 其原因可能在于脂基纳米乳的流动性相对较高. ...

... 电位)的脂质纳米剂型, 即脂基纳米乳(NE)、固体脂质纳米粒(SLN)、纳米脂质载体(NLC), 并研究了这3种纳米剂型在大豆根部的渗透和迁移行为(Nguyen et al., 2016).结果表明, NE仅需1天就可以渗透到根的中心位置, 并向上运输到茎的4 cm位置, 而SLN和NLC分别需要6和3天才能达到同样的效果, 即NE渗透进入根部及向上转运的速度更快, 其原因可能在于脂基纳米乳的流动性相对较高. ...

Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate
2
2018

... 在土壤中增施不同粒径纳米Cu (60-80 nm; 小于25 nm) 65天后, 豇豆(Vigna unguiculata)根系铜含量随大粒径纳米Cu浓度的增加逐渐增加, 随小粒径纳米Cu浓度的增加铜的含量先增加后降低.豇豆叶片中铜的含量积累趋势与根中相似, 但叶片中的铜含量比根中低且小粒径纳米Cu (32.74%-34.45%)向叶片中的迁移率比大粒径纳米Cu (10.21%-24.44%)更为显著(Ogunkunle et al., 2018).Tamez等(2019)在土壤中增施Kocide 3000 (Cu(OH)2)、纳米Cu、纳米CuO和微米CuO, 3周后, 发现所有状态的铜均可以从西葫芦(Cucurbita pepo)根组织转移到植株的地上部. ...

... 除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移.Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布.Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累.Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

Antifungal activity of silver and copper nanoparticles on two plant pathogens,Alternaria alternata and Botrytis cinerea
1
2014

... 铜基纳米粒子被广泛用于抗菌活性制剂(Anjum et al., 2015), 作为农药可用于预防作物的各种真菌和细菌病害(Peng et al., 2015).铜基纳米粒子对番茄(Lycopersicon esculentum)实腐茎点霉菌、互隔交链孢霉、尖孢镰刀菌和弯孢霉叶枯菌均表现出潜在的抗菌性, 且抗菌性高于农药多菌灵(Ouda, 2014). ...

Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection
1
2017

... 纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011).有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010).内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012).网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a).Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用. ...

Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method
1
2015

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants
3
2015

... 纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012).植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子.此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012).侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017).侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015). ...

... 铜基纳米粒子被广泛用于抗菌活性制剂(Anjum et al., 2015), 作为农药可用于预防作物的各种真菌和细菌病害(Peng et al., 2015).铜基纳米粒子对番茄(Lycopersicon esculentum)实腐茎点霉菌、互隔交链孢霉、尖孢镰刀菌和弯孢霉叶枯菌均表现出潜在的抗菌性, 且抗菌性高于农药多菌灵(Ouda, 2014). ...

... Peng等(2015)检测了100 mg·L-1纳米CuO处理水稻根部14天后在水稻体内的迁移行为.结果表明, 纳米CuO能进入根表皮、外皮层以及皮质, 最终到达内皮层, 但不能轻易通过凯氏带.此外, 该研究组利用透射电子显微镜(transmission electron microscope, TEM)和能谱仪(energy dispersive spectrometer, EDS)观察纳米CuO在玉米(Zea mays)体内的转运和分布.结果表明, 纳米CuO不仅存在于细胞壁内的表皮细胞, 也存在于皮质细胞的细胞间隙、细胞质以及细胞核中.说明纳米粒子可能通过质外体途径穿过表皮和皮质.纳米CuO也可以通过喷施于植物叶片表面被叶片吸收.Adhikari等(2016)发现, 在玉米叶片喷施纳米CuO (0.1 mmol·L-1), 可在叶片表皮外壁上观察到电子致密沉积物, 其大小与CuO纳米粒子大致相同.此外, 将纳米CuO暴露于玉米根部, 结果显示纳米粒子沉积在根表皮细胞内, 表明纳米CuO能通过表皮细胞和皮质细胞进入植物体内.进入细胞后, 纳米粒子通过胞间连丝在细胞间迁移(Adhikari et al., 2016). ...

Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment
1
2014

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Arabidopsis lateral root development: an emerging story
1
2009

... 纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012).植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子.此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012).侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017).侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015). ...

Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers
1
2011

... 近年来, 介孔二氧化硅(SiO2)载药粒子备受关注, 其具有成本低、环境相容性好、比表面积大、孔径可调及负载能力高等优点, 并且通过表面修饰可以实现活性化合物的控制释放(Popat et al., 2011; 何顺等, 2016).Zhao等(2018b)研究表明, 螺虫乙酯(spirotetramat)-介孔二氧化硅纳米粒子可以从黄瓜表皮进入处理组叶片内, 进而迁移到叶柄和茎, 最后运输到根等其它部位.剂量转移研究表明, 螺虫乙酯分布于处理组下方叶片及根部, 上方叶片较下方叶片含量少, 即螺虫乙酯能向上及向下迁移, 但倾向于向下迁移(图2).与传统剂型相比, 使用介孔二氧化硅作为农药载体能增加螺虫乙酯剂量转移2-3倍, 表明介孔二氧化硅可以增强农药在植物体内的剂量传递. ...

Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants
2
2018

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

... ; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant
2
2015

... TiO2 NPs在植物体内的迁移转运受纳米粒子的粒径影响.研究表明, 粒径小于36 nm的TiO2 NPs能迁移到小麦(Triticum aestivum)根部中柱鞘, 进而迁移到芽和叶; 36-140 nm TiO2 NPs只能迁移转运到根部的皮质和薄壁组织; 大于140 nm TiO2 NPs则被根部表皮细胞阻隔(Larue et al., 2012).不同浓度以及不同作用方式也会对TiO2 NPs在植物体内的迁移转运产生影响.Raliya等(2015)比较了不同浓度范围(0-1 000 mg·kg-1)以及不同作用方式下(气溶胶叶面喷施和土壤施药), TiO2 NPs在番茄体内的迁移行为.结果表明, 浓度为250 mg·kg-1的TiO2 NPs在番茄茎部积累较多, 且土壤施药方式下Ti的含量较高(Raliya et al., 2015). ...

... NPs在番茄茎部积累较多, 且土壤施药方式下Ti的含量较高(Raliya et al., 2015). ...

Nanofertilizer for precision and sustainable agriculture: current state and future perspectives
2
2018

... 除上述因素外, 土壤质地、培养基质、农药暴露方式和时间等环境条件都会影响纳米粒子在植物体内的吸收与转运.例如, 高暴露浓度可能影响土壤或根际微生物群落, 并由于土壤理化性质而导致纳米粒子团聚或聚集, 进而限制植物对纳米粒子的吸收(Raliya et al., 2018).纳米Cu在纯水、有机质含量高的水中以及水培溶液中的迁移水平不同(Conway et al., 2015).土壤水饱和度会不同程度地阻碍纳米粒子以非原生质体途径通过皮质(Su et al., 2019). ...

... 农药纳米粒子在植物叶片中的吸收转运途径为: 首先, 纳米粒子沉积于叶面上, 然后通过角质层或气孔进入植物叶肉细胞, 随后以质外体途径(通过细胞壁)或共质体途径“装入”到韧皮部筛管细胞中进行长距离运输(刘支前, 1992).质外体途径运输较大的粒子(直径200 nm左右), 共质体途径运输较小的粒子(直径<50 nm) (Raliya et al., 2018).纳米粒子进一步沿中柱鞘和韧皮部向其它部位内化迁移(Anjum et al., 2016; Avellan et al., 2019). ...

Bioaccumulation and toxicity of silver compounds: a review
1
1999

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Interaction of nanoparticles with edible plants and their possible implications in the food chain
4
2011

... 纳米粒子与植物间的相互作用非常复杂, 其在植物中的吸收、转运及迁移行为受多种因素影响, 主要取决于植物种类、纳米粒子自身特性以及环境条件(Rico et al., 2011). ...

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

... 纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011).有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010).内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012).网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a).Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用. ...

Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales
1
2019

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

Nanotechnology in plant science: to make a long story short
1
2019

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites
1
2017

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review
1
2016

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants
2
2012

... Servin等(2012)研究了500 mg·L-1 TiO2 NPs处理黄瓜根部15天后在黄瓜体内的吸收和迁移.结果表明, TiO2 NPs被根部吸收后可转运到地上部, 主要存在于根的表皮和皮质.此外, 在叶片、叶肉组织、维管系统及腺毛中也可观察到TiO2 NPs. ...

... 除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移.Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布.Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累.Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens
1
2014

... 铜的状态也会影响其在植物体内的吸收和迁移.Wang等(2016b)比较了玉米根部暴露于0.15 mg·L-1 Cu2+、100 mg·L-1纳米CuO和100 mg·L-1块体CuO 14天后根部和地上部的铜生物累积量.结果表明, 100 mg·L-1纳米CuO处理组根部和地上部铜含量均高于其它处理组.Shi等(2014)检测了1 000 mg·L-1纳米CuO处理水培耐铜植物海州香薷(Elsholtzia splendens)根部后, 纳米粒子在植物体内的分布.结果表明, 叶片中铜的含量远高于同等处理的0.5 mg·L-1可溶性铜和块体CuO, 也表明纳米CuO可被根吸收并迁移到叶片. ...

Carboxymethyl chitosan modified carbon nanoparticle for controlled emamectin benzoate delivery: improved solubility, pH-responsive release, and sustainable pest control
1
2019

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans
1
2016

... 近年来, 纳米农药的相关研究备受关注, 主要集中在农药纳米剂型的创制和生物活性评价方面, 而纳米农药在植物体内的吸收、转运和分布研究相对较少.了解农药纳米粒子在植物体内的吸收与转运行为有助于阐明纳米农药与植物的互作方式, 为高效绿色纳米载药系统的优化设计奠定理论基础(Bombo et al., 2019).此外, 由于残留在植物食用部位的农药可以通过食物链进入人体, 因此研究农药纳米粒子在植物体内的吸收与转运还有利于揭示其作用机制及生物累积效应, 明确其生物安全性, 为纳米农药的合理安全使用提供指导(Valletta et al., 2014; Stamm et al., 2016).鉴于此, 本文对纳米农药在植物体中的吸收、转运及相关分析方法进行综述. ...

Assaydependent phytotoxicity of nanoparticles to plants
1
2009

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis
8
2019

... 不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同.例如, 单子叶植物有须根, 双子叶植物有初生根.比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019).根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip).凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014).大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001).植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007).不同植物叶片孔隙大小存在差异.例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

... ).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

... 除上述因素外, 土壤质地、培养基质、农药暴露方式和时间等环境条件都会影响纳米粒子在植物体内的吸收与转运.例如, 高暴露浓度可能影响土壤或根际微生物群落, 并由于土壤理化性质而导致纳米粒子团聚或聚集, 进而限制植物对纳米粒子的吸收(Raliya et al., 2018).纳米Cu在纯水、有机质含量高的水中以及水培溶液中的迁移水平不同(Conway et al., 2015).土壤水饱和度会不同程度地阻碍纳米粒子以非原生质体途径通过皮质(Su et al., 2019). ...

... 农药主要以叶面喷施和根部施药2种方式作用于植物.农药纳米粒子与植物的相互作用主要包括3个环节(Su et al., 2019): (1) 纳米粒子沉积或吸附于植物表面(根、茎、叶); (2) 纳米粒子吸附渗透进入角质层和表皮, 进而以共质体或质外体途径迁移到维管组织; (3) 纳米粒子通过维管组织转运到植物的其它部位(Judy et al., 2012; Lead et al., 2018). ...

... 初生根层次结构由外到内依次为表皮、皮层(包括外皮层和内皮层)和维管柱(包括中柱鞘和维管组织).内皮层与中柱鞘相连, 维管组织位于根的中间(Su et al., 2019).纳米粒子在根部的迁移路径可能为: (1) 纳米粒子被根毛细胞吸收后选择性穿过细胞壁; (2) 以共质体途径或质外体途径从表皮进入内皮层; (3) 通过木质部导管向地上部运输纳米粒子(Hischem?ller et al., 2009; Anjum et al., 2016; Tripathi et al., 2017a). ...

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

... 浓度、湿度、温度以及光照强度(Su et al., 2019). ...

... 农药活性成分中无机化合物占比较小, 然而纳米银(AgNPs)、铜基和TiO2纳米粒子因其能有效抑制植物细菌和真菌的生长而被用于农业杀菌剂(Kah and Hofmann, 2014; Su et al., 2019). ...

Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles
1
2014

... 介孔二氧化硅纳米粒子可以通过共质体和质外体途径进入根, 随后通过木质部输导组织进入茎叶等进行迁移(Sun et al., 2014).农药在其包覆作用下将随载体共同转运和迁移, 从而影响农药本身的剂量转移特性.Zhao等(2018a)研究表明, 与市售咪鲜胺(prochloraz)悬浮剂相比, 咪鲜胺-介孔二氧化硅纳米粒子在黄瓜叶片和根部的吸收迁移性能更佳. ...

Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo)
1
2019

... 在土壤中增施不同粒径纳米Cu (60-80 nm; 小于25 nm) 65天后, 豇豆(Vigna unguiculata)根系铜含量随大粒径纳米Cu浓度的增加逐渐增加, 随小粒径纳米Cu浓度的增加铜的含量先增加后降低.豇豆叶片中铜的含量积累趋势与根中相似, 但叶片中的铜含量比根中低且小粒径纳米Cu (32.74%-34.45%)向叶片中的迁移率比大粒径纳米Cu (10.21%-24.44%)更为显著(Ogunkunle et al., 2018).Tamez等(2019)在土壤中增施Kocide 3000 (Cu(OH)2)、纳米Cu、纳米CuO和微米CuO, 3周后, 发现所有状态的铜均可以从西葫芦(Cucurbita pepo)根组织转移到植株的地上部. ...

The permeability of plant cell walls as measured by gel filtration chromatography
1
1981

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Synthesis of Ag doped nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan
1
2011

... 二氧化钛纳米粒子(TiO2 NPs)是一种高效的、环境友好型光催化剂(Chen and Mao, 2007), 在农业上主要用于农药的降解或土壤修复中的污染物处理(Baruah and Dutta, 2009; Thomas et al., 2011).TiO2 NPs在紫外光照下活性强, 经过修饰后具有抗真菌活性, 能降低农药的半衰期, 促进种子萌发和幼苗生长(谢寅峰和姚晓华, 2009; Gogos et al., 2012). ...

The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion
1
1991

... 粒径较小的纳米粒子以聚集体或单个纳米粒子形式通过孔径扩散进入质外体途径或共质体途径.质外体途径通过细胞壁或细胞间隙进行运输, 其扩散受渗透压和毛细管力作用调控(陶琦, 2017).在质外体途径中, 纳米粒子运动受细胞壁粒径排阻限(约为5-20 nm)限制(Carpita et al., 1979; Tepfer and Taylor, 1981; Eichert and Goldbach, 2008; Ma et al., 2010).农药纳米粒子通过细胞间隙或细胞壁绕过表皮及皮质细胞后到达内皮层.然而, 内皮层上凯氏带的屏障作用使纳米粒子集合体聚集在内皮层细胞外而无法进入维管组织(Aubert et al., 2012; Larue et al., 2012; Deng et al., 2014).农药纳米粒子需进入内皮层细胞, 绕过凯氏带后才能返回质外体途径进入导管, 或以共质体途径从内皮层细胞开始, 经胞间连丝在活细胞之间移动, 随后穿过中柱鞘及中柱内薄壁细胞到达导管, 然后向地上部迁移(刘支前, 1992; Rico et al., 2011; 姚安庆和杨健, 2012; Deng et al., 2014).Geisler-Lee等(2012)发现, 20和40 nm银粒子可能以质外体途径在拟南芥(Arabidopsis thaliana)植株体内进行迁移.共质体途径以胞间连丝为桥梁在细胞间进行传递(陶琦, 2017), 是运输纳米粒子进入作物体内更为重要且被高度调控的途径.纳米粒子进入根部表皮细胞后, 靠胞间连丝向邻近细胞转运, 直至进入木质部导管(Tilney et al., 1991; 刘支前, 1992; Lucas and Lee, 2004; 陶琦, 2017). ...

Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants
1
2017

... 除二氧化硅载药体系外, Bombo等(2019)研究了聚己内酯包覆的莠去津(atrazine)纳米粒子在芥菜(B. juncea)叶上的吸收与渗透行为.结果表明, 导管分子以及完整的叶肉细胞中均可观察到莠去津-聚己内酯纳米粒子.纳米粒子主要从排水器的气孔渗透到叶肉组织, 通过维管组织进入细胞内释放活性物质使叶绿体降解, 进而发挥除草效果.Tong等(2017)研究了单甲醚聚乙二醇-聚乳酸-羟基乙酸共聚物(mPEG- PLGA)负载异丙甲草胺(metolachlor)的纳米粒子在水稻体内的迁移分布.结果表明, 花青素5荧光染料(Cy5)负载于纳米粒子上可在根部观察到明显的荧光信号.mPEG-PLGA纳米粒子增强了疏水性异丙甲草胺的水溶性, 且Cy5标记的纳米粒子可能通过质外体途径内化进入植物体内. ...

Mesoporous silica nanoparticles deliver DNA and chemicals into plants
1
2007

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration
1
2020

... Geisler-Lee等(2012)发现, AgNPs可以在拟南芥根尖吸收并逐渐积累, 从边缘细胞到根冠、表皮、维管柱和前端根分生区均有分布.进一步研究发现, AgNPs附着在拟南芥主根表面, 于暴露早期进入根尖, 14天后逐渐转移入根, 同时进入侧根原基和根毛.多重侧根发育后, 17天后观察到在维管组织以及从根到茎的整个植株中均有AgNPs分布.Torrent等(2020)取生菜(Lactuca sativa var. ramosa)根部经不同涂层(柠檬酸盐、聚乙烯吡咯烷酮、聚乙二醇)、不同粒径(60、75和100 nm)以及不同浓度(1、3、5、7、10和15 mg·L-1) AgNPs体系处理后, 探究AgNPs在生菜体内的吸收、迁移和生物累积.结果表明, AgNPs的积累受粒径和浓度的影响, 但不受纳米粒子涂层的影响.在较高浓度下, 中性电荷和粒径大的AgNPs向芽迁移程度更明显. ...

An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity
3
2017

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

... 初生根层次结构由外到内依次为表皮、皮层(包括外皮层和内皮层)和维管柱(包括中柱鞘和维管组织).内皮层与中柱鞘相连, 维管组织位于根的中间(Su et al., 2019).纳米粒子在根部的迁移路径可能为: (1) 纳米粒子被根毛细胞吸收后选择性穿过细胞壁; (2) 以共质体途径或质外体途径从表皮进入内皮层; (3) 通过木质部导管向地上部运输纳米粒子(Hischem?ller et al., 2009; Anjum et al., 2016; Tripathi et al., 2017a). ...

... 纳米粒子可能与载体蛋白结合或通过水通道蛋白、离子通道、内吞作用被植物细胞吸收(Rico et al., 2011).有研究表明, 内吞作用在细胞渗透和随后的纳米粒子内化过程中发挥重要作用(Nair et al., 2010).内吞作用包括网格蛋白依赖型和非依赖型途径(Miralles et al., 2012).网格蛋白依赖型途径通过在质膜上形成折叠或覆盖结构形成网格蛋白包覆结构的囊泡而进行内吞(Tripathi et al., 2017a).Palocci等(2017)证实, 聚乳酸-羟基乙酸纳米粒子通过囊泡内化进入葡萄(Vitis vinifera cv. ‘Italia’)细胞, 且单分散纳米粒子内化进入葡萄细胞主要遵循网格蛋白非依赖型内吞作用. ...

Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings
1
2017

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review
1
2017

... 研究发现, 纳米银可以作为预防真菌病害的杀菌剂或是促进果实成熟的植物生长调节剂(Elmer and White, 2018).然而, AgNPs能浸出银离子, 在生物体内累积, 对生物体产生毒性(Ratte, 1999).因此, 研究AgNPs在植物体内的吸收和迁移具有重要意义.AgNPs可通过细胞间隙(短距离运输)和维管组织(长距离运输)在植物体内迁移(Ma et al., 2010; Miralles et al., 2012; Geisler-Lee et al., 2012, 2014).AgNPs的吸收取决于植物细胞的渗透性和粒子的粒径及形状(Tripathi et al., 2017b).小粒径AgNPs可以通过气孔, 大粒径AgNPs因无法进入植物细胞而被筛出(Tripathi et al., 2017c).然而, AgNPs可以诱导新的大尺寸气孔的形成, 使大尺寸纳米粒子通过细胞壁内化进入植物细胞内(Navarro et al., 2008). ...

Poly (lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi
2
2014

... 近年来, 纳米农药的相关研究备受关注, 主要集中在农药纳米剂型的创制和生物活性评价方面, 而纳米农药在植物体内的吸收、转运和分布研究相对较少.了解农药纳米粒子在植物体内的吸收与转运行为有助于阐明纳米农药与植物的互作方式, 为高效绿色纳米载药系统的优化设计奠定理论基础(Bombo et al., 2019).此外, 由于残留在植物食用部位的农药可以通过食物链进入人体, 因此研究农药纳米粒子在植物体内的吸收与转运还有利于揭示其作用机制及生物累积效应, 明确其生物安全性, 为纳米农药的合理安全使用提供指导(Valletta et al., 2014; Stamm et al., 2016).鉴于此, 本文对纳米农药在植物体中的吸收、转运及相关分析方法进行综述. ...

... 除角质层的纳米孔外, 植物叶片上还有较大的气孔(约占整个叶片表面的0.5%-5%), 可用于调节水分和气体交换(Rudall and Bateman, 2019).气孔位置和数量取决于植物种类, 大多数植物叶片只在远轴面(下表面)有气孔, 少数植物叶片远轴面和近轴面(上表面)均有气孔(Driscoll et al., 2005).气孔负载能力高度可变, 对纳米粒子的吸收受植物叶片气孔大小、密度以及孔径周期的影响(Monreal et al., 2016).气孔大小一般为10-100 μm (Avellan et al., 2019; Su et al., 2019).当气孔开放后, 纳米粒子能从气孔渗透进入植物体内.用43 nm的聚苯乙烯粒子处理蚕豆(Vicia faba), 可在其气孔道和气孔下腔观察到聚苯乙烯纳米粒子(Eichert et al., 2008).Valletta等(2014)发现, 聚乳酸-羟基乙酸纳米粒子可以通过气孔口进入葡萄(V. vinifera)叶片组织.然而, 气孔的开合很大程度上取决于CO2浓度、湿度、温度以及光照强度(Su et al., 2019). ...

Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole
1
2016

... 据联合国粮农组织统计, 农作物病虫草害引起的损失多达90%, 通过正确使用农药可以挽回40%左右的损失, 农药的使用有效地保障了粮食生产与安全(陈娟妮等, 2019).我国农业生物灾害频繁发生, 常年发生的重大病虫害有100余种, 每年化学防治面积高达4×108 hm2, 是世界第一农药生产和使用大国.然而, 目前我国仍以乳油、可湿性粉剂和水分散粒剂等传统剂型为主.粉剂的飘移性及乳油中含有的大量有机溶剂不仅会对人畜和作物产生毒害作用, 而且在生产、贮运和使用过程中也存在安全隐患(钱玲, 2005; Knowles, 2007).此外, 传统剂型载药粒子粗大、分散性差, 在田间施用过程中因风吹、日晒、雨淋造成的有效成分流失高达70%-90%, 以被保护作物为实际靶标的有效利用率一般不到30% (Deng et al., 2016).农药的过量施用不仅使病虫害的抗药性增强, 土壤生物多样性降低, 也造成资源浪费和环境污染(Dawkar et al., 2013; Volova et al., 2016; Duhan et al., 2017). ...

Foliar uptake of pesticides— present status and future challenge
1
2007

... 不同植物种类因其理化性质及形态生理结构有差异, 使得纳米粒子进入植物体能力有所不同.例如, 单子叶植物有须根, 双子叶植物有初生根.比表面积较大使得单子叶植物对于纳米粒子的暴露更为敏感(Su et al., 2019).根部内皮层细胞壁含有由木栓质和木质素共同构成的疏水层结构——凯氏带(casparian strip).凯氏带在未成熟的根尖附近发育不完全, 能阻止物质从根部中柱鞘向根皮质的非原生质体迁移(Judy and Bertsch, 2014).大多数被子植物外皮层也有凯氏带, 能抑制纳米粒子向根中迁移(Hose et al., 2001).植物叶片角质层是纳米粒子渗透的重要屏障, 其渗透性随植物种类和生长阶段而变化(Wang and Liu, 2007).不同植物叶片孔隙大小存在差异.例如, 阿拉比卡咖啡树(Coffea arabica)叶片和加拿大杨树(Populus canadensis)叶片表面的角质层孔隙分别为4和4.8 nm (Eichert and Goldbach, 2008).此外, 同一植物不同部位(如根尖、根部成熟区、茎、叶柄和中脉)木质部导管半径的差异也可能影响纳米粒子从根到叶的运输(Su et al., 2019). ...

Development of multifunctional avermectin poly (succinimide) nanoparticles to improve bioactivity and transportation in rice
2
2018

... 大多数农药活性物质为有机化合物, 而目前关于有机纳米农药在植物中的吸收转运研究主要集中在载体包覆型载药体系上.大多数传统农药剂型的内吸特性与农药化合物本身的理化性质一致.然而, 有研究表明, 利用纳米材料对农药化合物进行负载和包覆后, 不仅可以增加难溶性活性成分的表观溶解度, 提高其稳定性, 实现农药的控制释放, 还可以改变农药的内吸行为(Kah et al., 2013).Wang等(2018)研究了甘氨酸甲酯修饰的聚琥珀酰亚胺聚合物包覆的阿维菌素纳米粒子(AVM-PGA)在水稻叶片上的迁移和分布.经AVM-PGA处理叶片后, 在水稻的茎和叶中均可检测到阿维菌素, 而未包覆的裸药处理组中, 只能在水稻叶片上检测到少量阿维菌素, 其它部位未检测到.表明使用PGA负载阿维菌素可以促进其在水稻植株不同部位(茎部、近端叶、远端叶和处理叶片)的迁移, 即纳米载体能改善非内吸性农药的吸收和迁移特性. ...

... 高效液相色谱(HPLC)法是测定植物中农药含量的常用方法, 具有高灵敏度和高选择性等优点.Wang等(2018)利用HPLC测定了PGA包覆的阿维菌素纳米粒子在水稻根、茎及叶部的含量.Ge等(2017)利用HPLC测定了吡虫啉、噻虫嗪和苯醚甲环唑(difenoconazole)添加于土壤后在水稻植株中的吸收和转运. ...

A novel fluorescent conjugate applicable to visualize the translocation of glucose-fipronil
1
2014

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

Oil-in-water nanoemulsions for pesticide formulations
1
2007

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Nanotechnology: a new opportunity in plant sciences
1
2016

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)
2
2012

... 纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012).植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子.此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012).侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017).侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015). ...

... 除上述方法外, Servin等(2012)使用X射线吸收光谱(XAS)和X射线荧光光谱(XRF)研究了TiO2 NPs在黄瓜中的吸收和迁移.Wang等(2012)结合透射电子显微镜、选区电子衍射以及能量色散光谱研究了纳米Cu在玉米体内的迁移和分布.Ogunkunle等(2018)通过火焰原子吸收光谱法研究了Cu纳米粒子在豇豆中的积累.Nguyen等(2014)使用水平扫描多重深度图像技术结合植物自身荧光移除技术研究了纳米载体在红辣椒(Capsicum annuum)叶片上的渗透行为.电感耦合等离子体串联质谱(ICP-MS)是研究无机纳米农药在植物体内吸收和迁移的常用方法(Nguyen et al., 2014).Nath等(2019)利用ICP-MS分别测定了土壤和水培溶液中添加同位素标记的107Ag、65Cu、70ZnO纳米粒子后, 其在拟南芥、番茄、芦苇(Phragmites australis)根部和地上部的含量.未来在同时实现定性和定量分析纳米农药在植物体内的迁移转运的基础上, 应更聚焦于简单、快速、低成本及无损检测方法, 为纳米农药的开发、应用及农产品的质量监测提供有利的技术保障. ...

CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression
1
2016

... 铜的状态也会影响其在植物体内的吸收和迁移.Wang等(2016b)比较了玉米根部暴露于0.15 mg·L-1 Cu2+、100 mg·L-1纳米CuO和100 mg·L-1块体CuO 14天后根部和地上部的铜生物累积量.结果表明, 100 mg·L-1纳米CuO处理组根部和地上部铜含量均高于其它处理组.Shi等(2014)检测了1 000 mg·L-1纳米CuO处理水培耐铜植物海州香薷(Elsholtzia splendens)根部后, 纳米粒子在植物体内的分布.结果表明, 叶片中铜的含量远高于同等处理的0.5 mg·L-1可溶性铜和块体CuO, 也表明纳米CuO可被根吸收并迁移到叶片. ...

Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules
1
2014

... 2019年4月, 国际纯粹与应用化学联合会首次公布了未来将改变世界的十大化学新兴技术, 其中纳米农药居首.我国也将纳米药物列入国家《农业绿色发展技术导则》.利用纳米技术创制高效、安全、低残留的纳米农药已成为绿色农药创新发展的必然趋势.揭示纳米农药在植物中的吸收与转运特征, 阐明纳米农药与植物的互作方式, 可为高效绿色的纳米载药系统的优化设计、纳米农药提质增效机制及其环境效应与毒理学研究奠定理论基础, 对提高农药在植物保护中的有效利用率、降低残留污染及建立合理的施药方式具有重要意义(Wibowo et al., 2014; Athanassiou et al., 2018; Yan et al., 2019).然而, 目前研究纳米农药在植物体内的吸收与转运存在一定的困难.首先, 在测定植物体内纳米农药含量时, 基于样品种类的多样性、样品基质的复杂性以及农药活性成分含量的痕量性, 样品的前处理技术至关重要.目前, 较为新型的方法有固相萃取法、QuEChERS和凝胶渗透色谱等 (郑永权, 2013).其次, 农药进入植物体内后, 与植物间的互作机制较为复杂, 其有效成分会在植物体内发生降解代谢等一系列生物化学过程, 导致有效成分的含量在植物体内呈动态变化, 增加了检测难度.因此, 需要多种手段联合使用、发展新型检测技术来提高药物动态测量的准确性, 或者建立数学模型来模拟纳米农药在植物体内的动态消解过程, 从而更加精准地分析纳米农药的吸收迁移行为. ...

Distribution, dissipation, and metabolism of neonicotinoid insecticides in the cotton ecosystem under foliar spray and root irrigation
1
2019

... Wu等(2019)研究了吡虫啉(imidacloprid)、啶虫脒(acetamiprid)和噻虫嗪(thiamethoxam)在棉花(Gossypium spp.)不同部位的吸收、代谢和降解.TFfoliage约为0.004, 表明叶面施药方式下, 3种农药基本没有从地上部迁移到地下部. ...

A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides
1
2019

... 2019年4月, 国际纯粹与应用化学联合会首次公布了未来将改变世界的十大化学新兴技术, 其中纳米农药居首.我国也将纳米药物列入国家《农业绿色发展技术导则》.利用纳米技术创制高效、安全、低残留的纳米农药已成为绿色农药创新发展的必然趋势.揭示纳米农药在植物中的吸收与转运特征, 阐明纳米农药与植物的互作方式, 可为高效绿色的纳米载药系统的优化设计、纳米农药提质增效机制及其环境效应与毒理学研究奠定理论基础, 对提高农药在植物保护中的有效利用率、降低残留污染及建立合理的施药方式具有重要意义(Wibowo et al., 2014; Athanassiou et al., 2018; Yan et al., 2019).然而, 目前研究纳米农药在植物体内的吸收与转运存在一定的困难.首先, 在测定植物体内纳米农药含量时, 基于样品种类的多样性、样品基质的复杂性以及农药活性成分含量的痕量性, 样品的前处理技术至关重要.目前, 较为新型的方法有固相萃取法、QuEChERS和凝胶渗透色谱等 (郑永权, 2013).其次, 农药进入植物体内后, 与植物间的互作机制较为复杂, 其有效成分会在植物体内发生降解代谢等一系列生物化学过程, 导致有效成分的含量在植物体内呈动态变化, 增加了检测难度.因此, 需要多种手段联合使用、发展新型检测技术来提高药物动态测量的准确性, 或者建立数学模型来模拟纳米农药在植物体内的动态消解过程, 从而更加精准地分析纳米农药的吸收迁移行为. ...

Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing
1
2015

... 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

Preparation and characterization of emamectin benzoate solid nanodispersion
1
2017

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

Real-time monitoring of pesticide translocation in tomato plants by Surface-Enhanced Raman Spectroscopy
1
2019

... 表面增强拉曼光谱法(SERS)是将拉曼光谱和纳米技术相结合, 监测农药在植物体内动态分布状况的一种方法, 是探测界面特性、分子间相互作用和分子结构的一种高灵敏度的分析检测技术(Hou et al., 2017; 王世芳等, 2019).相较于色谱技术, SERS能实现更低检测限的农药含量测定, 并且操作简单, 检测速度快, 可以实现原位取样而对植物无侵害性.近年来, 研究主要集中于利用SERS实时监测农药在植物体内的渗透和迁移行为(Yang et al., 2016b; Hou et al., 2017).Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布.结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动.随着施药浓度的增加, 检测信号所需的时间减少. ...

Real-time and in situ monitoring of pesticide penetration in edible leaves by Surface-Enhanced Raman Scattering Mapping
0
2016

Evaluation of the penetration of multiple classes of pesticides in fresh produce using Surface-Enhanced Raman Scattering Mapping
1
2016

... 表面增强拉曼光谱法(SERS)是将拉曼光谱和纳米技术相结合, 监测农药在植物体内动态分布状况的一种方法, 是探测界面特性、分子间相互作用和分子结构的一种高灵敏度的分析检测技术(Hou et al., 2017; 王世芳等, 2019).相较于色谱技术, SERS能实现更低检测限的农药含量测定, 并且操作简单, 检测速度快, 可以实现原位取样而对植物无侵害性.近年来, 研究主要集中于利用SERS实时监测农药在植物体内的渗透和迁移行为(Yang et al., 2016b; Hou et al., 2017).Yang等(2019)利用SERS研究了不同浓度噻苯咪唑(thiabendazole)添加于水培营养液和土壤后在番茄根部和其它组织(包括叶片和花朵)的迁移和分布.结果表明, 农药信号首先出现在最低叶的中脉, 然后向叶片边缘移动.随着施药浓度的增加, 检测信号所需的时间减少. ...

Development of functionalized abamectin poly (lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention
3
2017

... 纳米粒子在叶片表面的黏附主要取决于叶面固有特征及纳米粒子表面官能团等理化特性.通常情况下, 作物叶片表面有一层蜡质, 其由各种高级脂肪醇、脂肪酸和脂肪醛组成(Liang et al., 2018a).不同叶面结构亲脂性能不同, 通过修饰纳米粒子改变其表面结构及特性可以促进纳米粒子的黏附与吸收.Yu等(2017)构建了3种不同官能团修饰的阿维菌素-聚乳酸纳米粒子(CH3CO-PLA-NS、HOOC-PLA-NS和H2N-PLA-NS), 3种纳米粒子在黄瓜(Cucumis sativus)叶片上的黏附力大小为H2N-PLA-NS>CH3CO- PLA-NS>HOOC-PLA-NS (图1).Liang等(2018a)以苯乙烯-甲基丙烯酸共聚物为载体, 并以邻苯二酚为表面黏附基团制备了粒径为120 nm的阿维菌素纳米粒子, 纳米粒子表面覆盖的邻苯二酚基团可以使酚羟基与叶片表面的羧基或羟基形成较强氢键, 从而显著增强粒子与黄瓜和甘蓝(Brassica oleracea)叶面的黏附性. ...

... N- PLA-NS)及市售阿维菌素制剂(WDG和EC)在黄瓜叶片上的保留率(Yu et al., 2017) Retention rates of abamectin-PLA nanoparticles (CH<sub>3</sub>CO-PLA-NS, HOOC-PLA-NS and H<sub>2</sub>N-PLA-NS) and commercial formulations (WDG and EC) on cucumber leaves as determined by fluorescence intensity and HPLC method (<xref ref-type="bibr" rid="b132">Yu et al., 2017</xref>) Figure 1 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

... N-PLA-NS) and commercial formulations (WDG and EC) on cucumber leaves as determined by fluorescence intensity and HPLC method (Yu et al., 2017) Figure 1 纳米粒子沉积于叶片上后通过角质层或气孔途径进入植物体内.植物角质层主要由蜡质、角质和果胶组成, 是阻止许多化合物进入植物组织的屏障(Yang et al., 2015).角质层途径中分别有2类独立的扩散通道: 脂溶性和亲水性通道(Avellan et al., 2019).脂溶性通道是角质层内固有的通道, 一般允许脂溶性有机物分子通过(李云桂, 2011), 具有较强的分子筛效应, 溶质的扩散速率与分子的体积呈线性负相关(Buchholz, 2006).亲水性通道的孔隙大小为0.6-4.8 nm, 可使亲水性物质(如极性分子或电解质)渗透进入植物叶片(Eichert and Goldbach, 2008). ...

Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, eds. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants
1

... 纳米粒子的自身特性, 如粒径大小、形貌、化学组成和表界面性质都会影响其在植物体内的转运(Rico et al., 2011; Zhang et al., 2015; Prasad et al., 2018; Sanzari et al., 2019).粒径大小是影响植物吸收的重要因素.纳米粒子主要通过植物细胞壁上的孔隙进入植物体内.蜡状疏水性角质层有纳米级别的粒径排阻限(Wang et al., 2016a), 其孔隙直径小于5.0 nm, 一般只能吸收粒径最小的纳米材料(Schwab et al., 2016).然而, 大于角质层孔隙的纳米粒子也能通过破坏蜡质层和细胞壁而进入植物叶片(Larue et al., 2014b).纳米粒子表面化学性质也会影响其在植物体内的吸收.带正电荷的粒子更容易被吸收到根中, 而带负电荷的纳米粒子浓度较高时则更容易被转移到茎叶中(Judy and Bertsch, 2014).表面电荷(即?电势)也可以通过影响纳米粒子与不同生物成分(如蛋白质和糖类)的相互作用进而影响其在植物体内的吸收、转运和生物累积(Tripathi et al., 2017a; Prasad et al., 2018).表面功能化修饰能改变纳米粒子的表面性质, 进而影响其与植物的相互作用.Kurepa等(2010)发现, 与TiO2纳米粒子相比, 蔗糖修饰的TiO2纳米粒子在植物体内的荧光强度更高, 表明蔗糖能促进纳米粒子在植物体内的迁移.此外, 用三甘醇涂覆介孔二氧化硅纳米粒子能促进其渗透到植物细胞(Torney et al., 2007).不同载体也会使农药在植物体内的迁移有所不同(Nguyen et al., 2016). ...

Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates
1
2017

... 木质部是纳米粒子迁移和转运的重要载体(Aslani et al., 2014).根压和蒸腾拉力是木质部运输的动力, 纳米粒子进入木质部后随蒸腾流向地上部转运.木质部是由无数个导管或管胞以及内部的纹孔和穿孔板相互连通构成的三维拓扑结构(张红霞等, 2017), 其纹孔孔径为43-340 nm (Jansen et al., 2009; Zhang et al., 2017).纹孔膜能阻碍溶质的流动, 而穿孔板允许纳米粒子通过. ...

1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress
2
2016

... Zhao等(2016)用10和20 mg·L-1纳米Cu处理黄瓜根部7天后, 发现纳米Cu主要分布于黄瓜根部(89%- 92%), 其次是茎(8%-11%)和叶(0.2%-0.5%).此外, 随着纳米Cu浓度的增加, Tstem/root (茎与根中Cu浓度之比)呈增加趋势, 而Tleave/stem (叶与茎中Cu浓度之比)降低, 表明黄瓜类植物的茎中可保留或吸收更多的铜(Zhao et al., 2016). ...

... (叶与茎中Cu浓度之比)降低, 表明黄瓜类植物的茎中可保留或吸收更多的铜(Zhao et al., 2016). ...

Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies
1
2012

... 纳米粒子由于其比表面积大和表面反应活性高, 很容易吸附在普通物理界面上, 主要通过静电吸附、机械黏附和疏水性亲和力等作用吸附或聚集于植物外表皮(Zhao et al., 2012).植物根系分泌的黏液和根系分泌物中含有大量的有机酸和氨基酸, 这也可能导致纳米粒子强烈吸附在根系表面, 并阻碍通过洗涤去除一部分纳米粒子.此外, 随着根系损伤程度的加剧, 纳米粒子更容易通过蒸腾等代谢进入根系(Wang et al., 2012).侧根缺少外皮组织时, 纳米粒子能进入中柱及木质部(Péret et al., 2009; de la Rosa et al., 2017).侧根的形成可能创造新的吸附面, 为纳米粒子进入中柱提供可能途径(Peng et al., 2015). ...

Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants
3
2017

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

... 高效液相色谱串联质谱(HPLC-MS)是以液相色谱作为分离系统, 质谱为检测系统, 将分离与检测联结起来的一种新型技术, 具有分析范围广、灵敏度高、检测限低和分析快等特点(曹海微, 2014).Zhu等(2018)利用HPLC-MS测定了介孔二氧化硅纳米粒子包覆的氰菌胺(fenoxanil)暴露于水稻根部后, 根部、茎部、叶片、土壤以及水中氰菌胺的含量.Zhao等(2017)利用HPLC-MS研究了嘧霉胺-介孔二氧化硅纳米粒子在黄瓜叶片上的迁移和分布.结果表明, 嘧霉胺-介孔二氧化硅纳米粒子在黄瓜植株中可能更倾向于向上迁移. ...

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants
3
2018

... 介孔二氧化硅纳米粒子可以通过共质体和质外体途径进入根, 随后通过木质部输导组织进入茎叶等进行迁移(Sun et al., 2014).农药在其包覆作用下将随载体共同转运和迁移, 从而影响农药本身的剂量转移特性.Zhao等(2018a)研究表明, 与市售咪鲜胺(prochloraz)悬浮剂相比, 咪鲜胺-介孔二氧化硅纳米粒子在黄瓜叶片和根部的吸收迁移性能更佳. ...

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers
4
2018

... 近年来, 介孔二氧化硅(SiO2)载药粒子备受关注, 其具有成本低、环境相容性好、比表面积大、孔径可调及负载能力高等优点, 并且通过表面修饰可以实现活性化合物的控制释放(Popat et al., 2011; 何顺等, 2016).Zhao等(2018b)研究表明, 螺虫乙酯(spirotetramat)-介孔二氧化硅纳米粒子可以从黄瓜表皮进入处理组叶片内, 进而迁移到叶柄和茎, 最后运输到根等其它部位.剂量转移研究表明, 螺虫乙酯分布于处理组下方叶片及根部, 上方叶片较下方叶片含量少, 即螺虫乙酯能向上及向下迁移, 但倾向于向下迁移(图2).与传统剂型相比, 使用介孔二氧化硅作为农药载体能增加螺虫乙酯剂量转移2-3倍, 表明介孔二氧化硅可以增强农药在植物体内的剂量传递. ...

... (B)剂量浓度下, 螺虫乙酯在黄瓜植株不同部位的浓度水平(Zhao et al., 2018b) Concentration levels of spirotetramat in different parts of cucumber plants under corresponding dose concentrations of 200 (A) and 1 000 mg·L<sup>-1 </sup>(B) (<xref ref-type="bibr" rid="b139">Zhao et al., 2018b</xref>) Figure 2 介孔二氧化硅纳米粒子可以通过共质体和质外体途径进入根, 随后通过木质部输导组织进入茎叶等进行迁移(Sun et al., 2014).农药在其包覆作用下将随载体共同转运和迁移, 从而影响农药本身的剂量转移特性.Zhao等(2018a)研究表明, 与市售咪鲜胺(prochloraz)悬浮剂相比, 咪鲜胺-介孔二氧化硅纳米粒子在黄瓜叶片和根部的吸收迁移性能更佳. ...

... (B) (Zhao et al., 2018b) Figure 2 介孔二氧化硅纳米粒子可以通过共质体和质外体途径进入根, 随后通过木质部输导组织进入茎叶等进行迁移(Sun et al., 2014).农药在其包覆作用下将随载体共同转运和迁移, 从而影响农药本身的剂量转移特性.Zhao等(2018a)研究表明, 与市售咪鲜胺(prochloraz)悬浮剂相比, 咪鲜胺-介孔二氧化硅纳米粒子在黄瓜叶片和根部的吸收迁移性能更佳. ...

... 荧光标记技术是追踪外源性物质在植物体内的吸收、转运和分布的常用方法(Wang et al., 2014), 具有灵敏度高、对比度强、染色容易和分析方法标准等优点(Campos et al., 2016).其在纳米农药中的应用是将荧光染料包封于纳米载体中, 再借助荧光显微镜实现纳米粒子在植物体内的可视化.常见的荧光染料有尼罗红、异硫氰酸荧光素和罗丹明B等.Zhao等(2017, 2018a, 2018b)用异硫氰酸荧光素标记咪鲜胺-介孔二氧化硅纳米粒子、螺虫乙酯-介孔硅纳米粒子以及嘧霉胺(pyrimethanil)-介孔硅纳米粒子体系, 并研究其在黄瓜体内的迁移和分布.Bombo等(2019)利用罗丹明B磺酰氯标记研究了莠去津-聚己内酯纳米粒子在芥菜中的迁移转运. ...

Development strategies and prospects of nano-based smart pesticide formulation
2
2018

... 纳米农药是指农药载药粒子直径在1-1 000 nm的体系(Kah and Hofmann, 2014).根据Ostwald-Freundlich方程, 减小粒径可以提高难溶性药物在水中的饱和溶解度, 进而提高其分散性(Müller and Peters, 1998).纳米粒子具有小尺寸效应、界面效应和高渗透效应, 可以改善药效成分的稳定性, 促进对靶沉积与剂量的转移, 减少流失, 提高农药利用率(Lossbroek and den Ouden, 1988; Yang et al., 2017).纳米农药的制备模式主要包括2种(Zhao et al., 2018c).(1) 纳米粒度化法, 即通过机械破碎等纳米加工手段构建非载体包覆的载药粒子体系, 农药有效成分与载体间无包裹、偶联作用, 如微乳、纳米乳、纳米悬浮剂和固体纳米分散体.朱国念团队和董金凤团队制备了联苯菊酯(bifenthrin)纳米乳液和β-氯氰菊酯(cypermethrin)纳米乳液(Wang et al., 2007; Liu et al., 2011); 唐黎明团队以具有阿维菌素(abamectin)结构单元的阴离子型聚氨酯为新型分散剂构建了阿维菌素纳米乳(Guan et al., 2018); 崔海信团队分别采用熔融乳化法和高压均质法构建了高效氯氟氰菊酯(lambda- cyhalothrin)纳米悬浮剂和氯虫苯甲酰胺(chlorantraniliprole)固体纳米分散体(Pan et al., 2015; Cui et al., 2016).(2) 纳米载体化法, 即通过纳米材料的吸附、偶联、包裹和镶嵌等方式负载农药, 构建载体包覆型载药粒子体系.载体材料主要包括天然高分子材料、半合成高分子材料、全合成高分子材料及无机硅材料等(Song et al., 2019).通过此方法构建的载药剂型主要有纳米球、纳米囊和纳米凝胶等(Pereira et al., 2014; Kumar et al., 2015; Sarkar and Singh, 2017). ...

... 农药纳米粒子对植物的毒理学效应主要取决于纳米粒子的性质(化学结构、表面积、粒径和界面性质)、植物种类和年龄、暴露时间和浓度等(Ma et al., 2010; Zhao et al., 2018c).Lee等(2008)将绿豆(Vigna radiata)和小麦幼苗的培养液暴露于铜纳米粒子中, 两者幼苗生长的中位有效浓度(EC50)分别为335和570 mg·kg-1, 即绿豆比小麦对Cu NPs更敏感.Stampoulis等(2009)研究表明, 银的植物毒性具有剂量依赖性.暴露在1 000和500 mg·kg-1的银纳米粒子中, 西葫芦的生物量比水对照组减少71%, 而暴露于100 mg·kg-1或更低浓度的Ag纳米粒子中对西葫芦生物量没有显著影响.Zhao等(2017, 2018a)利用介孔二氧化硅包覆的咪鲜胺和嘧霉胺纳米粒子处理黄瓜植株, 最终在可食用黄瓜体内检测到的农药残留量均低于国际最大残留限量值, 表明纳米粒子的使用并不会增大残留风险.Liang等(2018b)构建的镧修饰的阿维菌素-壳寡糖纳米粒子不仅增强了水稻对稻瘟病的抗性, 而且有效促进了水稻生长.纳米农药的提质增效效益可有效降低农药的使用量, 是克服农药对非靶标植物毒性和环境污染的重要途径(Kumar et al., 2019). ...

Uptake and distribution of fenoxanil-loaded mesoporous silica nanoparticles in rice plants
1
2018

... 高效液相色谱串联质谱(HPLC-MS)是以液相色谱作为分离系统, 质谱为检测系统, 将分离与检测联结起来的一种新型技术, 具有分析范围广、灵敏度高、检测限低和分析快等特点(曹海微, 2014).Zhu等(2018)利用HPLC-MS测定了介孔二氧化硅纳米粒子包覆的氰菌胺(fenoxanil)暴露于水稻根部后, 根部、茎部、叶片、土壤以及水中氰菌胺的含量.Zhao等(2017)利用HPLC-MS研究了嘧霉胺-介孔二氧化硅纳米粒子在黄瓜叶片上的迁移和分布.结果表明, 嘧霉胺-介孔二氧化硅纳米粒子在黄瓜植株中可能更倾向于向上迁移. ...




备案号: 京ICP备16067583号-21
版权所有 © 2021 《植物学报》编辑部
地址:北京香山南辛村20号 邮编:100093
电话:010-62836135 010-62836131 E-mail:cbb@ibcas.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发

相关话题/纳米 植物 细胞 组织 生物