删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

植物嫁接愈合分子机制研究进展

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓梺顓ㄧ畱閸旀帗绻涘顔荤盎缂佺媴缍侀弻銊╁籍閸ヮ煈妫勯梺閫炲苯澧繛纭风節瀵濡搁埡浣虹潉闂佺ǹ鏈粙鎺楁偟椤忓牊鈷戠紓浣贯缚缁犳岸鏌涢埡鍌滃⒌妤犵偛鐗撴俊鎼佸Ψ椤旇棄鐦滈梺鑽ゅТ濞测晛顕i幘瀵哥彾闁哄洢鍨洪埛鎺懨归敐鍕劅闁衡偓閻楀牏绠鹃柛娑卞枟缁€瀣殽閻愭潙鐏寸€规洘鍎奸ˇ鎾煛閸☆參妾柟渚垮妼椤啰鎷犻煫顓烆棜濠碉紕鍋戦崐鎴﹀垂閸濆嫀娑㈠礃閵娧勬闂佸憡顨堥崐锝夊籍閸繄顦ㄩ梺闈浨归崕鎶筋敊閸ヮ剚鈷掗柛灞捐壘閳ь剚鎮傚畷鎰槹鎼达絿鐒兼繛鎾村焹閸嬫挾鈧娲忛崕鎶藉焵椤掑﹦绉靛ù婊冪埣閹垽宕卞Ο璇插伎濠碉紕鍋犻褎绂嶆ィ鍐╁€甸悷娆忓婢跺嫰鏌涢妸銉у煟闁靛棔绶氬鎾閻欌偓濞煎﹪姊洪棃娑氱畾闁告挻绻堥、娆撳即閵忊檧鎷绘繛鎾村焹閸嬫挻绻涙担鍐叉瘽閵娾晛鐒垫い鎺嗗亾闁宠鍨块崹楣冩惞椤愩垺鐏庨梻浣虹《閺傚倿宕归挊澶樺殨妞ゆ洍鍋撶€规洖銈搁幃銏ゅ传閸曨偆顓奸梻鍌氬€烽懗鍫曘€佹繝鍥风稏濠㈣埖鍔曠粈澶愭煛閸ャ儱鐏柛搴$У缁绘稑顔忛鑽ゅ嚬闂佺粯鎸鹃崰鏍蓟閿濆绫嶉柛顐亝椤ユ牜绱撴担鍓叉Ч婵$偘绮欏濠氭偄绾拌鲸鏅╅梺鍏肩ゴ閺呮繃顨欓梺璇叉唉椤煤濮椻偓瀹曟洘绺介弶鍡楁喘瀵濡烽敂鎯у笚闂傚倷绀侀悘婵嬵敄閸℃稑鐓曢柟閭﹀枤绾捐偐绱撴担璐細缂佺姷鍋ら弻娑㈠煘閹傚濠碉紕鍋戦崐鏍暜閹烘柡鍋撳鐓庡⒋闁诡喚鍋涚叅妞ゅ繐鎳愰崢閬嶆⒑瑜版帒浜伴柛銊ㄤ含濞戠敻宕奸弴鐔哄幗濡炪倖鎸鹃崳銉モ枔閺冨牊鐓冮悷娆忓閻忔挳鏌涢埞鍨姦鐎规洖宕灃闁告剬鍐嚙缂傚倸鍊烽懗鍫曟惞鎼淬劌鍌ㄥ┑鍌氭啞閸嬪鏌i幘铏崳闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖濡ゅ懏顥堟繛鎴炵懄閸犳劙姊虹涵鍛彧缂佽鐗嗛~蹇撁洪鍛姷闂佺粯鍔樼亸顏嗏偓姘緲椤儻顦抽柟鍛婂▕瀵寮撮姀鐘茶€垮┑掳鍊愰崑鎾绘煃瑜滈崜娆忈缚閿熺姷宓佸┑鐘叉处閸婄兘鏌涘┑鍡楃弸闁靛ň鏅滈悡銉╂煛閸ヮ煈娈斿ù婊堢畺濮婃椽宕ㄦ繝鍐弳闂佺娅曢敋妞ゎ偄绻愮叅妞ゅ繐瀚畵宥咁渻閵堝棙灏甸柛瀣戠粩鐔煎即閻旇櫣鐦堥梺鍐茬殱閸嬫捇鏌涢幇闈涙灈鐎殿喕鍗抽幃妤冩喆閸曨剛顦ㄩ梺鎼炲妼濞硷繝鎮伴鍢夌喓浜搁弽褌澹曞┑鐐村灦椤忣亪顢旈崼顐f櫅闂佽鍎虫晶搴e閽樺褰掓晲閸涱喛纭€闂佸疇妫勯ˇ浼村Φ閸曨垰绠f繝闈涙祩濡倗绱撴担鎴掑惈闁稿鍋熼幑銏犫攽鐎n亞顦ㄩ悷婊冪箳缁顫濋澶嬪瘜闂侀潧鐗嗗Λ妤佹叏閸岀偞鐓曞┑鐘插暞缁€瀣煏閸℃鈧湱缂撴禒瀣窛濠电姴瀚獮鍫ユ⒒娴e摜鏋冩俊妞煎妿濞嗐垽濡舵径濠勵槷闂佺粯妫冮弲鑼崲閸℃稒鐓曟繛鍡楁禋濡茬ǹ鈹戦鑲┬ら柍褜鍓濋~澶娒洪弽顐ょ濠电姴娲㈤埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣告啞濞诧箓宕滃▎鎾崇哗妞ゆ挾鍋愰弨浠嬫煟濡櫣浠涢柡鍡忔櫊閺屾稓鈧綆鍋嗛埥澶愭懚閻愬绠鹃柛鈩兩戠亸顓犵磼閻樺啿顥嬬紒杈ㄥ笧閳ь剨缍嗘禍鐐差潩閵娾晜鐓涢悗锝庝簽鏁堥梺鍝勮閸旀垿骞冮姀銈呬紶闁告洘鍩婄紞渚€寮诲☉姘e亾閿濆懎顣抽柟顔笺偢閺岀喖鎳犻銏犵秺椤㈡ɑ绺界粙璺ㄥ€為梺鎸庣箓閹冲秵绔熼弴鐐╂斀妞ゆ梻绮ㄧ紓姘舵煕濡姴娲ㄥ畵浣规叏濡炶浜鹃梺鍝勮閸婃洜鍙呭銈呯箰閸燁垶宕板顒夋富闁靛牆鍟悘顏堟煟閻斿弶娅婃鐐插暙閳诲酣骞欓崘鈺傛珜濠电偠鎻徊鎸庣仚婵犳鍠栭柊锝咁潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹憴鍕偞闁告挻绻勭划顓㈡偄閼茬儤妫冨畷銊╊敇閻愯弓鎲鹃梻鍌欒兌缁垶骞愰崫銉㈠亾閸偄娴€规洜鏁诲鎾閿涘嫬骞堥柣鐔哥矊闁帮綁濡撮崘顔煎耿婵炴垶鐟ユ禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁告捁椴哥换娑㈠醇閻旀帗鍨挎俊鐢稿礋椤栨稒娅嗘繝闈涘€搁幉锟狀敁瀹ュ洨纾藉ù锝堟鐢稓绱掔拠鑼ⅵ鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繑鎸抽弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏灩閻掓椽鏌涢幇鍏哥凹闁革綆鍙冨娲箰鎼达絺妲堢紓浣虹帛閿氭い顐㈢箰鐓ゆい蹇撳椤︻參姊洪懖鈹炬嫛闁告挻鐟ч弫顕€濡烽埡鍌楁嫼闂佸憡绺块崕杈ㄧ墡闂備胶绮〃鍡欏垝閹炬剚鍤曟い鎰跺瘜閺佸鏌嶈閸撶喖鎮伴鑺ュ劅闁靛⿵绠戝▓鐔兼⒑闂堟侗妲堕柛搴濆嵆瀹曠娀寮介鐔叉嫽婵炶揪绲介幗婊呯矓濞差亝鐓曢悗锝庝悍闊剛鈧娲樼划宀勫煡婢跺⿴娼╅弶鍫氭櫇閸樼娀姊绘担铏瑰笡闁搞劌澧庡﹢浣虹磽娴g瓔鍤欐俊顐g箞瀵鎮㈤搹鍦紲濠碘槅鍨靛▍锝夋偡閵娿儺娓婚柕鍫濇噺缁傚鏌涚€n亷韬€殿喖顭烽幃銏ゅ礈閸欏-褔鏌熼懖鈺勊夐悗娈垮墴閺佹劖寰勭€n亖鍋撻悽鍛婄厽闁靛繈鍊栧☉褔鎮介姘卞煟闁哄苯绉堕幏鐘诲蓟閵夈儱鍙婃俊銈囧Х閸嬫盯顢栨径鎰畺妞ゅ繐鐗嗗婵囥亜閺嶃劍鐨戦柛婵撴嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墕閳规垿鎮欓崣澶樻!闂佹悶鍔庨崰鏍х暦閹达箑绠婚柤鎼佹涧閺嬪倿姊洪崨濠冨闁告挻鐩弫宥咁潨閳ь剙顫忛搹鍦煓闁圭ǹ瀛╁畷鎶芥⒑鏉炴壆顦︽い顓犲厴閹即顢氶埀顒€鐣峰鈧崺锟犲礃閻愵剛銈梻浣筋嚙閸戠晫绱為崱娑樼;闁圭儤鍤﹀☉銏犵闁靛ǹ鍨洪弬鈧梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸濄儲宕叉慨妞诲亾鐎殿喛顕ч埥澶愬閻橀潧濮堕梻浣告啞閸斿繘寮插┑瀣庡洭濡歌绾捐棄霉閿濆洦鐒块柛蹇撹嫰椤儻顦虫い銊ワ攻娣囧﹪鎮界粙璺槹濡炪倖鐗徊楣冨疾濠靛鈷戦梻鍫熺〒缁犳岸鏌¢崨顔炬创鐎规洘绮撻弻鍡楊吋閸″繑瀚奸梻浣告贡鏋繛瀵稿厴閸╁﹪寮撮姀锛勫幈闂佸搫鍟犻崑鎾绘煟閻斿弶娅婇柟顔诲嵆椤㈡瑩鏌ㄩ姘闂佹寧绻傜花鑲╄姳閹绢喗鐓涢悗锝庝邯閸欏嫰鏌熼鏂よ€块柟顔界懇瀵爼骞嬮悩鍗炴瀳婵犵數濮伴崹濂革綖婢跺⊕鍝勎熼崗鐓庡簥濠电偞鍨堕悷锔剧礊閸ヮ剚鐓曢柟鐐殔鐎氼剚绂掕ぐ鎺撯拺闁告繂瀚烽崕娑樏瑰⿰鍛槐闁糕斁鍋撳銈嗗笂缁讹繝宕箛娑欑厱闁绘ê纾晶鐢告煙椤旂煫顏堝煘閹寸姭鍋撻敐搴濈敖闁告ɑ鎸冲铏规兜閸涱喖娑х紓浣哄У閸ㄨ绔熼弴銏犵闁兼祴鏅濋鏇㈡⒑绾懏褰х紓宥勭窔瀹曨偄煤椤忓懐鍘介梺鎸庣箓濞诧箑鈻嶉弴鐘电<閺夊牄鍔嶇亸浼存煙瀹勭増鍣烘い锔惧閹棃濡堕崶鈺佺倞闂傚倸鍊烽懗鑸电仚濡炪倖鍨甸幊姗€寮崘顔嘉у鑸瞪戦弲顏堟⒑閹稿海绠撴い锔跨矙瀵偊宕卞☉娆戝帗閻熸粍绮撳畷婊堟偄閻撳孩妲梺闈涚箚閸撴繈宕曢悢鍏肩厓闂佹鍨版禍楣冩⒑閸濆嫷鍎忛梺甯秮瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺濇晛閻忕偛褰炵换鍡涙煕濞嗗浚妲归悘蹇ラ檮閹便劍绻濋崟顓炵闂佺懓鍢查幊妯虹暦閵婏妇绡€闁稿本绋掗悾濂告⒒閸屾瑦绁扮€规洜鏁诲畷浼村幢濞戞ḿ锛熼梺姹囧灮鏋柡瀣╃窔閺屾盯骞囬棃娑欑亪闁搞儲鎸冲娲川婵犲嫮鐒肩紓浣插亾濞撴埃鍋撶€殿喗鐓¢幃鈺佺暦閸モ晝妲囬梻浣圭湽閸ㄨ棄岣胯閻楀孩绻濆▓鍨灍閼垦囨煕閺傝法鐒搁柟顕€绠栧畷褰掝敃閵堝洦鍤岄梻渚€鈧偛鑻晶瀛橆殽閻愭彃鏆欓摶鏍煕濞戝崬娅樻俊顐㈠暙閳规垿鎮欓弶鎴犱桓闂佽崵鍠嗛崕闈涱嚕閹惰棄閱囬柕澶涜吂閹疯櫣绱撴笟鍥х仭婵炲弶锚閳诲秹宕ㄧ€涙ḿ鍘辨繝鐢靛Т閸熶即骞楅崘顔界厽闊洦鎼╅崕鏃€鎱ㄦ繝鍛仩缂佽鲸甯掗~婊堝幢濡吋娈介梻鍌欒兌缁垶銆冮崼銉ョ;闁靛牆鎳愰弳锔戒繆閵堝懏濯奸柡浣告閺屾稓浠﹂崜褏鐓傞梺鎸庣⊕缁捇寮婚埄鍐ㄧ窞濠电姴瀚。鍫曟⒑閸涘﹥鐓ユ繛鎾棑閸掓帗绻濆顒傤啋缂傚倷鐒﹀玻鍧楀储閹剧粯鈷戦柤鎭掑剭椤忓煻鍥寠婢光晝鍠栭崺鈧い鎺戝閳锋垿鎮归崶锝傚亾閾忣偆浜炵紓鍌欑贰閸犳鎮烽妷鈺傚仼闁汇値鍨禍褰掓煙閻戞ḿ绠栭柡鍛箞濮婃椽妫冨☉姘暫缂備胶绮敮锟犲箚瀹€鍕櫢闁跨噦鎷�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮甸妵鍕即濡も偓娴滈箖姊洪崫鍕拱缂佸甯為幑銏犫攽鐎n亞顦板銈嗗坊閸嬫挻绻涢崼婵堢劯闁哄睙鍥ㄥ殥闁靛牆鎳嶅Σ鎰版⒑閸濆嫭婀版繛鑼枎閻g兘鎮℃惔妯绘杸闂佹悶鍎滅仦鎷樼喐绻濋悽闈浶fい鏃€鐗犲畷瑙勫閺夋嚦褔鏌熼梻瀵割槮闁藉啰鍠栭弻銊モ攽閸♀晜笑缂備胶濯寸紞渚€寮婚敐鍫㈢杸闁哄啠鍋撻柕鍥╁枎闇夋繝濠傚缁犳ḿ绱掗纰卞剰妞ゆ挸鍚嬪鍕節閸パ勬毆闂傚倷绀侀幖顐⒚洪妸鈺佺獥闁规崘顕ч崒銊╂煙闂傚鍔嶉柍閿嬪灴閺屾稑鈽夊鍫熸暰缂備讲鍋撻悗锝庡亞缁犳儳霉閿濆懎鏆辨繛璇х畵瀹曟劙宕奸弴鐔哄弳濠电娀娼уΛ娆撍夐悩鐢电<闁抽敮鍋撻柛瀣崌濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼骞橀鐣屽幈闂佸疇妗ㄧ粈渚€顢旈鐘亾鐟欏嫭绀冨畝锝呮健楠炴垿宕熼姣尖晝鎲歌箛娑樺偍妞ゆ巻鍋撻柍瑙勫灴閹晛鈻撻幐搴㈢槣婵犵鍓濊ぐ鍐箠濡櫣鏆︾憸鐗堝笚椤ュ牊绻涢幋鐐殿暡婵炲牓绠栧濠氬磼濮樺崬顤€婵炴挻纰嶉〃濠傜暦椤栫偛宸濇い鏂垮⒔閻﹀牓姊婚崒姘卞缂佸鎸婚弲鍫曞閵忋垺锛忛梺纭咁潐閸旀牠藟婢舵劖顥嗗鑸靛姈閻撱儲绻濋棃娑欘棡妞ゆ洘姘ㄩ幉鎼佹偋閸繄鐟ㄥ┑顔款潐閻擄繝寮婚敓鐘茬闁靛ě鍐炬澑闂備胶绮幐鎼佸疮娴兼潙绠熺紒瀣氨閸亪鏌涢锝囩畼妞は佸啠鏀介柣鎰綑閻忥妇鐥弶璺ㄐфい銏℃礋閹崇偤濡烽敃鈧鍨攽閳藉棗鐏ユ繛澶嬫礋瀹曞ジ顢旈崼鐔哄帗閻熸粍绮撳畷婊冣枎閹惧磭锛欓梺绉嗗嫷娈旂紒鐘靛█閺岋綁骞囬浣瑰創闁哥儐鍨跺娲箰鎼淬垻锛曢梺绋款儐閹瑰洭寮诲☉銏犳闁圭ǹ楠稿▓妤€鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗姂閸ㄧ顣介梻鍌氬€风粈渚€骞楀⿰鍫濈獥閹肩补妾紓姘舵煥閻斿搫孝缂佺姵鐗犻弻銊╂偄閸濆嫅銏ゆ煕濡や礁鈻曢柡宀嬬秮楠炲洭顢楅崒鍌︾秮閺岋綁鍩℃繝鍌滀桓濡ょ姷鍋涢崯鎶剿囬崷顓涘亾鐟欏嫭绀€闁靛牊鎮傞妴浣肝旈崨顓犲姦濡炪倖甯掔€氼剟鎯屽Δ鍛厸闁搞儮鏅涘暩缂佺偓宕樺Λ鍕箒闂佹寧绻傜€氼噣鎯屽▎鎾寸厱婵犻潧锕ラ鐘电磼鏉堛劌绗ч柟椋庡█楠炴捇骞掗幘鎼敳闁诲骸鍘滈崑鎾绘煥濠靛棛澧涚痪顓炵埣閺岀喐顦版惔鈾€鏋呴悗瑙勬穿缂嶄礁鐣烽幒鎴斿牚闁告劏鏅濇禍鏍磽閸屾瑦绁板鏉戞憸閺侇噣骞掗弴鐘辫埅闂傚倷鑳剁划顖炲垂闂堟耽娲Ω閳哄倸浠奸柡澶婄墑閸斿﹥绂嶅⿰鍕╀簻闁圭虎鍨版晶鑼棯椤撶偟鍩i柡宀€鍠栭幃鐑藉级濞嗗彞绱旈梻浣告贡閸樠呯礊婵犲倻鏆︽繝濠傜墕缁犳盯鏌涢幘鑼跺厡闁挎稓鍠撶槐鎾存媴娴犲鎽甸柣銏╁灲缁绘繂鐣风憴鍕╁亝闁告劑鍔庨ˇ銊╂倵閻熸澘顥忛柛鐘虫礈濡叉劙寮崼鐔哄幗闁瑰吋鐣崺鍕疮韫囨稒鐓曢柨婵嗛濞呭秶鈧娲橀崹鍨暦閻旂⒈鏁嶆慨妯哄船楠炴帡姊洪悷鏉挎倯闁伙綆浜畷婵嗙暆閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭⒑鐟欏嫬绀冩繛澶嬬☉閺嗏晠姊绘担鍝ユ瀮妞ゆ泦鍥ㄥ剹闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓熼柣鏃傚帶娴滀即鏌涢妶鍜佸剳缂佽鲸鎸婚幏鍛村礈閹绘帒澹夐梻浣规偠閸斿本鏅舵惔锝囩=闁规儳顕々鐑芥倵閿濆簼绨介柣顐㈠濮婅櫣绮欓幐搴㈡嫳缂備緡鍠栭懟顖炴偩閻戣棄唯闁冲搫鍊婚崢浠嬫煙閸忚偐鏆橀柛銊ヮ煼閸╁﹪寮撮悙鍨畷闂佹寧绻傞幊蹇涘磻閵夆晜鐓曢柍鐟扮仢閻忚尙鈧鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犲搫鈹戦悩鎰佸晱闁哥姵顨婇弫鍐煛閸涱厾顦┑顔角归鎰礊閺嶃劎绡€闁哄洨鍋涢弳鐐电磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿濠电姷鏁搁崑娑㈠触鐎n喗鍋¢柍杞拌兌閺嗭箓鏌曟竟顖楀亾闁稿鎹囬弫鎰償閳╁啰浜堕梻浣规偠閸婃洟鎳熼婵堜簷闂備焦瀵х换鍌炲箠鎼淬劌姹叉繛鍡樺灩绾惧ジ鏌e鈧ḿ褔寮稿☉銏$厸鐎光偓閳ь剟宕伴弽顓犲祦闁糕剝绋掗崑瀣煕椤愵偄浜濇い銉ヮ樀濮婂宕掑▎鎰偘闂佽法鍠嗛崕闈涚暦閹邦兘鏀介悗锝庝海閹芥洖鈹戦悙鏉戠仧闁搞劎鎳撻弫顕€姊绘担鐑樺殌闁宦板妿閹广垽宕掗悙鍙夎緢闂侀潧绶垫0浣虹泿闂備礁鎼崐褰掝敄濞嗗精锝夊箹娴e湱鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍鍛存婢舵劖鍊甸柨婵嗛娴滃墽绱掓潏銊ュ摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦归柟顔ㄥ洤骞㈡繛鎴炨缚閻ゅ洭鏌熼崗鑲╂殬闁告柨鐭傚畷娆撴偐瀹曞洨顔曢梺绯曞墲钃遍悘蹇庡嵆閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹤鐣烽崼鏇熸櫜闁稿本鐭竟鏇㈡⒑閹勭闁稿妫欑粋宥夊冀椤撶啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厸閻忕偠顕ф俊鑺ャ亜閵婏絽鍔︽鐐寸墬閹峰懘宕妷銉ョ闂傚倷娴囬~澶婄暦濮椻偓椤㈡俺顦寸紒顔碱煼閺佹劖寰勭€n剙寮抽梻浣告惈閸燁偊宕愭繝姘闁稿本绋掗崣蹇撯攽閻樻彃鈧綊宕戦妷锔藉弿濠电姴鍟妵婵嬫煛鐏炶姤鍤囬柟顔界懇閹崇姷鎹勬笟顖欑磾婵犵數濮幏鍐沪閼恒儳褰庨柣搴㈩問閸n噣宕戞繝鍌滄殾濠靛倻枪鍞梺鎸庢⒐閸庢娊鐛崼銉︹拺閻犲洩灏欑粻鎶芥煕鐎n偆銆掗柡渚囧櫍瀹曨偊宕熼崹顐㈠厞闂佽崵濞€缂傛艾鈻嶉敐澶嬫櫖婵炴垯鍨洪埛鎴︽煟閻斿憡绶查柍閿嬫⒒缁辨帡顢氶崨顓犱桓閻庢鍠楅悡锟犵嵁閺嶃劍濯撮柛锔诲幖瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷
谢露露, 崔青青, 董春娟, 尚庆茂,*中国农业科学院蔬菜花卉研究所, 北京 100081

Recent Advances in Molecular Mechanisms of Plant Graft Healing Process

Lulu Xie, Qingqing Cui, Chunjuan Dong, Qingmao Shang,*Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

通讯作者: E-mail:shanglab211@126.com

责任编辑: 朱亚娜
收稿日期:2020-04-9接受日期:2020-06-28网络出版日期:2020-09-01
基金资助:国家自然科学基金.31902004
国家现代农业产业技术体系建设专项资金.CARS-25
现代农业人才支撑计划.2016


Corresponding authors: E-mail:shanglab211@126.com
Received:2020-04-9Accepted:2020-06-28Online:2020-09-01


摘要
嫁接能显著改良单一品种的产量、品质和抗逆等性状, 已广泛应用于农业生产。促进砧木和接穗在嫁接面的快速愈合有利于提高嫁接效率。目前对嫁接愈合调控机制尚了解不足, 因此短时间内难以进行有效的技术改良。嫁接愈合过程包括先后发生的创伤应激响应、愈伤组织形成、砧穗细胞通讯以及砧穗再生重连等生理事件, 均涉及复杂而交联的激素应答及基因调控模式。近年来, 相关领域的研究成果为综合解析嫁接愈合的调控机制奠定了基础。该文综述了在嫁接愈合过程中发挥核心作用的植物激素及其应答方式, 以及激素依赖或非依赖的基因表达调控模式, 以期为深入揭示嫁接愈合分子机制提供参考。
关键词: 嫁接;嫁接愈合;内源性植物激素;基因表达调控

Abstract
Grafting can significantly improve target traits such as yield, quality, and resistance of vegetable varieties, and is widely applied in agricultural practice. Prompting graft healing between scion and stock at the graft interface is necessary to improve graft efficiency. Currently the improvement on the technology is hampered by our lack of understanding of regulatory mechanisms of graft healing. The graft healing process involves complicated and cross-linked physiological events, including wounding stress response, callus formation, cell communication between scion and stock, and the regeneration and reunion of scion and stock. Recent research has provided a good foundation for our understanding the molecular mechanisms of graft healing. In this review, we summarize the central roles of phytohormones in each of the physiological events, and the phytohormone-dependent and -independent gene regulatory networks in graft healing, to provide a reference for further studying graft healing-related molecular mechanisms.
Keywords:grafting;graft healing;endogenous plant hormone;gene expression regulation


PDF (867KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
谢露露, 崔青青, 董春娟, 尚庆茂. 植物嫁接愈合分子机制研究进展. 植物学报, 2020, 55(5): 634-643 doi:10.11983/CBB20061
Xie Lulu, Cui Qingqing, Dong Chunjuan, Shang Qingmao. Recent Advances in Molecular Mechanisms of Plant Graft Healing Process. Chinese Bulletin of Botany, 2020, 55(5): 634-643 doi:10.11983/CBB20061




嫁接是指将一个植株带有芽或枝的接穗(scion)与另一个植株带有根系的砧木(stock)通过机械固定使切割产生的嫁接面(graft interface)紧贴, 培养至砧、穗在嫁接结合部相互愈合, 从而获得嫁接体植株(grafting plant)的技术。优良的嫁接体植株因结合了接穗和砧木各自的优势而具有一种或多种显著的增益效果, 如生物或非生物胁迫抗性增强、产量提高、品质改良、开花或块茎化习性优化以及株型矮化(Goldschmidt, 2014; Wang et al., 2017)。目前, 嫁接技术已作为一种常规手段应用于果树和蔬菜种苗的繁育, 极大地促进了农业生产和农民增收(Lee et al., 2010; Huang et al., 2015)。

砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015)。可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导。研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011)。随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017)。多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018)。然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理。本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1嫁接愈合4个生理学事件中的植物激素应答和基因表达调控

LOX: 脂肪氧化酶; ROS: 活性氧; POD: 过氧化物酶; CAT: 过氧化氢酶
Figure 1Phytohormone responses and gene expression regulations in the four physiological events during graft healing process

LOX: Lipoxygenase; ROS: Reactive oxygen species; POD: Peroxidase; CAT: Catalase


1 创伤应激响应

1.1 茉莉酸依赖的创伤应激响应

切割造成嫁接面时, 创伤应激响应是首先发生的事件。茉莉酸信号途径是其中较为重要的调控路径。在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010)。茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019)。在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009)。此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致。细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013)。

COI1-JAZ复合体是JAs的高亲和受体(Sheard et al., 2010)。COI1 (coronatine insensitive 1)是具有F-box结构域的E3泛素化连接酶; JAZ蛋白通过JAs结构域与COI1结合, 通过ZIM结构域与下游bHLH类转录因子MYC2结合。感知JAs信号后, JAZ解除对MYC2的抑制, 后者结合在JAs诱导基因的启动子区, 激活其转录(Sheard et al., 2010)。JA/MeJA能够诱导苯丙素(phenylpropanoids)、生物碱(alkaloids)和萜类(terpenoids)等次生代谢物的合成(Howe, 2010)。

1.2 其它创伤应激响应

除茉莉酸信号途径以外, 还存在其它创伤应激响应机制。使用coi1/jaz突变体筛选出多种参与创伤响应的非JAs依赖的效应物, 包括乙烯(ethylene, ETH)、脱落酸(abscisic acid, ABA)、活性氧(reactive oxygen species, ROS)、寡聚半乳糖醛酸(oligogalacturonides, OGAs)、一氧化氮(nitric oxide, NO)和脂肪酸氨基酸复合物(fatty acid-amino acid conjugates, FACs)等(Schilmiller and Howe, 2005)。其中, OGAs可诱导ETH的合成, ETH又能够抑制JAs响应基因的表达(Rojo et al., 1999)。此外, 水杨酸(salisylic acid, SA)是JAs的拮抗激素, 外施SA能够抑制JAs的信号响应, 且具有明显的时效性, 抑制过程伴随谷氧还蛋白(gluataredoxin) GRX480的显著上调, 被认为与氧化还原反应密切相关(Koornneef et al., 2008)。

活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999)。ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015)。ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004)。此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015)。研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004)。甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008)。此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关。

2 愈伤组织形成

2.1 愈伤组织形成的诱导

愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织。由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009)。虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同。在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010)。然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011)。AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015)。此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017)。WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011)。CTKs是愈伤组织形成所必需的植物激素。CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017)。

愈伤组织的特征是细胞进入快速分裂周期。当受到糖(sucrose)、生长素和细胞分裂素等物质的诱导时, D类细胞周期蛋白(D-type cyclin, CYCD)与A类细胞周期蛋白依赖性蛋白激酶(A-type cyclin-dependent kinase, CDKA)结合, 形成激活态CYCD-CDKA复合体(den Boer and Murray, 2000), 继而调控下游的3个蛋白E2F (E2 promoter binding factor)、RBR (retinoblastoma-related)和DP (dimerization partner), 使细胞进入S期(Inzé and Veylder, 2006)。拟南芥下胚轴中, CDKA在创口附近的表达起始于切割后4天, 可以在维管组织和中柱鞘检测到CDKA启动子活性, 而在内皮层、皮层和表皮中检测不到(Ikeuchi et al., 2017)。在番茄茎中, 愈伤组织在切口上方的维管组织附近形成, 同时在切口上方检测到一些细胞周期蛋白依赖性蛋白激酶编码基因的活跃转录(Xie et al., 2019)。

2.2 愈伤组织形成的抑制

在创伤应激响应中合成量升高的JAs和ABA等植物激素, 在愈伤组织形成中不是必需的。使用JAs或ABA的合成和信号转导突变体进行研究, 发现突变体愈伤组织形成量较野生型轻微但显著增多, 表明JAs和ABA对愈伤组织的形成具有轻微抑制作用(Ikeuchi et al., 2017)。

此外, 还有细胞壁框架产生的物理抑制。细胞壁组分如纤维素(cellulose)、半纤维素(hemicellulose)和果胶(pectin)的有序积累, 是建立和维持细胞分化形态的关键步骤(Ikeuchi et al., 2013)。细胞壁形成缺陷突变通常会导致愈伤组织异常形成。例如, 参与果胶合成的GUT1 (glucuronyltransferase 1)基因突变后, 导致愈伤组织堆积于地上部顶端; 参与纤维素合成的TSD1/KOR1/RSW2基因突变后, 导致地上和地下部细胞排列混乱; 被推测为编码高尔基体定位的甲基化转移酶基因TSD2/QUA2/OSU1突变, 导致细胞间不能相互黏连的严重缺陷(Ikeuchi et al., 2013)。因此, 细胞壁组分的正常沉积有助于避免体细胞过分增殖。

3 砧穗细胞通讯

3.1 胞间连丝介导的发育决定和免疫应答

胞间连丝(plasmodesmata, PD)由外膜和内膜2层膜结构组成, 分别为质膜和内质网膜的延续, 但理化性质稍有差别(Tilsner et al., 2011)。借助于膜锚定的受体激酶(receptor kinases, RKs)和受体蛋白(receptor proteins, RPs), 胞间连丝能够对胞外环境变化做出响应, 整合质外体(apoplastic)和共质体(symplastic)途径的信号转导, 从而驱动发育决定和免疫应答, 或通透性调控等(Stahl and Faulkner, 2016)。这一机制在砧、穗细胞之间的初始粘连和通讯中扮演重要角色。

在有些发育进程中, 质膜或PD上的RKs和RPs通过非细胞自主性信号途径调控组织形态建成或干细胞分化命运。例如, 通过PD特异性蛋白质组鉴定到的SUB (strubbelig)属于非典型的富含亮氨酸重复受体激酶(LRR-RK), 它通过与另一个具有C2结构域的PD锚定蛋白QKY (quirky)互作, 将信号传递至下游(Vaddepalli et al., 2014)。PD锚定蛋白ACR4 (arabidopsis crinkly 4)以同源复合体或与LRR-RK CLV1 (clavata 1)形成异源复合体的形式定位于PD, 小分子多肽可作为配体(ligand)与ACR4和CLV1的胞外结构域结合。结构上同源的配体多肽CLV3和CLE40经证实分别在茎端及根尖分生组织中促进干细胞的分化(Ohyama et al., 2009; Stahl et al., 2009)。当砧穗嫁接面紧贴时, PD及其上锚定的RKs和RPs的存在很可能为砧穗间初始物质交流提供桥梁。由于嫁接面形成的愈伤组织将面临不同的分化命运, 故PD通过不同受体对发育信号进行承接和传递是重要的因素之一。

PD上的RKs和RPs还可作为模式识别受体(pattern recognition receptors)结合病原衍生配体(pathogen-derived ligand), 如真菌细胞壁的几丁质(chitin)或细菌的鞭毛蛋白(falgellin), 可激活胞内免疫应答(Stahl and Faulkner, 2016)。例如, PD锚定蛋白FLS2 (flagellin sensing 2)和LYM2 (lysin motif domain-containing glycosylphosphatidylinositol-anchored protein 2) (Lee, 2015), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件。作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability)。胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015)。具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子。通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016)。其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011)。重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012)。

胞间连丝和膜锚定受体一方面需要通过感知嫁接搭档组织或自身组织中的发育信号, 达到加强砧穗交流的目的; 另一方面需要响应创伤应激, 通过免疫应答阻断细胞与外界的联系。在这种情况下, 膜受体(如LRR-RK家族成员)以网络协作的形式对各种胞外信号进行平衡(Smakowska-Luzan et al., 2018)。类似调控机制很可能存在于嫁接愈合的砧穗胞间通讯中。

3.2 寡糖信号途径与胞间通讯

寡糖(oligosaccharides)是细胞的能量来源, 同时也是一类信号分子, 在质膜上有专门的受体蛋白激酶(Chikano et al., 2001)。在嫁接面处, 质膜上的蔗糖转运蛋白SWEET (sugars will eventually be exported transporters) 9和15上调表达, 同时CIPK (calcineurin B-like-interacting protein kinase)等蛋白激酶受寡糖调节。由于同时上调的还有裂解酶(lyase)和水解酶(hydrolase)等, 因此推测由死亡细胞残留细胞壁分解而来的寡糖类物质可能构成砧穗胞间通讯的一种途径(Yin et al., 2012)。

4 砧穗再生重连

砧穗组织重连是嫁接愈合完成的标志性事件, 包括维管组织和其它组织的重连等。已开发出一些模式化的切割或嫁接系统用于组织重连研究, 如拟南芥下胚轴微嫁接(micrograft)或改良后的微嫁接(Turnbull et al., 2002; Yin et al., 2012)、黄瓜(Cucumis sativus)或番茄下胚轴和拟南芥花序茎的半切(one-half cut)重连试验(Asahina et al., 2002, 2011)等。这些模式系统为探讨内源性植物激素以及基因调控网络在砧穗再生重连中的作用提供了便利。

4.1 生长素和细胞分裂素在维管组织非对称性重连中的作用

生长素在植物多个发育进程中与维管组织的形成密切相关(Ca?o-Delgado et al., 2010)。根据生长素的“渠化假说(canalization hypothesis)”, 生长素极性运输和由此形成的浓度差异可能为维管束的分化和重连提供空间极性信息(Mazur et al., 2016)。叶脉形成研究揭示了若干以反馈调节形式调控叶片维管束形成的参与因子, 包括生长素运输蛋白PIN1 (PIN- FORMED 1)、生长素信号响应因子MP (MONOPTEROS)和ATHB8等(Wenzel et al., 2007; Donner et al., 2009)。生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016)。

由于生长素和细胞分裂素的极性运输, 及其运输流被切割所阻断, 嫁接面上下组织中的调控模式呈现非对称的特点。借助携带生长素响应元件的DR5启动子和β-葡萄糖苷酸酶(β-glucuronidase, GUS)报告基因的转基因拟南芥, 观察微嫁接后或非嫁接的GUS染色部位, 发现当转基因拟南芥作为接穗, 野生型拟南芥作为砧木时, 在接穗嫁接面维管束附近部位有明显的染色, 1 DAG时开始出现, 3 DAG时弥漫至整个嫁接面; 而当转基因拟南芥作为砧木时, 嫁接面附近在1-3 DAG期间均未观察到明显染色(Yin et al., 2012)。进一步研究发现, 维管束韧皮部和木质部的重连在时间上是分离的(Melnyk et al., 2015)。韧皮部重连发生时间是3-4 DAG, 而木质部重连发生时间是6-7 DAG。凯氏带合成基因CASP1 (casparian strip membrane domain proteins 1)、指示细胞分裂S期的组蛋白H4编码基因和创伤响应基因WIND1等均呈现出在嫁接面上部表达先于下部的模式。采用生长素响应启动子元件连接报告基因(pDR5::GFP)和细胞分裂素响应启动子元件连接报告基因(pARR5:: GFPpTCSn::GFP)验证两类植物激素的作用, 结果表明, 对生长素的响应由接穗起始并随之扩散至嫁接结合部, 对细胞分裂素的响应激活由砧木起始并随之扩散至嫁接结合部(Melnyk et al., 2015)。通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015)。高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018)。上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著。

4.2 赤霉素在幼苗期皮层组织重连中的作用

在幼苗期, 赤霉素(gibberellin, GA)的生物合成影响皮层的组织重连。当切除黄瓜和番茄幼苗下胚轴直径的一半长度后, 皮层的细胞分裂起始于切割后3天, 7天后重连。去除子叶后重连被抑制。在地上部尖端施加GA能够逆转抑制作用, 而施加GA抑制剂, 以及GA缺陷突变体(gib-1)呈现与去除子叶类似的表型(Asahina et al., 2002)。此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002)。继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低。推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007)。将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016)。对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部。去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程。而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连。推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011)。

4.3 多激素交联作用下的基因调控

转录因子在组织重连过程中作用显著, 其表达受到生长素、JAs和ETH的交联调控。生长素促进转录因子ANAC071 (NAC domain containing protein 71)和ANAC096的表达, 生长素响应因子IAA5 (indole-3- acetic acid inducible 5)、ARF6 (auxin response factor 6)和ARF8居于级联调控的中部, 推测其在嫁接面以上发挥作用(Pitaksaringkarn et al., 2014a; Matsuoka et al., 2016)。AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a)。此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011)。在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同。当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行。虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011)。根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b)。

5 木本和草本植物嫁接愈合的比较

嫁接技术最早应用于多年生果树、林木和观赏花卉等木本植物, 20世纪初期开始大量应用于茄果类和瓜果类蔬菜等草本植物, 近年来有关嫁接生理的研究大多集中在蔬菜嫁接(Goldschmidt, 2014)。模式植物拟南芥的引入也为嫁接愈合分子机制的研究提供了更多便利(Turnbull et al., 2002)。

从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019)。此外, 愈合期持续时间的长短具有明显差异。例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018)。木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因。活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件。这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015)。

由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究。可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较。对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019)。由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接。

6 问题和展望

前人的研究在一定程度上揭示了内源性植物激素和基因表达调控在嫁接愈合中的作用机制。与嫁接愈合形态变化相对应的生理学事件具有特征性的激素应答和基因表达模式。在整个嫁接愈合进程中, 激素含量的变化、基因调控网络的转换以及组织间信号的交叠使愈合机制的解析更加复杂。目前仍存在以下问题: 首先, 物种特异性和共有性植物激素的种类和作用模式还有待进一步澄清; 其次, 模式物种中构成基因调控网络的成员和表达模式需要进一步揭示; 最后, 在嫁接应用最多的茄果类和瓜果类蔬菜中, 未能对模式物种中的研究成果及时加以利用。

针对以上问题, 今后可从以下几个方面进行深入研究。(1) 选择不同类群的物种, 通过检测内源性植物激素的种类和含量, 以及施加外源或内源激素抑制剂的方式, 确定各类植物激素的作用; (2) 在目前已被揭示的基因调控网络的基础上, 利用组学分析推测嫁接愈合过程中各层面的调控机制; (3) 选择嫁接应用价值大的作物, 如茄果类或瓜果类蔬菜, 对模式物种中的分子机制进行验证或扩展, 并与生产实践相结合。期待在不久的将来, 研究者对嫁接愈合机制的深入理解能够为精准调控嫁接愈合提供依据, 从而充分发挥嫁接技术的增益潜力。

(责任编辑: 朱亚娜)

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

卢善发, 邵小明, 杨世杰 ( 1995). 嫁接植株形成过程中接合部组织学和生长素含量的变化
植物学通报 12, 38-41.

[本文引用: 1]

苗丽, 李衍素, 范兴强, 贺超兴, 于贤昌 ( 2017). 植物嫁接体接口愈合机制的研究进展
植物生理学报 53, 17-28.

[本文引用: 1]

王幼群 ( 2011). 植物嫁接系统及其在植物生命科学研究中的应用
科学通报 56, 2478-2485.

[本文引用: 1]

赵渊渊, 董春娟, 赵建忠, 尚庆茂 ( 2015). 夜温对辣椒套管嫁接苗砧穗愈合的影响
中国农业大学学报 20(5), 164-170.

[本文引用: 1]

Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S ( 2011). Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis
Proc Natl Acad Sci USA 108, 16128-16132.

DOI:10.1073/pnas.1110443108URLPMID:21911380 [本文引用: 4]
When grafting or wounding disconnects stem tissues, new tissues are generated to restore the lost connection. In this study, the molecular mechanism of such healing was elucidated in injured stems of Arabidopsis. Soon after the inflorescence stems were incised, the pith cells started to divide. This process was strongly inhibited by the elimination of cauline leaves, shoot apices, or lateral buds that reduced the indole-3-acetic acid supply. Microarray and quantitative RT-PCR analyses revealed that genes related to cell division, phytohormones, and transcription factors were expressed because of incision. Among them, two plant-specific transcription factor genes, ANAC071 and RAP2.6L, were abundantly expressed. ANAC071 was expressed at 1-3 d after cutting exclusively in the upper region of the cut gap, with concomitant accumulation of indole-3-acetic acid. In contrast, RAP2.6L was expressed at 1 d after cutting exclusively in the lower region, with concomitant deprivation of indole-3-acetic acid. The expression of ANAC071 and RAP2.6L were also promoted by ethylene and jasmonic acid, respectively. In transformants suppressing the function of RAP2.6L or ANAC071, the division of pith cells was inhibited. Furthermore, the ethylene signaling-defective ein2 mutant showed incomplete healing. Hence, plant-specific transcription factors differentially expressed around the cut position were essential for tissue reunion of Arabidopsis wounded flowering stems and were under opposite control by polar-transported auxin, with modification by the ethylene and jasmonic acid wound-inducible hormones.

Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S ( 2002). Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls
Plant Physiol 129, 201-210.

DOI:10.1104/pp.010886URLPMID:12011351 [本文引用: 3]
Cucumber (Cucumis sativus) hypocotyls were cut to one-half of their diameter transversely, and morphological and histochemical analyses of the process of tissue reunion in the cortex were performed. Cell division in the cortex commenced 3 d after cutting, and the cortex was nearly fully united within 7 d. 4',6-Diamidino-2-phenylindole staining and 5-bromo-2'-deoxyuridine labeling experiments indicate that nDNA synthesis occurred during this process. In addition, specific accumulation of pectic substances was observed in the cell wall of attached cells in the reunion region of the cortex. Cell division during tissue reunion was strongly inhibited when the cotyledon was removed. This inhibition was reversed by applying gibberellin (GA, 10(-4) M GA3) to the apical tip of the cotyledon-less plant. Supporting this observation, cell division in the cortex was inhibited by treatment of the cotyledon with 10(-4) M uniconazole-P (an inhibitor of GA biosynthesis), and this inhibition was also reversed by simultaneous application of GA. In contrast to the essential role of cotyledon, normal tissue reunion in cut hypocotyls was still observed when the shoot apex was removed. The requirement of GA for tissue reunion in cut hypocotyls was also evident in the GA-deficient gib-1 mutant of tomato (Lycopersicon esculentum). Our results suggest that GA, possibly produced in cotyledons, is essential for cell division in reuniting cortex of cut hypocotyls.

Asahina M, Yamauchi Y, Hanada A, Kamiya Y, Kamada H, Satoh S, Yamaguchi S ( 2007). Effects of the removal of cotyledons on endogenous gibberellin levels in hypocotyls of young cucumber and tomato seedlings
Plant Biotechnol 24, 99-106.

DOI:10.5511/plantbiotechnology.24.99URL [本文引用: 1]

Ca?o-Delgado A, Lee JY, Demura T ( 2010). Regulatory mechanisms for specification and patterning of plant vascular tissues
Annu Rev Cell Dev Biol 26, 605-637.

DOI:10.1146/annurev-cellbio-100109-104107URLPMID:20590454 [本文引用: 1]
Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

Chikano H, Ogawa M, Ikeda Y, Koizumi N, Kusano T, Sano H ( 2001). Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2
Mol Gen Genet 264, 674-681.

DOI:10.1007/s004380000354URLPMID:11212922 [本文引用: 1]
We searched for genes encoding members of the group-3 SNF1-related protein kinase (SnRK3) family in the Arabidopsis thaliana database, and seven independent sequences were identified. Transcripts of two of them were found to accumulate differentially upon treatment with light, cytokinins and sugars. Full-length cDNAs were isolated and designated as AtSR1 and AtSR2; they encode polypeptides of 442 and 429 amino acids with relative molecular masses of 50.3 kDa and 48.2 kDa, respectively. In etiolated seedlings, no transcripts of either gene were observed. However, upon exposure to light or cytokinins, transcripts of AtSR1 but not AtSR2 began to accumulate. The induction with light was greatly reduced in the presence of a cytokinin antagonist, suggesting that cytokinins are involved in light-signaling pathways. In contrast, transcription of AtSR2, but not of AtSR1, was greatly increased by sucrose, as well as glucose and fructose. AtSR2 expressed in E. coli efficiently phosphorylated sucrose synthase in the presence of manganese ions. These results suggest that, although SnRK3 proteins may generally be involved in sugar metabolism, expression of AtSR1 and AtSR2 is differentially and distinctly regulated by various external signals, and AtSR2 may function in the regulation of sucrose synthase by specific phosphorylation.

Cookson SJ, Moreno MJC, Hevin C, Mendome LZN, Delrot S, Trossat-Magnin C, Ollat N ( 2013). Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signaling, and secondary metabolism
J Exp Bot 64, 2997-3008.

DOI:10.1093/jxb/ert144URLPMID:23698628 [本文引用: 2]
Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified.

den Boer BGW, Murray JAH ( 2000). Triggering the cell cycle in plants
Trends Cell Biol 10, 245-250.

DOI:10.1016/s0962-8924(00)01765-7URLPMID:10802540 [本文引用: 1]
In essence, the mitotic cell cycle in eukaryotes involves the duplication and separation of chromosomes, coupled to the process of dividing one cell into two. Cytokinesis is therefore the culmination of a series of events that were triggered during G1 phase, and brings the daughter cells back to the starting position in G1 for another possible round of division. In all eukaryotes, progression through the cell cycle is controlled by cyclin-dependent kinases that bind to positive regulators called cyclins. This review explores some of the pathways that trigger the plant cell cycle, with emphasis on the G1 phase. Examples include signalling pathways involving glutathione and cellular redox potential, the possible existence of a G1 DNA-damage checkpoint, and the plant hormones auxin and cytokinin. Progress in understanding the link between cell proliferation, cell differentiation and the cell-cycle machinery in a developmental context is discussed.

Donner TJ, Sherr I, Scarpella E ( 2009). Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves
Development 136, 3235-3246.

DOI:10.1242/dev.037028URLPMID:19710171 [本文引用: 1]
The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8 preprocambial cell state are unknown, but intertwined pathways of auxin transport and signal transduction have been implicated in defining paths of vascular strand differentiation. Here we show that ATHB8 is required to stabilize preprocambial cell specification against auxin transport perturbations, to restrict preprocambial cell state acquisition to narrow fields and to coordinate procambium formation within and between veins. We further show that ATHB8 expression at preprocambial stages is directly and positively controlled by the auxin-response transcription factor MONOPTEROS (MP) through an auxin-response element in the ATHB8 promoter. We finally show that the consequences of loss of ATHB8 function for vein formation are masked by MP activity. Our observations define, at the molecular level, patterning inputs of auxin signaling in vein formation.

Elhiti M, Stasolla C (2015). ROS signaling in plant embryogenesis. In: Gupta KJ, Igamberdiev AU, eds. Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Cham: Springer. pp. 197-214.
[本文引用: 2]

Fernández-García N, Carvajal M, Olmos E ( 2004). Graft union formation in tomato plants: peroxidase and catalase involvement
Ann Bot 93, 53-60.

DOI:10.1093/aob/mch014URLPMID:14630693 [本文引用: 1]
BACKGROUND AND AIMS: The use of grafted plants in vegetable crop production is now being expanded greatly. However, few data are available on the formation of graft unions in vegetables. In this work, the structural development of the graft union formation in tomato plants is studied, together with the possible relationship with activities of peroxidases and catalases. METHODS: Tomato (Lycopersicon esculentum Mill.) seedlings of cultivar Fanny were grafted on the rootstock of cultivar AR-9704 using the 'tongue approach grafting' method, and were grown in a crop chamber. A study of the structural development of the graft union and the involvement of peroxidases and catalases in the process of graft formation was carried out during the first stages of the graft union (4, 8 and 15 d after grafting). KEY RESULTS: Observation of the structure of the graft union showed formation of xylem and phloem vessels through the graft union 8 d after grafting. In addition, root hydraulic conductance, L0, indicate that the graft union is fully functional 8 d after grafting, which coincided with an increase of peroxidase and catalase activities. CONCLUSIONS: These results suggest that increased peroxidase and catalase activities might be implicated in graft development in tomato plants.

Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ ( 2019). Merging genotypes: graft union formation and scion-rootstock interactions
J Exp Bot 70, 747-755.

DOI:10.1093/jxb/ery422URLPMID:30481315 [本文引用: 1]
Grafting has been utilised for at least the past 7000 years. Historically, grafting has been developed by growers without particular interest beyond the agronomical and ornamental effects, and thus knowledge about grafting has remained largely empirical. Much of the commercial production of fruit, and increasingly vegetables, relies upon grafting with rootstocks to provide resistance to soil-borne pathogens and abiotic stresses as well as to influence scion growth and performance. Although there is considerable agronomic knowledge about the use and selection of rootstocks for many species, we know little of the molecular mechanisms underlying rootstock adaptation to different soil environments and rootstock-conferred modifications of scion phenotypes. Furthermore, the processes involved in the formation of the graft union and graft compatibility are poorly understood despite over a hundred years of scientific study. In this paper, we provide an overview of what is known about grafting and the mechanisms underlying rootstock-scion interactions. We highlight recent studies that have advanced our understanding of graft union formation and outline subjects that require further development.

Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender JL, Farmer EE ( 2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis
J Biol Chem 284, 34506-34513.

DOI:10.1074/jbc.M109.061432URLPMID:19846562 [本文引用: 1]
The wound response prohormone jasmonic acid (JA) accumulates rapidly in tissues both proximal and distal to injury sites in plants. Using quantitative liquid chromatography-mass spectrometry after flash freezing of tissues, we found that JA accumulated within 30 s of injury in wounded Arabidopsis leaves (p = 3.5 e(-7)). JA augmentation distal to wounds was strongest in unwounded leaves with direct vascular connections to wounded leaves wherein JA levels increased significantly within 120 s of wounding (p = 0.00027). This gave conservative and statistically robust temporal boundaries for the average velocity of the long distance signal leading to distal JA accumulation in unwounded leaves of 3.4-4.5 cm min(-1). Like JA, transcripts of the JA synthesis gene LIPOXYGENASE2 (LOX2) and the jasmonate response gene JAZ10.3 also accumulated to higher levels in directly interconnected leaves than in indirectly connected leaves. JA accumulation in a lox2-1 mutant plant was initiated rapidly after wounding then slowed progressively compared with the wild type (WT). Despite this, JAZ10.3 expression in the two genotypes was similar. Free cyclopentenone jasmonate levels were similar in both resting WT and lox2-1. In contrast, bound cyclopentenone jasmonates (arabidopsides) were far lower in lox2-1 than in the WT. The major roles of LOX2 are to generate arabidopsides and the large levels of JA that accumulate proximal to the wound. LOX2 is not essential for some of the most rapid events elicited by wounding.

Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL ( 2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding
J Biol Chem 283, 16400-16407.

DOI:10.1074/jbc.M801760200URLPMID:18400744 [本文引用: 1]
A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.

Goldschmidt EE ( 2014). Plant grafting: new mechanisms, evolutionary implications
Front Plant Sci 5, 727.

DOI:10.3389/fpls.2014.00727URLPMID:25566298 [本文引用: 3]
Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating that natural grafts may play a role in plant speciation, under certain circumstances.

Howe GA ( 2010). The roles of hormones in defense against insects and disease. Plant hormones.
New York: Springer.

[本文引用: 2]

Huang Y, Kong QS, Chen F, Bie ZL ( 2015). The history, current status and future prospects of vegetable grafting in China
Acta Hortic 1086, 31-39.

[本文引用: 1]

Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K ( 2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes
Plant Physiol 175, 1158-1174.

DOI:10.1104/pp.17.01035URLPMID:28904073 [本文引用: 3]
Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.

Ikeuchi M, Sugimoto K, Iwase A ( 2013). Plant callus: mechanisms of induction and repression
Plant Cell 25, 3159-3173.

DOI:10.1105/tpc.113.116053URLPMID:24076977 [本文引用: 2]
Plants develop unorganized cell masses like callus and tumors in response to various biotic and abiotic stimuli. Since the historical discovery that the combination of two growth-promoting hormones, auxin and cytokinin, induces callus from plant explants in vitro, this experimental system has been used extensively in both basic research and horticultural applications. The molecular basis of callus formation has long been obscure, but we are finally beginning to understand how unscheduled cell proliferation is suppressed during normal plant development and how genetic and environmental cues override these repressions to induce callus formation. In this review, we will first provide a brief overview of callus development in nature and in vitro and then describe our current knowledge of genetic and epigenetic mechanisms underlying callus formation.

Inzé D, De Veylder L ( 2006). Cell cycle regulation in plant development
Annu Rev Genet 40, 77-105.

DOI:10.1146/annurev.genet.40.110405.090431URLPMID:17094738 [本文引用: 1]
Cell cycle regulation is of pivotal importance for plant growth and development. Although plant cell division shares basic mechanisms with all eukaryotes, plants have evolved novel molecules orchestrating the cell cycle. Some regulatory proteins, such as cyclins and inhibitors of cyclin-dependent kinases, are particularly numerous in plants, possibly reflecting the remarkable ability of plants to modulate their postembryonic development. Many plant cells also can continue DNA replication in the absence of mitosis, a process known as endoreduplication, causing polyploidy. Here, we review the molecular mechanisms that regulate cell division and endoreduplication and we discuss our understanding, albeit very limited, on how the cell cycle is integrated with plant development.

Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme- Takagi M, Grotewold E, Sugimoto K ( 2017). WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis
Plant Cell 29, 54-69.

URLPMID:28011694 [本文引用: 1]

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M ( 2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis
Curr Biol 21, 508-514.

DOI:10.1016/j.cub.2011.02.020URLPMID:21396822 [本文引用: 3]
Many multicellular organisms have remarkable capability to regenerate new organs after wounding. As a first step of organ regeneration, adult somatic cells often dedifferentiate to reacquire cell proliferation potential, but mechanisms underlying this process remain unknown in plants. Here we show that an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION 1 (WIND1), is involved in the control of cell dedifferentiation in Arabidopsis. WIND1 is rapidly induced at the wound site, and it promotes cell dedifferentiation and subsequent cell proliferation to form a mass of pluripotent cells termed callus. We further demonstrate that ectopic overexpression of WIND1 is sufficient to establish and maintain the dedifferentiated status of somatic cells without exogenous auxin and cytokinin, two plant hormones that are normally required for cell dedifferentiation. In vivo imaging of a synthetic cytokinin reporter reveals that wounding upregulates the B-type ARABIDOPSIS RESPONSE REGULATOR (ARR)-mediated cytokinin response and that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation. This study provides novel molecular insights into how plants control cell dedifferentiation in response to wounding.

Johkan M, Mitukuri K, Yamasaki S, Mori G, Oda M ( 2009). Causes of defoliation and low survival rate of grafted sweet pepper plants
Sci Hortic 119, 103-107.

DOI:10.1016/j.scienta.2008.07.015URL [本文引用: 1]

Johkan M, Oda M, Mori G ( 2008). Ascorbic acid promotes graft-take in sweet pepper plants (Capsicum annuum L.)
Sci Hortic 116, 343-347.

DOI:10.1016/j.scienta.2008.02.004URL [本文引用: 1]

Kawaguchi M, Taji A, Backhouse D, Oda M ( 2008). Anatomy and physiology of graft incompatibility in solanaceous plants
J Hortic Sci Biotechnol 83, 581-588.

DOI:10.1080/14620316.2008.11512427URL [本文引用: 1]

Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CMJ ( 2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation
Plant Physiol 147, 1358-1368.

DOI:10.1104/pp.108.121392URLPMID:18539774 [本文引用: 1]
Cross talk between salicylic acid (SA) and jasmonic acid (JA) signaling pathways plays an important role in the regulation and fine tuning of induced defenses that are activated upon pathogen or insect attack. Pharmacological experiments revealed that transcription of JA-responsive marker genes, such as PDF1.2 and VSP2, is highly sensitive to suppression by SA. This antagonistic effect of SA on JA signaling was also observed when the JA pathway was biologically activated by necrotrophic pathogens or insect herbivores, and when the SA pathway was triggered by a biotrophic pathogen. Furthermore, all 18 Arabidopsis (Arabidopsis thaliana) accessions tested displayed SA-mediated suppression of JA-responsive gene expression, highlighting the potential significance of this phenomenon in induced plant defenses in nature. During plant-attacker interactions, the kinetics of SA and JA signaling are highly dynamic. Mimicking this dynamic response by applying SA and methyl jasmonate (MeJA) at different concentrations and time intervals revealed that PDF1.2 transcription is readily suppressed when the SA response was activated at or after the onset of the JA response, and that this SA-JA antagonism is long lasting. However, when SA was applied more than 30 h prior to the onset of the JA response, the suppressive effect of SA was completely absent. The window of opportunity of SA to suppress MeJA-induced PDF1.2 transcription coincided with a transient increase in glutathione levels. The glutathione biosynthesis inhibitor l-buthionine-sulfoximine strongly reduced PDF1.2 suppression by SA, suggesting that SA-mediated redox modulation plays an important role in the SA-mediated attenuation of the JA signaling pathway.

Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M ( 2010). Current status of vegetable grafting: diffusion, grafting techniques, automation
Sci Hortic 127, 93-105.

DOI:10.1016/j.scienta.2010.08.003URL [本文引用: 1]

Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V ( 2011). A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis
Plant Cell 23, 3353-3373.

DOI:10.1105/tpc.111.087742URLPMID:21934146 [本文引用: 1]
Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid-dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid-dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.

Lee JY ( 2015). Plasmodesmata: a signaling hub at the cellular boundary
Curr Opin Plant Biol 27, 133-140.

DOI:10.1016/j.pbi.2015.06.019URLPMID:26247123 [本文引用: 2]
Effective intercellular communication is crucial for the survival of plants. Because plant cells are encased in rigid cell walls, direct cell-to-cell exchange of cytoplasmic content is only possible through plasmodesmata (PD), membrane-lined nanotubes that connect the cytoplasm of adjacent cells. PD are highly dynamic communication channels that can undergo various structural and functional modifications. Recent findings in the field suggest that defense signaling pathways are tightly linked to the regulation of PD, and the restriction of PD-mediated cell-to-cell communication is an essential innate immune response to microbial pathogens. Moreover, several plasma membrane-bound signaling components, including receptor-like kinases that are known to have non-cell autonomous function or pathogen perception at the cell periphery, are found to also partition to PD. These findings hint at the novel role of PD as a signaling hub for both symplasmic and cross-membrane pathways.

Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao- Morita M, Satoh S, Asahina M ( 2016). Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls
Plant Cell Physiol 57, 2620-2631.

DOI:10.1093/pcp/pcw177URLPMID:27986917 [本文引用: 2]
When wounding or grafting interrupts the original connection of plant tissue, cell proliferation is induced and the divided tissue is reunited. Previous studies suggested that gibberellin derived from the cotyledon is required for tissue reunion in cucumber and tomato incised hypocotyls, and tissue reunion of Arabidopsis incised flowering stems is controlled by auxin. Differences in the hormone requirements of the tissue reunion process between Arabidopsis and cucumber might be due to differences in organs or species. In this study, we performed morphological and gene expression analyses of graft union in Arabidopsis hypocotyl. We found that removal of the cotyledon and treatment of the cotyledon with the auxin transport inhibitor triiodobenzoic acid (TIBA) suppressed cell proliferation of vascular tissue during graft union formation. These treatments also suppressed expression of IAA5, ANAC071, ANAC096 and CYCB1;1. ANAC071 is involved in the tissue reunion process. The anac071 anac096 double mutant suppressed cell proliferation more so than either of the single mutants. On the other hand, paclobutrazol treatment or deficiency of gibberellin biosynthesis genes suppressed expansion of cortex cells, and exogenous gibberellin treatment or rga/gai mutations that lack the negative regulator of gibberellin reversed this inhibition. The up-regulation of the key gibberellin biosynthesis gene GA20ox1 during graft union formation was prevented by cotyledon removal or TIBA treatment. These data suggest that auxin regulates cell proliferation of vascular tissue and expansion of cortex cells by promoting gibberellin biosynthesis during graft attachment. We hypothesize that the cotyledon-derived phytohormones are essential for graft reunion of the hypocotyl, processed in a cell type-specific manner, in Arabidopsis.

Mazur E, Benková E, Friml J ( 2016). Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis
Sci Rep 6, 33754.

DOI:10.1038/srep33754URLPMID:27649687 [本文引用: 2]
Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis.

Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, Meyerowitz EM ( 2018). Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration
Proc Natl Acad Sci USA 115, E2447-E2456.

DOI:10.1073/pnas.1718263115URLPMID:29440499 [本文引用: 1]
The ability for cut tissues to join and form a chimeric organism is a remarkable property of many plants; however, grafting is poorly characterized at the molecular level. To better understand this process, we monitored genome-wide gene expression changes in grafted Arabidopsis thaliana hypocotyls. We observed a sequential activation of genes associated with cambium, phloem, and xylem formation. Tissues above and below the graft rapidly developed an asymmetry such that many genes were more highly expressed on one side than on the other. This asymmetry correlated with sugar-responsive genes, and we observed an accumulation of starch above the graft junction. This accumulation decreased along with asymmetry once the sugar-transporting vascular tissues reconnected. Despite the initial starvation response below the graft, many genes associated with vascular formation were rapidly activated in grafted tissues but not in cut and separated tissues, indicating that a recognition mechanism was activated independently of functional vascular connections. Auxin, which is transported cell to cell, had a rapidly elevated response that was symmetric, suggesting that auxin was perceived by the root within hours of tissue attachment to activate the vascular regeneration process. A subset of genes was expressed only in grafted tissues, indicating that wound healing proceeded via different mechanisms depending on the presence or absence of adjoining tissues. Such a recognition process could have broader relevance for tissue regeneration, intertissue communication, and tissue fusion events.

Melnyk CW, Meyerowitz EM ( 2015). Plant grafting
Curr Biol 25, R183-R188.

DOI:10.1016/j.cub.2015.01.029URLPMID:25734263 [本文引用: 7]
Since ancient times, people have cut and joined together plants of different varieties or species so they would grow as a single plant - a process known as grafting (Figures 1 and 2). References to grafting appear in the Bible, ancient Greek and ancient Chinese texts, indicating that grafting was practised in Europe, the Middle East and Asia by at least the 5(th) century BCE. It is unknown where or how grafting was first discovered, but it is likely that natural grafting, the process by which two plants touch and fuse limbs or roots in the absence of human interference (Figure 3), influenced people's thinking. Such natural grafts are generally uncommon, but are seen in certain species, including English ivy. Parasitic plants, such as mistletoe, that grow and feed on often unrelated species may have also contributed to the development of grafting as a technique, as people would have observed mistletoe growing on trees such as apples or poplars.

Melnyk CW, Schuster C, Leyser O, Meyerowitz EM ( 2015). A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana
Curr Biol 25, 1306-1318.

DOI:10.1016/j.cub.2015.03.032URLPMID:25891401
Plant grafting is a biologically important phenomenon involving the physical joining of two plants to generate a chimeric organism. It is widely practiced in horticulture and used in science to study the long-distance movement of molecules. Despite its widespread use, the mechanism of graft formation and vascular reconnection is not well understood. Here, we study the dynamics and mechanisms of vascular regeneration in Arabidopsis thaliana during graft formation when the vascular strands are severed and reconnected. We demonstrate a temporal separation between tissue attachment, phloem connection, root growth, and xylem connection. By analyzing cell division patterns and hormone responses at the graft junction, we found that tissues initially show an asymmetry in cell division, cell differentiation, and gene expression and, through contact with the opposing tissue, lose this asymmetry and reform the vascular connection. In addition, we identified genes involved in vascular reconnection at the graft junction and demonstrate that these auxin response genes are required below the graft junction. We propose an inter-tissue communication process that occurs at the graft junction and promotes vascular connection by tissue-specific auxin responses involving ABERRANT LATERAL ROOT FORMATION 4 (ALF4). Our study has implications for phenomena where forming vascular connections are important including graft formation, parasitic plant infection, and wound healing.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F ( 2004). Reactive oxygen gene network of plants
Trends Plant Sci 9, 490-498.

DOI:10.1016/j.tplants.2004.08.009URLPMID:15465684 [本文引用: 1]

Mo ZH, Feng G, Su WC, Liu ZZ, Peng FR ( 2018). Transcriptomic analysis provides insights into grafting union development in pecan ( Carya illinoinensis)
Genes 9, 71.

DOI:10.3390/genes9020071URL [本文引用: 2]

Moore R ( 1982). Graft formation in Kalanchoe blossfeldiana
J Exp Bot 33, 533-540.

DOI:10.1093/jxb/33.3.533URL [本文引用: 1]

Moore R ( 1984). Graft formation in Solanum pennellii (Solanaceae)
Plant Cell Rep 3, 172-175.

DOI:10.1007/BF00270192URLPMID:24253508 [本文引用: 1]
Three phases of cohesion were observable during the development of compatible autografts in Solanum pennellii. Phase I cohesion 1) lasted 4-5 d after grafting, 2) was characterized by an average increase in tensile strength of 4 g breaking weight (BW) mm(-2) graft area (GA) d(-1), and 3) correlated positively with cellular interdigitation at the graft interface. The fresh weight of the scion increased by approximately 5% d(-1) during the first 2 d after grafting. Phase II cohesion occurred 5-15 d after grafting, during which time 1) the tensile strength of the graft union increased by 14 g BW mm(-2) GA d(-1), 2) vascular differentiation across the graft interface was completed, and 3) the fresh weight of the scion increased by 9% d(-1). Phase III cohesion occurred subsequent to 15 d after grafting, during which time 1) the tensile strength of the graft union leveled off at a value similar to that of an ungrafted internode, and 2) the fresh weight of the scion increased by 14% d(-1). These results are discussed relative to mechanisms underlying the formation of compatible grafts.

Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE ( 2013). Glutamate receptor-like genes mediate leaf-to-leaf wound signaling
Nature 500, 422-426.

DOI:10.1038/nature12478URLPMID:23969459 [本文引用: 1]
Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.

Nanda AK, Melnyk CW ( 2018). The role of plant hormones during grafting
J Plant Res 131, 49-58.

DOI:10.1007/s10265-017-0994-5URLPMID:29181647 [本文引用: 1]
For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.

Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y ( 2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana
Nat Chem Biol 5, 578-580.

DOI:10.1038/nchembio.182URLPMID:19525968 [本文引用: 1]
The secreted peptide gene CLAVATA3 (CLV3) regulates stem cell fate in the shoot apical meristem in Arabidopsis thaliana plants, but the molecular structure of the active mature CLV3 peptide is controversial. Here, using nano-LC-MS/MS analysis of apoplastic peptides of A. thaliana plants overexpressing CLV3, we show that CLV3 is a 13-amino-acid arabinosylated glycopeptide. Post-translational arabinosylation of CLV3 is critical for its biological activity and high-affinity binding to its receptor CLV1.

Orozco-Cardenas M, Ryan CA ( 1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway
Proc Natl Acad Sci USA 96, 6553-6557.

DOI:10.1073/pnas.96.11.6553URLPMID:10339626 [本文引用: 1]
Hydrogen peroxide (H2O2) generated in response to wounding can be detected at wound sites and in distal leaf veins within 1 hr after wounding. The response is systemic and maximizes at about 4-6 hr in both wounded and unwounded leaves, and then declines. The timing of the response corresponds with an increase in wound-inducible polygalacturonase (PG) mRNA and enzyme activity previously reported, suggesting that oligogalacturonic acid (OGA) fragments produced by PG are triggering the H2O2 response. Systemin, OGA, chitosan, and methyl jasmonate (MJ) all induce the accumulation of H2O2 in leaves. Tomato plants transformed with an antisense prosystemin gene produce neither PG activity or H2O2 in leaves in response to wounding, implicating systemin as a primary wound signal. The antisense plants do produce both PG activity and H2O2 when supplied with systemin, OGA, chitosan, or MJ. A mutant tomato line compromised in the octadecanoid pathway does not exhibit PG activity or H2O2 in response to wounding, systemin, OGA, or chitosan, but does respond to MJ, indicating that the generation of H2O2 requires a functional octadecanoid signaling pathway. Among 18 plant species from six families that were assayed for wound-inducible PG activity and H2O2 generation, 14 species exhibited both wound-inducible PG activity and the generation of H2O2. Four species, all from the Fabaceae family, exhibited little or no wound-inducible PG activity and did not generate H2O2. The time course of wound-inducible PG activity and H2O2 in Arabidopsis thaliana leaves was similar to that found in tomato. The cumulative data suggest that systemic wound signals that induce PG activity and H2O2 are widespread in the plant kingdom and that the response may be associated with the defense of plants against both herbivores and pathogens.

Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S ( 2014a). ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems
Plant Biotechnol 31, 49-53.

DOI:10.5511/plantbiotechnology.13.1028bURL [本文引用: 2]

Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S ( 2014b). XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems
Plant J 80, 604-614.

DOI:10.1111/tpj.12654URLPMID:25182467 [本文引用: 1]
One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process.

Rojo E, León J, Sánchez-Serrano JJ ( 1999). Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana
Plant J 20, 135-142.

DOI:10.1046/j.1365-313x.1999.00570.xURL [本文引用: 1]

Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX ( 2019). Jasmonic acid signaling pathway in plants
Int J Mol Sci 20, 2479.

DOI:10.3390/ijms20102479URL [本文引用: 1]

Schilmiller AL, Howe GA ( 2005). Systemic signaling in the wound response
Curr Opin Plant Biol 8, 369-377.

DOI:10.1016/j.pbi.2005.05.008URLPMID:15939667 [本文引用: 1]
In many plants, localized tissue damage elicits an array of systemic defense responses against herbivore attack. Progress in our understanding of the long-distance signaling events that control these responses has been aided by the identification of mutants that fail to mount systemic defenses in response to wounding. Grafting experiments conducted with various mutants of tomato indicate that systemic signaling requires both the biosynthesis of jasmonic acid at the site of wounding and the ability to perceive a jasmonate signal in remote tissues. These and other studies support the hypothesis that jasmonic acid regulates the production of, or acts as, a mobile wound signal. Following its synthesis in peroxisomes, further metabolism of jasmonic acid might enhance its stability, transport, or action in remote tissues. Recent studies in tomato suggest that the peptide signal systemin promotes long-distance defense responses by amplifying jasmonate production in vascular tissues.

Sena G, Wang XN, Liu HY, Hofhuis H, Birnbaum KD ( 2009). Organ regeneration does not require a functional stem cell niche in plants
Nature 457, 1150-1153.

DOI:10.1038/nature07597URLPMID:19182776 [本文引用: 1]
Plants rely on the maintenance of stem cell niches at their apices for the continuous growth of roots and shoots. However, although the developmental plasticity of plant cells has been demonstrated, it is not known whether the stem cell niche is required for organogenesis. Here we explore the capacity of a broad range of differentiating cells to regenerate an organ without the activity of a stem cell niche. Using a root-tip regeneration system in Arabidopsis thaliana to track the molecular and functional recovery of cell fates, we show that re-specification of lost cell identities begins within hours of excision and that the function of specialized cells is restored within one day. Critically, regeneration proceeds in plants with mutations that fail to maintain the stem cell niche. These results show that stem-cell-like properties that mediate complete organ regeneration are dispersed in plant meristems and are not restricted to niches, which nonetheless seem to be necessary for indeterminate growth. This regenerative reprogramming of an entire organ without transition to a stereotypical stem cell environment has intriguing parallels to recent reports of induced transdifferentiation of specific cell types in the adult organs of animals.

Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N ( 2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
Nature 468, 400-405.

DOI:10.1038/nature09430URLPMID:20927106 [本文引用: 2]
Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved alpha-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC, Layeghifard M, Neuhold J, Lehner A, Kong JX, Grünwald K, Weinberger N, Satbhai SB, Mayer D, Busch W, Madalinski M, Stolt-Bergner P, Provart NJ, Mukhtar MS, Zipfel C, Desveaux D, Guttman DS, Belkhadir Y ( 2018). An extracellular network of Arabidopsis leucine-rich repeat receptor kinases
Nature 553, 342-346.

DOI:10.1038/nature25184URLPMID:29320478 [本文引用: 1]
The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSI(LRR)) that consists of 567 interactions. To demonstrate the power of CSI(LRR) for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSI(LRR) operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.

Stahl Y, Faulkner C ( 2016). Receptor complex mediated regulation of symplastic traffic
Trends Plant Sci 21, 450-459.

DOI:10.1016/j.tplants.2015.11.002URLPMID:26655263 [本文引用: 3]
Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic.

Stahl Y, Wink RH, Ingram GC, Simon R ( 2009). A signaling module controlling the stem cell niche in Arabidopsis root meristems
Curr Biol 19, 909-914.

DOI:10.1016/j.cub.2009.03.060URLPMID:19398337 [本文引用: 1]
The niches of the Arabidopsis shoot and root meristems, the organizing center (OC) and the quiescent center (QC), orchestrate the fine balance of stem cell maintenance and the provision of differentiating descendants. They express the functionally related homeobox genes WUSCHEL (WUS) and WOX5, respectively, that promote stem cell fate in adjacent cells. Shoot stem cells signal back to the OC by secreting the CLAVATA3 (CLV3) dodecapeptide, which represses WUS expression. However, the signals controlling homeostasis of the root stem cell system are not identified to date. Here we show that the differentiating descendants of distal root stem cells express CLE40, a peptide closely related to CLV3. Reducing CLE40 levels delays differentiation and allows stem cell proliferation. Conversely, increased CLE40 levels drastically alter the expression domain of WOX5 and promote stem cell differentiation. We report that the receptor kinase ACR4, previously shown to control cell proliferation, is an essential component, and also a target, of CLE40 signaling. Our results reveal how, in contrast to the shoot system, signals originating from differentiated cells, but not the stem cells, determine the size and position of the root niche.

Sugimoto K, Jiao YL, Meyerowitz EM ( 2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway
Dev Cell 18, 463-471.

DOI:10.1016/j.devcel.2010.02.004URLPMID:20230752 [本文引用: 1]
Unlike most animal cells, plant cells can easily regenerate new tissues from a wide variety of organs when properly cultured. The common elements that provide varied plant cells with their remarkable regeneration ability are still largely unknown. Here we describe the initial process of Arabidopsis in vitro regeneration, where a pluripotent cell mass termed callus is induced. We demonstrate that callus resembles the tip of a root meristem, even if it is derived from aerial organs such as petals, which clearly shows that callus formation is not a simple reprogramming process backward to an undifferentiated state as widely believed. Furthermore, callus formation in roots, cotyledons, and petals is blocked in mutant plants incapable of lateral root initiation. It thus appears that the ectopic activation of a lateral root development program is a common mechanism in callus formation from multiple organs.

Tilsner J, Amari K, Torrance L ( 2011). Plasmodesmata viewed as specialised membrane adhesion sites
Protoplasma 248, 39-60.

DOI:10.1007/s00709-010-0217-6URLPMID:20938697 [本文引用: 1]
A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein-lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.

Turnbull CGN, Booker JP, Leyser HMO ( 2002). Micrografting techniques for testing long-distance signaling in Arabidopsis
Plant J 32, 255-262.

DOI:10.1046/j.1365-313x.2002.01419.xURLPMID:12383090 [本文引用: 2]
Grafting in species other than Arabidopsis has generated persuasive evidence for long-distance signals involved in many plant processes, including regulation of flowering time and shoot branching. Hitherto, such approaches in Arabidopsis have been hampered by the lack of suitable grafting techniques. Here, a range of micrografting methods for young Arabidopsis seedlings are described. The simplest configuration was a single-hypocotyl graft, constructed with or without a supporting collar, allowing tests of root-shoot communication. More complex two-shoot grafts were also constructed, enabling tests of shoot-shoot communication. Integrity of grafts and absence of adventitious roots on scions were assessed using plants constitutively expressing a GUS gene as one graft partner. Using the max1 (more axillary growth) and max3 increased branching mutants, it was shown that a wild-type (WT) rootstock was able to inhibit rosette branching of mutant shoots. In two-shoot grafts with max1 and WT shoots on a max1 rootstock, the mutant shoot branched profusely, but the WT one did not. In two-shoot grafts with max1 and WT shoots on a WT rootstock, neither shoot exhibited increased branching. The results mirror those previously demonstrated in equivalent grafting experiments with the ramosus mutants in pea, and are consistent with the concept that a branching signal is capable of moving from root to shoot, but not from shoot to shoot. These grafting procedures will be valuable for revealing genes associated with many other long-distance signalling pathways, including flowering, systemic resistance and abiotic stress responses.

Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S, Stratil TF, Fastner A, Hammes UZ, Ott T, Robinson DG, Schneitz K ( 2014). The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana
Development 141, 4139-4148.

DOI:10.1242/dev.113878URLPMID:25256344 [本文引用: 1]
Tissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic. In Arabidopsis, signal transduction mediated by the receptor-like kinase STRUBBELIG (SUB) contributes to inter-cell layer signaling during tissue morphogenesis. Previous analysis has revealed that SUB acts non-cell-autonomously suggesting that SUB controls tissue morphogenesis by participating in the formation or propagation of a downstream mobile signal. A genetic screen identified QUIRKY (QKY), encoding a predicted membrane-anchored C2-domain protein, as a component of SUB signaling. Here, we provide further insight into the role of QKY in this process. We show that like SUB, QKY exhibits non-cell-autonomy when expressed in a tissue-specific manner and that non-autonomy of QKY extends across several cells. In addition, we report on localization studies indicating that QKY and SUB localize to PD but independently of each other. FRET-FLIM analysis suggests that SUB and QKY are in close contact at PD in vivo. We propose a model where SUB and QKY interact at PD to promote tissue morphogenesis, thereby linking RLK-dependent signal transduction and intercellular communication mediated by PD.

Vu NT, Xu ZH, Kim YS, Kang HM, Kim IS ( 2014). Effect of nursery environmental condition and different cultivars on survival rate of grafted tomato seedling
Acta Hortic 1037, 765-770.

[本文引用: 1]

Wang J, Jiang LB, Wu RL ( 2017). Plant grafting: how genetic exchange promotes vascular reconnection
New Phytol 214, 56-65.

DOI:10.1111/nph.14383URLPMID:27991666 [本文引用: 1]
Grafting has been widely used to improve horticultural traits. It has also served increasingly as a tool to investigate the long-distance transport of molecules that is an essential part for key biological processes. Many studies have revealed the molecular mechanisms of graft-induced phenotypic variation in anatomy, morphology and production. Here, we review the phenomena and their underlying mechanisms by which macromolecules, including RNA, protein, and even DNA, are transported between scions and rootstocks via vascular tissues. We further propose a conceptual framework that characterizes and quantifies the driving mechanisms of scion-rootstock interactions toward vascular reconnection and regeneration.

Wenzel CL, Schuetz M, Yu Q, Mattsson J ( 2007). Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana
Plant J 49, 387-398.

DOI:10.1111/j.1365-313X.2006.02977.xURLPMID:17217464 [本文引用: 1]
Genetic evidence links the Arabidopsis MONOPTEROS (MP) and PIN-FORMED1 (PIN1) genes to the patterning of leaf veins. To elucidate their potential functions and interactions in this process, we have assessed the dynamics of MP and PIN1 expression during vascular patterning in Arabidopsis leaf primordia. Both genes undergo a dynamic process of gradual refinement of expression into files one to two cells wide before overt vascular differentiation. The subcellular distribution of PIN1 is also gradually refined from a non-polar distribution in isodiametric cells to strongly polarized in elongated procambial cells and provides an indication of overall directions of auxin flow. We found evidence that MP expression can be activated by auxin exposure and that PIN1 as well as DR5::GUS expression is defective in mp mutant leaves. Taken together the results suggest a feedback regulatory loop that involves auxin, MP and PIN1 and provide novel experimental support for the canalization-of-auxin-flow hypothesis.

Xie LL, Dong CJ, Shang QM ( 2019). Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato
BMC Plant Biol 19, 373.

DOI:10.1186/s12870-019-1976-7URLPMID:31445524 [本文引用: 4]
BACKGROUND: The ability of severed rootstocks and shoots to re-establish vascular connections is used to generate grafted plants that combine desirable traits from both scions and rootstocks. Clarifying the mechanisms of graft healing is essential for its further application. We performed RNA sequencing of internodes near the cut position, making a distinction between separated or grafted tissues above and below the cut, in order to obtain a genetic description of graft union formation. RESULTS: Using weighted gene co-expression analysis, variable transcripts were clustered into 10 distinct co-expression networks (modules) based on expression profiles, and genes with the most

Yin H, Yan B, Sun J, Jia PF, Zhang ZJ, Yan XS, Chai J, Ren ZZ, Zheng GC, Liu H ( 2012). Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation
J Exp Bot 63, 4219-4232.

DOI:10.1093/jxb/ers109URLPMID:22511803 [本文引用: 5]
Grafting is an ancient cloning method that has been used widely for thousands of years in agricultural practices. Graft-union development is also an intricate process that involves substantial changes such as organ regeneration and genetic material exchange. However, the molecular mechanisms for graft-union development are still largely unknown. Here, a micrografting method that has been used widely in Arabidopsis was improved to adapt it a smooth procedure to facilitate sample analysis and to allow it to easily be applied to various dicotyledonous plants. The developmental stage of the graft union was characterized based on this method. Histological analysis suggested that the transport activities of vasculature were recovered at 3 days after grafting (dag) and that auxin modulated the vascular reconnection at 2 dag. Microarray data revealed a signal-exchange process between cells of the scion and stock at 1 dag, which re-established the communication network in the graft union. This process was concomitant with the clearing of cell debris, and both processes were initiated by a wound-induced programme. The results demonstrate the feasibility and potential power of investigating various plant developmental processes by this method, and represent a primary and significant step in interpretation of the molecular mechanisms underlying graft-union development.
嫁接植株形成过程中接合部组织学和生长素含量的变化
1
1995

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

植物嫁接体接口愈合机制的研究进展
1
2017

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

植物嫁接系统及其在植物生命科学研究中的应用
1
2011

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

夜温对辣椒套管嫁接苗砧穗愈合的影响
1
2015

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis
4
2011

... 砧穗组织重连是嫁接愈合完成的标志性事件, 包括维管组织和其它组织的重连等.已开发出一些模式化的切割或嫁接系统用于组织重连研究, 如拟南芥下胚轴微嫁接(micrograft)或改良后的微嫁接(Turnbull et al., 2002; Yin et al., 2012)、黄瓜(Cucumis sativus)或番茄下胚轴和拟南芥花序茎的半切(one-half cut)重连试验(Asahina et al., 2002, 2011)等.这些模式系统为探讨内源性植物激素以及基因调控网络在砧穗再生重连中的作用提供了便利. ...

... 在幼苗期, 赤霉素(gibberellin, GA)的生物合成影响皮层的组织重连.当切除黄瓜和番茄幼苗下胚轴直径的一半长度后, 皮层的细胞分裂起始于切割后3天, 7天后重连.去除子叶后重连被抑制.在地上部尖端施加GA能够逆转抑制作用, 而施加GA抑制剂, 以及GA缺陷突变体(gib-1)呈现与去除子叶类似的表型(Asahina et al., 2002).此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002).继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低.推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007).将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016).对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部.去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程.而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连.推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011). ...

... 转录因子在组织重连过程中作用显著, 其表达受到生长素、JAs和ETH的交联调控.生长素促进转录因子ANAC071 (NAC domain containing protein 71)和ANAC096的表达, 生长素响应因子IAA5 (indole-3- acetic acid inducible 5)、ARF6 (auxin response factor 6)和ARF8居于级联调控的中部, 推测其在嫁接面以上发挥作用(Pitaksaringkarn et al., 2014a; Matsuoka et al., 2016).AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a).此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011).在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同.当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

... 的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls
3
2002

... 砧穗组织重连是嫁接愈合完成的标志性事件, 包括维管组织和其它组织的重连等.已开发出一些模式化的切割或嫁接系统用于组织重连研究, 如拟南芥下胚轴微嫁接(micrograft)或改良后的微嫁接(Turnbull et al., 2002; Yin et al., 2012)、黄瓜(Cucumis sativus)或番茄下胚轴和拟南芥花序茎的半切(one-half cut)重连试验(Asahina et al., 2002, 2011)等.这些模式系统为探讨内源性植物激素以及基因调控网络在砧穗再生重连中的作用提供了便利. ...

... 在幼苗期, 赤霉素(gibberellin, GA)的生物合成影响皮层的组织重连.当切除黄瓜和番茄幼苗下胚轴直径的一半长度后, 皮层的细胞分裂起始于切割后3天, 7天后重连.去除子叶后重连被抑制.在地上部尖端施加GA能够逆转抑制作用, 而施加GA抑制剂, 以及GA缺陷突变体(gib-1)呈现与去除子叶类似的表型(Asahina et al., 2002).此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002).继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低.推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007).将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016).对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部.去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程.而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连.推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011). ...

... ).此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002).继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低.推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007).将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016).对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部.去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程.而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连.推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011). ...

Effects of the removal of cotyledons on endogenous gibberellin levels in hypocotyls of young cucumber and tomato seedlings
1
2007

... 在幼苗期, 赤霉素(gibberellin, GA)的生物合成影响皮层的组织重连.当切除黄瓜和番茄幼苗下胚轴直径的一半长度后, 皮层的细胞分裂起始于切割后3天, 7天后重连.去除子叶后重连被抑制.在地上部尖端施加GA能够逆转抑制作用, 而施加GA抑制剂, 以及GA缺陷突变体(gib-1)呈现与去除子叶类似的表型(Asahina et al., 2002).此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002).继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低.推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007).将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016).对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部.去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程.而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连.推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011). ...

Regulatory mechanisms for specification and patterning of plant vascular tissues
1
2010

... 生长素在植物多个发育进程中与维管组织的形成密切相关(Ca?o-Delgado et al., 2010).根据生长素的“渠化假说(canalization hypothesis)”, 生长素极性运输和由此形成的浓度差异可能为维管束的分化和重连提供空间极性信息(Mazur et al., 2016).叶脉形成研究揭示了若干以反馈调节形式调控叶片维管束形成的参与因子, 包括生长素运输蛋白PIN1 (PIN- FORMED 1)、生长素信号响应因子MP (MONOPTEROS)和ATHB8等(Wenzel et al., 2007; Donner et al., 2009).生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016). ...

Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2
1
2001

... 寡糖(oligosaccharides)是细胞的能量来源, 同时也是一类信号分子, 在质膜上有专门的受体蛋白激酶(Chikano et al., 2001).在嫁接面处, 质膜上的蔗糖转运蛋白SWEET (sugars will eventually be exported transporters) 9和15上调表达, 同时CIPK (calcineurin B-like-interacting protein kinase)等蛋白激酶受寡糖调节.由于同时上调的还有裂解酶(lyase)和水解酶(hydrolase)等, 因此推测由死亡细胞残留细胞壁分解而来的寡糖类物质可能构成砧穗胞间通讯的一种途径(Yin et al., 2012). ...

Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signaling, and secondary metabolism
2
2013

... 从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019).此外, 愈合期持续时间的长短具有明显差异.例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

... 由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究.可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较.对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019).由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接. ...

Triggering the cell cycle in plants
1
2000

... 愈伤组织的特征是细胞进入快速分裂周期.当受到糖(sucrose)、生长素和细胞分裂素等物质的诱导时, D类细胞周期蛋白(D-type cyclin, CYCD)与A类细胞周期蛋白依赖性蛋白激酶(A-type cyclin-dependent kinase, CDKA)结合, 形成激活态CYCD-CDKA复合体(den Boer and Murray, 2000), 继而调控下游的3个蛋白E2F (E2 promoter binding factor)、RBR (retinoblastoma-related)和DP (dimerization partner), 使细胞进入S期(Inzé and Veylder, 2006).拟南芥下胚轴中, CDKA在创口附近的表达起始于切割后4天, 可以在维管组织和中柱鞘检测到CDKA启动子活性, 而在内皮层、皮层和表皮中检测不到(Ikeuchi et al., 2017).在番茄茎中, 愈伤组织在切口上方的维管组织附近形成, 同时在切口上方检测到一些细胞周期蛋白依赖性蛋白激酶编码基因的活跃转录(Xie et al., 2019). ...

Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves
1
2009

... 生长素在植物多个发育进程中与维管组织的形成密切相关(Ca?o-Delgado et al., 2010).根据生长素的“渠化假说(canalization hypothesis)”, 生长素极性运输和由此形成的浓度差异可能为维管束的分化和重连提供空间极性信息(Mazur et al., 2016).叶脉形成研究揭示了若干以反馈调节形式调控叶片维管束形成的参与因子, 包括生长素运输蛋白PIN1 (PIN- FORMED 1)、生长素信号响应因子MP (MONOPTEROS)和ATHB8等(Wenzel et al., 2007; Donner et al., 2009).生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016). ...

2
2015

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

... ).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

Graft union formation in tomato plants: peroxidase and catalase involvement
1
2004

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

Merging genotypes: graft union formation and scion-rootstock interactions
1
2019

... 从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019).此外, 愈合期持续时间的长短具有明显差异.例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis
1
2009

... 切割造成嫁接面时, 创伤应激响应是首先发生的事件.茉莉酸信号途径是其中较为重要的调控路径.在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010).茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019).在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009).此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致.细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013). ...

Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding
1
2008

... 切割造成嫁接面时, 创伤应激响应是首先发生的事件.茉莉酸信号途径是其中较为重要的调控路径.在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010).茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019).在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009).此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致.细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013). ...

Plant grafting: new mechanisms, evolutionary implications
3
2014

... 嫁接是指将一个植株带有芽或枝的接穗(scion)与另一个植株带有根系的砧木(stock)通过机械固定使切割产生的嫁接面(graft interface)紧贴, 培养至砧、穗在嫁接结合部相互愈合, 从而获得嫁接体植株(grafting plant)的技术.优良的嫁接体植株因结合了接穗和砧木各自的优势而具有一种或多种显著的增益效果, 如生物或非生物胁迫抗性增强、产量提高、品质改良、开花或块茎化习性优化以及株型矮化(Goldschmidt, 2014; Wang et al., 2017).目前, 嫁接技术已作为一种常规手段应用于果树和蔬菜种苗的繁育, 极大地促进了农业生产和农民增收(Lee et al., 2010; Huang et al., 2015). ...

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

... 嫁接技术最早应用于多年生果树、林木和观赏花卉等木本植物, 20世纪初期开始大量应用于茄果类和瓜果类蔬菜等草本植物, 近年来有关嫁接生理的研究大多集中在蔬菜嫁接(Goldschmidt, 2014).模式植物拟南芥的引入也为嫁接愈合分子机制的研究提供了更多便利(Turnbull et al., 2002). ...

The roles of hormones in defense against insects and disease. Plant hormones.
2
2010

... 切割造成嫁接面时, 创伤应激响应是首先发生的事件.茉莉酸信号途径是其中较为重要的调控路径.在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010).茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019).在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009).此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致.细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013). ...

... COI1-JAZ复合体是JAs的高亲和受体(Sheard et al., 2010).COI1 (coronatine insensitive 1)是具有F-box结构域的E3泛素化连接酶; JAZ蛋白通过JAs结构域与COI1结合, 通过ZIM结构域与下游bHLH类转录因子MYC2结合.感知JAs信号后, JAZ解除对MYC2的抑制, 后者结合在JAs诱导基因的启动子区, 激活其转录(Sheard et al., 2010).JA/MeJA能够诱导苯丙素(phenylpropanoids)、生物碱(alkaloids)和萜类(terpenoids)等次生代谢物的合成(Howe, 2010). ...

The history, current status and future prospects of vegetable grafting in China
1
2015

... 嫁接是指将一个植株带有芽或枝的接穗(scion)与另一个植株带有根系的砧木(stock)通过机械固定使切割产生的嫁接面(graft interface)紧贴, 培养至砧、穗在嫁接结合部相互愈合, 从而获得嫁接体植株(grafting plant)的技术.优良的嫁接体植株因结合了接穗和砧木各自的优势而具有一种或多种显著的增益效果, 如生物或非生物胁迫抗性增强、产量提高、品质改良、开花或块茎化习性优化以及株型矮化(Goldschmidt, 2014; Wang et al., 2017).目前, 嫁接技术已作为一种常规手段应用于果树和蔬菜种苗的繁育, 极大地促进了农业生产和农民增收(Lee et al., 2010; Huang et al., 2015). ...

Wounding triggers callus formation via dynamic hormonal and transcriptional changes
3
2017

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

... 愈伤组织的特征是细胞进入快速分裂周期.当受到糖(sucrose)、生长素和细胞分裂素等物质的诱导时, D类细胞周期蛋白(D-type cyclin, CYCD)与A类细胞周期蛋白依赖性蛋白激酶(A-type cyclin-dependent kinase, CDKA)结合, 形成激活态CYCD-CDKA复合体(den Boer and Murray, 2000), 继而调控下游的3个蛋白E2F (E2 promoter binding factor)、RBR (retinoblastoma-related)和DP (dimerization partner), 使细胞进入S期(Inzé and Veylder, 2006).拟南芥下胚轴中, CDKA在创口附近的表达起始于切割后4天, 可以在维管组织和中柱鞘检测到CDKA启动子活性, 而在内皮层、皮层和表皮中检测不到(Ikeuchi et al., 2017).在番茄茎中, 愈伤组织在切口上方的维管组织附近形成, 同时在切口上方检测到一些细胞周期蛋白依赖性蛋白激酶编码基因的活跃转录(Xie et al., 2019). ...

... 在创伤应激响应中合成量升高的JAs和ABA等植物激素, 在愈伤组织形成中不是必需的.使用JAs或ABA的合成和信号转导突变体进行研究, 发现突变体愈伤组织形成量较野生型轻微但显著增多, 表明JAs和ABA对愈伤组织的形成具有轻微抑制作用(Ikeuchi et al., 2017). ...

Plant callus: mechanisms of induction and repression
2
2013

... 此外, 还有细胞壁框架产生的物理抑制.细胞壁组分如纤维素(cellulose)、半纤维素(hemicellulose)和果胶(pectin)的有序积累, 是建立和维持细胞分化形态的关键步骤(Ikeuchi et al., 2013).细胞壁形成缺陷突变通常会导致愈伤组织异常形成.例如, 参与果胶合成的GUT1 (glucuronyltransferase 1)基因突变后, 导致愈伤组织堆积于地上部顶端; 参与纤维素合成的TSD1/KOR1/RSW2基因突变后, 导致地上和地下部细胞排列混乱; 被推测为编码高尔基体定位的甲基化转移酶基因TSD2/QUA2/OSU1突变, 导致细胞间不能相互黏连的严重缺陷(Ikeuchi et al., 2013).因此, 细胞壁组分的正常沉积有助于避免体细胞过分增殖. ...

... 突变, 导致细胞间不能相互黏连的严重缺陷(Ikeuchi et al., 2013).因此, 细胞壁组分的正常沉积有助于避免体细胞过分增殖. ...

Cell cycle regulation in plant development
1
2006

... 愈伤组织的特征是细胞进入快速分裂周期.当受到糖(sucrose)、生长素和细胞分裂素等物质的诱导时, D类细胞周期蛋白(D-type cyclin, CYCD)与A类细胞周期蛋白依赖性蛋白激酶(A-type cyclin-dependent kinase, CDKA)结合, 形成激活态CYCD-CDKA复合体(den Boer and Murray, 2000), 继而调控下游的3个蛋白E2F (E2 promoter binding factor)、RBR (retinoblastoma-related)和DP (dimerization partner), 使细胞进入S期(Inzé and Veylder, 2006).拟南芥下胚轴中, CDKA在创口附近的表达起始于切割后4天, 可以在维管组织和中柱鞘检测到CDKA启动子活性, 而在内皮层、皮层和表皮中检测不到(Ikeuchi et al., 2017).在番茄茎中, 愈伤组织在切口上方的维管组织附近形成, 同时在切口上方检测到一些细胞周期蛋白依赖性蛋白激酶编码基因的活跃转录(Xie et al., 2019). ...

WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis
1
2017

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis
3
2011

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

... ).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

... response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

Causes of defoliation and low survival rate of grafted sweet pepper plants
1
2009

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Ascorbic acid promotes graft-take in sweet pepper plants (Capsicum annuum L.)
1
2008

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

Anatomy and physiology of graft incompatibility in solanaceous plants
1
2008

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation
1
2008

... 除茉莉酸信号途径以外, 还存在其它创伤应激响应机制.使用coi1/jaz突变体筛选出多种参与创伤响应的非JAs依赖的效应物, 包括乙烯(ethylene, ETH)、脱落酸(abscisic acid, ABA)、活性氧(reactive oxygen species, ROS)、寡聚半乳糖醛酸(oligogalacturonides, OGAs)、一氧化氮(nitric oxide, NO)和脂肪酸氨基酸复合物(fatty acid-amino acid conjugates, FACs)等(Schilmiller and Howe, 2005).其中, OGAs可诱导ETH的合成, ETH又能够抑制JAs响应基因的表达(Rojo et al., 1999).此外, 水杨酸(salisylic acid, SA)是JAs的拮抗激素, 外施SA能够抑制JAs的信号响应, 且具有明显的时效性, 抑制过程伴随谷氧还蛋白(gluataredoxin) GRX480的显著上调, 被认为与氧化还原反应密切相关(Koornneef et al., 2008). ...

Current status of vegetable grafting: diffusion, grafting techniques, automation
1
2010

... 嫁接是指将一个植株带有芽或枝的接穗(scion)与另一个植株带有根系的砧木(stock)通过机械固定使切割产生的嫁接面(graft interface)紧贴, 培养至砧、穗在嫁接结合部相互愈合, 从而获得嫁接体植株(grafting plant)的技术.优良的嫁接体植株因结合了接穗和砧木各自的优势而具有一种或多种显著的增益效果, 如生物或非生物胁迫抗性增强、产量提高、品质改良、开花或块茎化习性优化以及株型矮化(Goldschmidt, 2014; Wang et al., 2017).目前, 嫁接技术已作为一种常规手段应用于果树和蔬菜种苗的繁育, 极大地促进了农业生产和农民增收(Lee et al., 2010; Huang et al., 2015). ...

A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis
1
2011

... PD上的RKs和RPs还可作为模式识别受体(pattern recognition receptors)结合病原衍生配体(pathogen-derived ligand), 如真菌细胞壁的几丁质(chitin)或细菌的鞭毛蛋白(falgellin), 可激活胞内免疫应答(Stahl and Faulkner, 2016).例如, PD锚定蛋白FLS2 (flagellin sensing 2)和LYM2 (lysin motif domain-containing glycosylphosphatidylinositol-anchored protein 2) (Lee, 2015), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件.作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability).胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

Plasmodesmata: a signaling hub at the cellular boundary
2
2015

... PD上的RKs和RPs还可作为模式识别受体(pattern recognition receptors)结合病原衍生配体(pathogen-derived ligand), 如真菌细胞壁的几丁质(chitin)或细菌的鞭毛蛋白(falgellin), 可激活胞内免疫应答(Stahl and Faulkner, 2016).例如, PD锚定蛋白FLS2 (flagellin sensing 2)和LYM2 (lysin motif domain-containing glycosylphosphatidylinositol-anchored protein 2) (Lee, 2015), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件.作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability).胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

... ), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件.作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability).胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls
2
2016

... 在幼苗期, 赤霉素(gibberellin, GA)的生物合成影响皮层的组织重连.当切除黄瓜和番茄幼苗下胚轴直径的一半长度后, 皮层的细胞分裂起始于切割后3天, 7天后重连.去除子叶后重连被抑制.在地上部尖端施加GA能够逆转抑制作用, 而施加GA抑制剂, 以及GA缺陷突变体(gib-1)呈现与去除子叶类似的表型(Asahina et al., 2002).此外, 去除芽的顶端生长点, 或者施用生长素极性运输抑制剂(2,3,5-triiodobenzoic acid, TIBA)并不影响重连, 而施用吲哚-3-乙酸(indole-3-acetic acid, IAA)不能弥补去除子叶的重连抑制, 研究表明顶端生长点产生的生长素对去除子叶的黄瓜和番茄幼苗组织重连的影响并不大(Asahina et al., 2002).继而检测幼苗内源性GA, 发现具有生物活性的GA1/GA4及其前体在去除子叶的幼苗中含量降低.推测子叶维持了GA浓度, 并且GA在黄瓜和番茄幼苗组织重连中具有重要作用(Asahina et al., 2007).将拟南芥下胚轴进行全切和嫁接, 保留子叶的下胚轴愈合过程伴随GA合成基因(GA20ox1GA2oxGA3ox1)的上调, 去除子叶或TIBA处理后上调表达被抑制, 且赤霉素缺陷突变体cps出现维管束正常重连但皮层不能重连的表型, 表明皮层组织重连需要GA的生物合成, 同时受到源于子叶的生长素的控制(Matsuoka et al., 2016).对拟南芥花序茎半切处理后3天, 细胞分裂主要发生在髓部.去除花序形态学上端、抑制生长素极性运输以及使用生长素运输突变体(pin1), 均会抑制重连过程.而GA缺陷突变体(ga3ox1/ga3ox2)能够正常重连.推测在拟南芥花序茎组织重连的过程中, 生长素极性运输的作用显著而GA的作用不显著(Asahina et al., 2011). ...

... 转录因子在组织重连过程中作用显著, 其表达受到生长素、JAs和ETH的交联调控.生长素促进转录因子ANAC071 (NAC domain containing protein 71)和ANAC096的表达, 生长素响应因子IAA5 (indole-3- acetic acid inducible 5)、ARF6 (auxin response factor 6)和ARF8居于级联调控的中部, 推测其在嫁接面以上发挥作用(Pitaksaringkarn et al., 2014a; Matsuoka et al., 2016).AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a).此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011).在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同.当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis
2
2016

... 生长素在植物多个发育进程中与维管组织的形成密切相关(Ca?o-Delgado et al., 2010).根据生长素的“渠化假说(canalization hypothesis)”, 生长素极性运输和由此形成的浓度差异可能为维管束的分化和重连提供空间极性信息(Mazur et al., 2016).叶脉形成研究揭示了若干以反馈调节形式调控叶片维管束形成的参与因子, 包括生长素运输蛋白PIN1 (PIN- FORMED 1)、生长素信号响应因子MP (MONOPTEROS)和ATHB8等(Wenzel et al., 2007; Donner et al., 2009).生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016). ...

... ).生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016). ...

Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration
1
2018

... 由于生长素和细胞分裂素的极性运输, 及其运输流被切割所阻断, 嫁接面上下组织中的调控模式呈现非对称的特点.借助携带生长素响应元件的DR5启动子和β-葡萄糖苷酸酶(β-glucuronidase, GUS)报告基因的转基因拟南芥, 观察微嫁接后或非嫁接的GUS染色部位, 发现当转基因拟南芥作为接穗, 野生型拟南芥作为砧木时, 在接穗嫁接面维管束附近部位有明显的染色, 1 DAG时开始出现, 3 DAG时弥漫至整个嫁接面; 而当转基因拟南芥作为砧木时, 嫁接面附近在1-3 DAG期间均未观察到明显染色(Yin et al., 2012).进一步研究发现, 维管束韧皮部和木质部的重连在时间上是分离的(Melnyk et al., 2015).韧皮部重连发生时间是3-4 DAG, 而木质部重连发生时间是6-7 DAG.凯氏带合成基因CASP1 (casparian strip membrane domain proteins 1)、指示细胞分裂S期的组蛋白H4编码基因和创伤响应基因WIND1等均呈现出在嫁接面上部表达先于下部的模式.采用生长素响应启动子元件连接报告基因(pDR5::GFP)和细胞分裂素响应启动子元件连接报告基因(pARR5:: GFPpTCSn::GFP)验证两类植物激素的作用, 结果表明, 对生长素的响应由接穗起始并随之扩散至嫁接结合部, 对细胞分裂素的响应激活由砧木起始并随之扩散至嫁接结合部(Melnyk et al., 2015).通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015).高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018).上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著. ...

Plant grafting
7
2015

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

... 由于生长素和细胞分裂素的极性运输, 及其运输流被切割所阻断, 嫁接面上下组织中的调控模式呈现非对称的特点.借助携带生长素响应元件的DR5启动子和β-葡萄糖苷酸酶(β-glucuronidase, GUS)报告基因的转基因拟南芥, 观察微嫁接后或非嫁接的GUS染色部位, 发现当转基因拟南芥作为接穗, 野生型拟南芥作为砧木时, 在接穗嫁接面维管束附近部位有明显的染色, 1 DAG时开始出现, 3 DAG时弥漫至整个嫁接面; 而当转基因拟南芥作为砧木时, 嫁接面附近在1-3 DAG期间均未观察到明显染色(Yin et al., 2012).进一步研究发现, 维管束韧皮部和木质部的重连在时间上是分离的(Melnyk et al., 2015).韧皮部重连发生时间是3-4 DAG, 而木质部重连发生时间是6-7 DAG.凯氏带合成基因CASP1 (casparian strip membrane domain proteins 1)、指示细胞分裂S期的组蛋白H4编码基因和创伤响应基因WIND1等均呈现出在嫁接面上部表达先于下部的模式.采用生长素响应启动子元件连接报告基因(pDR5::GFP)和细胞分裂素响应启动子元件连接报告基因(pARR5:: GFPpTCSn::GFP)验证两类植物激素的作用, 结果表明, 对生长素的响应由接穗起始并随之扩散至嫁接结合部, 对细胞分裂素的响应激活由砧木起始并随之扩散至嫁接结合部(Melnyk et al., 2015).通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015).高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018).上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著. ...

... )验证两类植物激素的作用, 结果表明, 对生长素的响应由接穗起始并随之扩散至嫁接结合部, 对细胞分裂素的响应激活由砧木起始并随之扩散至嫁接结合部(Melnyk et al., 2015).通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015).高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018).上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著. ...

... ).通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015).高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018).上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著. ...

... 从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019).此外, 愈合期持续时间的长短具有明显差异.例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

... ).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

... 由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究.可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较.对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019).由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接. ...

A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana
0
2015

Reactive oxygen gene network of plants
1
2004

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

Transcriptomic analysis provides insights into grafting union development in pecan ( Carya illinoinensis)
2
2018

... 从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019).此外, 愈合期持续时间的长短具有明显差异.例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

... 由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究.可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较.对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019).由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接. ...

Graft formation in Kalanchoe blossfeldiana
1
1982

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Graft formation in Solanum pennellii (Solanaceae)
1
1984

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Glutamate receptor-like genes mediate leaf-to-leaf wound signaling
1
2013

... 切割造成嫁接面时, 创伤应激响应是首先发生的事件.茉莉酸信号途径是其中较为重要的调控路径.在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010).茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019).在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009).此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致.细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013). ...

The role of plant hormones during grafting
1
2018

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

A glycopeptide regulating stem cell fate in Arabidopsis thaliana
1
2009

... 在有些发育进程中, 质膜或PD上的RKs和RPs通过非细胞自主性信号途径调控组织形态建成或干细胞分化命运.例如, 通过PD特异性蛋白质组鉴定到的SUB (strubbelig)属于非典型的富含亮氨酸重复受体激酶(LRR-RK), 它通过与另一个具有C2结构域的PD锚定蛋白QKY (quirky)互作, 将信号传递至下游(Vaddepalli et al., 2014).PD锚定蛋白ACR4 (arabidopsis crinkly 4)以同源复合体或与LRR-RK CLV1 (clavata 1)形成异源复合体的形式定位于PD, 小分子多肽可作为配体(ligand)与ACR4和CLV1的胞外结构域结合.结构上同源的配体多肽CLV3和CLE40经证实分别在茎端及根尖分生组织中促进干细胞的分化(Ohyama et al., 2009; Stahl et al., 2009).当砧穗嫁接面紧贴时, PD及其上锚定的RKs和RPs的存在很可能为砧穗间初始物质交流提供桥梁.由于嫁接面形成的愈伤组织将面临不同的分化命运, 故PD通过不同受体对发育信号进行承接和传递是重要的因素之一. ...

Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway
1
1999

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems
2
2014

... 转录因子在组织重连过程中作用显著, 其表达受到生长素、JAs和ETH的交联调控.生长素促进转录因子ANAC071 (NAC domain containing protein 71)和ANAC096的表达, 生长素响应因子IAA5 (indole-3- acetic acid inducible 5)、ARF6 (auxin response factor 6)和ARF8居于级联调控的中部, 推测其在嫁接面以上发挥作用(Pitaksaringkarn et al., 2014a; Matsuoka et al., 2016).AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a).此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011).在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同.当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

... ).AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a).此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011).在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同.当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems
1
2014

... 转录因子在组织重连过程中作用显著, 其表达受到生长素、JAs和ETH的交联调控.生长素促进转录因子ANAC071 (NAC domain containing protein 71)和ANAC096的表达, 生长素响应因子IAA5 (indole-3- acetic acid inducible 5)、ARF6 (auxin response factor 6)和ARF8居于级联调控的中部, 推测其在嫁接面以上发挥作用(Pitaksaringkarn et al., 2014a; Matsuoka et al., 2016).AP2/ERF类转录因子的另1个成员RAP2.6L (related to AP2.6L)、JAs和低浓度生长素可促进其表达, 推测其在嫁接面以下发挥作用(Pitaksaringkarn et al., 2014a).此外, ETH能够促进ANAC071及抑制RAP2.6L的表达(Asahina et al., 2011).在乙烯不敏感突变体ein2中, 细胞分裂仅发生在嫁接面的皮层, 与野生型的髓部不同.当ANAC071RAP2.6L的表达被抑制后, 重连不能正常进行.虽然这2个转录因子的作用尚不完全明晰, 但它们均受到生长素浓度的影响, 并被创伤应激激素JAs和ETH微调(Asahina et al., 2011).根据表达模式的相似性和功能验证, 参与细胞壁重构过程的木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase)编码基因(XTH19XTH20)受到ANAC071的直接调控(Pitaksaringkarn et al., 2014b). ...

Cross-talk between wound signaling pathways determines local versus systemic gene expression in Arabidopsis thaliana
1
1999

... 除茉莉酸信号途径以外, 还存在其它创伤应激响应机制.使用coi1/jaz突变体筛选出多种参与创伤响应的非JAs依赖的效应物, 包括乙烯(ethylene, ETH)、脱落酸(abscisic acid, ABA)、活性氧(reactive oxygen species, ROS)、寡聚半乳糖醛酸(oligogalacturonides, OGAs)、一氧化氮(nitric oxide, NO)和脂肪酸氨基酸复合物(fatty acid-amino acid conjugates, FACs)等(Schilmiller and Howe, 2005).其中, OGAs可诱导ETH的合成, ETH又能够抑制JAs响应基因的表达(Rojo et al., 1999).此外, 水杨酸(salisylic acid, SA)是JAs的拮抗激素, 外施SA能够抑制JAs的信号响应, 且具有明显的时效性, 抑制过程伴随谷氧还蛋白(gluataredoxin) GRX480的显著上调, 被认为与氧化还原反应密切相关(Koornneef et al., 2008). ...

Jasmonic acid signaling pathway in plants
1
2019

... 切割造成嫁接面时, 创伤应激响应是首先发生的事件.茉莉酸信号途径是其中较为重要的调控路径.在番茄(Solanum lycopersicum)中的研究证实, 创伤发生后的短时间内, 内源性植物激素茉莉酸(jasmonic acid, JA)及其活性衍生物, 如茉莉酸甲酯(methyl jasmonate, MeJA)、茉莉酸-异亮氨酸复合物(jasmonoylisoleucine, JA-Ile)以及顺式茉莉酸(cis-jasmone, CJ) 被迅速合成(Howe, 2010).茉莉酸类激素(JAs)在创伤局部大量积累, 激活一系列防御反应, 且经维管系统运输至其它部位, 运输期间伴随着JAs在维管细胞内的二次合成(Ruan et al., 2019).在拟南芥(Arabidopsis thaliana)中的研究表明, JAs在创伤部位的积累和扩散发生在数秒或数分钟内(Glauser et al., 2008, 2009).此外, 还发现JAZ10 (jasmonate ZIM-domain 10)所指示的茉莉酸诱导信号响应与创伤激活的表面电位改变(wound-activated surface potential changes, WASPs)在空间上的扩散完全一致.细胞膜定位的类谷氨酸盐受体(glutamate receptor-like, GLR)蛋白参与维持WASPs, 进而影响茉莉酸信号转导(Mousavi et al., 2013). ...

Systemic signaling in the wound response
1
2005

... 除茉莉酸信号途径以外, 还存在其它创伤应激响应机制.使用coi1/jaz突变体筛选出多种参与创伤响应的非JAs依赖的效应物, 包括乙烯(ethylene, ETH)、脱落酸(abscisic acid, ABA)、活性氧(reactive oxygen species, ROS)、寡聚半乳糖醛酸(oligogalacturonides, OGAs)、一氧化氮(nitric oxide, NO)和脂肪酸氨基酸复合物(fatty acid-amino acid conjugates, FACs)等(Schilmiller and Howe, 2005).其中, OGAs可诱导ETH的合成, ETH又能够抑制JAs响应基因的表达(Rojo et al., 1999).此外, 水杨酸(salisylic acid, SA)是JAs的拮抗激素, 外施SA能够抑制JAs的信号响应, 且具有明显的时效性, 抑制过程伴随谷氧还蛋白(gluataredoxin) GRX480的显著上调, 被认为与氧化还原反应密切相关(Koornneef et al., 2008). ...

Organ regeneration does not require a functional stem cell niche in plants
1
2009

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
2
2010

... COI1-JAZ复合体是JAs的高亲和受体(Sheard et al., 2010).COI1 (coronatine insensitive 1)是具有F-box结构域的E3泛素化连接酶; JAZ蛋白通过JAs结构域与COI1结合, 通过ZIM结构域与下游bHLH类转录因子MYC2结合.感知JAs信号后, JAZ解除对MYC2的抑制, 后者结合在JAs诱导基因的启动子区, 激活其转录(Sheard et al., 2010).JA/MeJA能够诱导苯丙素(phenylpropanoids)、生物碱(alkaloids)和萜类(terpenoids)等次生代谢物的合成(Howe, 2010). ...

... ).COI1 (coronatine insensitive 1)是具有F-box结构域的E3泛素化连接酶; JAZ蛋白通过JAs结构域与COI1结合, 通过ZIM结构域与下游bHLH类转录因子MYC2结合.感知JAs信号后, JAZ解除对MYC2的抑制, 后者结合在JAs诱导基因的启动子区, 激活其转录(Sheard et al., 2010).JA/MeJA能够诱导苯丙素(phenylpropanoids)、生物碱(alkaloids)和萜类(terpenoids)等次生代谢物的合成(Howe, 2010). ...

An extracellular network of Arabidopsis leucine-rich repeat receptor kinases
1
2018

... 胞间连丝和膜锚定受体一方面需要通过感知嫁接搭档组织或自身组织中的发育信号, 达到加强砧穗交流的目的; 另一方面需要响应创伤应激, 通过免疫应答阻断细胞与外界的联系.在这种情况下, 膜受体(如LRR-RK家族成员)以网络协作的形式对各种胞外信号进行平衡(Smakowska-Luzan et al., 2018).类似调控机制很可能存在于嫁接愈合的砧穗胞间通讯中. ...

Receptor complex mediated regulation of symplastic traffic
3
2016

... 胞间连丝(plasmodesmata, PD)由外膜和内膜2层膜结构组成, 分别为质膜和内质网膜的延续, 但理化性质稍有差别(Tilsner et al., 2011).借助于膜锚定的受体激酶(receptor kinases, RKs)和受体蛋白(receptor proteins, RPs), 胞间连丝能够对胞外环境变化做出响应, 整合质外体(apoplastic)和共质体(symplastic)途径的信号转导, 从而驱动发育决定和免疫应答, 或通透性调控等(Stahl and Faulkner, 2016).这一机制在砧、穗细胞之间的初始粘连和通讯中扮演重要角色. ...

... PD上的RKs和RPs还可作为模式识别受体(pattern recognition receptors)结合病原衍生配体(pathogen-derived ligand), 如真菌细胞壁的几丁质(chitin)或细菌的鞭毛蛋白(falgellin), 可激活胞内免疫应答(Stahl and Faulkner, 2016).例如, PD锚定蛋白FLS2 (flagellin sensing 2)和LYM2 (lysin motif domain-containing glycosylphosphatidylinositol-anchored protein 2) (Lee, 2015), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件.作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability).胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

... ).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

A signaling module controlling the stem cell niche in Arabidopsis root meristems
1
2009

... 在有些发育进程中, 质膜或PD上的RKs和RPs通过非细胞自主性信号途径调控组织形态建成或干细胞分化命运.例如, 通过PD特异性蛋白质组鉴定到的SUB (strubbelig)属于非典型的富含亮氨酸重复受体激酶(LRR-RK), 它通过与另一个具有C2结构域的PD锚定蛋白QKY (quirky)互作, 将信号传递至下游(Vaddepalli et al., 2014).PD锚定蛋白ACR4 (arabidopsis crinkly 4)以同源复合体或与LRR-RK CLV1 (clavata 1)形成异源复合体的形式定位于PD, 小分子多肽可作为配体(ligand)与ACR4和CLV1的胞外结构域结合.结构上同源的配体多肽CLV3和CLE40经证实分别在茎端及根尖分生组织中促进干细胞的分化(Ohyama et al., 2009; Stahl et al., 2009).当砧穗嫁接面紧贴时, PD及其上锚定的RKs和RPs的存在很可能为砧穗间初始物质交流提供桥梁.由于嫁接面形成的愈伤组织将面临不同的分化命运, 故PD通过不同受体对发育信号进行承接和传递是重要的因素之一. ...

Arabidopsis regeneration from multiple tissues occurs via a root development pathway
1
2010

... 愈伤组织在嫁接面处积累, 填充砧穗之间的空隙, 其中的一些薄壁细胞后续分化为新的维管组织.由于植物组织的再生不需要干细胞龛(stem cell niche)来维持分化, 因而具有更灵活的脱分化(dedifferentiation)和再分化(redifferentiation)能力(Sena et al., 2009).虽然均能通过诱导产生愈伤组织, 但创伤引起的愈伤组织从生理和分子性质上与植物离体培养所形成的愈伤组织不同.在以适当比例添加生长素(auxin)和细胞分裂素(cytokinins, CTKs)的培养基上诱导产生的愈伤组织中, 分生组织分子标识SCR和WOX5以及根中柱鞘分子标识J0121显著表达(Sugimoto et al., 2010).然而, 这些分子标识在创伤诱导的愈伤组织中均不表达(Iwase et al., 2011).AP2/ERF类转录因子WIND1 (wound induced dedifferentiation 1)及其同源蛋白是创伤后组织发育命运的重要调控因子, 其高丰度表达从创伤后数小时一直持续至愈合完全(Iwase et al., 2011; Melnyk et al., 2015).此外, AP2/ERF类转录因子ESR1 (enhancer of shoot regeneration 1)能够被WIND1激活, 也在愈伤组织诱导形成中发挥作用(Iwase et al., 2017).WIND1基因过表达株系表现出对CTKs异常敏感, 通过B类ARR (Arabidopsis response regulator)因子介导的信号途径促进细胞的脱分化(Iwase et al., 2011).CTKs是愈伤组织形成所必需的植物激素.CTKs响应启动子元件连接绿色荧光蛋白报告基因(pTCSn::GFP)在去除根的下胚轴外植体上依然能被激活, 说明外植体形成愈伤组织的过程中存在CTKs的从头合成(Ikeuchi et al., 2017). ...

Plasmodesmata viewed as specialised membrane adhesion sites
1
2011

... 胞间连丝(plasmodesmata, PD)由外膜和内膜2层膜结构组成, 分别为质膜和内质网膜的延续, 但理化性质稍有差别(Tilsner et al., 2011).借助于膜锚定的受体激酶(receptor kinases, RKs)和受体蛋白(receptor proteins, RPs), 胞间连丝能够对胞外环境变化做出响应, 整合质外体(apoplastic)和共质体(symplastic)途径的信号转导, 从而驱动发育决定和免疫应答, 或通透性调控等(Stahl and Faulkner, 2016).这一机制在砧、穗细胞之间的初始粘连和通讯中扮演重要角色. ...

Micrografting techniques for testing long-distance signaling in Arabidopsis
2
2002

... 砧穗组织重连是嫁接愈合完成的标志性事件, 包括维管组织和其它组织的重连等.已开发出一些模式化的切割或嫁接系统用于组织重连研究, 如拟南芥下胚轴微嫁接(micrograft)或改良后的微嫁接(Turnbull et al., 2002; Yin et al., 2012)、黄瓜(Cucumis sativus)或番茄下胚轴和拟南芥花序茎的半切(one-half cut)重连试验(Asahina et al., 2002, 2011)等.这些模式系统为探讨内源性植物激素以及基因调控网络在砧穗再生重连中的作用提供了便利. ...

... 嫁接技术最早应用于多年生果树、林木和观赏花卉等木本植物, 20世纪初期开始大量应用于茄果类和瓜果类蔬菜等草本植物, 近年来有关嫁接生理的研究大多集中在蔬菜嫁接(Goldschmidt, 2014).模式植物拟南芥的引入也为嫁接愈合分子机制的研究提供了更多便利(Turnbull et al., 2002). ...

The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana
1
2014

... 在有些发育进程中, 质膜或PD上的RKs和RPs通过非细胞自主性信号途径调控组织形态建成或干细胞分化命运.例如, 通过PD特异性蛋白质组鉴定到的SUB (strubbelig)属于非典型的富含亮氨酸重复受体激酶(LRR-RK), 它通过与另一个具有C2结构域的PD锚定蛋白QKY (quirky)互作, 将信号传递至下游(Vaddepalli et al., 2014).PD锚定蛋白ACR4 (arabidopsis crinkly 4)以同源复合体或与LRR-RK CLV1 (clavata 1)形成异源复合体的形式定位于PD, 小分子多肽可作为配体(ligand)与ACR4和CLV1的胞外结构域结合.结构上同源的配体多肽CLV3和CLE40经证实分别在茎端及根尖分生组织中促进干细胞的分化(Ohyama et al., 2009; Stahl et al., 2009).当砧穗嫁接面紧贴时, PD及其上锚定的RKs和RPs的存在很可能为砧穗间初始物质交流提供桥梁.由于嫁接面形成的愈伤组织将面临不同的分化命运, 故PD通过不同受体对发育信号进行承接和传递是重要的因素之一. ...

Effect of nursery environmental condition and different cultivars on survival rate of grafted tomato seedling
1
2014

... 砧穗嫁接面能够完全愈合是嫁接成功的关键, 而愈合程度具有很大的不确定性, 受遗传背景、发育阶段和栽培条件等因素的制约(Kawaguchi et al., 2008; Johkan et al., 2009; Vu et al., 2014; 赵渊渊等, 2015).可通过有针对性地筛选砧穗组合、合理地选择发育阶段及精准地设置环境参数等手段提高嫁接的成功率和愈合速率, 这均需要基础理论作为指导.研究初期以表型和显微结构观测为依据, 将嫁接愈合的进程描述为隔离层的形成和初始粘连(嫁接后0-1天(0-1 days after grafting, DAG))、愈伤组织和胞间连丝的形成(2-3 DAG)以及砧穗维管束的重连(4-8 DAG) (Moore, 1982, 1984; 卢善发等, 1995; 王幼群, 2011).随后研究发现, 生理和分子水平的变化与表型变化大致契合(Goldschmidt, 2014; 苗丽等, 2017).多种植物激素参与了砧穗愈合且作用显著(Nanda and Melnyk, 2018).然而, 嫁接愈合过程中植物激素发挥作用的时机和方式非常复杂, 亟须归纳和梳理.本文根据嫁接愈合进程依次发生的创伤应激响应(wounding stress responses)、愈伤组织形成(callus formation)、砧穗细胞通讯(cell communication between scion and stock)和砧穗再生重连(regeneration and reunion of scion and stock)四个阶段性的生理学事件, 对已证实或推测参与其中的内源性植物激素及基因表达调控机制进行总结和论述(图1). ...

Plant grafting: how genetic exchange promotes vascular reconnection
1
2017

... 嫁接是指将一个植株带有芽或枝的接穗(scion)与另一个植株带有根系的砧木(stock)通过机械固定使切割产生的嫁接面(graft interface)紧贴, 培养至砧、穗在嫁接结合部相互愈合, 从而获得嫁接体植株(grafting plant)的技术.优良的嫁接体植株因结合了接穗和砧木各自的优势而具有一种或多种显著的增益效果, 如生物或非生物胁迫抗性增强、产量提高、品质改良、开花或块茎化习性优化以及株型矮化(Goldschmidt, 2014; Wang et al., 2017).目前, 嫁接技术已作为一种常规手段应用于果树和蔬菜种苗的繁育, 极大地促进了农业生产和农民增收(Lee et al., 2010; Huang et al., 2015). ...

Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana
1
2007

... 生长素在植物多个发育进程中与维管组织的形成密切相关(Ca?o-Delgado et al., 2010).根据生长素的“渠化假说(canalization hypothesis)”, 生长素极性运输和由此形成的浓度差异可能为维管束的分化和重连提供空间极性信息(Mazur et al., 2016).叶脉形成研究揭示了若干以反馈调节形式调控叶片维管束形成的参与因子, 包括生长素运输蛋白PIN1 (PIN- FORMED 1)、生长素信号响应因子MP (MONOPTEROS)和ATHB8等(Wenzel et al., 2007; Donner et al., 2009).生长素在拟南芥花序茎半切损伤愈合中也会产生渠化效应, 由PIN1融合报告基因标识出的生长素运输轨迹先于新维管组织的形成(Mazur et al., 2016). ...

Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato
4
2019

... 活性氧(包括超氧阴离子自由基(O2.-)和过氧化氢(H2O2))在创伤后1小时内开始积累(Orozco-Cardenas and Ryan, 1999).ROS可作为第二信使参与调控诸多生物学过程, 如细胞程序性死亡、细胞周期、生物或非生物胁迫和胚发生(Elhiti and Stasolla, 2015).ROS通过其受体改变Ca2+流, 促进丝/苏氨酸蛋白激酶(serine/threonine protein kinase) OXI1 (oxidative-signal inducible 1)的表达, 后者是介导重要级联信号转导通路的促分裂素原活化蛋白激酶(mitogen-activated-protein kinases, MAPKs)的直接诱导因子(Mittler et al., 2004).此外, 由ROS引起的氧化还原电位改变常与双组分信号系统(two-com- ponent signaling system, TCS)整合, 改变一些氧化还原态敏感的转录因子活性(Elhiti and Stasolla, 2015).研究表明, 番茄嫁接若干天后, 其过氧化物酶(peroxidase, POD)和过氧化氢酶(catalase, CAT)在切口附近积累(Fernández-García et al., 2004).甜椒(Capsicum annuum)嫁接过程中外施抗坏血酸(ascorbic acid, AA)对嫁接体形成具有促进作用(Johkan et al., 2008).此外, 番茄嫁接与不嫁接茎段对比显示, ROS清除相关途径基因在嫁接愈合发生时表达量更高(Xie et al., 2019), 表明ROS先升高再降低的调控机制与嫁接愈合密切相关. ...

... 愈伤组织的特征是细胞进入快速分裂周期.当受到糖(sucrose)、生长素和细胞分裂素等物质的诱导时, D类细胞周期蛋白(D-type cyclin, CYCD)与A类细胞周期蛋白依赖性蛋白激酶(A-type cyclin-dependent kinase, CDKA)结合, 形成激活态CYCD-CDKA复合体(den Boer and Murray, 2000), 继而调控下游的3个蛋白E2F (E2 promoter binding factor)、RBR (retinoblastoma-related)和DP (dimerization partner), 使细胞进入S期(Inzé and Veylder, 2006).拟南芥下胚轴中, CDKA在创口附近的表达起始于切割后4天, 可以在维管组织和中柱鞘检测到CDKA启动子活性, 而在内皮层、皮层和表皮中检测不到(Ikeuchi et al., 2017).在番茄茎中, 愈伤组织在切口上方的维管组织附近形成, 同时在切口上方检测到一些细胞周期蛋白依赖性蛋白激酶编码基因的活跃转录(Xie et al., 2019). ...

... 从嫁接时间和部位上来看, 草本嫁接采用幼苗期的胚轴或幼嫩茎, 而木本嫁接通常采用越冬后即将打破休眠时期的枝干和发芽枝条(Gautier et al., 2019).此外, 愈合期持续时间的长短具有明显差异.例如, 拟南芥和番茄等物种在7-10 DAG就能够完全愈合(Melnyk et al., 2015; Xie et al., 2019); 而葡萄(Vitis vinifera)和美洲山核桃(Carya illinoinensis)等嫁接愈合期则需要数十天(Cookson et al., 2013; Mo et al., 2018).木本植物嫁接部位的再生能力弱是造成愈合缓慢的可能原因.活跃的维管形成层是木本和草本植物嫁接部位愈合的必要条件.这与大部分双子叶植物、基部被子植物以及裸子植物可以嫁接, 而维管束散生和缺少维管形成层的单子叶植物很难嫁接相互印证(Melnyk and Meyerowitz, 2015). ...

... 由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究.可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较.对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019).由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接. ...

Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation
5
2012

... PD上的RKs和RPs还可作为模式识别受体(pattern recognition receptors)结合病原衍生配体(pathogen-derived ligand), 如真菌细胞壁的几丁质(chitin)或细菌的鞭毛蛋白(falgellin), 可激活胞内免疫应答(Stahl and Faulkner, 2016).例如, PD锚定蛋白FLS2 (flagellin sensing 2)和LYM2 (lysin motif domain-containing glycosylphosphatidylinositol-anchored protein 2) (Lee, 2015), 在嫁接愈合初期, 嫁接面细胞壁不健全, 病原菌入侵是大概率事件.作为共质体运输的门户, 胞间连丝能够通过外膜和细胞壁之间拐角处填充的胼胝质(callose)来调节自身通透性(permeability).胼胝质的积累量随环境或发育状况而变化, 与PD的通透性呈负相关(Lee, 2015).具有胞外DUF26结构域的PD定位受体蛋白(PD-located proteins, PDLPs)是控制胼胝质积累量和PD通透性的上游因子.通常认为, PDLPs接收本地ROS信号, 激活调控通路, 最终使胼胝质积累量增加及PD关闭(Stahl and Faulkner, 2016).其中, PDLP5以SA依赖的方式调控细菌性病原菌免疫应答, SA促进PDLP5的转录, 而PDLP5的上调又促进SA的积累(Lee et al., 2011).重要的是, PDLP蛋白与嫁接处理相关, PDLP1A在嫁接部位高表达(Yin et al., 2012). ...

... 寡糖(oligosaccharides)是细胞的能量来源, 同时也是一类信号分子, 在质膜上有专门的受体蛋白激酶(Chikano et al., 2001).在嫁接面处, 质膜上的蔗糖转运蛋白SWEET (sugars will eventually be exported transporters) 9和15上调表达, 同时CIPK (calcineurin B-like-interacting protein kinase)等蛋白激酶受寡糖调节.由于同时上调的还有裂解酶(lyase)和水解酶(hydrolase)等, 因此推测由死亡细胞残留细胞壁分解而来的寡糖类物质可能构成砧穗胞间通讯的一种途径(Yin et al., 2012). ...

... 砧穗组织重连是嫁接愈合完成的标志性事件, 包括维管组织和其它组织的重连等.已开发出一些模式化的切割或嫁接系统用于组织重连研究, 如拟南芥下胚轴微嫁接(micrograft)或改良后的微嫁接(Turnbull et al., 2002; Yin et al., 2012)、黄瓜(Cucumis sativus)或番茄下胚轴和拟南芥花序茎的半切(one-half cut)重连试验(Asahina et al., 2002, 2011)等.这些模式系统为探讨内源性植物激素以及基因调控网络在砧穗再生重连中的作用提供了便利. ...

... 由于生长素和细胞分裂素的极性运输, 及其运输流被切割所阻断, 嫁接面上下组织中的调控模式呈现非对称的特点.借助携带生长素响应元件的DR5启动子和β-葡萄糖苷酸酶(β-glucuronidase, GUS)报告基因的转基因拟南芥, 观察微嫁接后或非嫁接的GUS染色部位, 发现当转基因拟南芥作为接穗, 野生型拟南芥作为砧木时, 在接穗嫁接面维管束附近部位有明显的染色, 1 DAG时开始出现, 3 DAG时弥漫至整个嫁接面; 而当转基因拟南芥作为砧木时, 嫁接面附近在1-3 DAG期间均未观察到明显染色(Yin et al., 2012).进一步研究发现, 维管束韧皮部和木质部的重连在时间上是分离的(Melnyk et al., 2015).韧皮部重连发生时间是3-4 DAG, 而木质部重连发生时间是6-7 DAG.凯氏带合成基因CASP1 (casparian strip membrane domain proteins 1)、指示细胞分裂S期的组蛋白H4编码基因和创伤响应基因WIND1等均呈现出在嫁接面上部表达先于下部的模式.采用生长素响应启动子元件连接报告基因(pDR5::GFP)和细胞分裂素响应启动子元件连接报告基因(pARR5:: GFPpTCSn::GFP)验证两类植物激素的作用, 结果表明, 对生长素的响应由接穗起始并随之扩散至嫁接结合部, 对细胞分裂素的响应激活由砧木起始并随之扩散至嫁接结合部(Melnyk et al., 2015).通过突变体筛选得出, 生长素响应蛋白ALF4 (aberrant lateral root formation 4)作为承接生长素信号的关键因子, 其正常功能在韧皮部重连过程中是必需的(Melnyk et al., 2015).高通量测序研究表明, 生长素应答基因网络在嫁接后的切口上、下组织, 以及砧穗分开放置的切口以上组织中被激活, 而在砧穗分开放置的切口以下组织中不被激活(Melnyk et al., 2018).上述结果表明, 生长素和细胞分裂素(尤其是生长素)的运输以及信号响应在维管组织重连中的作用显著. ...

... 由于培养周期长和技术原因, 木本嫁接的调控机制难以采用以草本植物为材料的类似方法进行探究.可通过转录组分析获得的嫁接特异性富集路径对草本和木本愈合过程进行比较.对于拟南芥、番茄、葡萄和美洲山核桃等不同物种, 嫁接后呈现出差异表达的基因参与相似的路径, 包括茉莉酸合成、ROS消解、类黄酮代谢、细胞壁重构、细胞周期、膜锚定受体介导的细胞通讯、生长素运输和响应及维管组织分化(Yin et al., 2012; Cookson et al., 2013; Melnyk et al., 2015; Mo et al., 2018; Xie et al., 2019).由此推测, 木本和草本嫁接的愈合过程本质上一致, 通过草本嫁接体系研究得出的调控模式在很大程度上也适用于木本嫁接. ...




闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘鍩€椤掍胶鈻撻柡鍛█閵嗕礁鈻庨幘鍐插敤濡炪倖鎸鹃崑鐔兼偘閵夆晜鈷戦柛锔诲幖閸斿銇勯妸銉﹀櫧濠㈣娲樼换婵嗩潩椤撶姴骞嶉梻浣告啞閹稿棝宕ㄩ鐙€鍋ч梻鍌欑劍婵炲﹪寮ㄩ柆宥呭瀭闁割偅娲栨闂佸憡娲﹂崹鎵不濞戙垺鐓曢柟鎹愬皺閸斿秹鏌涚€f柨娲﹂埛鎴犵棯椤撶偞鍣烘い銉ヮ樀閺岋綁鍩ラ崱妯煎几闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弮鍫熸殰闁稿鎸剧划顓炩槈濡娅ч梺娲诲幗閻熲晠寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ユ婵$敻宕熼姘棟闂佸壊鐓堥崰鎺楀箰閸愵喗鈷戦柛娑樷看濞堟洜鈧厜鍋撻柟闂寸閽冪喐绻涢幋娆忕仼缂佺姷绮穱濠囧Χ閸屾矮澹曢梻浣侯攰濞呮洟宕濆▎鎾崇畺闁挎稑瀚ч崑鎾绘晲鎼粹剝鐏嶉梺绋匡工閻忔岸銆冮妷鈺傚€烽柤纰卞厸閾忓酣姊洪崨濠冣拹鐎光偓閹间礁钃熼柨婵嗘啒閺冨牆鐒垫い鎺戝閻ゎ噣鏌℃径瀣仼闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖瑜版帒鐐婃い蹇撳濮c垹顪冮妶蹇氱闁告柨鐭傞垾鏃堝礃椤斿槈褔鏌涘☉鍗炵仯妞ゆ柨娲ら埞鎴﹀煡閸℃ぞ绨煎銈冨妼閿曨亪鐛崘顔肩伋闁哄倶鍎查~宥夋⒑闂堟稓绠氭俊鐙欏洤绠繛宸簼閳锋垹绱掔€n厽纭剁紒鐘卞嵆閺屾稑顫濋澶婂壋濠电偛妫庨崹钘夘嚕婵犳艾唯闁挎梹鍎抽獮鍫ユ⒒娴h櫣甯涙慨濠勭帛閻忔瑩姊哄畷鍥╁笡婵炶尙鍠栧濠氭偄绾拌鲸鏅┑鐐叉閸ㄥ灚淇婃禒瀣€甸柛顭戝亝缁舵煡鎮楀鐓庢灍缂佸倹甯¢弫鍐磼濮樿京鏆伴柣鐔哥矊闁帮綁骞冨Δ鍜佹晣闁靛繆妾ч幏缁樼箾鏉堝墽绉繛鍜冪秮婵″瓨绻濋崶銊у幈闂佽鍎抽顓犵不閺嶎偆纾兼俊銈呭暙閺嬪酣鎽堕弽顓熺厱婵炴垵宕獮妤呭级閸繄澧︽慨濠冩そ濡啫鈽夋潏銊愩垽姊洪崫鍕櫤缂侇喗鎹囧畷鍝勨槈閵忕姷顔婂┑掳鍊撻懗鍫曞储閸楃偐鏀介柣鎰綑閻忋儳鈧娲﹂崜鐔兼偘椤斿槈鐔兼嚃閳哄喛绱查梻浣虹帛閻熴儵骞婇幇鏉跨畺闁兼祴鏅濈壕濂稿级閸稑濡肩紒妞﹀厾褰掓偑閸涱垳鏆ら梺璇″枛婢ц姤绂掗敃鍌涘仼閻忕偠妫勭粻娲⒒閸屾艾鈧嘲霉閸ヮ剦鏁嬮柡宥庡幖閸ㄥ倿鏌℃径瀣剁穿婵炲樊浜滄儫闂佸疇妗ㄩ懗鍫曞礉閿曗偓椤啴濡堕崱妤冪懆闂佹寧娲╃粻鎾崇暦濮樿泛绾ф繛鍡楀⒔閸炵敻鎮峰⿰鍐㈤棁澶婎渻鐎n亪顎楅柛銊︾箞閺屾盯顢曢妶鍛€荤紓浣稿閸嬨倝骞冨Δ鍛櫜閹肩补鈧尙鐩庨柣搴㈩問閸犳牕岣块垾鎰佹綎婵炲樊浜滅粻浼村箹鏉堝墽鎮奸柣锝囨暬濮婅櫣娑甸崨顔惧涧闂佸憡姊归〃鍫ュ礆閹烘挾绡€婵﹩鍓涢悡鎴炵節閵忥絾纭鹃柣顒€銈搁幆渚€宕奸妷锔规嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴瑦銇勯弬璇插婵炲眰鍊濋弻瀣炊椤掍胶鍘撻梺鎼炲妽缁嬫帒鈻嶉崱娑欑厽闊洦鎸搁弳锝夋煛瀹€瀣ɑ闁诡垱妫冮弫宥夊礋椤撶喐顔嗛梻鍌欒兌鏋梺甯稻缁傚秹宕奸弴鐘茬ウ婵犵數濮撮崯顖炲磿閻斿吋鐓忓┑鐘茬箳閻e崬霉濠婂嫷娈滄慨濠呮缁瑩骞愭惔銏″闂備胶纭堕弲娑㈠疮椤愩垹绁梻浣稿閸嬩線宕曢弻銉﹀亗婵炲棙鍨圭壕钘壝归敐澶嬫锭闁诲繆鏅犻弻锝堢疀閺囩倫銏ゆ婢跺绡€濠电姴鍊绘晶銏ゆ煟閿濆洤鍔嬮柟渚垮妽缁绘繈宕橀埞澶歌檸闁诲氦顫夊ú蹇涘礉瀹ュ洦宕叉繝闈涱儏绾惧吋绻濇繝鍌涘櫤闁革綆鍨伴埞鎴︽偐濞堟寧姣屽┑鈩冨絻閹虫ê鐣烽幋锕€宸濇い鏍ㄧ☉鎼村﹪姊洪崜鎻掍簴闁稿骸鍟块悾鍨瑹閳ь剟寮婚悢鐓庣妞ゆ梻鈷堥弳顓㈡⒑閸濆嫭鍣洪柟顔煎€垮濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�
547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁哄苯绉烽¨渚€鏌涢幘璺烘灈鐎殿喚绮换婵嬪炊閵婏附鐝冲┑鐘灱濞夋盯鏁冮敃鍌涘仾闁搞儺鍓氶埛鎴︽偡濞嗗繐顏╃紒鈧崘鈹夸簻闁哄洤妫楅幊鎰版儗閸℃稒鐓曢柟鑸妽閺夊搫霉濠婂嫮鐭掗柣鎿冨亰瀹曞爼濡搁敃鈧棄宥咁渻閵堝啫鍔滅紒顔芥崌瀵鏁愭径濠勵啋闁诲酣娼ч幉锟犲礆濞戞ǚ鏀芥い鏃傘€嬮弨缁樹繆閻愯埖顥夐柣锝呭槻铻栭柛娑卞幘椤ρ囨⒑閸忚偐銈撮柡鍛洴瀹曠敻骞掑Δ浣叉嫽婵炶揪绲介幉锟犲箟閹间焦鐓曢柨婵嗗暙閸旓妇鈧娲橀崹鍨暦閻旂⒈鏁嶆繛鎴灻奸幃锝夋⒒娴h櫣甯涢柛銊ュ悑閹便劑濡舵径濠勬煣闂佸綊妫块悞锕傛偂閵夆晜鐓熼柡鍥╁仜閳ь剙婀遍埀顒佺啲閹凤拷1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熼柨婵嗩槸椤懘鏌曡箛濠冩珕婵絽鐭傚铏圭矙濞嗘儳鍓遍梺鍦嚀濞层倝鎮鹃悿顖樹汗闁圭儤绻冮弲婵嬫⒑閹稿海绠撴繛璇х畵椤㈡ɑ绻濆顓涙嫽婵炴挻鍩冮崑鎾绘煃瑜滈崜娑㈠磻濞戙垺鍤愭い鏍ㄧ⊕濞呯娀鏌涘▎蹇fФ濞存粍绮嶉妵鍕箛閳轰胶鍔村┑鈥冲级濡炰粙寮诲☉銏″亹閻犲泧鍐х矗婵$偑鍊栭幐鎼佸触鐎n亶鍤楅柛鏇ㄥ墰缁♀偓闂佸憡鍔﹂崢楣冨矗閹达附鈷掗柛灞剧懅缁愭棃鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾寸洴閹﹢鎮欓惂鏄忣潐閺呭爼鎳犻钘変壕闁割煈鍋呯欢鏌ユ倵濮樼厧娅嶉柛鈹惧亾濡炪倖甯掗敃锔剧矓闂堟耽鐟扳堪閸曨厾鐓夐梺鎸庣箘閸嬬偤骞嗛弮鍫濈參闁逞屽墴瀵劍绂掔€n偆鍘介梺褰掑亰閸ㄤ即鎯冮崫鍕电唵鐟滃酣鎯勯鐐茶摕婵炴垯鍨规儫闂侀潧锛忛崒婵囶€楅梻鍌欐缁鳖喚寰婇崸妤€绀傛慨妞诲亾鐎殿噮鍋婇獮妯肩磼濡桨姹楅梻浣藉亹閳峰牓宕滈敃鈧嵄濞寸厧鐡ㄩ悡鐔兼煟閺傛寧鎲搁柣顓烇功缁辨帞绱掑Ο铏诡儌闂佸憡甯楃敮鎺楀煝鎼淬劌绠荤€规洖娲ら埀顒傚仱濮婃椽宕橀崣澶嬪創闂佸摜鍠嶉崡鎶藉极瀹ュ應鍫柛鏇ㄥ幘閻﹀牓姊洪棃娑㈢崪缂佹彃澧藉☉鍨偅閸愨晝鍙嗛梺鍝勬祩娴滎亜顬婇鈧弻锟犲川椤愩垹濮﹀┑顔硷功缁垶骞忛崨鏉戝窛濠电姴鍊瑰▓姗€姊洪悡搴d粚闁搞儯鍔庨崢杈ㄧ節閻㈤潧孝闁哥喓澧楅弲鑸垫綇閳哄啰锛濋梺绋挎湰缁嬫帒鐣峰畝鍕厵缂佸灏呴弨鑽ょ磼閺冨倸鏋涢柛鈺嬬節瀹曟帒鈽夋潏顭戞闂佽姘﹂~澶娒洪敂鐣岊洸婵犻潧顑呯粻顖炴煕濞戝崬鐏¢柛鐘叉閺屾盯寮撮妸銉ョ閻炴碍鐟╁濠氬磼濮橆兘鍋撴搴g焼濞达綁娼婚懓鍧楁⒑椤掆偓缁夋挳宕掗妸褎鍠愰柡鍐ㄧ墕缁犳牗绻涘顔荤盎閹喖姊虹€圭姵銆冮柤鍐茬埣椤㈡瑩宕堕浣叉嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢х敻鏌熼鎯т槐鐎规洖缍婇、鏇㈡偐鏉堚晝娉块梻鍌欒兌閹虫捇顢氶銏犵;婵炴垯鍩勯弫瀣節婵犲倹鍣界痪鍓у帶闇夐柨婵嗘噺閹牊銇勯敐鍛仮闁哄本娲熷畷鎯邦槻妞ゅ浚鍘介妵鍕閳╁啰顦版繝娈垮枓閸嬫捇姊虹€圭姵銆冪紒鈧担鍦彾濠㈣埖鍔栭埛鎺懨归敐鍥ㄥ殌妞ゆ洘绮庣槐鎺斺偓锝庡亜濞搭喚鈧娲樼换鍌炲煝鎼淬劌绠婚悹楦挎閵堬箓姊虹拠鎻掑毐缂傚秴妫濆畷鎶筋敋閳ь剙顕i銏╁悑闁糕剝鐟ч惁鍫熺節閻㈤潧孝闁稿﹨顫夐崚濠囧礂闂傚绠氶梺鍝勮閸庢煡寮潏鈺冪<缂備焦岣跨粻鐐烘煙椤旇崵鐭欐俊顐㈠暙閳藉螖娴gǹ顎忛梻鍌氬€烽悞锕傚箖閸洖绀夌€光偓閳ь剛妲愰悙瀵哥瘈闁稿被鍊曞▓銊ヮ渻閵堝棗濮傞柛濠冾殜閹苯鈻庨幇顏嗙畾濡炪倖鍔戦崐鏍汲閳哄懏鐓曢幖瀛樼☉閳ь剚顨婇獮鎴﹀閻橆偅鏂€闁诲函缍嗘禍鐐哄磹閻愮儤鈷戦梻鍫熻儐瑜版帒纾块柡灞诲労閺佸洦绻涘顔荤凹闁抽攱鍨块弻娑樷攽閸℃浼屽┑鈥冲级閹倿寮婚敐鍛傛梹鎷呴搹鍦帨闁诲氦顫夊ú姗€宕归崸妤冨祦闁圭儤鍤﹂弮鍫濈劦妞ゆ帒瀚憴锔炬喐閻楀牆绗氶柣鎾寸洴閺屾盯骞囬埡浣割瀷婵犫拃鍕创闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼厴濮婄粯鎷呴崨闈涙贡閹广垽骞囬悧鍫濆壎闂佸吋绁撮弲婊堬綖閺囥垺鐓欓柣鎴烇供濞堛垽鏌℃担闈╄含闁哄本绋栫粻娑㈠箼閸愨敩锔界箾鐎涙ḿ鐭掔紒鐘崇墵楠炲啫煤椤忓嫮顔婇悗骞垮劚濡盯濡堕弶娆炬富闁靛牆楠告禍婊勩亜閿旂偓鏆柣娑卞櫍瀹曞崬鈽夊Ο娲绘闂佸湱鍘ч悺銊╁箰婵犳熬缍栫€广儱顦伴埛鎴︽煕閿旇骞栭柛鏂款儔閺屾盯濡搁妸锔惧涧缂備焦姊婚崰鏍ь嚕閹绢喗鍋勯柧蹇氼嚃閸熷酣姊洪崫鍕垫Ц闁绘妫欓弲鑸电鐎n亞鐣烘繝闈涘€搁幉锟犳偂濞戙垺鐓曟繝濞惧亾缂佲偓娴e湱顩叉繝濠傜墕绾偓闂備緡鍓欑粔鐢告偂閺囩喆浜滈柟閭﹀枛瀛濋梺鍛婃⒐缁捇寮婚敐澶婄閻庢稒岣块ˇ浼存⒑閸濆嫮鐏遍柛鐘崇墵楠炲啫饪伴崗鍓у枔閹风娀寮婚妷褉鍋撳ú顏呪拻濞达絽鎳欒ぐ鎺濇晞闁搞儯鍔庣粻楣冩煃瑜滈崜鐔煎蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垶绮庨悿鈧梺鍝勫暙閸婂爼鍩€椤掍礁绗氱紒缁樼洴瀹曢亶骞囬鍌欐偅婵$偑鍊ら崑鍛崲閸曨垰绠查柛鏇ㄥ€嬪ú顏嶆晜闁告粌鍟伴懜鐟扳攽閻樿尙妫勯柡澶婄氨閸嬫捁顦寸€垫澘锕ョ粋鎺斺偓锝庝簽閺屽牆顪冮妶鍡欏⒈闁稿绋撶划濠氭偐閾忣偄寮垮┑鈽嗗灥椤曆囥€傞幎鑺ョ厱閻庯綆鍋呭畷宀勬煟濞戝崬娅嶇€规洖缍婇、娆撴偂鎼搭喗缍撻梻鍌氬€风粈渚€骞楀⿰鍫濈獥闁规儳顕粻楣冩煃瑜滈崜娑㈠焵椤掑喚娼愭繛鍙夛耿瀹曞綊宕稿Δ鍐ㄧウ濠碘槅鍨伴惃鐑藉磻閹炬枼妲堟繛鍜佸弾娴滎亪銆侀幘璇茬缂備焦菤閹疯櫣绱撻崒娆戝妽闁挎岸鏌h箛銉х暤闁哄被鍔岄~婵嬫嚋閻㈤潧甯楅柣鐔哥矋缁挸鐣峰⿰鍐f闁靛繒濮烽敍娑㈡⒑缂佹ɑ鈷掗柛妯犲洦鍊块柛顭戝亖娴滄粓鏌熼悜妯虹仴闁哄鍊栫换娑㈠礂閻撳骸顫掗梺鍝勭灱閸犳牠銆佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鍙壝叅闁绘梻顑曢埀顑跨閳藉濮€閳ユ枼鍋撻悜鑺ョ厾缁炬澘宕晶顔尖攽椤曞棝妾ǎ鍥э躬閹瑩顢旈崟銊ヤ壕闁哄稁鍘奸崹鍌氣攽閸屾簱鍦閸喒鏀介柣妯虹枃婢规ḿ绱掗埀顒勫磼閻愭潙鈧爼鏌i幇顓熺凡閻庢艾楠搁湁婵犲﹤瀚惌鎺楁煛瀹€鈧崰鏍嵁閸℃凹妲鹃梺鍦櫕婵炩偓闁哄本绋掔换婵嬪礃閵娿儺娼氶梻浣告惈閻ジ宕伴弽顓溾偓浣糕枎閹炬潙娈愰梺瀹犳〃閼冲爼宕㈡禒瀣厽閹兼番鍊ゅḿ鎰箾閼碱剙鏋戠紒鍌氱Ч瀹曞ジ寮撮悩鑼偊闂備焦鎮堕崕娲礈濞嗘劕鍔旈梻鍌欑窔濞佳囁囬銏犵9闁哄洠鎳炴径濠庢僵妞ゆ垼濮ら弬鈧梻浣虹帛閸旀﹢宕洪弽顑句汗鐟滃繒妲愰幒妤佸殤妞ゆ巻鍋撳ù婊冨⒔缁辨帡宕掑姣櫻囨煙瀹曞洤浠卞┑锛勬焿椤т焦绻涢弶鎴濐伃婵﹥妞介獮鎰償閵忣澁绱╅梻浣呵归鍡涘箲閸ヮ灛娑欐媴閻熸壆绐為梺褰掑亰閸橀箖宕㈤柆宥嗩棅妞ゆ劑鍨烘径鍕箾閸欏澧遍柡渚囧櫍瀹曞ジ寮撮悢鍝勫箥闂備胶枪缁绘劙宕ョ€n喖纾归柟鎵閻撴盯鎮橀悙鍨珪閸熺ǹ顪冮妵鍗炲€荤粣鏃堟煛鐏炲墽顬肩紒鐘崇洴瀵噣宕掑Δ渚囨綌闂傚倸鍊稿ú銈壦囬悽绋胯摕婵炴垯鍨瑰敮濡炪倖姊婚崢褔锝為埡鍐<闁绘劦鍓欓崝銈夋煏閸喐鍊愮€殿喖顭峰鎾偄閾忓湱妲囬梻濠庡亜濞诧箑煤濠婂牆姹查柣妯烘▕濞撳鏌曢崼婵囶棡缂佲偓婢跺⿴娓婚悗娑櫳戦崐鎰殽閻愯尙澧﹀┑鈩冩倐婵¢攱鎯旈敐鍛亖缂備緡鍠楅悷鈺佺暦瑜版帩鏁婄痪鎷岄哺缂嶅秹姊婚崒姘偓鐑芥嚄閼哥數浠氭俊鐐€栭崹闈浳涘┑瀣祦闁归偊鍘剧弧鈧┑顔斤供閸撴盯顢欓崱娑欌拺闁告稑锕g欢閬嶆煕閵娾晙鎲剧€规洑鍗冲畷鍗炩槈濞嗘垵骞堥梻浣告惈濞层垽宕濈仦鐐珷濞寸厧鐡ㄩ悡娑㈡煕閳╁厾顏堝传閻戞ɑ鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洦鍋婂畷鐔碱敃閿涘嫬绗¢梻浣筋嚙鐎涒晠顢欓弽顓炵獥婵°倕鎳庣壕鍨攽閸屾簱瑙勵攰闂備礁婀辨晶妤€顭垮Ο鑲╃焼闁告劏鏂傛禍婊堢叓閸ャ劍灏版い銉уТ椤法鎹勯崫鍕典痪婵烇絽娲ら敃顏呬繆閹壆鐤€闁哄洨鍋涢悡鍌炴⒒娴e憡鎲搁柛锝冨劦瀹曞湱鎹勯搹瑙勬闂佺鎻梽鍕磻閹邦喚纾藉ù锝堢柈缂傛岸鏌涘鈧禍璺侯潖濞差亜妫橀柕澶涢檮閻濇棃姊洪崫銉ユ珡闁稿鎳橀獮鍫ュΩ閳轰胶鍔﹀銈嗗笒鐎氼參鍩涢幋鐘电<閻庯綆鍋掗崕銉╂煕鎼淬垹濮嶉柡宀€鍠撶划娆忊枎閸撗冩倯婵°倗濮烽崑娑氭崲濡櫣鏆﹂柕濞р偓閸嬫挸鈽夊▍顓т簼缁傛帡骞嗚濞撳鏌曢崼婵囶棤濠⒀屽墴閺屻倝鎮烽弶搴撴寖缂備緡鍠栭…鐑界嵁鐎n喗鏅滈悷娆欑稻鐎氳棄鈹戦悙鑸靛涧缂佽弓绮欓獮澶愭晸閻樿尙鐣鹃梺鍓插亖閸庢煡鎮¢弴鐐╂斀闁绘ɑ褰冮鎰版煕閿旇骞栫€殿喗鐓″缁樼瑹閳ь剙岣胯閹广垽宕奸妷銉э紮闂佸搫娲㈤崹娲磹閸ф鐓曟い顓熷灥娴滄牕霉濠婂嫮鐭掗柡宀€鍠撻埀顒傛暩鏋ù鐘崇矋閵囧嫰寮撮悢铏圭厒缂備浇椴哥敮妤呭箯閸涱垱鍠嗛柛鏇ㄥ幖閸ゆ帗淇婇悙顏勨偓銈夊矗閳ь剚绻涙径瀣妤犵偛顦甸獮姗€顢欓懖鈺婃Ч婵$偑鍊栧濠氬磻閹惧墎妫柣鎰靛墮閳绘洟鏌熼绛嬫當闁崇粯鎹囧畷褰掝敊閻e奔澹曢梻鍌欐祰濡椼劎绮堟笟鈧垾锕傛倻閽樺)銉ッ归敐鍥┿€婃俊鎻掔墛娣囧﹪顢涘☉姘辩厒闂佸摜濮撮柊锝夊箖妤e啫鐒洪柛鎰硶閻绻涙潏鍓у埌濠㈢懓锕よ灋婵犲﹤瀚弧鈧梺姹囧灲濞佳勭閳哄懏鐓欐繛鑼额唺缁ㄧ晫绱掓潏鈺佷槐闁糕斁鍋撳銈嗗笂闂勫秵绂嶅⿰鍕╀簻闁规壋鏅涢悞鐑樹繆椤栨浜鹃梻鍌欐祰椤曟牠宕抽婊勫床婵犻潧顑呴弰銉╂煃瑜滈崜姘跺Φ閸曨垰绠抽柟瀛樼箥娴犻箖姊洪幎鑺ユ暠閻㈩垽绻濆璇测槈濮橆偅鍕冮梺纭咁潐閸旀洟藟濠靛鈷戦梺顐ゅ仜閼活垶宕㈤崫銉х<妞ゆ梻鏅幊鍥煏閸℃洜顦﹂柍璇查叄楠炲洭顢欓崜褎顫岄梻鍌欑閹测€趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆戭槮婵犫偓闁秴纾婚柟鍓х箑缂傛碍绻涢崱妯诲濠㈣泛饪村ḿ鈺呮煠閸濄儲鏆╅柛姗€浜堕弻锝嗘償椤栨粎校闂佺ǹ顑呴幊鎰閸涘﹤顕遍悗娑欋缚閸樼敻鎮楅悷鏉款伀濠⒀勵殜瀹曠敻宕堕埞鎯т壕閻熸瑥瀚粈鍫ユ煕韫囨棑鑰块柕鍡曠铻i悶娑掑墲閺佺娀姊虹拠鈥崇€婚柛灞惧嚬濡粍绻濋悽闈浶ラ柡浣告啞閹便劑寮堕幊銊︽そ閺佸啴宕掑鎲嬬串闂備礁澹婇悡鍫ュ磻閸℃瑧涓嶅Δ锝呭暞閻撴瑩鎮楀☉娆嬬細缂佺姵锕㈤弻锛勨偓锝庝簻閺嗙喓绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒閸婄敻宕戦幘缁樻櫜閹肩补鍓濋悘宥夋⒑缂佹ɑ灏柛鐔跺嵆楠炲绮欐惔鎾崇墯闂佸壊鍋呯换鍕囪閳规垿鎮欓弶鎴犱桓濠殿喗菧閸旀垿骞嗗畝鍕耿婵$偞娲栫紞濠囧极閹版澘閱囬柣鏃傝ˉ閸嬫捇宕橀鐣屽幗闂佸湱鍎ら崺濠囩叕椤掑嫭鐓涚€光偓閳ь剟宕版惔銊ョ厺闁规崘顕ч崹鍌涖亜閺冨倹娅曞ù婊勫姍濮婄粯鎷呴崨闈涚秺椤㈡牠宕卞☉妯碱唶闂佸綊妫跨粈渚€鎮¢垾鎰佺唵閻犲搫鎼ˇ顒勬煕鐎n偅宕岀€规洜鍏橀、姗€鎮欓幇鈺佸姕闁靛洤瀚伴弫鍌炲垂椤旇偐銈繝娈垮枛閿曘儱顪冩禒瀣摕闁告稑鐡ㄩ崐鐑芥煠閼圭増纭炬い蹇e弮濮婃椽宕ㄦ繛鎺濅邯楠炲鏁嶉崟顒€搴婂┑鐐村灟閸ㄥ湱鐥閺岀喓鈧數枪娴犳粓鏌$€n剙孝妞ゎ亜鍟存俊鍫曞礃閵娧傜棯闂備焦瀵уú蹇涘垂瑜版帗鍋╅柣鎴犵摂閺佸啴鏌ㄩ弴妤€浜鹃柛鐑嗗灦閹嘲饪伴崘顏嗕紘缂備緡鍣崢钘夘嚗閸曨剛绠鹃柣鎰靛墯閺夋悂姊洪崷顓炲妺濠电偛锕ら悾鐑藉箛閺夎法顔掔紓鍌欑劍閿氶柍褜鍓欏ḿ锟犲蓟閵娾晛绫嶉柍褜鍓欓悾宄拔熺紒妯哄伎闂佹儳娴氶崑鍛村矗韫囨柧绻嗘い鏍ㄦ皑娴犮垽鏌i幘鏉戝闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼跺煐娣囧﹪鎮欓鍕ㄥ亾瑜忛幏瀣晲閸℃洜绠氶梺鎼炲労閸撴瑩鎮為崹顐犱簻闁瑰搫妫楁禍鎯р攽閻橆偄浜鹃柡澶婄墑閸斿孩绂掑顓濈箚闁绘劦浜滈埀顑惧€濆畷銏$附缁嬪灝绨ラ梺鍝勮閸庢煡宕戦埡鍛厽闁硅揪绲借闂佸搫鎳忛悡锟犲蓟濞戙垹唯妞ゆ牜鍋為宥夋⒑閸涘﹥绀€闁哥喐娼欓~蹇涙惞閸︻厾鐓撻梺鍦圭€涒晠骞忛崡鐑嗘富闁靛牆鍟俊濂告煙閸愯尙绠崇紒顔碱儏椤撳吋寰勬繝鍕毎婵$偑鍊ら崗姗€鍩€椤掆偓绾绢厾绮斿ú顏呯厸濞达絿鎳撴慨宥団偓瑙勬磸閸旀垿銆佸▎鎾崇闁稿繗鍋愰弳顓㈡⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介幃銏ゆ惞闁稓鐟濋梻浣告惈缁嬩線宕㈡總鍛婂珔闁绘柨鍚嬮悡銉︾節闂堟稒锛嶆俊鎻掔秺閺屾稒绻濋崟顐㈠箣闂佸搫鏈粙鎴﹀煝鎼淬倗鐤€闁挎繂妫岄弸鏃€绻濈喊妯活潑闁稿鎳樺畷褰掑垂椤曞懏缍庡┑鐐叉▕娴滄繈鎮炴繝姘厽闁归偊鍨伴拕濂告倵濮橆偄宓嗛柡灞剧☉铻g紓浣姑埀顒佸姍閺屸€崇暆鐎n剛袦濡ょ姷鍋炵敮锟犲箖濞嗘挻鍋ㄩ柛顭戝亝椤旀捇姊虹拠鎻掝劉妞ゆ梹鐗犲畷鎶筋敋閳ь剙鐣峰⿰鍫熷亜濡炲瀛╁▓楣冩⒑閸︻厼鍔嬮柛鈺佺墕宀e潡鍩¢崨顔惧弳濠电娀娼уΛ娆撍夐悩缁樼厱婵炲棗绻愰弳鐐电磼缂佹ḿ绠撻柍缁樻崌瀹曞綊顢欓悾灞煎闂傚倷鑳堕、濠傗枍閺囥垹绠伴柛婵勫劚瀵煡姊绘担铏瑰笡閺嬵亝銇勯弴鍡楁噹椤ユ艾鈹戦悩宕囶暡闁绘挻鐟╅弻鐔碱敍閸℃鍣洪柟鎻掑悑缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠傤嚕鐠囨祴妲堟俊顖炴敱椤秴鈹戦绛嬫當闁绘锕顐c偅閸愨斁鎷洪梻鍌氱墐閺呮繄绮欐繝姘厵妞ゆ梻鍘ч埀顒€鐏濋锝嗙節濮橆厽娅滈梺绯曞墲閿氶柛鏂挎嚇濮婃椽妫冨☉姘鳖唺婵犳鍠楅幐鍐差嚕缁嬪簱鏋庨柟鎯ь嚟閸樹粙姊虹紒妯忣亪宕幐搴㈠弿濠㈣埖鍔栭悡鏇㈡煟濡櫣锛嶅褏鏁搁埀顒冾潐濞叉ê顪冩禒瀣槬闁逞屽墯閵囧嫰骞掑澶嬵€栨繛瀛樼矋缁捇寮婚悢琛″亾閻㈢櫥瑙勭濠婂嫨浜滈柡鍥╁枔閻鏌曢崶褍顏柡浣稿暣瀹曟帡濡堕崱鈺傤棝缂傚倸鍊峰ù鍥ㄣ仈閹间礁绠伴柟闂寸贰閺佸洤鈹戦崒婧撶懓顪冮挊澹濆綊鏁愰崵鍊燁潐缁旂喐鎯旈妸锔规嫽婵炶揪绲肩拃锕傚绩閻楀牏绠鹃柛娑卞枟缁€瀣煙椤斻劌娲﹂崑鎰版偣閸ヮ亜鐨洪柣銈呮喘濮婅櫣绱掑Ο鏇熷灥椤啴宕稿Δ鈧弸渚€鏌涢埄鍐姇闁绘挻娲熼弻鐔兼焽閿曗偓閺嬫稑霉濠婂牏鐣洪柡宀嬬畵楠炲鈹戦幇顓夈劎绱撴担浠嬪摵闁圭懓娲ら悾鐑藉箳閹存梹鐎婚梺鐟扮摠缁诲倿鈥栨径鎰拻濞达絽鎲¢崯鐐烘煕閺冣偓濞茬喖鍨鹃敃鍌涘€婚柣锝呰嫰缁侊箓妫呴銏″缂佸甯″鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋呯粙鍫ュ磻閹惧瓨濯撮柤鍙夌箖濡啫鐣烽妸鈺婃晩闂傚倸顕惄搴ㄦ⒒閸屾瑧鍔嶉柛搴$-閹广垽骞囬濠呪偓鍧楁⒑椤掆偓缁夌敻宕戦崒鐐村€甸柨婵嗛閺嬬喖鏌嶉柨瀣伌闁诡喖鍢查埢搴ょ疀閹垮啩鐥梻浣呵圭€涒晠銆冩繝鍥ц摕婵炴垯鍨规儫闂侀潧锛忓鍥╊槸缂傚倸鍊风欢锟犲窗閺嶎厽鍋嬪┑鐘插瀹曟煡鏌涘☉鍗炲箰闁哄娴风槐鎺楊敍濞戞凹鏆$紓浣虹帛缁诲牓骞冩禒瀣棃婵炴垶顨嗛崟鍐╃節閻㈤潧浠滈柛姘儔閹兘鍩℃担鐑樻闂侀潧锛忛埀顒勫磻閹剧粯鏅查幖绮瑰墲閻忓秹姊洪幖鐐测偓鏇㈡嚐椤栨繄浜欓梻浣瑰缁诲倿骞婃惔銊ユ辈婵炲棙鍨圭壕濂告煟濮椻偓濞佳囧几濞戙垺鐓涢悘鐐靛枎濡盯鎮块埀顒勬⒑閹稿海绠撻柟鍐茬Ф閼洪亶宕楅懖鈺冪槇濠电偛鐗嗛悘婵嬫倶閿熺姵鐓欓柛娑橈工閳绘洟鏌e☉鍗炴珝鐎殿喕绮欓垾鏍Ψ閵夆晛寮板銈冨灪椤ㄥ﹪宕洪埀顒併亜閹烘垵顏╅柣鎺戠仛閵囧嫰骞掑鍥у缂備讲鍋撻柍褜鍓熷鍝勭暦閸モ晛绗¢梺鍦嚀濞差厼顕i锕€绠荤紓浣股戝▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹128.00闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍡忔瀻闊洦娲樺▓楣冩⒑閸濆嫷妲哥紒銊ュ船鍗遍柛顐ゅ枑閸欏繑鎱ㄥΔ鈧Λ妤€顕i悙顒傜闁兼祴鏅涢弸娑欐叏婵犲懏顏犻柟鐟板婵℃悂濡烽敂鎯х稈闂傚倷鑳堕幊鎾诲吹閺嶎厼绠柨鐕傛嫹
相关话题/组织 基因 信号 细胞 植物

闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓梺顓ㄧ畱閸旀帗绻涘顔荤盎缂佺媴缍侀弻銊╁籍閸ヮ煈妫勯梺閫炲苯澧繛纭风節瀵濡搁埡浣虹潉闂佺ǹ鏈粙鎺楁偟椤忓牊鈷戠紓浣贯缚缁犳岸鏌涢埡鍌滃⒌妤犵偛鐗撴俊鎼佸Ψ椤旇棄鐦滈梺鑽ゅТ濞测晛顕i幘瀵哥彾闁哄洢鍨洪埛鎺懨归敐鍕劅闁衡偓閻楀牏绠鹃柛娑卞枟缁€瀣殽閻愭潙鐏寸€规洘鍎奸ˇ鎾煛閸☆參妾柟渚垮妼椤啰鎷犻煫顓烆棜濠碉紕鍋戦崐鎴﹀垂閸濆嫀娑㈠礃閵娧勬闂佸憡顨堥崐锝夊籍閸繄顦ㄩ梺闈浨归崕鎶筋敊閸ヮ剚鈷掗柛灞捐壘閳ь剚鎮傚畷鎰槹鎼达絿鐒兼繛鎾村焹閸嬫挾鈧娲忛崕鎶藉焵椤掑﹦绉靛ù婊冪埣閹垽宕卞Ο璇插伎濠碉紕鍋犻褎绂嶆ィ鍐╁€甸悷娆忓婢跺嫰鏌涢妸銉у煟闁靛棔绶氬鎾閻欌偓濞煎﹪姊洪棃娑氱畾闁告挻绻堥、娆撳即閵忊檧鎷绘繛鎾村焹閸嬫挻绻涙担鍐叉瘽閵娾晛鐒垫い鎺嗗亾闁宠鍨块崹楣冩惞椤愩垺鐏庨梻浣虹《閺傚倿宕归挊澶樺殨妞ゆ洍鍋撶€规洖銈搁幃銏ゅ传閸曨偆顓奸梻鍌氬€烽懗鍫曘€佹繝鍥风稏濠㈣埖鍔曠粈澶愭煛閸ャ儱鐏柛搴$У缁绘稑顔忛鑽ゅ嚬闂佺粯鎸鹃崰鏍蓟閿濆绫嶉柛顐亝椤ユ牜绱撴担鍓叉Ч婵$偘绮欏濠氭偄绾拌鲸鏅╅梺鍏肩ゴ閺呮繃顨欓梺璇叉唉椤煤濮椻偓瀹曟洘绺介弶鍡楁喘瀵濡烽敂鎯у笚闂傚倷绀侀悘婵嬵敄閸℃稑鐓曢柟閭﹀枤绾捐偐绱撴担璐細缂佺姷鍋ら弻娑㈠煘閹傚濠碉紕鍋戦崐鏍暜閹烘柡鍋撳鐓庡⒋闁诡喚鍋涚叅妞ゅ繐鎳愰崢閬嶆⒑瑜版帒浜伴柛銊ㄤ含濞戠敻宕奸弴鐔哄幗濡炪倖鎸鹃崳銉モ枔閺冨牊鐓冮悷娆忓閻忔挳鏌涢埞鍨姦鐎规洖宕灃闁告剬鍐嚙缂傚倸鍊烽懗鍫曟惞鎼淬劌鍌ㄥ┑鍌氭啞閸嬪鏌i幘铏崳闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖濡ゅ懏顥堟繛鎴炵懄閸犳劙姊虹涵鍛彧缂佽鐗嗛~蹇撁洪鍛姷闂佺粯鍔樼亸顏嗏偓姘緲椤儻顦抽柟鍛婂▕瀵寮撮姀鐘茶€垮┑掳鍊愰崑鎾绘煃瑜滈崜娆忈缚閿熺姷宓佸┑鐘叉处閸婄兘鏌涘┑鍡楃弸闁靛ň鏅滈悡銉╂煛閸ヮ煈娈斿ù婊堢畺濮婃椽宕ㄦ繝鍐弳闂佺娅曢敋妞ゎ偄绻愮叅妞ゅ繐瀚畵宥咁渻閵堝棙灏甸柛瀣戠粩鐔煎即閻旇櫣鐦堥梺鍐茬殱閸嬫捇鏌涢幇闈涙灈鐎殿喕鍗抽幃妤冩喆閸曨剛顦ㄩ梺鎼炲妼濞硷繝鎮伴鍢夌喓浜搁弽褌澹曞┑鐐村灦椤忣亪顢旈崼顐f櫅闂佽鍎虫晶搴e閽樺褰掓晲閸涱喛纭€闂佸疇妫勯ˇ浼村Φ閸曨垰绠f繝闈涙祩濡倗绱撴担鎴掑惈闁稿鍋熼幑銏犫攽鐎n亞顦ㄩ悷婊冪箳缁顫濋澶嬪瘜闂侀潧鐗嗗Λ妤佹叏閸岀偞鐓曞┑鐘插暞缁€瀣煏閸℃鈧湱缂撴禒瀣窛濠电姴瀚獮鍫ユ⒒娴e摜鏋冩俊妞煎妿濞嗐垽濡舵径濠勵槷闂佺粯妫冮弲鑼崲閸℃稒鐓曟繛鍡楁禋濡茬ǹ鈹戦鑲┬ら柍褜鍓濋~澶娒洪弽顐ょ濠电姴娲㈤埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣告啞濞诧箓宕滃▎鎾崇哗妞ゆ挾鍋愰弨浠嬫煟濡櫣浠涢柡鍡忔櫊閺屾稓鈧綆鍋嗛埥澶愭懚閻愬绠鹃柛鈩兩戠亸顓犵磼閻樺啿顥嬬紒杈ㄥ笧閳ь剨缍嗘禍鐐差潩閵娾晜鐓涢悗锝庝簽鏁堥梺鍝勮閸旀垿骞冮姀銈呬紶闁告洘鍩婄紞渚€寮诲☉姘e亾閿濆懎顣抽柟顔笺偢閺岀喖鎳犻銏犵秺椤㈡ɑ绺界粙璺ㄥ€為梺鎸庣箓閹冲秵绔熼弴鐐╂斀妞ゆ梻绮ㄧ紓姘舵煕濡姴娲ㄥ畵浣规叏濡炶浜鹃梺鍝勮閸婃洜鍙呭銈呯箰閸燁垶宕板顒夋富闁靛牆鍟悘顏堟煟閻斿弶娅婃鐐插暙閳诲酣骞欓崘鈺傛珜濠电偠鎻徊鎸庣仚婵犳鍠栭柊锝咁潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹憴鍕偞闁告挻绻勭划顓㈡偄閼茬儤妫冨畷銊╊敇閻愯弓鎲鹃梻鍌欒兌缁垶骞愰崫銉㈠亾閸偄娴€规洜鏁诲鎾閿涘嫬骞堥柣鐔哥矊闁帮綁濡撮崘顔煎耿婵炴垶鐟ユ禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁告捁椴哥换娑㈠醇閻旀帗鍨挎俊鐢稿礋椤栨稒娅嗘繝闈涘€搁幉锟狀敁瀹ュ洨纾藉ù锝堟鐢稓绱掔拠鑼ⅵ鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繑鎸抽弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏灩閻掓椽鏌涢幇鍏哥凹闁革綆鍙冨娲箰鎼达絺妲堢紓浣虹帛閿氭い顐㈢箰鐓ゆい蹇撳椤︻參姊洪懖鈹炬嫛闁告挻鐟ч弫顕€濡烽埡鍌楁嫼闂佸憡绺块崕杈ㄧ墡闂備胶绮〃鍡欏垝閹炬剚鍤曟い鎰跺瘜閺佸鏌嶈閸撶喖鎮伴鑺ュ劅闁靛⿵绠戝▓鐔兼⒑闂堟侗妲堕柛搴濆嵆瀹曠娀寮介鐔叉嫽婵炶揪绲介幗婊呯矓濞差亝鐓曢悗锝庝悍闊剛鈧娲樼划宀勫煡婢跺⿴娼╅弶鍫氭櫇閸樼娀姊绘担铏瑰笡闁搞劌澧庡﹢浣虹磽娴g瓔鍤欐俊顐g箞瀵鎮㈤搹鍦紲濠碘槅鍨靛▍锝夋偡閵娿儺娓婚柕鍫濇噺缁傚鏌涚€n亷韬€殿喖顭烽幃銏ゅ礈閸欏-褔鏌熼懖鈺勊夐悗娈垮墴閺佹劖寰勭€n亖鍋撻悽鍛婄厽闁靛繈鍊栧☉褔鎮介姘卞煟闁哄苯绉堕幏鐘诲蓟閵夈儱鍙婃俊銈囧Х閸嬫盯顢栨径鎰畺妞ゅ繐鐗嗗婵囥亜閺嶃劍鐨戦柛婵撴嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墕閳规垿鎮欓崣澶樻!闂佹悶鍔庨崰鏍х暦閹达箑绠婚柤鎼佹涧閺嬪倿姊洪崨濠冨闁告挻鐩弫宥咁潨閳ь剙顫忛搹鍦煓闁圭ǹ瀛╁畷鎶芥⒑鏉炴壆顦︽い顓犲厴閹即顢氶埀顒€鐣峰鈧崺锟犲礃閻愵剛銈梻浣筋嚙閸戠晫绱為崱娑樼;闁圭儤鍤﹀☉銏犵闁靛ǹ鍨洪弬鈧梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸濄儲宕叉慨妞诲亾鐎殿喛顕ч埥澶愬閻橀潧濮堕梻浣告啞閸斿繘寮插┑瀣庡洭濡歌绾捐棄霉閿濆洦鐒块柛蹇撹嫰椤儻顦虫い銊ワ攻娣囧﹪鎮界粙璺槹濡炪倖鐗徊楣冨疾濠靛鈷戦梻鍫熺〒缁犳岸鏌¢崨顔炬创鐎规洘绮撻弻鍡楊吋閸″繑瀚奸梻浣告贡鏋繛瀵稿厴閸╁﹪寮撮姀锛勫幈闂佸搫鍟犻崑鎾绘煟閻斿弶娅婇柟顔诲嵆椤㈡瑩鏌ㄩ姘闂佹寧绻傜花鑲╄姳閹绢喗鐓涢悗锝庝邯閸欏嫰鏌熼鏂よ€块柟顔界懇瀵爼骞嬮悩鍗炴瀳婵犵數濮伴崹濂革綖婢跺⊕鍝勎熼崗鐓庡簥濠电偞鍨堕悷锔剧礊閸ヮ剚鐓曢柟鐐殔鐎氼剚绂掕ぐ鎺撯拺闁告繂瀚烽崕娑樏瑰⿰鍛槐闁糕斁鍋撳銈嗗笂缁讹繝宕箛娑欑厱闁绘ê纾晶鐢告煙椤旂煫顏堝煘閹寸姭鍋撻敐搴濈敖闁告ɑ鎸冲铏规兜閸涱喖娑х紓浣哄У閸ㄨ绔熼弴銏犵闁兼祴鏅濋鏇㈡⒑绾懏褰х紓宥勭窔瀹曨偄煤椤忓懐鍘介梺鎸庣箓濞诧箑鈻嶉弴鐘电<閺夊牄鍔嶇亸浼存煙瀹勭増鍣烘い锔惧閹棃濡堕崶鈺佺倞闂傚倸鍊烽懗鑸电仚濡炪倖鍨甸幊姗€寮崘顔嘉у鑸瞪戦弲顏堟⒑閹稿海绠撴い锔跨矙瀵偊宕卞☉娆戝帗閻熸粍绮撳畷婊堟偄閻撳孩妲梺闈涚箚閸撴繈宕曢悢鍏肩厓闂佹鍨版禍楣冩⒑閸濆嫷鍎忛梺甯秮瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺濇晛閻忕偛褰炵换鍡涙煕濞嗗浚妲归悘蹇ラ檮閹便劍绻濋崟顓炵闂佺懓鍢查幊妯虹暦閵婏妇绡€闁稿本绋掗悾濂告⒒閸屾瑦绁扮€规洜鏁诲畷浼村幢濞戞ḿ锛熼梺姹囧灮鏋柡瀣╃窔閺屾盯骞囬棃娑欑亪闁搞儲鎸冲娲川婵犲嫮鐒肩紓浣插亾濞撴埃鍋撶€殿喗鐓¢幃鈺佺暦閸モ晝妲囬梻浣圭湽閸ㄨ棄岣胯閻楀孩绻濆▓鍨灍閼垦囨煕閺傝法鐒搁柟顕€绠栧畷褰掝敃閵堝洦鍤岄梻渚€鈧偛鑻晶瀛橆殽閻愭彃鏆欓摶鏍煕濞戝崬娅樻俊顐㈠暙閳规垿鎮欓弶鎴犱桓闂佽崵鍠嗛崕闈涱嚕閹惰棄閱囬柕澶涜吂閹疯櫣绱撴笟鍥х仭婵炲弶锚閳诲秹宕ㄧ€涙ḿ鍘辨繝鐢靛Т閸熶即骞楅崘顔界厽闊洦鎼╅崕鏃€鎱ㄦ繝鍛仩缂佽鲸甯掗~婊堝幢濡吋娈介梻鍌欒兌缁垶銆冮崼銉ョ;闁靛牆鎳愰弳锔戒繆閵堝懏濯奸柡浣告閺屾稓浠﹂崜褏鐓傞梺鎸庣⊕缁捇寮婚埄鍐ㄧ窞濠电姴瀚。鍫曟⒑閸涘﹥鐓ユ繛鎾棑閸掓帗绻濆顒傤啋缂傚倷鐒﹀玻鍧楀储閹剧粯鈷戦柤鎭掑剭椤忓煻鍥寠婢光晝鍠栭崺鈧い鎺戝閳锋垿鎮归崶锝傚亾閾忣偆浜炵紓鍌欑贰閸犳鎮烽妷鈺傚仼闁汇値鍨禍褰掓煙閻戞ḿ绠栭柡鍛箞濮婃椽妫冨☉姘暫缂備胶绮敮锟犲箚瀹€鍕櫢闁跨噦鎷�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮甸妵鍕即濡も偓娴滈箖姊洪崫鍕拱缂佸甯為幑銏犫攽鐎n亞顦板銈嗗坊閸嬫挻绻涢崼婵堢劯闁哄睙鍥ㄥ殥闁靛牆鎳嶅Σ鎰版⒑閸濆嫭婀版繛鑼枎閻g兘鎮℃惔妯绘杸闂佹悶鍎滅仦鎷樼喐绻濋悽闈浶fい鏃€鐗犲畷瑙勫閺夋嚦褔鏌熼梻瀵割槮闁藉啰鍠栭弻銊モ攽閸♀晜笑缂備胶濯寸紞渚€寮婚敐鍫㈢杸闁哄啠鍋撻柕鍥╁枎闇夋繝濠傚缁犳ḿ绱掗纰卞剰妞ゆ挸鍚嬪鍕節閸パ勬毆闂傚倷绀侀幖顐⒚洪妸鈺佺獥闁规崘顕ч崒銊╂煙闂傚鍔嶉柍閿嬪灴閺屾稑鈽夊鍫熸暰缂備讲鍋撻悗锝庡亞缁犳儳霉閿濆懎鏆辨繛璇х畵瀹曟劙宕奸弴鐔哄弳濠电娀娼уΛ娆撍夐悩鐢电<闁抽敮鍋撻柛瀣崌濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼骞橀鐣屽幈闂佸疇妗ㄧ粈渚€顢旈鐘亾鐟欏嫭绀冨畝锝呮健楠炴垿宕熼姣尖晝鎲歌箛娑樺偍妞ゆ巻鍋撻柍瑙勫灴閹晛鈻撻幐搴㈢槣婵犵鍓濊ぐ鍐箠濡櫣鏆︾憸鐗堝笚椤ュ牊绻涢幋鐐殿暡婵炲牓绠栧濠氬磼濮樺崬顤€婵炴挻纰嶉〃濠傜暦椤栫偛宸濇い鏂垮⒔閻﹀牓姊婚崒姘卞缂佸鎸婚弲鍫曞閵忋垺锛忛梺纭咁潐閸旀牠藟婢舵劖顥嗗鑸靛姈閻撱儲绻濋棃娑欘棡妞ゆ洘姘ㄩ幉鎼佹偋閸繄鐟ㄥ┑顔款潐閻擄繝寮婚敓鐘茬闁靛ě鍐炬澑闂備胶绮幐鎼佸疮娴兼潙绠熺紒瀣氨閸亪鏌涢锝囩畼妞は佸啠鏀介柣鎰綑閻忥妇鐥弶璺ㄐфい銏℃礋閹崇偤濡烽敃鈧鍨攽閳藉棗鐏ユ繛澶嬫礋瀹曞ジ顢旈崼鐔哄帗閻熸粍绮撳畷婊冣枎閹惧磭锛欓梺绉嗗嫷娈旂紒鐘靛█閺岋綁骞囬浣瑰創闁哥儐鍨跺娲箰鎼淬垻锛曢梺绋款儐閹瑰洭寮诲☉銏犳闁圭ǹ楠稿▓妤€鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗姂閸ㄧ顣介梻鍌氬€风粈渚€骞楀⿰鍫濈獥閹肩补妾紓姘舵煥閻斿搫孝缂佺姵鐗犻弻銊╂偄閸濆嫅銏ゆ煕濡や礁鈻曢柡宀嬬秮楠炲洭顢楅崒鍌︾秮閺岋綁鍩℃繝鍌滀桓濡ょ姷鍋涢崯鎶剿囬崷顓涘亾鐟欏嫭绀€闁靛牊鎮傞妴浣肝旈崨顓犲姦濡炪倖甯掔€氼剟鎯屽Δ鍛厸闁搞儮鏅涘暩缂佺偓宕樺Λ鍕箒闂佹寧绻傜€氼噣鎯屽▎鎾寸厱婵犻潧锕ラ鐘电磼鏉堛劌绗ч柟椋庡█楠炴捇骞掗幘鎼敳闁诲骸鍘滈崑鎾绘煥濠靛棛澧涚痪顓炵埣閺岀喐顦版惔鈾€鏋呴悗瑙勬穿缂嶄礁鐣烽幒鎴斿牚闁告劏鏅濇禍鏍磽閸屾瑦绁板鏉戞憸閺侇噣骞掗弴鐘辫埅闂傚倷鑳剁划顖炲垂闂堟耽娲Ω閳哄倸浠奸柡澶婄墑閸斿﹥绂嶅⿰鍕╀簻闁圭虎鍨版晶鑼棯椤撶偟鍩i柡宀€鍠栭幃鐑藉级濞嗗彞绱旈梻浣告贡閸樠呯礊婵犲倻鏆︽繝濠傜墕缁犳盯鏌涢幘鑼跺厡闁挎稓鍠撶槐鎾存媴娴犲鎽甸柣銏╁灲缁绘繂鐣风憴鍕╁亝闁告劑鍔庨ˇ銊╂倵閻熸澘顥忛柛鐘虫礈濡叉劙寮崼鐔哄幗闁瑰吋鐣崺鍕疮韫囨稒鐓曢柨婵嗛濞呭秶鈧娲橀崹鍨暦閻旂⒈鏁嶆慨妯哄船楠炴帡姊洪悷鏉挎倯闁伙綆浜畷婵嗙暆閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭⒑鐟欏嫬绀冩繛澶嬬☉閺嗏晠姊绘担鍝ユ瀮妞ゆ泦鍥ㄥ剹闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓熼柣鏃傚帶娴滀即鏌涢妶鍜佸剳缂佽鲸鎸婚幏鍛村礈閹绘帒澹夐梻浣规偠閸斿本鏅舵惔锝囩=闁规儳顕々鐑芥倵閿濆簼绨介柣顐㈠濮婅櫣绮欓幐搴㈡嫳缂備緡鍠栭懟顖炴偩閻戣棄唯闁冲搫鍊婚崢浠嬫煙閸忚偐鏆橀柛銊ヮ煼閸╁﹪寮撮悙鍨畷闂佹寧绻傞幊蹇涘磻閵夆晜鐓曢柍鐟扮仢閻忚尙鈧鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犲搫鈹戦悩鎰佸晱闁哥姵顨婇弫鍐煛閸涱厾顦┑顔角归鎰礊閺嶃劎绡€闁哄洨鍋涢弳鐐电磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿濠电姷鏁搁崑娑㈠触鐎n喗鍋¢柍杞拌兌閺嗭箓鏌曟竟顖楀亾闁稿鎹囬弫鎰償閳╁啰浜堕梻浣规偠閸婃洟鎳熼婵堜簷闂備焦瀵х换鍌炲箠鎼淬劌姹叉繛鍡樺灩绾惧ジ鏌e鈧ḿ褔寮稿☉銏$厸鐎光偓閳ь剟宕伴弽顓犲祦闁糕剝绋掗崑瀣煕椤愵偄浜濇い銉ヮ樀濮婂宕掑▎鎰偘闂佽法鍠嗛崕闈涚暦閹邦兘鏀介悗锝庝海閹芥洖鈹戦悙鏉戠仧闁搞劎鎳撻弫顕€姊绘担鐑樺殌闁宦板妿閹广垽宕掗悙鍙夎緢闂侀潧绶垫0浣虹泿闂備礁鎼崐褰掝敄濞嗗精锝夊箹娴e湱鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍鍛存婢舵劖鍊甸柨婵嗛娴滃墽绱掓潏銊ュ摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦归柟顔ㄥ洤骞㈡繛鎴炨缚閻ゅ洭鏌熼崗鑲╂殬闁告柨鐭傚畷娆撴偐瀹曞洨顔曢梺绯曞墲钃遍悘蹇庡嵆閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹤鐣烽崼鏇熸櫜闁稿本鐭竟鏇㈡⒑閹勭闁稿妫欑粋宥夊冀椤撶啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厸閻忕偠顕ф俊鑺ャ亜閵婏絽鍔︽鐐寸墬閹峰懘宕妷銉ョ闂傚倷娴囬~澶婄暦濮椻偓椤㈡俺顦寸紒顔碱煼閺佹劖寰勭€n剙寮抽梻浣告惈閸燁偊宕愭繝姘闁稿本绋掗崣蹇撯攽閻樻彃鈧綊宕戦妷锔藉弿濠电姴鍟妵婵嬫煛鐏炶姤鍤囬柟顔界懇閹崇姷鎹勬笟顖欑磾婵犵數濮幏鍐沪閼恒儳褰庨柣搴㈩問閸n噣宕戞繝鍌滄殾濠靛倻枪鍞梺鎸庢⒐閸庢娊鐛崼銉︹拺閻犲洩灏欑粻鎶芥煕鐎n偆銆掗柡渚囧櫍瀹曨偊宕熼崹顐㈠厞闂佽崵濞€缂傛艾鈻嶉敐澶嬫櫖婵炴垯鍨洪埛鎴︽煟閻斿憡绶查柍閿嬫⒒缁辨帡顢氶崨顓犱桓閻庢鍠楅悡锟犵嵁閺嶃劍濯撮柛锔诲幖瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷