Abstract: T-DNA mutants are important resources for research of gene function. High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) is widely used for cloning the flanking sequence near the T-DNA insertion sites. However, we found that some cloned flanking fragments in hiTAIL-PCR products corresponded not to the host genomic DNA but to the plasmid backbone DNA. In this study, with a control of the RB-S4/AC1 or LB-A4/AC1 product, we amplified PCR fragments from the plasmid backbone DNA. By excluding them from further analysis, we amplified fragments from the unknown genomic DNA more effectively. Meanwhile, by adjusting the PCR programs, the whole PCR time was greatly shortened. In cloning the flanking sequence of Arabidopsis thaliana T-DNA mutant drf1, our method with hiTAIL-PCR reduced the total 22 DNA bands required for further checking to 4 bands, which improved the efficiency by 81.8%.
2 结果与讨论2.1 设计原理基于hiTAIL-PCR的原理, 我们增设对照RB-S4/AC1 (或LB-A4/AC1)扩增产物来鉴别侧翼序列的特异性。RB-S4结合于质粒RB的下游, LB-A4结合于质粒LB的上游(图1A)。第1轮PCR仍以RB-S1 (或者LB-A1)与多条LAD1随机引物进行反应以初次扩增侧翼序列; 第2轮反应以第1轮反应产物为模板, 分别进行RB- S2/AC1 (或LB-A2/AC1)、RB-S3/AC1 (或LB-A3/ AC1)及RB-S4/AC1 (或LB-A4/AC1) 3组反应。以RB区域为例, 当RB-S2/AC1与RB-S3/AC1扩增出的侧翼序列为质粒骨架片段时, 则RB-S4/AC1也应扩增出相应片段(图1A, C); 当RB-S2/AC1与RB-S3/AC1扩增出的侧翼序列是来自宿主染色体时, 则RB-S4/ AC1不应扩增出相应片段(图1B, D)。 图1https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_1.png图1 设计原理 (A) T-DNA质粒RB和LB处区域; (B) T-DNA质粒与染色体DNA整合后RB和LB处区域; (C) 当hiTAIL-PCR扩增质粒骨架时, RB-S2/AC1、RB-S3/AC1与RB-S4/AC1都将产生相应扩增; (D) 当hiTAIL-PCR扩增基因组DNA时, RB-S4/AC1将不产生相应扩增(虚线框示未扩增) Figure 1 The principle of design (A) The regions of RB and LB of T-DNA plasmid; (B) The regions of RB and LB which integrate with chromosomal DNA; (C) When hiTAIL-PCR amplifies the backbone of plas- mid, the three PCR groups containing the RB-S2/AC1, RB-S3/AC1 and RB-S4/AC1 primer pairs, respectively, will all produce the positive bands; (D) When hiTAIL-PCR amplifies the genomic DNA, RB-S4/AC1 will not produce the positive bands (dashed frame) Figure 1https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_1.png图1 设计原理 (A) T-DNA质粒RB和LB处区域; (B) T-DNA质粒与染色体DNA整合后RB和LB处区域; (C) 当hiTAIL-PCR扩增质粒骨架时, RB-S2/AC1、RB-S3/AC1与RB-S4/AC1都将产生相应扩增; (D) 当hiTAIL-PCR扩增基因组DNA时, RB-S4/AC1将不产生相应扩增(虚线框示未扩增) Figure 1 The principle of design (A) The regions of RB and LB of T-DNA plasmid; (B) The regions of RB and LB which integrate with chromosomal DNA; (C) When hiTAIL-PCR amplifies the backbone of plas- mid, the three PCR groups containing the RB-S2/AC1, RB-S3/AC1 and RB-S4/AC1 primer pairs, respectively, will all produce the positive bands; (D) When hiTAIL-PCR amplifies the genomic DNA, RB-S4/AC1 will not produce the positive bands (dashed frame)
图1 设计原理 (A) T-DNA质粒RB和LB处区域; (B) T-DNA质粒与染色体DNA整合后RB和LB处区域; (C) 当hiTAIL-PCR扩增质粒骨架时, RB-S2/AC1、RB-S3/AC1与RB-S4/AC1都将产生相应扩增; (D) 当hiTAIL-PCR扩增基因组DNA时, RB-S4/AC1将不产生相应扩增(虚线框示未扩增) Figure 1 The principle of design (A) The regions of RB and LB of T-DNA plasmid; (B) The regions of RB and LB which integrate with chromosomal DNA; (C) When hiTAIL-PCR amplifies the backbone of plas- mid, the three PCR groups containing the RB-S2/AC1, RB-S3/AC1 and RB-S4/AC1 primer pairs, respectively, will all produce the positive bands; (D) When hiTAIL-PCR amplifies the genomic DNA, RB-S4/AC1 will not produce the positive bands (dashed frame)
2.2 有效性验证为验证该方法的有效性, 我们选取了1株拟南芥突变体drf1进行了测试。经鉴定, 该突变体基因组至少包含1个完整质粒。我们先扩增RB处的侧翼序列。实验结果表明, 尽管扩增出11组RB-S2/AC1与RB-S3/ AC1“hiTAIL-PCR特异性片段”, 但是, 所有产物都有对应的RB-S4/AC1扩增片段(图2A, *所示), 因此, 这些扩增产物均为质粒骨架片段, 而非染色体DNA片段。我们也扩增了LB处的侧翼序列, 在11组“hiTAIL-PCR特异性片段”中, 仅4组无对应的LB-A4/AC1扩增片段, 暗示其为潜在的宿主染色体DNA特异性片段(图2B, ☆所示)。我们对这4条DNA片段(LB-A2/AC1扩增产物)进行了纯化回收, 并通过测序进一步验证其特异性。结果表明, 仅LAD1-A随机引物所对应的侧翼序列来自染色体DNA (图3)。 图2https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_2.png图2 拟南芥突变体drf1 T-DNA插入位点侧翼序列的克隆 (A) 用RB-S系列引物扩增的第2轮PCR的结果; (B) 用LB-A系列引物扩增的第2轮PCR的结果。* 代表非特异性扩增结果; ☆代表潜在的特异性扩增结果; ** 代表来自RB之前或LB之后的T-DNA片段扩增结果。 Figure 2 The cloning of flanking sequence at the T-DNA insertion site of Arabidopsis mutant drf1 (A) The second round results amplified by PCR with RB-S serial primers; (B) The second round results amplified by PCR with LB-A serial primers. * display the non-specific amplification results; ☆ represent the potential specific amplification results; ** show the amplification results from the T-DNA region before RB or after LB. Figure 2https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_2.png图2 拟南芥突变体drf1 T-DNA插入位点侧翼序列的克隆 (A) 用RB-S系列引物扩增的第2轮PCR的结果; (B) 用LB-A系列引物扩增的第2轮PCR的结果。* 代表非特异性扩增结果; ☆代表潜在的特异性扩增结果; ** 代表来自RB之前或LB之后的T-DNA片段扩增结果。 Figure 2 The cloning of flanking sequence at the T-DNA insertion site of Arabidopsis mutant drf1 (A) The second round results amplified by PCR with RB-S serial primers; (B) The second round results amplified by PCR with LB-A serial primers. * display the non-specific amplification results; ☆ represent the potential specific amplification results; ** show the amplification results from the T-DNA region before RB or after LB.
图2 拟南芥突变体drf1 T-DNA插入位点侧翼序列的克隆 (A) 用RB-S系列引物扩增的第2轮PCR的结果; (B) 用LB-A系列引物扩增的第2轮PCR的结果。* 代表非特异性扩增结果; ☆代表潜在的特异性扩增结果; ** 代表来自RB之前或LB之后的T-DNA片段扩增结果。 Figure 2 The cloning of flanking sequence at the T-DNA insertion site of Arabidopsis mutant drf1 (A) The second round results amplified by PCR with RB-S serial primers; (B) The second round results amplified by PCR with LB-A serial primers. * display the non-specific amplification results; ☆ represent the potential specific amplification results; ** show the amplification results from the T-DNA region before RB or after LB.
图3https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_3.png图3 拟南芥突变体drf1侧翼序列的PCR验证 (A) 部分测序结果; (B) 用引物对DRF1-S/LB-A2 (1,3)及DRF1-S/LB-A3 (2,4)扩增野生型(WT)与drf1突变体基因组的结果; (C) 用引物对QRT-S/QRT-A扩增野生型(WT)与drf1突变体基因组的结果 Figure 3 The PCR confirmation for Arabidopsis mutant drf1 flanking sequence (A) The partial sequencing result; (B) The results amplifying the genomic DNA from wild type (WT) and drf1 mutant with primer pairs of DRF1-S/LB-A2 (1,3) or DRF1-S/LB-A3 (2,4); (C) The PCR results with primer pairs of QRT-S/QRT-A to amplifying WT and drf1 mutant genomic DNA Figure 3https://www.chinbullbotany.com/article/2018/1674-3466/1674-3466-53-1-104/img_3.png图3 拟南芥突变体drf1侧翼序列的PCR验证 (A) 部分测序结果; (B) 用引物对DRF1-S/LB-A2 (1,3)及DRF1-S/LB-A3 (2,4)扩增野生型(WT)与drf1突变体基因组的结果; (C) 用引物对QRT-S/QRT-A扩增野生型(WT)与drf1突变体基因组的结果 Figure 3 The PCR confirmation for Arabidopsis mutant drf1 flanking sequence (A) The partial sequencing result; (B) The results amplifying the genomic DNA from wild type (WT) and drf1 mutant with primer pairs of DRF1-S/LB-A2 (1,3) or DRF1-S/LB-A3 (2,4); (C) The PCR results with primer pairs of QRT-S/QRT-A to amplifying WT and drf1 mutant genomic DNA
图3 拟南芥突变体drf1侧翼序列的PCR验证 (A) 部分测序结果; (B) 用引物对DRF1-S/LB-A2 (1,3)及DRF1-S/LB-A3 (2,4)扩增野生型(WT)与drf1突变体基因组的结果; (C) 用引物对QRT-S/QRT-A扩增野生型(WT)与drf1突变体基因组的结果 Figure 3 The PCR confirmation for Arabidopsis mutant drf1 flanking sequence (A) The partial sequencing result; (B) The results amplifying the genomic DNA from wild type (WT) and drf1 mutant with primer pairs of DRF1-S/LB-A2 (1,3) or DRF1-S/LB-A3 (2,4); (C) The PCR results with primer pairs of QRT-S/QRT-A to amplifying WT and drf1 mutant genomic DNA
CoulondreC, MillerJH (1977). Genetic studies of the lac repressor: III. Additional correlation of mutational sites with specific amino acid residues. 117, 525-567. [本文引用: 1]
[4]
HellensRP, EdwardsEA, LeylandNR, BeanS, MullineauxPM (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. 42, 819-832. [本文引用: 1]
[5]
JanderG (2006). Gene identification and cloning by molecular marker mapping. 323, 115-126. [本文引用: 1]
[6]
JanderG, NorrisSR, RounsleySD, BushDF, LevinIM, LastRL (2002). Arabidopsis map-based cloning in the post-genome era. 129, 440-450. [本文引用: 1]
[7]
KleinboeltingN, HuepG, AppelhagenI, ViehoeverP, LiY, WeisshaarB (2015). The structural features of thousands of T-DNA insertion sites are consistent with a double- strand break repair-based insertion mechanism. 8, 1651-1664. [本文引用: 2]
[8]
LiuYG, ChenYL (2007). High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.43, 649-650. [本文引用: 5]
[9]
LiuYG, MitsukawaN, OosumiT, WhittierRF (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. 8, 457-463. [本文引用: 1]
MayerhoferR, Koncz-KalmanZ, NawrathC, BakkerenG, CrameriA, AngelisK, RedeiGP, SchellJ, HohnB, KonczC (1991). T-DNA integration: a mode of illegitimate recombination in plants. 10, 697-704. [本文引用: 1]
[12]
MuellerPR, WoldB (1989). In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. 246, 780-786. [本文引用: 1]
[13]
NanGL, WalbotV (2009). Plasmid rescue: recovery of flanking genomic sequences from transgenic transposon insertion sites. 526, 101-109. [本文引用: 1]
[14]
RileyJ, ButlerR, OgilvieD, FinniearR, JennerD, PowellS, AnandR, SmithJC, MarkhamAF (1990). A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. 18, 2887-2890. [本文引用: 1]
[15]
StachelSE, TimmermanB, ZambryskiP (1987). Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5' virD gene products. 6, 857-863. [本文引用: 1]
[16]
TrigliaT, PetersonMG, KempDJ (1988). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. 16, 8186. [本文引用: 1]