Abstract: Populus euphratica is the unique natural distribution arbor tree growing in the dry desert environment, with root suckering, but cuttings of roots are difficult to grow. This study explored the new ways of rooting induced by Agrobacterium rhizogenes. The strain ATCC11325 can induce hairy roots with no-tropism on in vitro leaf sections. The leaves were cut, scarred, co-cultivated, soaked for 10 min in the microbial agent at OD600=0.4 with AS 100 mg·L-1 added and cultured on tissue culture media for 20 days. Hairy rooting occurred on fresh cuttings soaked with the A. rhizogenes strain solution. The rooting and survival rate reached 60%, and aboveground parts developed more branches and showed vigorous growth. The A. rhizogenes strain promoted rooting of poplar tree fresh cuttings.
Different lowercase letters in the same column indicated significant differences (P≤0.05), and capital letters indicated extremely significant differences (P≤0.01) (Duncan’s multiple range test). 同列数据后不同小写字母表示差异显著(P≤0.05), 不同大写字母表示差异极显著(P≤0.01) (采用邓肯氏复极差法进行显著性分析)。
表1 发根农杆菌菌株ATCC11325侵染处理因素对胡杨叶片毛状根诱导的影响 Table 1 Effect of Agrobacterium rhizogenes ATCC11325 infecting factors on the hairy root induction of Populus euphratica
图1https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_1.png图1 发根农杆菌ATCC11325发根基因PCR产物序列的分子鉴定 (A) MAS基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000; (B) rolA基因, 泳道1为 Marker 3000; 2: 阴性对照(ddH2O); 3: 菌株ATCC11325质粒DNA; (C) rolB基因, 泳道1为菌株ATCC11325质粒DNA; 2-4: 阴性对照(ddH2O); 5: Marker 3000; (D) rolC基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000。右图: PCR产物序列与NCBI相关基因及蛋白序列相似度。 Figure 1 PCR and sequencing analyses of Agrobacterium rhizogenes strain ATCC11325 (A) MAS gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000; (B) rolA gene, lane 1: Marker 3000; 2: Negative control (ddH2O); 3: ATCC11325 plasmid DNA; (C) rolB gene, lane 1: ATCC11325 plasmid DNA; 2-4: Negative control (ddH2O); 5: Marker 3000; (D) rolC gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000. Right figures: Similarity of PCR material sequences compared with NCBI accessed gene sequences and their coding amino acid sequences. Figure 1https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_1.png图1 发根农杆菌ATCC11325发根基因PCR产物序列的分子鉴定 (A) MAS基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000; (B) rolA基因, 泳道1为 Marker 3000; 2: 阴性对照(ddH2O); 3: 菌株ATCC11325质粒DNA; (C) rolB基因, 泳道1为菌株ATCC11325质粒DNA; 2-4: 阴性对照(ddH2O); 5: Marker 3000; (D) rolC基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000。右图: PCR产物序列与NCBI相关基因及蛋白序列相似度。 Figure 1 PCR and sequencing analyses of Agrobacterium rhizogenes strain ATCC11325 (A) MAS gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000; (B) rolA gene, lane 1: Marker 3000; 2: Negative control (ddH2O); 3: ATCC11325 plasmid DNA; (C) rolB gene, lane 1: ATCC11325 plasmid DNA; 2-4: Negative control (ddH2O); 5: Marker 3000; (D) rolC gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000. Right figures: Similarity of PCR material sequences compared with NCBI accessed gene sequences and their coding amino acid sequences.
图1 发根农杆菌ATCC11325发根基因PCR产物序列的分子鉴定 (A) MAS基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000; (B) rolA基因, 泳道1为 Marker 3000; 2: 阴性对照(ddH2O); 3: 菌株ATCC11325质粒DNA; (C) rolB基因, 泳道1为菌株ATCC11325质粒DNA; 2-4: 阴性对照(ddH2O); 5: Marker 3000; (D) rolC基因, 泳道1和2为菌株ATCC11325质粒DNA; 3-5: 阴性对照(ddH2O); 6: Marker 3000。右图: PCR产物序列与NCBI相关基因及蛋白序列相似度。 Figure 1 PCR and sequencing analyses of Agrobacterium rhizogenes strain ATCC11325 (A) MAS gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000; (B) rolA gene, lane 1: Marker 3000; 2: Negative control (ddH2O); 3: ATCC11325 plasmid DNA; (C) rolB gene, lane 1: ATCC11325 plasmid DNA; 2-4: Negative control (ddH2O); 5: Marker 3000; (D) rolC gene, lane 1-2: ATCC11325 plasmid DNA; 3-5: Negative control (ddH2O); 6: Marker 3000. Right figures: Similarity of PCR material sequences compared with NCBI accessed gene sequences and their coding amino acid sequences.
图2https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_2.png图2 胡杨组织培养体系 (A) 初代培养; (B) 继代培养; (C), (D) 生根小植株 Figure 2 Establishment of in vitro culture systems in Populus euphratica (A) Initiation; (B) subculture; (C), (D) Plantlets from shoots Figure 2https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_2.png图2 胡杨组织培养体系 (A) 初代培养; (B) 继代培养; (C), (D) 生根小植株 Figure 2 Establishment of in vitro culture systems in Populus euphratica (A) Initiation; (B) subculture; (C), (D) Plantlets from shoots
图2 胡杨组织培养体系 (A) 初代培养; (B) 继代培养; (C), (D) 生根小植株 Figure 2 Establishment of in vitro culture systems in Populus euphratica (A) Initiation; (B) subculture; (C), (D) Plantlets from shoots
图3https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_3.png图3 发根农杆菌诱导胡杨组织培养叶片产生毛状根 (A) 预培养叶片; (B) 侵染5分钟的叶片; (C), (D) 侵染10分钟的叶片; (E) 侵染20分钟的叶片; (F) 划痕侵染的叶片 Figure 3 Hairy roots induced from leaf discs of Populus euphratica by Agrobacterium rhizogenes (A) The pre-cultured leaves; (B) Leaves infected 5 min; (C), (D) Leaves infected 10 min; (E) leaves infected 20 min; (F) Scratched and infected leaves Figure 3https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_3.png图3 发根农杆菌诱导胡杨组织培养叶片产生毛状根 (A) 预培养叶片; (B) 侵染5分钟的叶片; (C), (D) 侵染10分钟的叶片; (E) 侵染20分钟的叶片; (F) 划痕侵染的叶片 Figure 3 Hairy roots induced from leaf discs of Populus euphratica by Agrobacterium rhizogenes (A) The pre-cultured leaves; (B) Leaves infected 5 min; (C), (D) Leaves infected 10 min; (E) leaves infected 20 min; (F) Scratched and infected leaves
图3 发根农杆菌诱导胡杨组织培养叶片产生毛状根 (A) 预培养叶片; (B) 侵染5分钟的叶片; (C), (D) 侵染10分钟的叶片; (E) 侵染20分钟的叶片; (F) 划痕侵染的叶片 Figure 3 Hairy roots induced from leaf discs of Populus euphratica by Agrobacterium rhizogenes (A) The pre-cultured leaves; (B) Leaves infected 5 min; (C), (D) Leaves infected 10 min; (E) leaves infected 20 min; (F) Scratched and infected leaves
2.3 发根农杆菌ATCC11325诱导插穗产生毛状根发根农杆菌ATCC11325菌液浸染胡杨肉质根插穗, 扦插养护30天后的插穗生根率达60%, 显著高于对照组的20%; 须根数量显著多于对照(图4A-C, P≤ 0.05), 乳白色且粗壮, 长10-30 cm; 对照组须根纤细且呈暗褐色, 长3-5 cm。 发根植株地上部分的生长, 处理组萌芽早, 分枝多, 长势旺盛, 与对照之间的差异明显(图4D-F)。 图4https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_4.png图4 发根农杆菌菌株ATCC11325浸染胡杨插穗的发根和地上部分生长情况 (A) 扦插前的插穗; (B) 扦插对照; (C) 扦插处理; (D) 扦插前的地上部形态; (E) 对照地上部; (F) 处理地上部 Figure 4 Stock roots and aboveground part from fleshy root cuttings in Populus euphratica infected with Agrobacterium rhizogenes ATCC11325 (A) Before cutting; (B) Roots from control; (C) Roots from the cuttings infected with Agrobacterium rhizogenes ATCC11325; (D) Aboveground parts before cutting; (E) Aboveground parts of controls; (F) Aboveground parts of infected cuttings with Agrobacterium rhizogenes ATCC11325 Figure 4https://www.chinbullbotany.com/article/2017/1674-3466/1674-3466-52-2-210/img_4.png图4 发根农杆菌菌株ATCC11325浸染胡杨插穗的发根和地上部分生长情况 (A) 扦插前的插穗; (B) 扦插对照; (C) 扦插处理; (D) 扦插前的地上部形态; (E) 对照地上部; (F) 处理地上部 Figure 4 Stock roots and aboveground part from fleshy root cuttings in Populus euphratica infected with Agrobacterium rhizogenes ATCC11325 (A) Before cutting; (B) Roots from control; (C) Roots from the cuttings infected with Agrobacterium rhizogenes ATCC11325; (D) Aboveground parts before cutting; (E) Aboveground parts of controls; (F) Aboveground parts of infected cuttings with Agrobacterium rhizogenes ATCC11325
图4 发根农杆菌菌株ATCC11325浸染胡杨插穗的发根和地上部分生长情况 (A) 扦插前的插穗; (B) 扦插对照; (C) 扦插处理; (D) 扦插前的地上部形态; (E) 对照地上部; (F) 处理地上部 Figure 4 Stock roots and aboveground part from fleshy root cuttings in Populus euphratica infected with Agrobacterium rhizogenes ATCC11325 (A) Before cutting; (B) Roots from control; (C) Roots from the cuttings infected with Agrobacterium rhizogenes ATCC11325; (D) Aboveground parts before cutting; (E) Aboveground parts of controls; (F) Aboveground parts of infected cuttings with Agrobacterium rhizogenes ATCC11325
ChaudhuriKN, GhoshB, TepferD, JhaS (2006). Spontaneous plant regeneration in transformed roots and calli fromTylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25, 1059-1066. [本文引用: 1]
[26]
ChoHJ, WidholmJM (2002). Improved shoot regeneration protocol for hairy roots of the legumeAstragalus sinicus. Plant Cell Tiss Org 69, 259-269. [本文引用: 1]
[27]
FujimotoY, OhyamaK, NomuraK, HyodoR, TakahashiK, YamadaJ, MorisakiM (2000). Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots. Lipids 35, 279-288. [本文引用: 1]
[28]
MichaelT, SpenaA (1995). The plant oncogenesrol A, B, and C from Agrobacterium rhizogenes. Agrobacterium Protocols 44, 207-222. [本文引用: 1]
[29]
MoyanoE, JouhikainenK, TammelaP, PalazónJ, CusidóRM, PiñolMT, TeeriTH, Oksman-CaldenteyKM (2003). Effect ofpmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54, 203-211. [本文引用: 1]
[30]
Oksman-CaldenteyKM, SévonN (2002). Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids.Planta Med 68, 859-868. [本文引用: 1]
XiaoK, ZhangC, HarrisonM, WangZY (2005). Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants.Mol Breeding 15, 221-231. [本文引用: 1]
[33]
YangY, JiangXT, ZhangT (2014). Evaluation of a hybrid approach using UBLAST and BLASTX for metagenomic sequences annotation of specific functional genes.PLoS One 9, e110947. [本文引用: 1]