Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize
Weitao Li, Min He, Xuewei Chen,*Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
Abstract The fungal pathogen Rhizoctonia solani causes banded leaf and sheath blight (BLSB) in maize (Zea mays) and sheath blight (ShB) in rice (Oryza sativa). R. solani has a wide range of host and severely threatens crop production. The lack of resistant resources against BLSB and the poor understanding of disease resistance mechanism hamper the development of effective approaches to control this fungal disease. Recently, Chinese scientists have made a breakthrough discovery that an F-box protein ZmFBL41 mediates the proteasomal degradation of cinnamyl-alcohol dehydrogenase ZmCAD to regulate BLSB and ShB disease resistance. By genome-wide association analysis, GRMZM2G 109140 (ZmFBL41) was identified as a major QTL candidate gene associated with BLSB disease resistance. ZmFBL41 protein is a member of SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex which mediates the degradation of ZmCAD, thus reducing the accumulation of lignin and rendering maize more susceptible to R. solani. Interestingly, in the maize inbred line Chang7-2, the natural variation on two amino acids in ZmFBL41 Chang7-2 results in resistance against BLSB. Mechanistically, ZmFBL41 Chang7-2 fails to interact with and degrade its substrate ZmCAD, leading to the accumulation of lignin, which consequently enhances maize resistance. This study not only discovers a novel molecular mechanism underlying disease resistance of maize against R. solani, but also provides important theoretical basis and genetic resources for breeding maize and other crops with improved disease resistance. Keywords:plant immunity;SKP1-Cullin-F-box;lignin;banded leaf and sheath blight;maize;rice
PDF (944KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器 . 植物学报, 2019, 54(5): 547-549 doi:10.11983/CBB19166 Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize . Chinese Bulletin of Botany, 2019, 54(5): 547-549 doi:10.11983/CBB19166
由死体营养型真菌Rhizoctonia solani引起的玉米(Zea mays)、水稻(Oryza sativa)和大豆(Glycine max)纹枯病, 以及马铃薯(Solanum tuberosum)黑痣病等是广泛流行的土壤传播疾病性作物病害。该病菌寄主范围广, 包括禾本科、豆科和茄科植物等多达百种(Baruah and Lal, 1981), 常见致病优势菌群为AGs-1-IA (Ogoshi, 1987)。纹枯病在斯里兰卡被首次报道, 之后传至全球, 现已在许多国家爆发(Sharma et al., 2002)。该病害每年导致玉米和水稻产量损失达10%-40%, 持续降雨条件下甚至达到100% (Singh and Sharma, 1976)。R. solani主要危害叶鞘, 严重时危及穗子(Sharma et al., 2004)。纹枯病分布广、危害大且抗源少, 因此, 迫切需要挖掘作物的抗病基因, 揭示其抗性机理并在生产中加以应用, 对降低纹枯病的危害具有重要意义。
ZmFBL41与ZmSKP1-1互作形成SCF复合体, 通过26S蛋白酶体降解底物ZmCAD, 减少木质素的积累, 从而使玉米易感纹枯病。而ZmFBL41Chang7-2因其中2个关键氨基酸位点变异(E214G, S217R), 不能结合并降解底物ZmCAD, 从而引起木质素积累, 使玉米对纹枯病的抗性增强。 Figure 1A model for ZmFBL41-mediated banded leaf and sheath blight (BLSB) resistance
ZmFBL41 interacts with ZmSKP1-1 to form the SCF complex, and recruits ZmCAD for 26S proteasome-mediated degradation, resulting in reduced lignin synthesis and increased susceptibility of maize to R. solani. However, in the natural maize resource Chang7-2, the protein ZmFBL41Chang7-2 with two amino acid variations (E214G and S217R) is not able to interact with ZmCAD, leading to failure in degradation of ZmCAD and resulting in accumulation of lignin, which consequently enhances resistance to R. solani.
BaruahP, LalS (1981). Hostrange of Rhizoctonia solani f. sp. sasakii, then incitant of banded sclerotial disease of maize 34, 494-496. [本文引用: 1]
HoodaKS, KhokharMK, ParmarH, GogoiR, JoshiD, SharmaSS, YadavOP (2017). Banded leaf and sheath blight of maize: historical perspectives, current status and future directions 87, 1041-1052. [本文引用: 1]
LiN, LinB, WangH, LiX, YangF, DingX, YanJ, ChuZ (2019). Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize 51, 1540-1548. [本文引用: 1]
LiZ, PinsonSRM, MarchettiMA, StanselJW, ParkWD (1995). Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight ( Rhizoctonia solani) 91, 382-388. [本文引用: 1]
MaedaS, DubouzetJG, KondouY, JikumaruY, SeoS, OdaK, MatsuiM, HirochikaH, MoriM (2019) The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice 9, 587. [本文引用: 1]
OgoshiA (1987). Ecology and pathogenicity of anastomosis and interspecific groups of Rhizoctonia solani Kuhn 25, 125-143. [本文引用: 1]
PengX, WangH, JangJC, XiaoT, HeH, JiangD, TangX (2016). OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani 9, 63. [本文引用: 1]
RichaK, TiwariIM, DevannaBN, BotellaJR, SharmaV, SharmaTR (2017). Novel chitinase gene LOC_Os 11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. 8, 596. [本文引用: 1]
SharmaRC, SrinivasP, BatsaBK (2002). . In: Rajbhandari NP, Ransom JK, Adhikari K, Palmer AFE, eds. Proceedings of a Maize Symposium Held. Kathmandu: NARC and CIMMYT. pp. 108-112. [本文引用: 1]
SharmaRR, GourHN, RathoreRS (2004). Etiology of banded leaf and sheath blight symptoms on maize 34, 56-59. [本文引用: 1]
SinghBM, SharmaYR (1976). Evaluation of maize germplasm to banded sclerotial disease and assessment of yield loss 29, 129-132. [本文引用: 1]
WangH, MengJ, PengX, TangX, ZhouP, XiangJ, DengX (2015). Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight 89, 157-171. [本文引用: 1]
Hostrange of Rhizoctonia solani f. sp. sasakii, then incitant of banded sclerotial disease of maize 1 1981
... 由死体营养型真菌Rhizoctonia solani引起的玉米(Zea mays)、水稻(Oryza sativa)和大豆(Glycine max)纹枯病, 以及马铃薯(Solanum tuberosum)黑痣病等是广泛流行的土壤传播疾病性作物病害.该病菌寄主范围广, 包括禾本科、豆科和茄科植物等多达百种(Baruah and Lal, 1981), 常见致病优势菌群为AGs-1-IA (Ogoshi, 1987).纹枯病在斯里兰卡被首次报道, 之后传至全球, 现已在许多国家爆发(Sharma et al., 2002).该病害每年导致玉米和水稻产量损失达10%-40%, 持续降雨条件下甚至达到100% (Singh and Sharma, 1976).R. solani主要危害叶鞘, 严重时危及穗子(Sharma et al., 2004).纹枯病分布广、危害大且抗源少, 因此, 迫切需要挖掘作物的抗病基因, 揭示其抗性机理并在生产中加以应用, 对降低纹枯病的危害具有重要意义. ...
Banded leaf and sheath blight of maize: historical perspectives, current status and future directions 1 2017
... 前人的研究表明, 玉米对纹枯病的抗性属于多基因控制的数量性状(Li et al., 1995).玉米的10对染色体上均有抗性相关的数量性状基因位点(quantitative trait locus, QTL), 并且在第6、7和10号染色体上的分布频率较高(Hooda et al., 2017).然而, 目前尚未克隆到控制玉米纹枯病抗性的主效基因.即使在模式作物水稻中, 也仅发现转录因子基因OsWRKY4 (Wang et al., 2015)和OsWRKY80 (Peng et al., 2016)、几丁质酶基因LOC_Os11g47510 (Richa et al., 2017)和CYP78A家族基因OsBSR2 (Maeda et al., 2019)等少量基因调控纹枯病的抗性反应, 这些基因介导的抗性机制也不清楚. ...
Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize 1 2019