删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

厚积薄发: 我国植物-微生物互作研究取得突破

本站小编 Free考研考试/2022-01-01

毕国志, 周俭民*,
中国科学院遗传与发育生物学研究所, 植物基因组学国家重点实验室, 北京 100101
Bi Guozhi, Zhou Jianmin*,
State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
引用本文
毕国志, 周俭民. 厚积薄发: 我国植物-微生物互作研究取得突破. 植物学报, 2017, 52(6): 685-688

贡献者
* 通讯作者。E-mail: jmzhou@genetics.ac.cn
接受日期:2017-09-30接受日期:2017-10-22网络出版日期:2017-11-1
-->Copyright
2017《植物学报》编辑部

Contributors
* Author for correspondence. E-mail: jmzhou@genetics.ac.cn

History
Received:Accepted:Online:





摘要:在自然环境中, 植物与微生物紧密互作。病原微生物侵染植物, 严重制约了农作物的生产, 并威胁生态安全; 有益的微生物则与植物形成了互惠互利的同盟关系, 促进植物的健康生长。近年来, 我国科学家在植物-微生物互作领域屡获突破, 从整体上取得了长足进步。该文重点介绍了2017年我国科学家在国际顶级学术期刊上发表的4篇研究成果, 并对本领域的发展进行了展望。
关键词: 植物 ; 微生物 ; 中国 ; 2017

Abstract: Plants interact with a wide range of microbes in the environment. Some of these microbes are pathogenic and represent a formidable threat to the ecosystem and agricultural productivity, whereas others are beneficial and stimulate plant growth. In recent years, Chinese scientists have made considerable advances in the field, catching up to their international peers. Here we summarize four major research articles Chinese researchers published in 2017, which may serve as a window to the future of plant-microbe interactions research in China.

Key words:plant ; microbe ; China ; 2017


植物与微生物的相互作用主要包括植物与病原微生物的互作和植物与共生菌的互作。病原微生物侵染植物, 导致农作物减产、甚至绝收, 并影响农产品的品质, 对我国乃至世界的粮食安全和人类健康造成巨大威胁。如何通过提高作物自身的抗病能力, 进而抵抗各种病原菌的入侵, 是各国科学家面临的重大课题。另外, 植物也与自然环境中的微生物建立起了互惠互利的共生关系, 植物把部分光合作用产物传递给共生菌供其生长; 同时, 共生菌也促进植物的生长, 协助植物抵御逆境和平衡生态环境。对植物与共生菌互作的研究将为提高作物产量提供新的思路。

我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果。例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013)。在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012)。在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016)。在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014)。此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014)。2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升。本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就。

1 疫霉菌通过“诱饵模式”成功入侵植物疫霉菌引起的作物疫病曾被称为“植物瘟疫”。马铃薯(Solanum tuberosum)晚疫病是引发“爱尔兰大饥荒”的元凶。目前已发现的疫病菌有160多种, 可以侵染数千种植物, 对全球粮食、食品和生态安全造成了巨大威胁。疫霉菌具遗传多样性、发病迅速且容易产生抗药性, 因此目前缺乏有效的抗病品种, 一直难以有效控制该病菌入侵。若要突破现有方法, 开发出疫病的有效防控新技术, 必须深入了解病菌造成危害的方式, 并在分子水平上解析疫霉菌的致病机制。
南京农业大学王源超研究团队通过对大豆疫霉菌(Phytophthora sojae)的研究发现, 大豆疫霉菌可通过分泌糖基水解酶XEG1帮助疫霉菌侵染(Ma et al., 2015)。这种糖基水解酶在多种疫霉菌、病原真菌和细菌中广泛存在。该团队通过免疫共沉淀结合质谱技术, 筛选获得了XEG1在植物体内的互作蛋白GIP1 (Ma et al., 2017)。该蛋白能够通过抑制XEG1的糖基水解活性干扰疫霉菌对植物的侵染。他们进一步比较了疫霉菌基因组, 发现1个连锁的XEG1同源基因XLP1 (XEG1-like protein1)。有趣的是, XLP1本身没有水解活性, 但能够以“诱饵”的方式, 竞争性结合GIP1蛋白, 从而保护具有水解活性的XEG1, 协助病原菌侵染。XEG1-XLP1基因对广泛存在于疫霉菌中, 暗示这一“诱饵模式”是它们攻击宿主植物的共有模式。
有证据表明, 大豆(Glycine max)、烟草(Nico- tiana tabacum)、辣椒(Capsicum annuum)和番茄(Lycopersicon esculentum)等多种植物中很可能存在特异性受体, 通过识别XEG1, 产生免疫反应(Ma et al., 2015)。因此, 对XEG1的研究, 不仅回答了疫霉病菌的致病机理问题, 而且对研究植物的抗病机理也有重要意义。未来对这些受体的挖掘和利用, 将为农作物广谱抗病育种提供新的途径。

2 水稻持久抗病性稻瘟病是水稻的主要病害之一, 在世界水稻种植区都可发生, 对全球粮食安全造成巨大威胁。因此, 提高水稻对稻瘟病的抗性是品种选育的重要指标。大多数抗稻瘟病基因虽然抗性强, 但抗谱窄。大面积种植单一抗病品种会导致田间出现变异菌株, 形成免疫逃逸, 造成减产甚至绝收。如何获得广谱持久抗病水稻品种一直是摆在各国科学家面前的难题。
地谷是少数具有广谱抗稻瘟病的水稻材料之一, 四川农业大学陈学伟研究团队通过全基因组关联分析, 分离到1个新型广谱抗稻瘟病基因bsr-d1 (Li et al., 2017)该基因编码1个C2H2类转录因子, 直接调控过氧化物酶基因的表达。在感病水稻中, 其等位基因Bsr-d1受稻瘟病菌侵染诱导表达, 进而诱导过氧化物酶基因表达, 导致活性氧水平下降, 因而表现为易感。来源于地谷bsr-d1的启动子携带1个变异位点, 导致其与转录因子MYBS1结合能力增强。MYBS1在抗病中是1个负调控因子, 很可能在稻瘟病菌侵染时, 通过抑制bsr-d1的转录, 增加活性氧的积累, 产生广谱抗病性。该团队对分布于不同国家的3 000份水稻材料进行了序列分析, 发现其中的313份存在该变异位点, 说明此位点已经应用于水稻育种中; 同时暗示了该基因在大多数其它水稻品种中也具有应用潜力。该研究揭示了水稻自然存在的广谱抗病机制, 丰富了水稻免疫反应和抗病分子理论内容, 为防控稻瘟病提供了全新路径。

3 产量与抗病的平衡植物生长发育与免疫通常呈拮抗关系, 这对植物在受到病原微生物威胁时, 优先选择生存策略具有重要意义。 但在作物育种中, 提高抗病性往往会导致产量下降。如何平衡抗病与高产间的关系是一个亟待解决的问题。
中科院上海植物生理生态所何祖华研究团队通过筛选抗稻瘟病种质资源, 从中国地方品种中鉴定到1个广谱持久抗稻瘟病位点Pigm (Deng et al., 2017)。序列分析表明, 该位点由13个串联的NB-LRR (nucleotide-binding leucine-rich repeat)类抗病基因构成基因簇, 其中PigmRPigmS组成1对功能拮抗的基因。PigmR形成同源二聚体, 呈现对稻瘟病菌的广谱抗性, 但会导致产量下降。PigmS与PigmR竞争形成异源二聚体, 抑制PigmR功能的发挥, 但可抵消PigmR对产量的影响。通过对PigmS启动子研究, 发现PigmS基因的表达受到甲基化调控, 在花粉中特异性高表达, 而在叶片和茎秆等病原菌侵染的组织部位表达量很低。因此, 含有PigmRPigmS基因的品种, 其叶片和茎秆等营养组织能够正常发挥抗病性, 穗部因为PigmS的作用, 消除了PigmR对产量的副作用。该研究揭示了通过表观控制NB-LRR类受体基因, 平衡抗病和产量的独特机制, 为培育既高抗又高产的作物品种提供了一种新思路。

4 脂肪酸是植物为菌根真菌提供的主要营养形式植物与丛枝菌根真菌(Rhizophagus irregularis)间的共生发生于数亿年前, 80%以上的陆地植物均存在与菌根真菌的共生, 这对地球生态系统的碳氮循环至关重要。植物可通过菌根真菌高效率地从土壤中获得磷和氮等营养元素, 也可把部分光合作用产物传递给菌根真菌供其生长。传统理论认为糖是植物提供给菌根真菌碳源营养的主要形式。
中科院上海植物生理生态所王二涛研究团队通过对丛枝菌根真菌基因组序列分析, 发现丛枝菌根真菌缺失棕榈酸合成酶基因, 暗示需要由宿主植物提供脂肪酸(Jiang et al., 2017)。后续的实验表明, 宿主植物的脂肪酸合成对于丛枝菌根真菌共生是必需的, 并且植物合成的脂肪酸能够直接传递给菌根真菌。进一步研究表明, 脂肪酸是植物传递给菌根真菌的主要碳源形式, 而并非糖。他们采用遗传学及分子生物学手段, 发现植物负责催化合成2-单酰甘油蛋白(RAM2)和ABC类转运蛋白STR-STR2, 此2种蛋白参与植物将脂肪酸转运给菌根真菌的过程。此外, 研究显示, 在植物与菌根真菌互作中, 植物合成的脂肪酸也是白粉病病原真菌的碳源, 其对病原真菌侵染植物十分重要。通过降低植物脂肪酸的合成, 能够有效抑制病原真菌的致病性。该研究系统揭示了脂肪酸是植物为菌根真菌和病原真菌提供碳源的主要形式, 对传统认识形成了巨大挑战。

5 展望以上4项成果中有3项产生于我国优势领域, 充分证明了学科布局和长期积累的重要性。可以预见, 在不久的将来, 我国在植物-微生物互作研究领域还会涌现出更多的重要成果。相对而言, 我国对植物-微生物共生的研究传统上主要关注微生物本身, 而对于互作, 尤其是对植物宿主机制的研究起步较晚, 研究力量不强。丛枝菌根真菌对脂肪酸利用这一成果的产生, 应更多归功于少数单位积极引进相关人才, 显著推动了国内在此重要领域的研究。近年来, 在国际上, 植物微生物组研究是植物-微生物互作研究新的生长点, 期待国内同行能更加积极布局类似新兴学科。

The authors have declared that no competing interests exist.

参考文献
文献选项
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子




[1]
Deng YW, Zhai KR, Xie Z, Yang DY, Zhu XD, Liu JZ, Wang X, Qin P, Yang YZ, Zhang GM, Li Q, Zhang JF, Wu SQ, Milazzo J, Mao BZ, Wang ET, Xie HA, Tharreau D, He ZH (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance.Science 355, 962-965.
DOI:10.1126/science.aai8898PMID:28154240URLAbstract Crop breeding aims to balance disease resistance with yield, however single resistance (R) genes can lead to resistance breakdown and R gene pyramiding may impact growth fitness. Here we report that the rice Pigm locus contains a cluster of genes encoding nucleotide-binding leucine-rich repeat (NLR) receptors that confer durable resistance to the fungus Magnaporthe oryzae without yield penalty. In the cluster, PigmR confers broad-spectrum resistance, whereas PigmS competitively attenuates PigmR homodimerization to suppress resistance. PigmS expression, and thus PigmR-mediated resistance, are subjected to tight epigenetic regulation. PigmS increases seed production to counteract the yield cost induced by PigmR Therefore, our study reveals a mechanism balancing high disease resistance and yield through epigenetic regulation of paired antagonistic NLRs, providing a tool to develop elite crop varieties. Copyright 2017, American Association for the Advancement of Science.
[本文引用: 1]
[2]
Dong SM, Wang YC (2016). Nudix effectors: a common weapon in the arsenal of plant pathogens.PLoS Pathog 12, e1005704.
DOI:10.1371/journal.ppat.1005704PMID:27513453URLby Suomeng Dong, Yuanchao Wang
[本文引用: 1]
[3]
Feng F, Zhou JM (2012). Plant-bacterial pathogen interactions mediated by type III effectors.Curr Opin Plant Biol 15, 469-476.
DOI:10.1016/j.pbi.2012.03.004URL
[本文引用: 1]
[4]
Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi.Science 356, 1172-1175.
DOI:10.1126/science.aam9970PMID:28596307URLArbuscular mycorrhizal (AM) fungi facilitate plant uptake of mineral nutrients and draw organic nutrients from the plant. Organic nutrients are thought to be supplied primarily in the form of sugars. Here we show that the AM fungus Rhizophagus irregularis is a fatty acid auxotroph and that fatty acids synthesized in the host plants are transferred to the fungus to sustain mycorrhizal colonization. The transfer is dependent on RAM2 (REQUIRED FOR ARBUSCULAR MYCORRHIZATION 2) and the ATP binding cassette transporter ediated plant lipid export pathway. We further show that plant fatty acids can be transferred to the pathogenic fungus Golovinomyces cichoracerum and are required for colonization by pathogens. We suggest that the mutualistic mycorrhizal and pathogenic fungi similarly recruit the fatty acid biosynthesis program to facilitate host invasion.
[本文引用: 1]
[5]
Li WT, Zhu ZW, Chern M, Yin JJ, Yang C, Ran L, Cheng MP, He M, Wang K, Wang J, Wang J, Zhou XG, Zhu XB, Chen ZX, Wang JC, Zhao W, Ma BT, Qin P, Chen WL, Wang YP, Liu JL, Wang WM, Wu XJ, Li P, Wang JR, Zhu LH, Li SG, Chen XW (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance.Cell 170, 114-126.
DOI:10.1016/j.cell.2017.06.008PMID:28666113URLAbstract Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C 2 H 2 -type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H 2 O 2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice. Copyright 2017 Elsevier Inc. All rights reserved.
[本文引用: 1]
[6]
Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens.Annu Rev Phytopathol 52, 213-241.
DOI:10.1146/annurev-phyto-102313-045926PMID:24906128URLAbstract Rice feeds more than half of the world's population. Rice blast, caused by the fungal pathogen Magnaporthe oryzae, and bacterial blight, caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae, are major constraints to rice production worldwide. Genome sequencing and extensive molecular analysis has led to the identification of many new pathogen-associated molecular patterns (PAMPs) and avirulence and virulence effectors in both pathogens, as well as effector targets and receptors in the rice host. Characterization of these effectors, host targets, and resistance genes has provided new insight into innate immunity in plants. Some of the new findings, such as the binding activity of X. oryzae transcriptional activator-like (TAL) effectors to specific rice genomic sequences, are being used for the development of effective disease control methods and genome modification tools. This review summarizes the recent progress toward understanding the recognition and signaling events that govern rice innate immunity.
[本文引用: 1]
[7]
Ma ZC, Song TQ, Zhu L, Ye WW, Wang Y, Shao YY, Dong SM, Zhang ZG, Dou DL, Zheng XB, Tyler BM, Wang YC (2015). A Phytophthora sojae Glycoside Hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27, 2057-2072.
DOI:10.1105/tpc.15.00390PMID:26163574URLWe identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and -glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery.
[本文引用: 2]
[8]
Ma ZC, Zhu L, Song TQ, Wang Y, Zhang Q, Xia YQ, Qiu M, Lin YC, Li HY, Kong L, Fang YF, Ye WW, Wang Y, Dong SM, Zheng XB, Tyler BM, Wang YC (2017). A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355, 710-714.
DOI:10.1126/science.aai7919PMID:28082413URLThe extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae oybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae, however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems. Authors: Zhenchuan Ma, Lin Zhu, Tianqiao Song, Yang Wang, Qi Zhang, Yeqiang Xia, Min Qiu, Yachun Lin, Haiyang Li, Liang Kong, Yufeng Fang, Wenwu Ye, Yan Wang, Suomeng Dong, Xiaobo Zheng, Brett M. Tyler, Yuanchao Wang
[本文引用: 1]
[9]
Tang DZ, Wang GX, Zhou JM (2017). Receptor kinases in plant-pathogen interactions: more than pattern recognition.Plant Cell 29, 618-637.
DOI:10.1105/tpc.16.00891PMID:28302675URLReceptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to “hide” microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis.
[本文引用: 1]
[10]
Wasternack C (2014). Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab.Plant Cell Rep 33, 707-718.
DOI:10.1007/s00299-014-1608-5PMID:24691578URLJasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)- 7-iso -JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF COI1 –JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie’s lab and Chuanyou Li’s lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId’s) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
[本文引用: 1]
[11]
Zhang HT, Wang SP (2013). Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr Opin Plant Biol 16, 188-195.
[本文引用: 1]
[12]
Zhou JM, Chai JJ (2008). Plant pathogenic bacterial type III effectors subdue host responses.Curr Opin Microbiol 11, 179-185.
DOI:10.1016/j.mib.2008.02.004PMID:18372208URLLike animals, plants sense bacterial pathogens through surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat proteins (NB-LRR) and trigger defense responses. Many plant-pathogenic bacteria secrete a large repertoire of effector proteins into host cells to modulate host responses, enabling successful infection and multiplication in plants. A number of these effector proteins target plant innate immunity signaling pathways, while others induce specific host genes to enhance plant susceptibility. Substantial progress has been made in the past two years concerning biochemical function of effectors and their host targets. These advances provide new insights into regulatory mechanisms of plant immunity and host athogen co-evolution.
[本文引用: 1]
[13]
Zhou XP (2013). Advances in understanding begomovirus satellites.Annu Rev Phytopathol 51, 357-381.
DOI:10.1146/annurev-phyto-082712-102234PMID:23915133URLBegomoviruses are numerous and geographically widespread viruses that cause devastating diseases in many crops. Monopartite begomoviruses are frequently associated with betasatellites or alphasatellites. Both betasatellite and alphasatellite DNA genomes are approximately half the size of begomovirus DNA genomes. Betasatellites are essential for induction of typical disease symptoms. The beta C1 genes encoded by the betasatellites have important roles in symptom induction, in suppression of transcriptional and posttranscriptional gene silencing, and they can affect jasmonic acid responsive genes. Host plants of begomoviruses have evolved diverse innate defense mechanisms against the beta C1 protein to counter these challenges. Alphasatellites have been identified mainly in monopartite begomoviruses that associate with betasatellites and have no known contributions to pathogenesis of begomovirus-betasatellite disease complexes. Applications of current molecular tools are facilitating viral diagnosis and the discovery of novel species of geminiviruses and satellite DNAs and are also advancing our understanding of the global diversity and evolution of satellite DNAs.
[本文引用: 1]
[14]
Zhu H, Guo HS (2012). The role of virus-derived small interfering RNAs in RNA silencing in plants.Sci China Life Sci 55, 119-125.
DOI:10.1007/s11427-012-4281-3PMID:22415682URLAntiviral defense is one of the important roles of RNA silencing in plants. Virus-derived small interfering RNAs (vsiRNAs) are found in the infected host cells, indicating that the host RNA silencing machinery can target viral RNAs for destruction. With the development of high-throughput sequencing of vsiRNAs, recent genetic studies have shed light on the origin and composition of vsiRNAs and their potential functions in the regulation of gene expression. Here, we briefly describe the origin and biogenesis of vsiRNAs, and review the recent discoveries regarding vsiRNA-mediated RNA silencing of viral genomes and host transcripts. This will better our understanding of virus pathogenicity and RNA silencing-related host-pathogen interactions in plants.
[本文引用: 1]

1
2017

... 中科院上海植物生理生态所何祖华研究团队通过筛选抗稻瘟病种质资源, 从中国地方品种中鉴定到1个广谱持久抗稻瘟病位点Pigm (Deng et al., 2017).序列分析表明, 该位点由13个串联的NB-LRR (nucleotide-binding leucine-rich repeat)类抗病基因构成基因簇, 其中PigmRPigmS组成1对功能拮抗的基因.PigmR形成同源二聚体, 呈现对稻瘟病菌的广谱抗性, 但会导致产量下降.PigmS与PigmR竞争形成异源二聚体, 抑制PigmR功能的发挥, 但可抵消PigmR对产量的影响.通过对PigmS启动子研究, 发现PigmS基因的表达受到甲基化调控, 在花粉中特异性高表达, 而在叶片和茎秆等病原菌侵染的组织部位表达量很低.因此, 含有PigmRPigmS基因的品种, 其叶片和茎秆等营养组织能够正常发挥抗病性, 穗部因为PigmS的作用, 消除了PigmR对产量的副作用.该研究揭示了通过表观控制NB-LRR类受体基因, 平衡抗病和产量的独特机制, 为培育既高抗又高产的作物品种提供了一种新思路. ...

1
2016

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2012

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2017

... 中科院上海植物生理生态所王二涛研究团队通过对丛枝菌根真菌基因组序列分析, 发现丛枝菌根真菌缺失棕榈酸合成酶基因, 暗示需要由宿主植物提供脂肪酸(Jiang et al., 2017).后续的实验表明, 宿主植物的脂肪酸合成对于丛枝菌根真菌共生是必需的, 并且植物合成的脂肪酸能够直接传递给菌根真菌.进一步研究表明, 脂肪酸是植物传递给菌根真菌的主要碳源形式, 而并非糖.他们采用遗传学及分子生物学手段, 发现植物负责催化合成2-单酰甘油蛋白(RAM2)和ABC类转运蛋白STR-STR2, 此2种蛋白参与植物将脂肪酸转运给菌根真菌的过程.此外, 研究显示, 在植物与菌根真菌互作中, 植物合成的脂肪酸也是白粉病病原真菌的碳源, 其对病原真菌侵染植物十分重要.通过降低植物脂肪酸的合成, 能够有效抑制病原真菌的致病性.该研究系统揭示了脂肪酸是植物为菌根真菌和病原真菌提供碳源的主要形式, 对传统认识形成了巨大挑战. ...

1
2017

... 地谷是少数具有广谱抗稻瘟病的水稻材料之一, 四川农业大学陈学伟研究团队通过全基因组关联分析, 分离到1个新型广谱抗稻瘟病基因bsr-d1 (Li et al., 2017).该基因编码1个C2H2类转录因子, 直接调控过氧化物酶基因的表达.在感病水稻中, 其等位基因Bsr-d1受稻瘟病菌侵染诱导表达, 进而诱导过氧化物酶基因表达, 导致活性氧水平下降, 因而表现为易感.来源于地谷bsr-d1的启动子携带1个变异位点, 导致其与转录因子MYBS1结合能力增强.MYBS1在抗病中是1个负调控因子, 很可能在稻瘟病菌侵染时, 通过抑制bsr-d1的转录, 增加活性氧的积累, 产生广谱抗病性.该团队对分布于不同国家的3 000份水稻材料进行了序列分析, 发现其中的313份存在该变异位点, 说明此位点已经应用于水稻育种中; 同时暗示了该基因在大多数其它水稻品种中也具有应用潜力.该研究揭示了水稻自然存在的广谱抗病机制, 丰富了水稻免疫反应和抗病分子理论内容, 为防控稻瘟病提供了全新路径. ...

1
2014

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

2
2015

... 南京农业大学王源超研究团队通过对大豆疫霉菌(Phytophthora sojae)的研究发现, 大豆疫霉菌可通过分泌糖基水解酶XEG1帮助疫霉菌侵染(Ma et al., 2015).这种糖基水解酶在多种疫霉菌、病原真菌和细菌中广泛存在.该团队通过免疫共沉淀结合质谱技术, 筛选获得了XEG1在植物体内的互作蛋白GIP1 (Ma et al., 2017).该蛋白能够通过抑制XEG1的糖基水解活性干扰疫霉菌对植物的侵染.他们进一步比较了疫霉菌基因组, 发现1个连锁的XEG1同源基因XLP1 (XEG1-like protein1).有趣的是, XLP1本身没有水解活性, 但能够以“诱饵”的方式, 竞争性结合GIP1蛋白, 从而保护具有水解活性的XEG1, 协助病原菌侵染.XEG1-XLP1基因对广泛存在于疫霉菌中, 暗示这一“诱饵模式”是它们攻击宿主植物的共有模式. ...
... 有证据表明, 大豆(Glycine max)、烟草(Nico- tiana tabacum)、辣椒(Capsicum annuum)和番茄(Lycopersicon esculentum)等多种植物中很可能存在特异性受体, 通过识别XEG1, 产生免疫反应(Ma et al., 2015).因此, 对XEG1的研究, 不仅回答了疫霉病菌的致病机理问题, 而且对研究植物的抗病机理也有重要意义.未来对这些受体的挖掘和利用, 将为农作物广谱抗病育种提供新的途径. ...

1
2017

... 南京农业大学王源超研究团队通过对大豆疫霉菌(Phytophthora sojae)的研究发现, 大豆疫霉菌可通过分泌糖基水解酶XEG1帮助疫霉菌侵染(Ma et al., 2015).这种糖基水解酶在多种疫霉菌、病原真菌和细菌中广泛存在.该团队通过免疫共沉淀结合质谱技术, 筛选获得了XEG1在植物体内的互作蛋白GIP1 (Ma et al., 2017).该蛋白能够通过抑制XEG1的糖基水解活性干扰疫霉菌对植物的侵染.他们进一步比较了疫霉菌基因组, 发现1个连锁的XEG1同源基因XLP1 (XEG1-like protein1).有趣的是, XLP1本身没有水解活性, 但能够以“诱饵”的方式, 竞争性结合GIP1蛋白, 从而保护具有水解活性的XEG1, 协助病原菌侵染.XEG1-XLP1基因对广泛存在于疫霉菌中, 暗示这一“诱饵模式”是它们攻击宿主植物的共有模式. ...

1
2017

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2014

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2013

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2008

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2013

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...

1
2012

... 我国科学家经过长期积累, 逐渐在植物与微生物互作领域形成了优势并取得了显著成果.例如, 在植物与病毒互作研究中, 我国科学家系统阐释了宿主抗病毒机制以及病毒抑制宿主基因沉默等一系列免疫逃逸机理(Zhu and Guo, 2012; Zhou, 2013).在植物与病原细菌互作研究中, 我国****率先阐释了宿主免疫受体识别病原分子和激活免疫的分子机理(Tang et al., 2017); 解析了病原菌多个效应蛋白的毒性功能、宿主靶蛋白以及生化机理, 并首次提出了植物免疫的“诱饵模型”(Zhou and Chai, 2008; Feng and Zhou, 2012).在植物与卵菌互作研究中, 科研人员系统分析了一批效应蛋白的致病功能和机理(Dong and Wang, 2016).在水稻(Oryza sativa)和麦类病虫害研究中, ****们分离鉴定了一大批抗性基因, 揭示了重要病害成灾机制, 为我国粮食安全做出了重要贡献(Zhang and Wang, 2013; Liu et al., 2014).此外, 我国科学家在茉莉素介导的信号转导通路以及真菌病毒等方面的研究也显示出自己独特的优势(Waster- nack, 2014).2017年, 我国科学家先后在国际顶级学术期刊ScienceCell上发表了4篇植物与微生物互作的突破性研究成果, 标志着中国在本领域的研究水平整体上有了跨越式提升.本文将概括性介绍这些研究成果, 希望能借此展现我国****在该领域取得的杰出成就. ...



相关话题/植物 基因 免疫 微生物 病毒