A Regeneration System for Organogenesis and Somatic Embryogenesis Using Leaves of Agapanthus praecox as Explants
Jianhua Yue1,3, Yan Dong2, Xiaohua Wang1, Peixia Sun1, Siying Wang1, Xinnian Zhang1, Yan Zhang,1,3,*1College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464100, China 2College of Forestry, Xinyang Agriculture and Forestry University, Xinyang 464100, China 3Key Laboratory of Horticultural Plants Genetic Improvement of Dabie Mountain, Xinyang City, Xinyang 464100, China
Abstract A regeneration system for organogenesis and somatic embryogenesis in vitro was established by using leaves of Agapanthus praecox as explants, and different cultivation media for transplanting were selected for the best effect. The results showed that picloram (PIC) was effective in callus induction of leaves, and the optimal medium was MS+2.0 mg·L -1 PIC. The callus induction rate was determined by the meristematic activity of leaf segments. The callus induction rate of the basal tissues on the 1 st-2 nd euphyll was 85.71%, and the callus induction rate was 66.48% in meristematic zone of 0-0.5 cm of the same leaf. The results also showed that the callus induction efficiency was higher in the middle of leaf transection compared with that at the edge. The optimal medium for adventitious bud induction was MS+1.5 mg·L -1 PIC+0.3 mg·L -1 6-BA, and the induction rate was 80.27%. The basic MS medium was suitable for somatic embryo induction, but the induction rate would be significantly increased if 0.05 mg·L -1 paclobutrazol and 1.0 mg·L -1abscisic acid were added. Plantlets proliferation was promoted by 1.0 mg·L -1 6-BA, and the proliferation coefficients of organogenesis and somatic embryogenesis pathway were 2.23 and 2.93, respectively. The combination of peat:perlite: vermiculite=1:1:1 (v/v/v) was proved the suitable substrate for transplanting and acclimatization of plantlets, with a survival rate of 100%. This regeneration system provides a rapid and efficient propagation technology for A. praecox, and also provides a reference for the regeneration of monocotyledon explants in vitro. Keywords:Agapanthus praecox;meristematic activity;organogenesis;somatic embryogenesis;picloram
PDF (2062KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 岳建华, 董艳, 王小画, 孙佩霞, 王思颖, 张新年, 张琰. 早花百子莲叶片器官发生和胚胎发生再生体系的建立. 植物学报, 2020, 55(5): 588-595 doi:10.11983/CBB20019 Yue Jianhua, Dong Yan, Wang Xiaohua, Sun Peixia, Wang Siying, Zhang Xinnian, Zhang Yan. A Regeneration System for Organogenesis and Somatic Embryogenesis Using Leaves of Agapanthus praecox as Explants. Chinese Bulletin of Botany, 2020, 55(5): 588-595 doi:10.11983/CBB20019
Table 1 表1 表1叶片成熟度对愈伤组织诱导的影响 Table 1Effects of leaf maturity on callus induction
PIC concentration (mg·L-1)
Leaf maturity
Induction rate (%)
Callus size (cm)
1.5
1-2
52.38 ab
0.93 b
3-4
42.86 ab
0.67 cd
5-6
38.10 b
0.63 de
2.0
1-2
85.71 a
1.07 a
3-4
57.14 ab
0.77 c
5-6
38.10 b
0.53 e
Induction rate and callus size are means (n=3). Different lower-case letters in the same column indicate significant differences (P<0.05). PIC: Picloram 诱导率和愈伤组织大小数据为平均值(n=3)。同列不同小写字母表示差异显著(P<0.05)。PIC: 毒莠定
Table 2 表2 表2叶片分生区位置对愈伤组织诱导的影响 Table 2Effects of different leaf meristematic zones on callus induction
PIC concentration (mg·L-1)
Leaf meristematic position (cm)
Induction rate (%)
Callus size (cm)
1.5
0.0-0.5
61.90 a
0.67 ab
0.5-1.0
42.86 ab
0.57 b
1.0-1.5
38.09 ab
0.57 b
2.0
0.0-0.5
66.48 a
0.73 a
0.5-1.0
47.62 ab
0.70 ab
1.0-1.5
19.05 b
0.60 ab
Induction rate and callus size are means (n=3). Different lowercase letters in the same column indicate significant differences (P<0.05). PIC: Picloram 诱导率和愈伤组织大小数据为平均值(n=3)。同列不同小写字母表示差异显著(P<0.05)。PIC: 毒莠定
Table 3 表3 表3叶片横切面部位对愈伤组织诱导的影响 Table 3Effects of leaf transection on callus induction
PIC concentration (mg·L-1)
Leaf transection
Induction rate (%)
Callus size (cm)
1.5
Middle
80.95 a
0.77 a
Edge
76.19 a
0.67 ab
2.0
Middle
57.14 a
0.67 ab
Edge
42.86 a
0.57 b
Induction rate and callus size are means (n=3). Different lowercase letters in the same column indicate significant differences (P<0.05). PIC: Picloram 诱导率和愈伤组织大小数据为平均值(n=3)。同列不同小写字母表示差异显著(P<0.05)。PIC: 毒莠定
Table 4 表4 表46-BA和KT对不定芽诱导的影响 Table 4Effects of 6-BA and KT on adventitious bud induction
Type
Concentration (mg·L-1)
Induction rate (%)
Adventitious bud length (cm)
CK
0.0
12.93 e
1.69 a
6-BA
0.1
55.78 bc
1.42 c
0.3
80.27 a
1.53 bc
0.5
73.47 ab
1.59 ab
KT
0.5
53.74 c
1.49 bc
1.0
44.22 cd
1.52 bc
2.0
33.33 d
1.19 c
Induction rate and adventitious bud length are means (n=3). Different lowercase letters in the same column indicate significant differences (P<0.05). CK: Control; KT: Kinetin 诱导率和不定芽长度数据为平均值(n=3)。同列不同小写字母表示差异显著(P<0.05)。CK: 对照; KT: 激动素
Table 6 表6 表66-BA对幼苗增殖的影响 Table 6Effects of 6-BA on plantlets proliferation
Type
6-BA concentration (mg·L-1)
Plantlets number
Root number
Organogenetic plantlets
1.0
11.17 a
4.67 c
2.0
10.50 ab
5.67 bc
3.0
7.08 b
5.33 bc
Somatic plantlets
1.0
14.67 a
9.33 a
2.0
12.33 a
7.67 ab
3.0
11.33 a
5.33 bc
Plantlets and root number are means (n=3). Different lowercase letters in the same column indicate significant differences (P<0.05). 幼苗数和生根数为平均值(n=3)。同列不同小写字母表示差异显著(P<0.05)。
(A) Leaf explants; (B) Callus; (C) Adventitious bud induction; (D) Embryogenic callus induction; (E) Adventitious bud turns green when exposure to light; (F) Globular embryos; (G) Plant regeneration via organogenesis; (H) Plant regeneration via club-shaped embryo in somatic embryogenesis; (I) Proliferation of plantlets via organogenesis; (J) The root system of plantlets via organogenesis; (K) Proliferation of plantlets via somatic embryogenesis; (L) The root system of plantlets via somatic embryogenesis; (M) Transplanting and acclimatization of regenerated plantlets; (N) The root system of transplanted plantlets. (A)-(D) Bars= 0.5 cm; (E)-(L) Bars=1 cm; (M) Bar=5 cm; (N) Bar=10 cm
3.5 讨论
不同植物愈伤组织诱导难度不同, 单子叶和双子叶植物间存在较大差异(Hu et al., 2017; Guo et al., 2018)。双子叶植物拟南芥(Arabidopsis thaliana)几乎所有器官均能在整个生命期中产生愈伤组织(Sugimoto et al., 2010; Hu et al., 2017)。单子叶植物叶片愈伤组织诱导相对困难, 多数未获成功, 许多单子叶植物成熟器官对体外培养不敏感。例如, 水稻(Oryza sativa)成熟叶片仅基部2 mm区域能够形成愈伤组织(Hu et al., 2017)。经对比发现, 双子叶植物愈伤组织起源于原形成层和维管薄壁细胞, 而单子叶植物愈伤组织起源于维管束鞘及未成熟的维管细胞(Hu et al., 2017)。本研究表明, 幼嫩组织和维管组织的分生能力对愈伤组织诱导效果起决定性作用, 这一规律在仙茅(Curculigo orchioides) (彭海峰等, 2007)、红金银花(Lonicera japonica) (王文静等, 2012)和蓝靛果忍冬(Lonicera caerulea) (李黎和张悦, 2014)等不同外植体类型愈伤组织诱导的研究中均有体现。
邹梦雯 ( 2015). 毒莠定( PIC)调控百子莲愈伤组织胚性诱导与保持生理生化基础的研究 . pp. 64-66. [本文引用: 1]
BanjacN, VinterhalterB, Krsti?-Milo?evi?D, Milojevi?J, Tubi?L, GhalawenjiN, Zdravkovi?-Kora?S ( 2019). Somatic embryogenesis and shoot organogenesis from the hypocotyl slices and free radical scavenging activity of regenerants of collard greens (Brassica oleracea L. var. acephala) 137, 613-626. DOI:10.1007/s11240-019-01595-6URL [本文引用: 1]
BouamamaB, Ben SalemA, Ben YoussefF, ChaiebS, JaafouraMH, MlikiA, GhorbelA ( 2011). Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” ( Hordeum vulgare L.) 47, 321-327. DOI:10.1007/s11627-011-9357-4URL [本文引用: 2]
FehérA, PasternakTP, DuditsD ( 2003). Transition of somatic plant cells to an embryogenic state 74, 201-228. DOI:10.1023/A:1024033216561URL [本文引用: 1]
GuoF, ZhangHD, LiuW, HuXM, HanN, QianQ, XuL, BianHW ( 2018). Callus initiation from root explants employs different strategies in rice and Arabidopsis 59, 1782-1789. DOI:10.1093/pcp/pcy095URLPMID:29788450 [本文引用: 1] Callus formation in tissue culture follows the rooting pathway, and newly formed callus seems to be a group of root primordium-like cells. However, it is not clear whether there are multiple mechanisms of callus initiation in different species and in different organs. Here we show that the OsIAA11-mediated pathway is specifically and strictly required for callus initiation in the lateral root (LR) formation region of the primary root (PR) but not for callus initiation at the root tip or the stem base in rice. OsIAA11 and its Arabidopsis homolog AtIAA14 are key players in lateral rooting. However, the AtIAA14-mediated pathway is not strictly required for callus initiation in the LR formation region in Arabidopsis. LRs can be initiated through either the AtIAA14-mediated or AtWOX11-mediated pathway in the Arabidopsis PR, therefore providing optional pathways for callus initiation. In contrast, OsIAA11 is strictly required for lateral rooting in the rice PR, meaning that the OsIAA11 pathway is the only choice for callus initiation. Our study suggests that multiple pathways may converge to WOX5 activation during callus formation in different organs and different species.
HuB, ZhangGF, LiuW, ShiJM, WangH, QiMF, LiJQ, QinP, RuanY, HuangH, ZhangYJ, XuL ( 2017). Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms 4, 132-139. DOI:10.1002/reg2.82URLPMID:28975033 [本文引用: 4] In tissue culture, the formation of callus from detached explants is a key step in plant regeneration; however, the regenerative abilities in different species are variable. While nearly all parts of organs of the dicot Arabidopsis thaliana are ready for callus formation, mature regions of organs in monocot rice (Oryza sativa) and other cereals are extremely unresponsive to tissue culture. Whether there is a common molecular mechanism beyond these different regenerative phenomena is unclear. Here we show that the Arabidopsis and rice use different regeneration-competent cells to initiate callus, whereas the cells all adopt WUSCHEL-RELATED HOMEOBOX 11 (WOX11) and WOX5 during cell fate transition. Different from Arabidopsis which maintains regeneration-competent cells in mature organs, rice exhausts those cells during organ maturation, resulting in regenerative inability in mature organs. Our study not only explains this old perplexity in agricultural biotechnology, but also provides common molecular markers for tissue culture of different angiosperm species.
MalikMG ( 2008). Comparison of different liquid/solid culture systems in the production of somatic embryos from Narcissus L. ovary explants 94, 337-345. DOI:10.1007/s11240-008-9415-8URL [本文引用: 1]
ManchandaP, GosalSS ( 2012). Effect of activated charcoal, carbon sources and gelling agents on direct somatic embryogenesis and regeneration in sugarcane via leaf roll segments 14, 168-173. DOI:10.1007/s12355-012-0143-3URL [本文引用: 1]
RaoK, ChodisettiB, GandiS, MangamooriLN, GiriA ( 2011). Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis 165, 1366-1378. DOI:10.1007/s12010-011-9353-5URLPMID:21892666 [本文引用: 1] Alpinia galanga is a rhizomatous herb rich in essential oils and various other significant phytoconstituents. Rapid direct regeneration was obtained from the rhizome explants (15.66 +/- 0.57 shoots) on MS media supplemented with zeatin at a concentration of 2 mg/l. The callus cultures of A. galanga were initiated from the rhizome explants on MS media supplemented with 2 mg/l each of BAP, 2,4-D, and NAA. The callus was analyzed for the presence of a vital phytoconstituent--acetoxychavicol acetate (ACA) associated with various biological properties. ACA was detected in the young friable callus as well as the stationary phase callus. Moreover, the induction of morphogenetic response in callus resulted in higher accumulation of ACA. The phytohormone withdrawal from the propagation media and the subsequent transfer of callus to BAP (2 mg/l) containing MS media has resulted in multiple shoot induction. The regenerated (indirect) plants have shown 1.6-fold higher ACA content (1.253%) when compared to the control plant (0.783%). Micropropagation of such conventionally propagated plants is very essential to meet the commercial demand as well as to ensure easy storage and transportation of disease free stocks.
SugimotoK, JiaoYL, MeyerowitzEM ( 2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway 18, 463-471. DOI:10.1016/j.devcel.2010.02.004URLPMID:20230752 [本文引用: 1] Unlike most animal cells, plant cells can easily regenerate new tissues from a wide variety of organs when properly cultured. The common elements that provide varied plant cells with their remarkable regeneration ability are still largely unknown. Here we describe the initial process of Arabidopsis in vitro regeneration, where a pluripotent cell mass termed callus is induced. We demonstrate that callus resembles the tip of a root meristem, even if it is derived from aerial organs such as petals, which clearly shows that callus formation is not a simple reprogramming process backward to an undifferentiated state as widely believed. Furthermore, callus formation in roots, cotyledons, and petals is blocked in mutant plants incapable of lateral root initiation. It thus appears that the ectopic activation of a lateral root development program is a common mechanism in callus formation from multiple organs.
YangL, WeiC, HuangC, LiuHN, ZhangDY, ShenHL, LiYH ( 2019). Role of hydrogen peroxide in stress-induced programmed cell death during somatic embryogenesis in Fraxinus mandshurica 30, 767-777. DOI:10.1007/s11676-019-00908-xURL [本文引用: 1]
Somatic embryogenesis and shoot organogenesis from the hypocotyl slices and free radical scavenging activity of regenerants of collard greens (Brassica oleracea L. var. acephala) 1 2019
... 植物的离体再生途径有器官发生及胚胎发生2种, 但方法、效率及机制不同.2种途径在一些植物中共存, 如版纳甜龙竹(Dendrocalamus hamiltonii) (Zhang et al., 2010)、大麦(Hordeum vulgare) (Bouamama et al., 2011)以及羽衣甘蓝(Brassica oleracea var. acephala) (Banjac et al., 2019).版纳甜龙竹愈伤组织诱导的关键激素类物质是2,4-D, 器官发生途径的主要调节物质是6-BA (Zhang et al., 2010).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” ( Hordeum vulgare L.) 2 2011
... 植物的离体再生途径有器官发生及胚胎发生2种, 但方法、效率及机制不同.2种途径在一些植物中共存, 如版纳甜龙竹(Dendrocalamus hamiltonii) (Zhang et al., 2010)、大麦(Hordeum vulgare) (Bouamama et al., 2011)以及羽衣甘蓝(Brassica oleracea var. acephala) (Banjac et al., 2019).版纳甜龙竹愈伤组织诱导的关键激素类物质是2,4-D, 器官发生途径的主要调节物质是6-BA (Zhang et al., 2010).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
... ).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
Transition of somatic plant cells to an embryogenic state 1 2003
Effect of activated charcoal, carbon sources and gelling agents on direct somatic embryogenesis and regeneration in sugarcane via leaf roll segments 1 2012
... 植物的离体再生途径有器官发生及胚胎发生2种, 但方法、效率及机制不同.2种途径在一些植物中共存, 如版纳甜龙竹(Dendrocalamus hamiltonii) (Zhang et al., 2010)、大麦(Hordeum vulgare) (Bouamama et al., 2011)以及羽衣甘蓝(Brassica oleracea var. acephala) (Banjac et al., 2019).版纳甜龙竹愈伤组织诱导的关键激素类物质是2,4-D, 器官发生途径的主要调节物质是6-BA (Zhang et al., 2010).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
NH4+ and NO3- requirement for wheat somatic embryogenesis 1 2001
... 植物的离体再生途径有器官发生及胚胎发生2种, 但方法、效率及机制不同.2种途径在一些植物中共存, 如版纳甜龙竹(Dendrocalamus hamiltonii) (Zhang et al., 2010)、大麦(Hordeum vulgare) (Bouamama et al., 2011)以及羽衣甘蓝(Brassica oleracea var. acephala) (Banjac et al., 2019).版纳甜龙竹愈伤组织诱导的关键激素类物质是2,4-D, 器官发生途径的主要调节物质是6-BA (Zhang et al., 2010).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
Daucus carota cells contain specific DNA methyltransferase inhibitors that interfere with somatic embryogenesis 1 2003
... 植物的离体再生途径有器官发生及胚胎发生2种, 但方法、效率及机制不同.2种途径在一些植物中共存, 如版纳甜龙竹(Dendrocalamus hamiltonii) (Zhang et al., 2010)、大麦(Hordeum vulgare) (Bouamama et al., 2011)以及羽衣甘蓝(Brassica oleracea var. acephala) (Banjac et al., 2019).版纳甜龙竹愈伤组织诱导的关键激素类物质是2,4-D, 器官发生途径的主要调节物质是6-BA (Zhang et al., 2010).大麦离体再生途径中, 2,4-D用于器官发生途径, 而4-对氯苯氧乙酸(4-chlorophenoxyacetic acid, 4-CPA)用于调节体细胞胚胎发生途径(Bouamama et al., 2011).本研究中愈伤组织诱导的特异性激素类物质为PIC, 调节2种途径的有效激素类物质分别为6-BA和PIC, 即细胞分裂素和生长素类.相对于器官发生, 植物体细胞胚胎发生的机制仍为未解之谜, 目前还无法高效精准地调控体细胞胚性分化与植株再生过程(Guo et al., 2019).早花百子莲器官发生途径周期相对较短, 从外植体取材到不定芽诱导约为4个月, 而胚胎发生途径仅胚性愈伤组织的获取就需6-7个月, 且胚性愈伤组织诱导率、体胚的诱导和发育效果不稳定.虽然ABA和PBZ等外源激素类物质对体胚诱导具有显著促进作用, 但距离精细化调控和产业化生产仍有较大差距, 而碳源(Manchanda and Gosal, 2012)、氮源(Menke-Milczarek and Zimny, 2001)、DNA甲基化(DNA methylation) (Pedrali-Noy et al., 2003)及细胞程序性死亡(programmed cell death) (Yang et al., 2019)等因素对体细胞胚胎发生的特定调节作用及机制尚未被揭示. ...
Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures 1 2007