Temporal areal changes of wetlands in the lower reaches of the Tarim River and their responses to ecological water conveyance
Liang YU1,2, Jun-Li LI,,1,3,*, An-Ming BAO1,3, Jie BAI1,3, Yue HUANG1,3, Tie LIU1,3, Zhan-Feng SHEN41State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, ürümqi 830011, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, ürümqi 830011, China 4Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
National Key R&D Program of China(2017YFB0504204) CAS Interdisciplinary Innovation Team(JCTD-2019-20) National Natural Science Foundation of China(41671034) National Natural Science Foundation of China(41971375) Tianshan Cedar Talent Project(2018XS11)
Abstract Aims Ecological water conveyance is of great importance for desert riparian wetland ecosystem. However, few studies have been focused on the quantitative evaluation of water conveyance to wetland restoration due to a lack of continous observation data. This paper analyzed the temporal wetland area changes between Yengisu and Alagan in the lower reach of Tarim River based on time series remote sensing data during 2000-2018, and evaluated the effects of ecological water conveyance on wetland restoration, so as to guide the ecological water conveyance and maintain the stability of the desert wetland ecosystem. Methods About 354 Landsat ETM+/TM/OLI, Sentinel 2 images during 2000-2018 were used to map the monthly wetland area changes in the lower reach of Tarim River, then their annual, seasonal and spaital areal changes were analyzed. The correlation between wetland area changes and ecological water conveyance, underground water levels were also evaluated based on Pearson correlation and cross-correlation methods. Important findings The wetland area has steadly increased in the last 19 years. The areal change rate was minor before 2011 while rapidly increased after 2011. The wetland expanded at a high rate during 2011-2013 and 2017-2018. Different ecological water volumes and water conveyance patterns (single channel or dual channel) can explain different areal changing rates at different stages. The correlation analysis between wetland area changes and ecological water volumes showed that the accumulative ecological water volume is the primary reason causing wetland expansion in recent years. In order to maintain a steady improvement of wetland vegetation, more than 350 million square meters of ecological water are conveyed to the downstream of the Tarim River through dual channel. When the groundwater depth is maintained between -5.0- -3.5 m, the wetland vegetation can sustain a good growth condition. Keywords:desert riparian wetlands;time series;ecological water conveyance effect;temporal delay analysis;lower reaches of Tarim River
PDF (2205KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 蔚亮, 李均力, 包安明, 白洁, 黄粤, 刘铁, 沈占锋. 塔里木河下游湿地面积时序变化及对生态输水的响应. 植物生态学报, 2020, 44(6): 616-627. DOI: 10.17521/cjpe.2019.0267 YU Liang, LI Jun-Li, BAO An-Ming, BAI Jie, HUANG Yue, LIU Tie, SHEN Zhan-Feng. Temporal areal changes of wetlands in the lower reaches of the Tarim River and their responses to ecological water conveyance. Chinese Journal of Plant Ecology, 2020, 44(6): 616-627. DOI: 10.17521/cjpe.2019.0267
Fig. 2Temporal distribution of multi-source remote sensing data in the study area of the lower reaches of the Tarim River during 2000-2018. DOY, day of year.
*, p < 0.05; **, p < 0.01; ***, p < 0.001。 Fig. 7Relations between wetland areas and ecological water conveyance volumes of the lower reaches of the Tarim River.
Fig. 8Annual curve (A) and correlation curves (B) between annual maximum wetland area and accumulated ecological water volumes in the lower reaches of the Tarim River.
Table 1 表1 表1塔里木河下游湿地生态输水量及输水方式与湿地变化率的关系 Table 1Relationships between ecological water volumes, conveyance pattern and wetland changing rates in the lower reaches of the Tarim River
年份 Year
单通道输水次数 Water conveyance times by single channel
单通道输水量 Water conveyance volume by single channel (× 108 m3)
双通道输水次数 Water conveyance times by dual channel
双通道输水量 Water conveyance volume by dual channel (× 108 m3)
博孜库勒湿地增长速率 Growth rate of Bozkul wetland area (km2·a-1)
喀尔达依湿地增长速率 Growth rate of Kardayi wetland area (km2·a-1)
Fig. 9Monthly curves between groundwater levels and accumulated water volumes (A), water areas (B), vegetation areas (C) and wetland areas (D) in the lower reaches of the Tarim River.
BaiY, XuHL, ZhangQQ, YeM (2015). Evaluation on ecological water requirement in the lower reaches of Tarim River based on groundwater restoration Acta Ecologica Sinica, 35, 630-640. [本文引用: 1]
ChenMM, LiuJG (2015). Historical trends of wetland areas in the agriculture and pasture interlaced zone: a case study of the Huangqihai Lake Basin in northern China , 318, 168-176. [本文引用: 1]
ChenYN, LiWH, ChenYP, XuCC, ZhangLH (2007). Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River, China Acta Ecologica Sinica, 27, 538-545. [本文引用: 1]
ChenYN, ZilliacusH, LiWH, ZhangHF, ChenYP (2006). Ground-water level affects plant species diversity along the lower reaches of the Tarim River, Western China , 66, 231-246. [本文引用: 1]
ClevelandRB, ClevelandWS, McRaeJE, TerpenningI (1990). STL: a seasonal-trend decomposition procedure based on loess , 6, 3-73. [本文引用: 1]
DingMJ, ZhangYL, LiuLS, WangZF, YangXC (2010). Seasonal time lag response of NDVI to temperature and precipitation change and its spatial characteristics in Tibetan Plateau Progress in Geography, 29, 507-512. [本文引用: 1]
EnzelY, BookmanR, SharonD, GvirtzmanH, DayanU, ZivB, SteinM (2003). Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall , 60, 263-273. [本文引用: 1]
FangQQ, WangGQ, LiuTX, XueBL, AYL (2018). Controls of carbon flux in a semi-arid grassland ecosystem experiencing wetland loss: vegetation patterns and environmental variables , 259, 196-210. [本文引用: 1]
GuoH, HuangY, LiXY, BaoAM, SongY, MengFH (2016). Dynamic changes of fractional vegetation cover along the mainstream of the Tarim River Journal of Desert Research, 36, 1472-1480. [本文引用: 1]
HanatiG, WangGY, ZhangY, LiuQQ, SuLT (2018). Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land Arid Land Geography, 41, 726-733. [本文引用: 2]
HaoXM, ChenYN, LiWH (2009). Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China , 152, 167-177. DOI:10.1007/s10661-008-0305-7URLPMID:18523853 [本文引用: 1] Based on data collected over 2 years of monitoring the lower reaches of the Tarim River, the groundwater table depth was divided into six classes; 0 to 2 m, 2 to 4 m, 4 to 6 m, 6 to 8 m, 8 to 10 m, >10 m. We investigated the vegetation in this area to measure the influence of groundwater table depth on plant diversity and species ecological niche. The results indicated that plant diversity was highest at the 2 to 4 m groundwater table depth, followed by that at 4 to 6 m, and then that at 0 to 2 m. When the groundwater depth dropped to below 6 m, species diversity decreased dramatically, and the slope of Hill's index tended to level off. The ecological niche of the major species in this area initially expanded as the groundwater level dropped. The widest niche appeared at the 4 to 6 m groundwater table depth and gradually narrowed with deepening groundwater. Ecological niche analysis also revealed that the 4 to 6 m groundwater table depth was associated with the lowest degree of niche overlap and the richest variety of species. Our findings indicate that in the lower reaches of the Tarim River, the groundwater table depth must be a minimum of 6 m for vegetation restoration; it should be maintained at 2 to 4 m in the vicinity of the water path, and at 4 to 6 m for the rest of this arid area.
HaoXM, ChenYN, XuCC, LiWH (2008). Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years , 22, 1159-1171. [本文引用: 1]
HaoXM, LiWH (2014). Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China , 186, 7605-7616. [本文引用: 1]
HaoXM, LiWH, ChenYN (2008). Water table and the desert riparian forest community in the lower reaches of Tarim River, China Journal of Plant Ecology (Chinese Version), 32, 838-847. [本文引用: 2]
HuangY, BaoAM, WangSF, WangYQ, DuanYB (2013). Eco-environmental change in the lower Tarim River under the influence of intermittent water transport Acta Geographica Sinica, 68, 1251-1262. [本文引用: 3]
JenkinsKM, BoultonAJ, RyderDS (2005). A common parched future? Research and management of Australian arid-zone floodplain wetlands , 552, 57-73. [本文引用: 1]
JiF, MaYJ, FanZL (2001). Soil water regime inPopulus euphratica forest on the Tarim River Alluvial Plain Acta Phytoecologica Sinica, 25, 17-21. [本文引用: 1]
JiangPH, ChengL, LiMC, ZhaoRF, HuangQH (2014). Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: a case study of the middle reaches of the Heihe River, China , 46, 240-252. [本文引用: 1]
JiapaerGL, ChenX, BaoAM (2009). Coverage extraction and up-scaling of sparse desert vegetation in arid area Chinese Journal of Applied Ecology, 20, 2925-2934. URLPMID:20353058 [本文引用: 1] Five kinds of remote sensing inversion models, i.e., linear spectral un-mixing model, sub-pixel un-mixing model, maximal gradient difference model, and two modified maximal gradient difference models, were used to derive f(c) from remote sensing data, and the results were compared with those measured in field, aimed to select appropriate model for deriving the data of the coverage of sparse desert vegetation in arid area. The virtual multi-scale coverage images were generated by using the simple mean scale extending method to verify the inversion information from MODIS data. It was shown that linear un-mixing spectral model had a higher precision than the other models, being applicable for deriving the data of the coverage of sparse desert vegetation, but the selection of end member was rather difficult and affected the application of the model. Sub-pixel un-mixing model was universal, high precision could be obtained based on finely detailed vegetation map, but needed to measure lots of parameters. Maximal gradient difference model was simple and easy to perform, by which, the values of the coverage of crops and bare land predicted with the original model were close to the field-measured results, but the values of the coverage of sparse vegetation were underestimated. The results predicted by the modified three-band maximal gradient difference models were close to the field-measured values, and the inversed results of vegetation coverage under different scales were ideal, indicating that these models were reliable to effectively extract the information of the coverage of sparse vegetation in arid area. [ 古丽?加帕尔, 陈曦, 包安明 (2009). 干旱区荒漠稀疏植被覆盖度提取及尺度扩展效应 , 20, 2925-2934.] PMID:20353058 [本文引用: 1]
KleinI, DietzAJ, GessnerU, GalayevaA, MyrzakhmetovA, KuenzerC (2014). Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data , 26, 335-349. [本文引用: 1]
LiLJ, ZhangXQ, ChenCQ, ShenMY (2018). Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years Arid Land Geography, 41, 238-247. [本文引用: 5]
LiX, ZhaoLX, HanWJ, FaouziB, WashayaP, ZhangXB, JinHZ, WuCQ (2018). Evaluating Algeria’s social and economic development using a series of night-time light images between 1992 to 2012 , 39, 9228-9248. [本文引用: 1]
LiangKY (1987). Application of remote sensing technology in Xinjiang Institute of Geography, Chinese Academy of Sciences Arid Land Geography, 10, 26-27. [本文引用: 2]
MicklinPP (1988). Desiccation of the Aral Sea: a water management disaster in the Soviet Union , 241, 1170-1176. [本文引用: 1]
PetusC, LewisM, WhiteD (2013). Monitoring temporal dynamics of Great Artesian Basin wetland vegetation, Australia, using MODIS NDVI , 34, 41-52. DOI:10.1016/j.ecolind.2013.04.009URL [本文引用: 1]
ShenH, AbuduwailiJ, MaL, SamatA (2019). Remote sensing- based land surface change identification and prediction in the Aral Sea bed, Central Asia , 16, 2031-2046. DOI:10.1007/s13762-018-1801-0URL [本文引用: 1]
T?yr?J, PietroniroA (2005). Towards operational monitoring of a northern wetland using geomatics-based techniques , 97, 174-191. [本文引用: 1]
WangXY, PengSZ, XuHL, LingHB, YueJS (2019). Assessment of ecological service value based on biomass ofPopulus euphratica in the lower reaches of the Tarim River Acta Ecologica Sinica, 39, 1441-1451. [本文引用: 1]
WangZC (2010). The changes of Lop Nur Lake and the disappearance of Loulan , 2, 295-303. [本文引用: 1]
XieZY, HueteA, MaXL, Restrepo-CoupeN, DevadasR, ClarkeK, LewisM (2016). Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes , 543, 818-831. [本文引用: 1]
XuHL, SongYD, WangQ, AiM (2004). The effect of groundwater level on vegetation in the middle and lower reaches of the Traim River, Xinjiang, China Acta Phytoecologica Sinica, 28, 400-405. [本文引用: 1]
XuHL, YeM, LiJM (2009). The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River , 58, 1749-1755. [本文引用: 1]
XuHL, YeM, SongYD, ChenYN (2007). The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower tarim river , 131, 37-48. DOI:10.1007/s10661-006-9455-7URLPMID:17225962 [本文引用: 2] This paper takes the ecological water conveyance project (EWCP) that transfers water from the Bosten Lake, to Daxihaizi Reservoir, and finally to the Taitema Lake as a case study to analyze the dynamic change of the groundwater depth, the vegetation responses to the elevation of the groundwater depth as well as the relationship between the groundwater depth and the natural vegetation. The results from many years' monitoring in field indicate: (1) the groundwater depth has been elevating gradually with the increase in the times of watering and the elevation range has been expanding continuously in the lower reaches of Tarim River. Correspondingly, the natural vegetation has a favorable response to the elevation of the groundwater depth. The change of the natural vegetation has accordance with that of the groundwater depth. Such facts not only show that groundwater is a key factor to the growth of the native vegetation but also prove it is feasible that the degraded ecosystem can be restored and protected by the EWCP; (2) the results of analysis of the spatial-temporal response of the natural vegetation to watering reveals that the beneficial influence of the EWCP on the ecosystem in the lower Tarim River is a long-term process; (3) in terms of the function and structure of ecosystem after watering in the lower reaches of Tarim River, the EWCP does not still reach the goal of ecological restoration at a large spatial scale at present. Based on such monitoring results, some countermeasures and suggestions for the future restoration strategy are proposed so as to provide a theoretical basis for restoring and protecting the ecosystem in Tarim River, and meanwhile it can also provide some scientific references for implementing the similar ecological projects in other areas.
YeZX, ChenYN, LiWH, YanY (2009). Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China , 149, 9-17. URLPMID:18274873 [本文引用: 2]
YinLK, LiT (2005). Interspecific relationship analysis of desert riparian forest plant communities in the middle and lower reaches of the Tarim River Acta Phytoecologica Sinica, 29, 226-234. [本文引用: 1]
ZhaoRF, ChenYN, ZhouHR, LiYQ, QianYB, ZhangLH (2009). Assessment of wetland fragmentation in the Tarim River basin, western China , 57, 455-464. [本文引用: 1]
ZhaoRF, XieZL, ZhangLH, ZhuW, LiJ, LiangD (2015). Assessment of wetland fragmentation in the middle reaches of the Heihe River by the type change tracker model , 7, 177-188. [本文引用: 1]
ZhaoRF, ZhouHR, XiaoDN, QianYB, ZhouKF (2006). Changes of wetland landscape pattern in the middle and lower reaches of the Tarim River Acta Ecologica Sinica, 26, 3470-3478. [本文引用: 2]
ZhuCM, LiJL, ZhangX, LuoJC (2014). Wetlands information automatic extraction from high resolution remote sensing imagery based on object-oriented technology Bulletin of Surveying and Mapping, (10), 23-28. [本文引用: 1]
ZhuXC, YuanGF, ShaoMA, YiXB, DuT (2015). Spatial pattern of riparian vegetation in desert of the lower Tarim River basin Chinese Journal of Plant Ecology, 39, 1053-1061. [本文引用: 1]
... 为定量描述湿地面积与生态输水量之间的关系, 本文对湿地面积与生态输水量进行Pearson相关分析.另外, 地下水埋深是干旱区植被生长的关键因子( Xu et al., 2007; Ye et al., 2009), 为了探求地下水对湿地变化的影响, 采用互相关系数分析月度湿地面积与月度地下水曲线的时滞相关关系(丁明军等, 2010; Li et al., 2018), 具体计算方法为: ...
青藏高原植被覆盖对水热条件年内变化的响应及其空间特征 1 2010
... 为定量描述湿地面积与生态输水量之间的关系, 本文对湿地面积与生态输水量进行Pearson相关分析.另外, 地下水埋深是干旱区植被生长的关键因子( Xu et al., 2007; Ye et al., 2009), 为了探求地下水对湿地变化的影响, 采用互相关系数分析月度湿地面积与月度地下水曲线的时滞相关关系(丁明军等, 2010; Li et al., 2018), 具体计算方法为: ...
Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall 1 2003
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
Controls of carbon flux in a semi-arid grassland ecosystem experiencing wetland loss: vegetation patterns and environmental variables 1 2018
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China 1 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years 1 2008
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China 1 2014
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
新疆塔里木河下游荒漠河岸(林)植被合理生态水位 2 2008
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: a case study of the middle reaches of the Heihe River, China 1 2014
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
干旱区荒漠稀疏植被覆盖度提取及尺度扩展效应 1 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
干旱区荒漠稀疏植被覆盖度提取及尺度扩展效应 1 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data 1 2014
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
近20 a塔里木河下游输水对生态环境的影响 5 2018
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
Evaluating Algeria’s social and economic development using a series of night-time light images between 1992 to 2012 1 2018
... 为定量描述湿地面积与生态输水量之间的关系, 本文对湿地面积与生态输水量进行Pearson相关分析.另外, 地下水埋深是干旱区植被生长的关键因子( Xu et al., 2007; Ye et al., 2009), 为了探求地下水对湿地变化的影响, 采用互相关系数分析月度湿地面积与月度地下水曲线的时滞相关关系(丁明军等, 2010; Li et al., 2018), 具体计算方法为: ...
新疆地理所遥感技术应用研究 2 1987
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
基于生物量的塔里木河下游胡杨(Populus euphratica)生态服务价值评估 1 2019
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
The changes of Lop Nur Lake and the disappearance of Loulan 1 2010
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes 1 2016
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
塔里木河中下游地区不同地下水位对植被的影响 1 2004
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
塔里木河中下游地区不同地下水位对植被的影响 1 2004
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River 1 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower tarim river 2 2007
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
... 为定量描述湿地面积与生态输水量之间的关系, 本文对湿地面积与生态输水量进行Pearson相关分析.另外, 地下水埋深是干旱区植被生长的关键因子( Xu et al., 2007; Ye et al., 2009), 为了探求地下水对湿地变化的影响, 采用互相关系数分析月度湿地面积与月度地下水曲线的时滞相关关系(丁明军等, 2010; Li et al., 2018), 具体计算方法为: ...
Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China 2 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
... 为定量描述湿地面积与生态输水量之间的关系, 本文对湿地面积与生态输水量进行Pearson相关分析.另外, 地下水埋深是干旱区植被生长的关键因子( Xu et al., 2007; Ye et al., 2009), 为了探求地下水对湿地变化的影响, 采用互相关系数分析月度湿地面积与月度地下水曲线的时滞相关关系(丁明军等, 2010; Li et al., 2018), 具体计算方法为: ...
塔里木河中下游地区荒漠河岸林群落种间关系分析 1 2005
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
塔里木河中下游地区荒漠河岸林群落种间关系分析 1 2005
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
Assessment of wetland fragmentation in the Tarim River basin, western China 1 2009
... 自塔里木河下游生态输水工程实施以来, 不少****分别从生物多样性(尹林克和李涛, 2005; Chen et al., 2006; Hao et al., 2009), 植被长势(Xu et al., 2007; Hao & Li, 2014), 地下水埋深(徐海量等, 2004; 陈亚宁等, 2007; 郝兴明等, 2008; Xu et al., 2009; Ye et al., 2009)等方面评估了塔里木河下游生态修复情况.研究表明生态输水后地下水位的恢复是下游生态系统恢复的关键, 不同输水量、地下水位对植被长势和生物量增加具有较大的差异.作为湿地植被调查和动态监测的重要手段, 不少****利用多源、多时相遥感技术分析塔里木河流域的湿地景观格局变化(Zhao et al., 2009; 刘洪霞等, 2019)和时空变化特征(黄粤等, 2013), 并分别从植被类型与结构变化(朱绪超等, 2015), 生态价值评估(王希义等, 2019), 生态用水保障(白元等, 2015)等方面评估了输水工程的生态效应.然而, 塔里木河下游河岸带湿地植被稀疏、植被覆盖度低, 中低分分辨率遥感时序数据难以识别和监测干旱区河岸带稀疏植被的变化(古丽?加帕尔等, 2009).另外, 受生态输水和地下水水位变化的影响(古力米热?哈那提等, 2018), 湿地的季节性变化和年度差异都比较显著, 少数几期的中高分辨率遥感数据缺乏时序连续性, 难以描述干旱区湿地的周期性、季节性变化特征.为了定量评估塔里木河下游河岸带湿地变化与生态输水量和地下水位的关系, 获取中高分辨率遥感密集时序的湿地面积信息就成为生态输水效应评估的关键. ...
Assessment of wetland fragmentation in the middle reaches of the Heihe River by the type change tracker model 1 2015
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...
塔里木河中下游地区湿地景观格局变化 2 2006
... 湿地是干旱区的重要景观, 在维持区域生态平衡、保护生物多样性方面具有不可替代的作用(周华荣, 2005).近几十年来, 受气温升高、过度放牧、农业灌溉引水增加的影响, 干旱区湿地出现了不同程度的萎缩乃至消亡等现象, 湿地的生态功能也逐渐丧失(Petus et al., 2013; Jiang et al., 2014; Chen & Liu, 2015; Zhao et al., 2015; Xie et al., 2016; Fang et al., 2018), 其中以咸海和塔里木河下游的湿地生态系统退化最为显著(Micklin, 1988; Hao et al., 2008; Shen et al., 2019).干旱区湿地生态退化过程及成因分析、湿地生态修复及治理已受到国内外****的广泛关注(Enzel et al., 2003; Jenkins et al., 2005; Wang, 2010; Klein et al., 2014).英苏至阿拉干之间的河岸带湿地是塔里木河下游最重要的一个湿地(梁匡一, 1987), 在维系极端干旱区的荒漠生态系统等方面具有重要作用.近60年来, 在气候变化和人类活动的干扰下, 塔里木河下游河道断流、地下水下降, 湿地一度消失(赵锐锋等, 2006); 2000年以来, 塔里木河流域管理局先后18次对塔里木河下游河道连续生态输水, 下游河岸带湿地和台特玛湖得到了一定程度的恢复(李丽君等, 2018).开展塔里木河下游湿地生态恢复评估, 及时了解和掌握塔里木河下游湿地的变化趋势和生态修复过程, 对认识该区域湿地演变过程与机理、评估下游生态环境改善状况等具有重要意义. ...