Traits of shrubs in forests and bushes reveal different life strategies
Jia-Yu CAO1, Jian-Feng LIU1, Quan YUAN1, De-Yu XU1, Hai-Dong FAN1, Hai-Yan CHEN1, Bin TAN1, Li-Bin LIU1,2, Duo YE1,2, Jian NI,,1,2,*1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China 2Jinhua Mountain Observation and Research Station for Subtropical Forest Ecosystems, Jinhua, Zhejiang 321004, China
Abstract Aims Shrubs play important roles in both forest and bushland ecosystems. This study aims to identify the adaptative strategies of shrubs in different habitats by analyzing the differences in functional traits of shrubs grown in understory of forest communities and in two bushlands. Methods Nine functional traits for leaves and twigs were measured on samples collected from the dominant shrub species in 24 plots distributed in three contrasting habitats: forest understory, low mountain bushes, and bushes on the mountaintop, in Beishan Mountain of Jinhua, Zhejiang Province. The overall differences among habitats, inter- and intra-specific variations, and differences between life forms in the functional traits of shrubs were tested by statistical analysis. Important findings The nine plant traits differed for shrubs grown in the three habitats. The shrubs in forest understory had higher leaf area (LA) and specific leaf area (SLA), lower leaf dry-matter content (LDMC), leaf tissue density (LTD) and twig tissue density (TTD), while those in low mountain bushes had greater leaf thickness (LT) and LTD, smaller SLA and twig dry-matter content (TDMC), compared with shrubs from bushes on the mountaintop. The inter- and intra-specific variation coefficients of SLA, twig diameter (TD), TTD, and TDMC were greatest in shrubs of the forest understory, whereas the inter- and intra-specific variation coefficients of SLA, LDMC, TDMC, and TTD were smallest in ??shrubs of low mountain bushes. Among different life forms, the understory evergreen shrubs had significantly higher LT, LTD, and LDMC, and lower SLA, than that of deciduous shrubs. The differences in LT and SLA between evergreen and deciduous shrubs of the mountaintop bushes were the same as the understory shrubs, but the differences in LTD and LDMC were reversed. Species and its interaction with habitat are the major factors affecting the shrub traits. In short, compared to the shrubs from bushes, the understory shrubs in forest communities form a series of trait combinations with greater LA and SLA, and smaller LTD, TTD and LDMC for faster growth in order to adapt to the understory environment with less light and stronger competition; this is a quick investment-return (resource acquisitive) strategy. Shrubs from low mountain bushes and the mountaintop bushes are associated with a series trait combinations with greater LT, LTD, LDMC and TTD, and smaller LA, SLA for storing more nutrients and growing slower; this is a slow investment-return (resource conservative) strategy. Different combinations of shrub functional traits and their various life strategies can provide guidance to the ecological restoration of degraded vegetation in the subtropical region of China. Keywords:shrub;plant functional traits;subtropical forests;shrubland;habitat;life history strategy
PDF (2077KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 2020, 44(7): 715-729. DOI: 10.17521/cjpe.2020.0024 CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 2020, 44(7): 715-729. DOI: 10.17521/cjpe.2020.0024
在2017和2018年夏季, 在金华北山南坡选择针叶林、针阔混交林、常绿落叶阔叶混交林、常绿阔叶林、低山灌丛和山顶灌丛6种植被类型, 共设置24个固定样地(表1), 其中森林样地面积分别为30 m ′ 30 m, 12个阔叶林和针阔混交林均为次生林, 9个针叶林均为人工林; 1个低山灌丛样地面积为30 m ′ 10 m, 是阔叶林砍伐后的次生性植被; 2个山顶灌丛样地面积分别为10 m ′ 20 m, 为山顶处干扰相对较小的次生性植被。对所有森林和灌丛样地中胸径(DBH) ≥ 1 cm, 以及灌丛样地中DBH < 1 cm, 高度≥10 cm的木本植物挂铝牌标记, 并记录相应的种名、胸径(灌木为基径)、树高、冠幅以及相对坐标等指标。根据相对多度、相对频度和相对优势度计算灌木的重要值(樊海东等, 2019)。
Table 1 表1 表1金华北山24个样地基 本特征及优势灌木 Table 1Site characteristics and dominant shrubs for the 24 plots in Beishan Mountain of Jinhua, Zhejiang Province
AckerlyDD, CornwellWK (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components , 10, 135-145. DOI:10.1111/j.1461-0248.2006.01006.xURLPMID:17257101 Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.
AugerS, ShipleyB (2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest , 24, 419-428. [本文引用: 1]
ChaveJ, CoomesD, JansenS, LewisSL, SwensonNG, ZanneAE (2009). Towards a worldwide wood economics spectrum , 12, 351-366. DOI:10.1111/j.1461-0248.2009.01285.xURLPMID:19243406 [本文引用: 3] Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.
ChenW, WangJH, MaRJ, QiW, LiuK, ZhangLN, ChenXL (2016). Variance in leaf functional traits of 89 species from the eastern Guangdong of China Chinese Journal of Ecology, 35, 2101-2109. [本文引用: 1]
CornelissenJHC, LavorelS, GarnierE, DíazS, BuchmannN, GurvichDE, ReichPB, terSteege H, MorganHD, vander Heijden MGA, PausasJG, PoorterH (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide , 51, 335-380. [本文引用: 3]
dela Riva EG, TostoA, Pérez-RamosIM, Navarro-FernándezCM, OlmoM, AntenNPR, Mara?ónT, VillarR (2016). A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits? , 27, 187-199. [本文引用: 1]
deSmedt P, OttavianiG, Wardell-JohnsonG, SykoraKV, MucinaL (2018). Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs , 53, 133-145. [本文引用: 3]
DíazS, KattgeJ, CornelissenJHC, WrightIJ, LavorelS, DrayS, ReuB, KleyerM, WirthC, ColinPrentice I, GarnierE, B?nischG, WestobyM, PoorterH, ReichPB, MolesAT, DickieJ, GillisonAN, ZanneAE, ChaveJ, JosephWright S, Sheremet’evSN, JactelH, BaralotoC, CeraboliniB, PierceS, ShipleyB, KirkupD, CasanovesF, JoswigJS, GüntherA, FalczukV, RügerN, MahechaMD, GornéLD (2016). The global spectrum of plant form and function , 529, 167-171. URLPMID:26700811 [本文引用: 2]
DlugosDM, CollinsH, BartelmeEM, DrenovskyRE (2015). The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability , 102, 1323-1331. URLPMID:26290555 [本文引用: 1]
FanHD, ChenHY, WuYN, LiuJF, XuDY, CaoJY, YuanQ, TanB, LiuXT, XuJ, WangGM, HanWJ, LiuLB, NiJ (2019). Community characteristics of main vegetation types on the southern slope of Beishan Mountain in Jinhua, Zhejiang, China Chinese Journal of Plant Ecology, 43, 921-928. DOI:10.17521/cjpe.2019.0114URL [本文引用: 1] The Beishan Mountain of Jinhua is located in the northern part of the mid-subtropical region. In vegetation division, this region belongs to the northern sub-zone of mid-subtropical evergreen broad-leaved forest vegetation belt. The vegetation in this mountain is a secondary forest restored from a severe deforestation. It is currently in a rapid process of positive succession. Thus, this region is suitable for studying the dynamics and succession mechanisms of plant communities and the restoration of degraded ecosystems. To further understand the community characteristics of the main vegetation types in Beishan Mountain, we surveyed the main plant communities on its southern slope with a fixed plot method (the plot area is 30 m × 30 m for forests and 20 m × 10 m, 30 m × 10 m for shrubs) based on the internationally accepted forest survey approach used in the survey of dynamic forest plots. The species composition, quantitative characteristics and habitat information of all plant communities were investigated and recorded. The importance values of trees and shrubs were calculated. The community types and their characteristics were analyzed. The spatial distribution maps of the major trees and shrubs in each plot were also drawn. In the present study, detailed community data for 24 sampled plots representing 11 formations were presented (consisting of 21 forest plots and 3 shrub plots). [ 樊海东, 陈海燕, 吴雁南, 刘建峰, 徐德宇, 曹嘉瑜, 袁泉, 谭斌, 刘晓彤, 徐佳, 王国敏, 韩文娟, 刘立斌, 倪健 (2019). 金华北山南坡主要植被类型的群落特征 , 43, 921-928.] [本文引用: 1]
FortF, JouanyC, CruzP (2013). Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies , 6, 211-219. DOI:10.1093/jpe/rts034URL [本文引用: 1] Aims Root systems play an essential role in grassland functioning in both acquisition and storage of resources. Nevertheless, root functional traits have not received as much attention as those measured on above-ground organs, and little is known about their relations. Our objectives were to test whether morphological and root system traits allowed identification of grass species' functional strategies and to determine whether a relation exists between above- and below-ground traits.Methods Functional traits of root tissues (specific root length, diameter, tissue density and nitrogen concentration), whole root systems (root mass, root length density, root mass percentage below a depth of 20cm and fine root %) and two major leaf traits (specific leaf area and leaf dry matter content) were determined under field conditions and their relations were analysed in eleven perennial temperate Poaceae species.Important findings Canonical correspondence analysis along Axis 1 revealed a gradient of species, from those with deep, dense and coarse root systems with a large root mass to those with shallow root systems, thin roots and high specific root length; this suggests strong correlations among root traits. Correlations between specific root length and specific leaf area reveal two groups of species, which probably indicates different drought-tolerance capacities. Root trait syndromes enable ranking grasses along a gradient from conservative-strategy species (from stressful habitats), which display a deep and coarse root system, to acquisitive species (from rich and moist meadows), which display a shallow and thin root system. Although both types display similar above-ground strategies, drought-tolerant species have lower specific root lengths than drought-sensitive species, revealing more conservative root strategies.]]>
FunkJL, CornwellWK (2013). Leaf traits within communities: context may affect the mapping of traits to function , 94, 1893-1897. URLPMID:24279259 [本文引用: 1]
GaoJ, XuB, WangJN, ZhouHY, WangYX, WuY (2015). Correlations among leaf traits of typical shrubs and their responses to different light environments in shrub-grassland of southern China Chinese Journal of Ecology, 34, 2424-2431. URL [本文引用: 1] i.e. Salix etosia, Rubus setchuenensis and Hydrangea aspera) in shrubgrassland of southern China. Field sampling survey was carried out to collect leaves under different light environments (inside and outside the forests) in Yunyang County. The results showed that the correlations among leaf traits of three shrubs vary one to another, i.e. speciesspecific. There was no significant difference in leaf traits of S. etosia under different light environments, while significant differences in leaf traits were found for R. setchuenensi and H. aspera. Both SLA and LNC of R. setchuenensi and H. aspera increased inside the forests for adapting to lower illuminance. In addition, LCC of H. aspera increased significantly inside the forests, which indicated a relatively strong carbon fixation capacity. Leaf traits of R. setchuenensis and H. aspera were mainly affected by soil temperature under different light environments. Our study demonstrated that there existed the phenotypic plasticity for plant leaf traits, and different plants had speciesspecific responses as well as strategies to adapt to different environments.]]> [ 高景, 徐波, 王金牛, 周海燕, 王彦星, 吴彦 (2015). 南方灌草丛典型灌木不同叶片性状的相关性及其对不同光环境的响应 , 34, 2424-2431.] [本文引用: 1]
GaoSH, GeYX, ZhouLY, ZhuBL, GeXY, LiK, NiJ (2018). What is the optimal number of leaves when measuring leaf area of tree species in a forest community? Chinese Journal of Plant Ecology, 42, 917-925. DOI:10.17521/cjpe.2018.0087URL [本文引用: 1] Aims Leaf size, as one of the easier measured plant morphological traits, reflects response and adaptation of plants to environment and indicates functions and processes of ecosystem. When measuring leaf size (the leaf area, LA) on the field, the common accepted practice considers that the number of leaves picked off is often 10-20. However, what is the optimal number of leaves remains unknown. In this study, we attempt to determine how many leaves should be investigated when the leaf size of a tree is measured. Methods This study selected two dominant tree species (Schima superba, Ss and Liquidambar formosana, Lf) from a broadleaved evergreen and deciduous mixed forest in Jinhua Mountain of Zhejiang Province, eastern China. On the basis of sampling (>2 500 leaves for each tree) in five classes of the diameter of breast height (DBH) of tree species and at six directions for each individual, variations of LA in the two tree species are statistically analyzed. The optimal number of leaves, which can mostly represent the common leaf size feature, is further investigated. Important findings Mean LAof the evergreen tree Ss was smaller than that of the deciduous tree Lf. The former was (41.60 ± 10.88) cm 2 (16.74-100.80 cm 2) and the latter was (57.65 ± 19.35) cm 2 (11.31-129.51 cm 2). LA of Lf was significantly related to the DBH, but LAof Ss was not. LA of both trees in the middle DBH class (15-20 cm) was not significantly different from their means. LA of two trees have no significant correlations with the sampling directions, but LA at the east, west and bottom had no significant relationships with their means. Considering the representativeness and practicality in the field sampling, the priority of selecting leaves can target the bottom direction of middle diameter mature trees. Random sampling analysis indicated that, the optimal number of leaves for tree LA measurement is species specific. The optimal number of leaves for Ss is 40 and for Lf is at least 170, respectively. Therefore, when measuring leaf area in a forest community, the optimal sampling number of leaves should not be limited to 10-20 leaves. Under sufficient labor, material and time, more leaves should be measured. ]]> [ 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健 (2018). 测定森林树木叶面积的最适叶片数是多少? , 42, 917-925.] [本文引用: 1]
GarnierE, VileD, RoumetC, LavorelS, GrigulisK, NavasM-L, LloretF (2019). Inter- and intra-specific trait shifts among sites differing in drought conditions at the north western edge of the Mediterranean Region , 254, 147-160. [本文引用: 1]
GrataniL, BombelliA (2001). Differences in leaf traits among Mediterranean broad-leaved evergreen shrubs , 38, 15-24. [本文引用: 2]
GuoSL, LiuP, ChenG, LuX (1993). Observations on the vegetation of Mount Bei of Jinhua in Zhejiang Province Journal of Zhejiang Normal University (Nature Sciences), 16, 59-67. [本文引用: 1]
HeberlingJM, FridleyJD (2013). Resource-use strategies of native and invasive plants in Eastern North American forests , 200, 523-533. URLPMID:23815090 [本文引用: 1]
JungV, ViolleC, MondyC, HoffmannL, MullerS (2010). Intraspecific variability and trait-based community assembly , 98, 1134-1140. [本文引用: 1]
KattgeJ, B?nischG, DíazS, LavorelS, PrenticeIC, WirthC (2020). TRY plant trait database-enhanced coverage and open access , 26, 119-188. DOI:10.1111/gcb.14904URLPMID:31891233 [本文引用: 2] Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
KumordziBB, AubinI, CardouF, ShipleyB, ViolleC, JohnstoneJ, AnandM, ArsenaultA, BellFW, BergeronY, BoulangeatI, BrousseauM, DeGrandpré L, DelagrangeS, FentonNJ, GravelD, EllenMacdonald S, HamelB, HigelinM, HébertF, IsabelN, MallikA, MclntoshACS, McLarenJR, MessierC, MorrisD, ThiffaultN, TremblayJ-P, MunsonAD (2019). Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants , 33, 1771-1784. [本文引用: 1]
Lebrija-TrejosE, Pérez-GarcíaEA, MeaveJA, BongersF, PoorterL (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system , 91, 386-398. URLPMID:20392004 [本文引用: 1]
LiGY, YangDM, SunSC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude , 22, 557-564. DOI:10.1111/fec.2008.22.issue-4URL [本文引用: 1]
LiL, LiXY, XuXW, LinLS, ZengFJ, ChenFL (2014). Assimilative branches and leaves of the desert plant Alhagi sparsifolia Shap. possesses a different adaptation mechanism to shade , 74, 239-245. URLPMID:24316582 [本文引用: 1]
LiuXJ, MaKP (2015). Plant functional traits—Concepts, applications and future directions Scientia Sinica Vitae, 45, 325-339. [本文引用: 3]
LuoYK, HuHF, ZhaoMY, LiH, LiuSS, FangJY (2019). Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China , 12, 67-77. [本文引用: 4]
MaXL (2014). A Study on Twig and Leaf Traits of the Shrub Species in Secondary Forest Succession Process Master degree dissertation, Northwest Normal University, Lanzhou. [本文引用: 1]
MaZ, GuoD, XuX, LuM, BardgettRD, EissenstatDM, LukeMcCormack M, HedinLO (2018). Evolutionary history resolves global organization of root functional traits , 555, 94-97. DOI:10.1038/nature25783URLPMID:29466331 [本文引用: 1] Plant roots have greatly diversified in form and function since the emergence of the first land plants, but the global organization of functional traits in roots remains poorly understood. Here we analyse a global dataset of 10 functionally important root traits in metabolically active first-order roots, collected from 369 species distributed across the natural plant communities of 7 biomes. Our results identify a high degree of organization of root traits across species and biomes, and reveal a pattern that differs from expectations based on previous studies of leaf traits. Root diameter exerts the strongest influence on root trait variation across plant species, growth forms and biomes. Our analysis suggests that plants have evolved thinner roots since they first emerged in land ecosystems, which has enabled them to markedly improve their efficiency of soil exploration per unit of carbon invested and to reduce their dependence on symbiotic mycorrhizal fungi. We also found that diversity in root morphological traits is greatest in the tropics, where plant diversity is highest and many ancestral phylogenetic groups are preserved. Diversity in root morphology declines sharply across the sequence of tropical, temperate and desert biomes, presumably owing to changes in resource supply caused by seasonally inhospitable abiotic conditions. Our results suggest that root traits have evolved along a spectrum bounded by two contrasting strategies of root life: an ancestral 'conservative' strategy in which plants with thick roots depend on symbiosis with mycorrhizal fungi for soil resources and a more-derived 'opportunistic' strategy in which thin roots enable plants to more efficiently leverage photosynthetic carbon for soil exploration. These findings imply that innovations of belowground traits have had an important role in preparing plants to colonize new habitats, and in generating biodiversity within and across biomes.
McDonaldPG, FonsecaCR, OvertonJMcC, WestobyM (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? , 17, 50-57. [本文引用: 1]
PausasJG, BradstockRA (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia , 16, 330-340. [本文引用: 1]
RolhauserAG, PuchetaE (2016). Annual plant functional traits explain shrub facilitation in a desert community , 27, 60-68. [本文引用: 3]
ScheepensJF, FreiES, St?cklinJ (2010). Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes , 164, 141-150. URLPMID:20461412 [本文引用: 1]
ShahS, ShresthaKK, ScheideggerC (2019). Variation in plant functional traits along altitudinal gradient and land use types in Sagarmatha National Park and buffer zone, Nepal , 10, 595-614. [本文引用: 1]
SterckFJ, vanGelder HA, PoorterL (2006). Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest , 94, 1192-1200. [本文引用: 1]
TangQQ, HuangYT, DingY, ZangRG (2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests Biodiversity Science, 24, 262-270. [本文引用: 1]
ViolleC, NavasML, VileD, KazakouE, FortunelC, HummelI, GarnierE (2007). Let the concept of trait be functional! , 116, 882-892. [本文引用: 1]
WangCY, XiaoHG, LiuJ, ZhouJW (2017a). Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans , 28, 473-479. [本文引用: 1]
WangM, WanPC, GuoJC, XuJS, ChaiYF, YueM (2017b). Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China , 63, 25-32. [本文引用: 3]
WangY, WangJ, LaiL, JiangL, ZhuangP, ZhangL, ZhengY, BaskinJM, BaskinCC (2014). Geographic variation in seed traits within and among forty-two species of Rhododendron(Ericaceae) on the Tibetan Plateau: relationships with altitude, habitat, plant height, and phylogeny , 4, 1913-1923. DOI:10.1002/ece3.1067URLPMID:24963385 [本文引用: 1] Seed mass and morphology are plant life history traits that influence seed dispersal ability, seeding establishment success, and population distribution pattern. Southeastern Tibet is a diversity center for Rhododendron species, which are distributed from a few hundred meters to 5500 m above sea level. We examined intra- and interspecific variation in seed mass and morphology in relation to altitude, habitat, plant height, and phylogeny. Seed mass decreased significantly with the increasing altitude and increased significantly with increasing plant height among populations of the same species. Seed mass differed significantly among species and subsections, but not among sections and subgenera. Seed length, width, surface area, and wing length were significantly negative correlated with altitude and significantly positive correlated with plant height. Further, these traits differed significantly among habitats and varied among species and subsection, but not among sections and subgenera. Species at low elevation had larger seeds with larger wings, and seeds became smaller and the wings of seeds tended to be smaller with the increasing altitude. Morphology of the seed varied from flat round to long cylindrical with increasing altitude. We suggest that seed mass and morphology have evolved as a result of both long-term adaptation and constraints of the taxonomic group over their long evolutionary history.
WestobyM, ReichPB, WrightIJ (2013). Understanding ecological variation across species: area-based vs mass-based expression of leaf traits , 199, 322-323. URLPMID:23692294 [本文引用: 1]
WrightIJ, AckerlyDD, BongersF, HarmsKE, Ibarra-ManriquezG, Martinez-RamosM, MazerSJ, Muller-LandauHC, PazH, PitmanNCA, PoorterL, SilmanMR, VriesendorpCF, WebbCO, WestobyM, WrightSJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests , 99, 1003-1015. DOI:10.1093/aob/mcl066URLPMID:16595553 [本文引用: 1] BACKGROUND AND AIMS: When ecologically important plant traits are correlated they may be said to constitute an ecological 'strategy' dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. METHODS: Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. 'Phylogenetic' analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. KEY RESULTS: The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. CONCLUSIONS: The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD-leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics.
XiangL, ChenFQ, GengMY, WangYB, LüK, YangSL (2019). Response of leaf functional traits of shrubs to altitude in Rhododendron latoucheae communities in Mt. Jinggangshan, Jiangxi, China Journal of Tropical and Subtropical Botany, 27, 129-138. [本文引用: 2]
YangDM, ZhangJJ, ZhouD, QianMJ, ZhengY, JinLM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review Chinese Journal of Ecology, 31, 702-713. [本文引用: 2]
YangWG, ZiHB, ChenKY, AdeLJ, HuL, WangX, WangGX, WangCT (2019). Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China Chinese Journal of Plant Ecology, 43, 352-364. [本文引用: 1]
ZhongQL, LiuLB, XuX, YangY, GuoYM, XuHY, CaiXL, NiJ (2018). Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China Chinese Journal of Plant Ecology, 42, 562-572. [本文引用: 1]
The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability 1 2015
... 本文发现, 20种灌木植物的9个枝叶功能性状在林下灌木层、低山灌丛与山顶灌丛这3种不同生境下均存在显著差异, 林下灌木的LA和SLA均大于2种灌丛灌木, 而LTD、LDMC和TTD均小于2种灌丛灌木, TDMC也远小于低山灌丛而略大于山顶灌丛灌木(图1), 反映了灌木对不同生境的资源权衡策略存在差异.由于森林群落林下灌木所处环境比灌丛灌木光照较少, 其叶面积与比叶面积较大, 有利于林下灌木对光的捕获和吸收; 较低的叶组织密度有利于CO2在细胞间隙中移动(Gratani & Bombelli, 2001), 净光合速率较高(据测定, 林下灌木的净光合速率平均值为4.02 μmol·m-2·s-1, 灌丛灌木平均值为3.74 μmol·m-2·s-1), 从而降低光照不足对其生长的影响, 同时较好保存体内的营养(Li et al., 2014; Rolhauser & Pucheta, 2016).因此, 林下灌木属于“快速投资-收益”型.另一方面, 较低的叶片干物质含量、叶片厚度、叶与小枝组织密度以及树皮厚度等, 体现了林下灌木快速生长和养分维护间的平衡(Chave et al., 2009; 何念鹏等, 2018; Luo et al., 2019).叶片大小通常随小枝组织密度的减小而增大(Wright et al., 2007), 二者之间的权衡关系由植物水力学驱动, 较大叶片可以吸收更多养分, 因此具有较大叶片的物种可以更快地进行体积生长, 并具有较低的木材密度(Chave et al., 2009; Wang et al., 2017b).森林群落物种竞争强度大于灌丛, 林下灌木在荫蔽环境下会改变其形态以促进节间伸长和减少分枝, 其小枝组织密度小, 虽然抗机械强度能力弱, 但相对生长速率高, 将更多资源供给横向枝, 以获取更多光照来促进生长(Sterck et al., 2006; Dlugos et al., 2015; 龙嘉翼等, 2018).因此, 林下灌木形成较大LA、SLA和较小LTD、LDMC、TTD等功能性状组合以增强光资源获取、吸收更多养分和增大光合速率而快速生长, 从而适应光照少、竞争大的林下环境, 是典型的资源获取型策略. ...
金华北山南坡主要植被类型的群落特征 1 2019
... 在2017和2018年夏季, 在金华北山南坡选择针叶林、针阔混交林、常绿落叶阔叶混交林、常绿阔叶林、低山灌丛和山顶灌丛6种植被类型, 共设置24个固定样地(表1), 其中森林样地面积分别为30 m ′ 30 m, 12个阔叶林和针阔混交林均为次生林, 9个针叶林均为人工林; 1个低山灌丛样地面积为30 m ′ 10 m, 是阔叶林砍伐后的次生性植被; 2个山顶灌丛样地面积分别为10 m ′ 20 m, 为山顶处干扰相对较小的次生性植被.对所有森林和灌丛样地中胸径(DBH) ≥ 1 cm, 以及灌丛样地中DBH < 1 cm, 高度≥10 cm的木本植物挂铝牌标记, 并记录相应的种名、胸径(灌木为基径)、树高、冠幅以及相对坐标等指标.根据相对多度、相对频度和相对优势度计算灌木的重要值(樊海东等, 2019). ...
金华北山南坡主要植被类型的群落特征 1 2019
... 在2017和2018年夏季, 在金华北山南坡选择针叶林、针阔混交林、常绿落叶阔叶混交林、常绿阔叶林、低山灌丛和山顶灌丛6种植被类型, 共设置24个固定样地(表1), 其中森林样地面积分别为30 m ′ 30 m, 12个阔叶林和针阔混交林均为次生林, 9个针叶林均为人工林; 1个低山灌丛样地面积为30 m ′ 10 m, 是阔叶林砍伐后的次生性植被; 2个山顶灌丛样地面积分别为10 m ′ 20 m, 为山顶处干扰相对较小的次生性植被.对所有森林和灌丛样地中胸径(DBH) ≥ 1 cm, 以及灌丛样地中DBH < 1 cm, 高度≥10 cm的木本植物挂铝牌标记, 并记录相应的种名、胸径(灌木为基径)、树高、冠幅以及相对坐标等指标.根据相对多度、相对频度和相对优势度计算灌木的重要值(樊海东等, 2019). ...
Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies 1 2013
... 金华北山优势灌木的功能性状主要受到物种、物种和生境交互作用的影响, 其次是生境的作用(表3), 主要表现在本研究的3种叶性状(LA、LTD和LDMC)和4种枝性状(TD、TBT、TTD和TDMC), 其余2种表现不明显.如前所述, 植物性状主要由物种分类地位、生境过滤和资源竞争共同影响(Jung et al., 2010; Auger & Shipley, 2013; Siefert et al., 2015; 唐青青等, 2016).其中, 物种在长期的进化历史中, 采取一系列最佳功能性状组合反映它们对环境变化的响应, 从而使得物种分类地位对植物功能性状产生深远影响, 而且这种影响往往远大于环境因素(Scheepens et al., 2010; 陈文等, 2016).也就是说, 物种分类不同导致植物适应环境策略的不同, 环境和竞争进一步深化了这种策略的差异(Lebrija- Trejos et al., 2010; Fort et al., 2013), 而资源竞争也是生境分化的表现之一.因此, 影响本研究的灌木性状主要是物种和生境及其交叉作用.同一区域内的不同物种共存反映出多种生活策略的稳定组合, 而植物在不同环境下的性状变化也可以降低环境的干扰, 从而促进物种共存, 维持生态系统功能的稳定性(Wang et al., 2017b; 钟巧连等, 2018; Luo et al., 2019). ...
Leaf traits within communities: context may affect the mapping of traits to function 1 2013
Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants 1 2019
... 在植物功能性状研究中, 人们对地带性的植被类型如森林、草原、荒漠、冻原等关注较多, 而对非地带性的灌丛植被以及森林下层的灌木植物关注较少.而在现有的灌木性状研究中, 大多数针对地中海气候下灌木植物的耐火与抗旱性状(Gratani & Bombelli, 2001; Pausas & Bradstock, 2007; de la Riva et al., 2016; de Smedt et al., 2018; Garnier et al., 2019; Nielsen et al., 2019), 以及荒漠灌木的生活对策(Rolhauser & Pucheta, 2016), 较少研究大环境梯度上林下植物的性状变异, 如欧洲(Vanneste et al., 2019)和北美洲(Kumordzi et al., 2019).在我国有限的灌木功能性状与环境响应研究中, 有研究探讨了东部地区灌木性状的纬度格局及其驱动因素(Luo et al., 2019), 以及不同生境如坡向(盘远方等, 2018), 海拔高度(向琳等, 2019), 光照(高景等, 2015), 降水梯度与植被更替(张芯毓, 2018), 以及多因素交互作用(Wang et al., 2014)对灌丛植物性状的影响.人们对森林植被林下灌木的性状研究也较少, 涉及灌木层植物形态性状(Wang et al., 2017b)与化学计量特征(杨文高等, 2019), 不同演替阶段(马小丽, 2014)和林下庇荫环境(龙嘉翼等, 2018)灌木小枝与叶性状的权衡关系, 以及林下灌木不同表型叶性状的差异(Wang et al., 2017a).然而, 灌木性状的研究大都只单独涉及灌丛植被的灌木植物, 或者林下灌木层的灌木性状, 或者都涉及到二者, 但所处地点不一致(Luo et al., 2019), 而把同一地区的林下灌木层灌木与灌丛植被的灌木功能性状进行比较研究, 从而揭示其性状特征的差异, 以及适应和响应环境的生活史策略的不同, 尚未见报道. ...
Functional traits and environmental filtering drive community assembly in a species-rich tropical system 1 2010
... 金华北山优势灌木的功能性状主要受到物种、物种和生境交互作用的影响, 其次是生境的作用(表3), 主要表现在本研究的3种叶性状(LA、LTD和LDMC)和4种枝性状(TD、TBT、TTD和TDMC), 其余2种表现不明显.如前所述, 植物性状主要由物种分类地位、生境过滤和资源竞争共同影响(Jung et al., 2010; Auger & Shipley, 2013; Siefert et al., 2015; 唐青青等, 2016).其中, 物种在长期的进化历史中, 采取一系列最佳功能性状组合反映它们对环境变化的响应, 从而使得物种分类地位对植物功能性状产生深远影响, 而且这种影响往往远大于环境因素(Scheepens et al., 2010; 陈文等, 2016).也就是说, 物种分类不同导致植物适应环境策略的不同, 环境和竞争进一步深化了这种策略的差异(Lebrija- Trejos et al., 2010; Fort et al., 2013), 而资源竞争也是生境分化的表现之一.因此, 影响本研究的灌木性状主要是物种和生境及其交叉作用.同一区域内的不同物种共存反映出多种生活策略的稳定组合, 而植物在不同环境下的性状变化也可以降低环境的干扰, 从而促进物种共存, 维持生态系统功能的稳定性(Wang et al., 2017b; 钟巧连等, 2018; Luo et al., 2019). ...
Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude 1 2008
... 从生活型看, 林下灌木层的常绿灌木比落叶灌木具有较小的LA、SLA、TDMC和TD, 较大的LT、LTD、LDMC和TTD, 而山顶灌丛的常绿灌木比落叶灌木具有较小的SLA、LTD和LDMC, 较大的LT, 其他性状差异不显著(图3).通常来说, 常绿比落叶植物具有低的SLA、低的光合速率和高的养分含量, 冬季不落叶, 叶片厚, 组织密度大, 大部分物质用于构建防御组织以抵御长时间的低温环境; 而落叶灌木叶寿命短, 在短时间积累光合产物满足植物生长需要, 薄的叶片组织可以缩短CO2扩散途径, 提高光合速率(Wright et al., 2004; Li et al., 2008; 杨冬梅等, 2012).本研究同一生境下的研究结果与之一致, 常绿灌木是资源保守型策略, 落叶灌木属资源获取型策略, 但这两种生境下的同一生活型灌木的生活策略又有一定的差异, 山顶灌丛落叶灌木的资源获取能力更强. ...
Assimilative branches and leaves of the desert plant Alhagi sparsifolia Shap. possesses a different adaptation mechanism to shade 1 2014
... 本文发现, 20种灌木植物的9个枝叶功能性状在林下灌木层、低山灌丛与山顶灌丛这3种不同生境下均存在显著差异, 林下灌木的LA和SLA均大于2种灌丛灌木, 而LTD、LDMC和TTD均小于2种灌丛灌木, TDMC也远小于低山灌丛而略大于山顶灌丛灌木(图1), 反映了灌木对不同生境的资源权衡策略存在差异.由于森林群落林下灌木所处环境比灌丛灌木光照较少, 其叶面积与比叶面积较大, 有利于林下灌木对光的捕获和吸收; 较低的叶组织密度有利于CO2在细胞间隙中移动(Gratani & Bombelli, 2001), 净光合速率较高(据测定, 林下灌木的净光合速率平均值为4.02 μmol·m-2·s-1, 灌丛灌木平均值为3.74 μmol·m-2·s-1), 从而降低光照不足对其生长的影响, 同时较好保存体内的营养(Li et al., 2014; Rolhauser & Pucheta, 2016).因此, 林下灌木属于“快速投资-收益”型.另一方面, 较低的叶片干物质含量、叶片厚度、叶与小枝组织密度以及树皮厚度等, 体现了林下灌木快速生长和养分维护间的平衡(Chave et al., 2009; 何念鹏等, 2018; Luo et al., 2019).叶片大小通常随小枝组织密度的减小而增大(Wright et al., 2007), 二者之间的权衡关系由植物水力学驱动, 较大叶片可以吸收更多养分, 因此具有较大叶片的物种可以更快地进行体积生长, 并具有较低的木材密度(Chave et al., 2009; Wang et al., 2017b).森林群落物种竞争强度大于灌丛, 林下灌木在荫蔽环境下会改变其形态以促进节间伸长和减少分枝, 其小枝组织密度小, 虽然抗机械强度能力弱, 但相对生长速率高, 将更多资源供给横向枝, 以获取更多光照来促进生长(Sterck et al., 2006; Dlugos et al., 2015; 龙嘉翼等, 2018).因此, 林下灌木形成较大LA、SLA和较小LTD、LDMC、TTD等功能性状组合以增强光资源获取、吸收更多养分和增大光合速率而快速生长, 从而适应光照少、竞争大的林下环境, 是典型的资源获取型策略. ...
植物功能性状研究进展 3 2015
... 众所周知, 植物功能性状是植物在进化过程中与环境相互作用所形成的, 既响应外界环境的变化, 也影响生态系统过程与功能的一系列形态、解剖、生理、化学等特性(Cornelissen et al., 2003; 孟婷婷等, 2007; Violle et al., 2007; 刘晓娟和马克平, 2015; Kattge et al., 2020).它不仅是了解植物响应和适应环境的生态策略, 把握生态系统过程和功能, 从而有效开展生态系统保护和植被恢复的重要基础, 同时也是预测区域和全球尺度上的环境和干扰变化对生态系统和生物多样性影响的坚实参数, 在当前的生态学研究中处于前沿地位(孟婷婷等, 2007; 刘晓娟和马克平, 2015).在全球与区域尺度上, 科学家探究了植物叶片、茎干和根系性状沿环境梯度的分布格局及其环境机制(Wright et al., 2004; Chave et al., 2009; Díaz et al., 2016; 何念鹏等, 2018), 以及植物叶片氮和磷的生态化学计量学(Tian et al., 2018)和根系功能性状的生态与进化机制(Ma et al., 2018), 还有众多样点水平的性状与生境及其生态对策分析.不同环境中植物功能性状的变异, 以及性状权衡与组合的不同, 反映植物个体及其群落获取环境资源的方式不同, 因此植物采取的生活策略也存在差异.从植物功能性状的角度理解灌木植物的生活史对策, 将有助于进一步发挥灌木植物的生态作用.其中, 植物叶片和小枝性状与植物获取、利用环境资源密切相关, 同时具有取样简单、测定方便的优势, 能直接反映植物适应环境的生活史对策, 因此在植物性状研究中发挥着骨干功能(Kattge et al., 2020). ...
... ; 刘晓娟和马克平, 2015).在全球与区域尺度上, 科学家探究了植物叶片、茎干和根系性状沿环境梯度的分布格局及其环境机制(Wright et al., 2004; Chave et al., 2009; Díaz et al., 2016; 何念鹏等, 2018), 以及植物叶片氮和磷的生态化学计量学(Tian et al., 2018)和根系功能性状的生态与进化机制(Ma et al., 2018), 还有众多样点水平的性状与生境及其生态对策分析.不同环境中植物功能性状的变异, 以及性状权衡与组合的不同, 反映植物个体及其群落获取环境资源的方式不同, 因此植物采取的生活策略也存在差异.从植物功能性状的角度理解灌木植物的生活史对策, 将有助于进一步发挥灌木植物的生态作用.其中, 植物叶片和小枝性状与植物获取、利用环境资源密切相关, 同时具有取样简单、测定方便的优势, 能直接反映植物适应环境的生活史对策, 因此在植物性状研究中发挥着骨干功能(Kattge et al., 2020). ...
Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest 1 2006
... 本文发现, 20种灌木植物的9个枝叶功能性状在林下灌木层、低山灌丛与山顶灌丛这3种不同生境下均存在显著差异, 林下灌木的LA和SLA均大于2种灌丛灌木, 而LTD、LDMC和TTD均小于2种灌丛灌木, TDMC也远小于低山灌丛而略大于山顶灌丛灌木(图1), 反映了灌木对不同生境的资源权衡策略存在差异.由于森林群落林下灌木所处环境比灌丛灌木光照较少, 其叶面积与比叶面积较大, 有利于林下灌木对光的捕获和吸收; 较低的叶组织密度有利于CO2在细胞间隙中移动(Gratani & Bombelli, 2001), 净光合速率较高(据测定, 林下灌木的净光合速率平均值为4.02 μmol·m-2·s-1, 灌丛灌木平均值为3.74 μmol·m-2·s-1), 从而降低光照不足对其生长的影响, 同时较好保存体内的营养(Li et al., 2014; Rolhauser & Pucheta, 2016).因此, 林下灌木属于“快速投资-收益”型.另一方面, 较低的叶片干物质含量、叶片厚度、叶与小枝组织密度以及树皮厚度等, 体现了林下灌木快速生长和养分维护间的平衡(Chave et al., 2009; 何念鹏等, 2018; Luo et al., 2019).叶片大小通常随小枝组织密度的减小而增大(Wright et al., 2007), 二者之间的权衡关系由植物水力学驱动, 较大叶片可以吸收更多养分, 因此具有较大叶片的物种可以更快地进行体积生长, 并具有较低的木材密度(Chave et al., 2009; Wang et al., 2017b).森林群落物种竞争强度大于灌丛, 林下灌木在荫蔽环境下会改变其形态以促进节间伸长和减少分枝, 其小枝组织密度小, 虽然抗机械强度能力弱, 但相对生长速率高, 将更多资源供给横向枝, 以获取更多光照来促进生长(Sterck et al., 2006; Dlugos et al., 2015; 龙嘉翼等, 2018).因此, 林下灌木形成较大LA、SLA和较小LTD、LDMC、TTD等功能性状组合以增强光资源获取、吸收更多养分和增大光合速率而快速生长, 从而适应光照少、竞争大的林下环境, 是典型的资源获取型策略. ...
亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异 1 2016
... 金华北山优势灌木的功能性状主要受到物种、物种和生境交互作用的影响, 其次是生境的作用(表3), 主要表现在本研究的3种叶性状(LA、LTD和LDMC)和4种枝性状(TD、TBT、TTD和TDMC), 其余2种表现不明显.如前所述, 植物性状主要由物种分类地位、生境过滤和资源竞争共同影响(Jung et al., 2010; Auger & Shipley, 2013; Siefert et al., 2015; 唐青青等, 2016).其中, 物种在长期的进化历史中, 采取一系列最佳功能性状组合反映它们对环境变化的响应, 从而使得物种分类地位对植物功能性状产生深远影响, 而且这种影响往往远大于环境因素(Scheepens et al., 2010; 陈文等, 2016).也就是说, 物种分类不同导致植物适应环境策略的不同, 环境和竞争进一步深化了这种策略的差异(Lebrija- Trejos et al., 2010; Fort et al., 2013), 而资源竞争也是生境分化的表现之一.因此, 影响本研究的灌木性状主要是物种和生境及其交叉作用.同一区域内的不同物种共存反映出多种生活策略的稳定组合, 而植物在不同环境下的性状变化也可以降低环境的干扰, 从而促进物种共存, 维持生态系统功能的稳定性(Wang et al., 2017b; 钟巧连等, 2018; Luo et al., 2019). ...
亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异 1 2016
... 金华北山优势灌木的功能性状主要受到物种、物种和生境交互作用的影响, 其次是生境的作用(表3), 主要表现在本研究的3种叶性状(LA、LTD和LDMC)和4种枝性状(TD、TBT、TTD和TDMC), 其余2种表现不明显.如前所述, 植物性状主要由物种分类地位、生境过滤和资源竞争共同影响(Jung et al., 2010; Auger & Shipley, 2013; Siefert et al., 2015; 唐青青等, 2016).其中, 物种在长期的进化历史中, 采取一系列最佳功能性状组合反映它们对环境变化的响应, 从而使得物种分类地位对植物功能性状产生深远影响, 而且这种影响往往远大于环境因素(Scheepens et al., 2010; 陈文等, 2016).也就是说, 物种分类不同导致植物适应环境策略的不同, 环境和竞争进一步深化了这种策略的差异(Lebrija- Trejos et al., 2010; Fort et al., 2013), 而资源竞争也是生境分化的表现之一.因此, 影响本研究的灌木性状主要是物种和生境及其交叉作用.同一区域内的不同物种共存反映出多种生活策略的稳定组合, 而植物在不同环境下的性状变化也可以降低环境的干扰, 从而促进物种共存, 维持生态系统功能的稳定性(Wang et al., 2017b; 钟巧连等, 2018; Luo et al., 2019). ...
Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent 1 2018
... 众所周知, 植物功能性状是植物在进化过程中与环境相互作用所形成的, 既响应外界环境的变化, 也影响生态系统过程与功能的一系列形态、解剖、生理、化学等特性(Cornelissen et al., 2003; 孟婷婷等, 2007; Violle et al., 2007; 刘晓娟和马克平, 2015; Kattge et al., 2020).它不仅是了解植物响应和适应环境的生态策略, 把握生态系统过程和功能, 从而有效开展生态系统保护和植被恢复的重要基础, 同时也是预测区域和全球尺度上的环境和干扰变化对生态系统和生物多样性影响的坚实参数, 在当前的生态学研究中处于前沿地位(孟婷婷等, 2007; 刘晓娟和马克平, 2015).在全球与区域尺度上, 科学家探究了植物叶片、茎干和根系性状沿环境梯度的分布格局及其环境机制(Wright et al., 2004; Chave et al., 2009; Díaz et al., 2016; 何念鹏等, 2018), 以及植物叶片氮和磷的生态化学计量学(Tian et al., 2018)和根系功能性状的生态与进化机制(Ma et al., 2018), 还有众多样点水平的性状与生境及其生态对策分析.不同环境中植物功能性状的变异, 以及性状权衡与组合的不同, 反映植物个体及其群落获取环境资源的方式不同, 因此植物采取的生活策略也存在差异.从植物功能性状的角度理解灌木植物的生活史对策, 将有助于进一步发挥灌木植物的生态作用.其中, 植物叶片和小枝性状与植物获取、利用环境资源密切相关, 同时具有取样简单、测定方便的优势, 能直接反映植物适应环境的生活史对策, 因此在植物性状研究中发挥着骨干功能(Kattge et al., 2020). ...
Functional trait variation of forest understorey plant communities across Europe 1 2019
... 在植物功能性状研究中, 人们对地带性的植被类型如森林、草原、荒漠、冻原等关注较多, 而对非地带性的灌丛植被以及森林下层的灌木植物关注较少.而在现有的灌木性状研究中, 大多数针对地中海气候下灌木植物的耐火与抗旱性状(Gratani & Bombelli, 2001; Pausas & Bradstock, 2007; de la Riva et al., 2016; de Smedt et al., 2018; Garnier et al., 2019; Nielsen et al., 2019), 以及荒漠灌木的生活对策(Rolhauser & Pucheta, 2016), 较少研究大环境梯度上林下植物的性状变异, 如欧洲(Vanneste et al., 2019)和北美洲(Kumordzi et al., 2019).在我国有限的灌木功能性状与环境响应研究中, 有研究探讨了东部地区灌木性状的纬度格局及其驱动因素(Luo et al., 2019), 以及不同生境如坡向(盘远方等, 2018), 海拔高度(向琳等, 2019), 光照(高景等, 2015), 降水梯度与植被更替(张芯毓, 2018), 以及多因素交互作用(Wang et al., 2014)对灌丛植物性状的影响.人们对森林植被林下灌木的性状研究也较少, 涉及灌木层植物形态性状(Wang et al., 2017b)与化学计量特征(杨文高等, 2019), 不同演替阶段(马小丽, 2014)和林下庇荫环境(龙嘉翼等, 2018)灌木小枝与叶性状的权衡关系, 以及林下灌木不同表型叶性状的差异(Wang et al., 2017a).然而, 灌木性状的研究大都只单独涉及灌丛植被的灌木植物, 或者林下灌木层的灌木性状, 或者都涉及到二者, 但所处地点不一致(Luo et al., 2019), 而把同一地区的林下灌木层灌木与灌丛植被的灌木功能性状进行比较研究, 从而揭示其性状特征的差异, 以及适应和响应环境的生活史策略的不同, 尚未见报道. ...
Let the concept of trait be functional! 1 2007
... 众所周知, 植物功能性状是植物在进化过程中与环境相互作用所形成的, 既响应外界环境的变化, 也影响生态系统过程与功能的一系列形态、解剖、生理、化学等特性(Cornelissen et al., 2003; 孟婷婷等, 2007; Violle et al., 2007; 刘晓娟和马克平, 2015; Kattge et al., 2020).它不仅是了解植物响应和适应环境的生态策略, 把握生态系统过程和功能, 从而有效开展生态系统保护和植被恢复的重要基础, 同时也是预测区域和全球尺度上的环境和干扰变化对生态系统和生物多样性影响的坚实参数, 在当前的生态学研究中处于前沿地位(孟婷婷等, 2007; 刘晓娟和马克平, 2015).在全球与区域尺度上, 科学家探究了植物叶片、茎干和根系性状沿环境梯度的分布格局及其环境机制(Wright et al., 2004; Chave et al., 2009; Díaz et al., 2016; 何念鹏等, 2018), 以及植物叶片氮和磷的生态化学计量学(Tian et al., 2018)和根系功能性状的生态与进化机制(Ma et al., 2018), 还有众多样点水平的性状与生境及其生态对策分析.不同环境中植物功能性状的变异, 以及性状权衡与组合的不同, 反映植物个体及其群落获取环境资源的方式不同, 因此植物采取的生活策略也存在差异.从植物功能性状的角度理解灌木植物的生活史对策, 将有助于进一步发挥灌木植物的生态作用.其中, 植物叶片和小枝性状与植物获取、利用环境资源密切相关, 同时具有取样简单、测定方便的优势, 能直接反映植物适应环境的生活史对策, 因此在植物性状研究中发挥着骨干功能(Kattge et al., 2020). ...
Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans 1 2017
... 在植物功能性状研究中, 人们对地带性的植被类型如森林、草原、荒漠、冻原等关注较多, 而对非地带性的灌丛植被以及森林下层的灌木植物关注较少.而在现有的灌木性状研究中, 大多数针对地中海气候下灌木植物的耐火与抗旱性状(Gratani & Bombelli, 2001; Pausas & Bradstock, 2007; de la Riva et al., 2016; de Smedt et al., 2018; Garnier et al., 2019; Nielsen et al., 2019), 以及荒漠灌木的生活对策(Rolhauser & Pucheta, 2016), 较少研究大环境梯度上林下植物的性状变异, 如欧洲(Vanneste et al., 2019)和北美洲(Kumordzi et al., 2019).在我国有限的灌木功能性状与环境响应研究中, 有研究探讨了东部地区灌木性状的纬度格局及其驱动因素(Luo et al., 2019), 以及不同生境如坡向(盘远方等, 2018), 海拔高度(向琳等, 2019), 光照(高景等, 2015), 降水梯度与植被更替(张芯毓, 2018), 以及多因素交互作用(Wang et al., 2014)对灌丛植物性状的影响.人们对森林植被林下灌木的性状研究也较少, 涉及灌木层植物形态性状(Wang et al., 2017b)与化学计量特征(杨文高等, 2019), 不同演替阶段(马小丽, 2014)和林下庇荫环境(龙嘉翼等, 2018)灌木小枝与叶性状的权衡关系, 以及林下灌木不同表型叶性状的差异(Wang et al., 2017a).然而, 灌木性状的研究大都只单独涉及灌丛植被的灌木植物, 或者林下灌木层的灌木性状, 或者都涉及到二者, 但所处地点不一致(Luo et al., 2019), 而把同一地区的林下灌木层灌木与灌丛植被的灌木功能性状进行比较研究, 从而揭示其性状特征的差异, 以及适应和响应环境的生活史策略的不同, 尚未见报道. ...
Relationships among leaf, stem and root traits of the dominant shrubs from four vegetation zones in Shaanxi Province, China 3 2017
... 在植物功能性状研究中, 人们对地带性的植被类型如森林、草原、荒漠、冻原等关注较多, 而对非地带性的灌丛植被以及森林下层的灌木植物关注较少.而在现有的灌木性状研究中, 大多数针对地中海气候下灌木植物的耐火与抗旱性状(Gratani & Bombelli, 2001; Pausas & Bradstock, 2007; de la Riva et al., 2016; de Smedt et al., 2018; Garnier et al., 2019; Nielsen et al., 2019), 以及荒漠灌木的生活对策(Rolhauser & Pucheta, 2016), 较少研究大环境梯度上林下植物的性状变异, 如欧洲(Vanneste et al., 2019)和北美洲(Kumordzi et al., 2019).在我国有限的灌木功能性状与环境响应研究中, 有研究探讨了东部地区灌木性状的纬度格局及其驱动因素(Luo et al., 2019), 以及不同生境如坡向(盘远方等, 2018), 海拔高度(向琳等, 2019), 光照(高景等, 2015), 降水梯度与植被更替(张芯毓, 2018), 以及多因素交互作用(Wang et al., 2014)对灌丛植物性状的影响.人们对森林植被林下灌木的性状研究也较少, 涉及灌木层植物形态性状(Wang et al., 2017b)与化学计量特征(杨文高等, 2019), 不同演替阶段(马小丽, 2014)和林下庇荫环境(龙嘉翼等, 2018)灌木小枝与叶性状的权衡关系, 以及林下灌木不同表型叶性状的差异(Wang et al., 2017a).然而, 灌木性状的研究大都只单独涉及灌丛植被的灌木植物, 或者林下灌木层的灌木性状, 或者都涉及到二者, 但所处地点不一致(Luo et al., 2019), 而把同一地区的林下灌木层灌木与灌丛植被的灌木功能性状进行比较研究, 从而揭示其性状特征的差异, 以及适应和响应环境的生活史策略的不同, 尚未见报道. ...
... 本文发现, 20种灌木植物的9个枝叶功能性状在林下灌木层、低山灌丛与山顶灌丛这3种不同生境下均存在显著差异, 林下灌木的LA和SLA均大于2种灌丛灌木, 而LTD、LDMC和TTD均小于2种灌丛灌木, TDMC也远小于低山灌丛而略大于山顶灌丛灌木(图1), 反映了灌木对不同生境的资源权衡策略存在差异.由于森林群落林下灌木所处环境比灌丛灌木光照较少, 其叶面积与比叶面积较大, 有利于林下灌木对光的捕获和吸收; 较低的叶组织密度有利于CO2在细胞间隙中移动(Gratani & Bombelli, 2001), 净光合速率较高(据测定, 林下灌木的净光合速率平均值为4.02 μmol·m-2·s-1, 灌丛灌木平均值为3.74 μmol·m-2·s-1), 从而降低光照不足对其生长的影响, 同时较好保存体内的营养(Li et al., 2014; Rolhauser & Pucheta, 2016).因此, 林下灌木属于“快速投资-收益”型.另一方面, 较低的叶片干物质含量、叶片厚度、叶与小枝组织密度以及树皮厚度等, 体现了林下灌木快速生长和养分维护间的平衡(Chave et al., 2009; 何念鹏等, 2018; Luo et al., 2019).叶片大小通常随小枝组织密度的减小而增大(Wright et al., 2007), 二者之间的权衡关系由植物水力学驱动, 较大叶片可以吸收更多养分, 因此具有较大叶片的物种可以更快地进行体积生长, 并具有较低的木材密度(Chave et al., 2009; Wang et al., 2017b).森林群落物种竞争强度大于灌丛, 林下灌木在荫蔽环境下会改变其形态以促进节间伸长和减少分枝, 其小枝组织密度小, 虽然抗机械强度能力弱, 但相对生长速率高, 将更多资源供给横向枝, 以获取更多光照来促进生长(Sterck et al., 2006; Dlugos et al., 2015; 龙嘉翼等, 2018).因此, 林下灌木形成较大LA、SLA和较小LTD、LDMC、TTD等功能性状组合以增强光资源获取、吸收更多养分和增大光合速率而快速生长, 从而适应光照少、竞争大的林下环境, 是典型的资源获取型策略. ...
... 金华北山优势灌木的功能性状主要受到物种、物种和生境交互作用的影响, 其次是生境的作用(表3), 主要表现在本研究的3种叶性状(LA、LTD和LDMC)和4种枝性状(TD、TBT、TTD和TDMC), 其余2种表现不明显.如前所述, 植物性状主要由物种分类地位、生境过滤和资源竞争共同影响(Jung et al., 2010; Auger & Shipley, 2013; Siefert et al., 2015; 唐青青等, 2016).其中, 物种在长期的进化历史中, 采取一系列最佳功能性状组合反映它们对环境变化的响应, 从而使得物种分类地位对植物功能性状产生深远影响, 而且这种影响往往远大于环境因素(Scheepens et al., 2010; 陈文等, 2016).也就是说, 物种分类不同导致植物适应环境策略的不同, 环境和竞争进一步深化了这种策略的差异(Lebrija- Trejos et al., 2010; Fort et al., 2013), 而资源竞争也是生境分化的表现之一.因此, 影响本研究的灌木性状主要是物种和生境及其交叉作用.同一区域内的不同物种共存反映出多种生活策略的稳定组合, 而植物在不同环境下的性状变化也可以降低环境的干扰, 从而促进物种共存, 维持生态系统功能的稳定性(Wang et al., 2017b; 钟巧连等, 2018; Luo et al., 2019). ...
Geographic variation in seed traits within and among forty-two species of Rhododendron(Ericaceae) on the Tibetan Plateau: relationships with altitude, habitat, plant height, and phylogeny 1 2014
... 在植物功能性状研究中, 人们对地带性的植被类型如森林、草原、荒漠、冻原等关注较多, 而对非地带性的灌丛植被以及森林下层的灌木植物关注较少.而在现有的灌木性状研究中, 大多数针对地中海气候下灌木植物的耐火与抗旱性状(Gratani & Bombelli, 2001; Pausas & Bradstock, 2007; de la Riva et al., 2016; de Smedt et al., 2018; Garnier et al., 2019; Nielsen et al., 2019), 以及荒漠灌木的生活对策(Rolhauser & Pucheta, 2016), 较少研究大环境梯度上林下植物的性状变异, 如欧洲(Vanneste et al., 2019)和北美洲(Kumordzi et al., 2019).在我国有限的灌木功能性状与环境响应研究中, 有研究探讨了东部地区灌木性状的纬度格局及其驱动因素(Luo et al., 2019), 以及不同生境如坡向(盘远方等, 2018), 海拔高度(向琳等, 2019), 光照(高景等, 2015), 降水梯度与植被更替(张芯毓, 2018), 以及多因素交互作用(Wang et al., 2014)对灌丛植物性状的影响.人们对森林植被林下灌木的性状研究也较少, 涉及灌木层植物形态性状(Wang et al., 2017b)与化学计量特征(杨文高等, 2019), 不同演替阶段(马小丽, 2014)和林下庇荫环境(龙嘉翼等, 2018)灌木小枝与叶性状的权衡关系, 以及林下灌木不同表型叶性状的差异(Wang et al., 2017a).然而, 灌木性状的研究大都只单独涉及灌丛植被的灌木植物, 或者林下灌木层的灌木性状, 或者都涉及到二者, 但所处地点不一致(Luo et al., 2019), 而把同一地区的林下灌木层灌木与灌丛植被的灌木功能性状进行比较研究, 从而揭示其性状特征的差异, 以及适应和响应环境的生活史策略的不同, 尚未见报道. ...
Understanding ecological variation across species: area-based vs mass-based expression of leaf traits 1 2013