A review of influences of land use and land cover change on ecosystems
BAI Edith,1,2,3,*, Bing XUE31Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun 130024, China 2School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; and 3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Abstract With the growth of human population and the development of human society, land use and land cover change (LUCC) is inevitable. LUCC not only has a far-reaching impact on the elements, structure and functions of ecosystems, but also has a feedback effect on global climate change. Scientific research has been carried out on the processes of land use change, the driving mechanisms, and the possible ecological and environmental effects in various aspects. This paper reviews the research progress on the impacts of land use change on climate, soil, biogeochemical cycle, biodiversity and regional ecological environment, and puts forward the prospects for the frontier research. With the continuous development of new technologies, scholars will focus more on the prediction of the future development, rationality and adaptability of LUCC in the context of future global change, providing basic information and theoretical basis for sustainable development. Keywords:land use change;land cover change;biogeophysics;biogeochemistry;eco-environmental effects;climate change
LUCC会影响人类生存与发展的自然基础要素, 比如大气、区域气候、土壤、植被、水资源与生物等, 进而影响生物地球化学循环、能量交换、水分循环、土壤侵蚀和堆积等陆地主要生态过程。LUCC可能改变陆地生态系统的生物多样性、植物和动物的种群动态、初级生产力等, 对局地、区域及全球气候等产生广泛而深远的影响, 与全球的气候变化、生物多样性的减少、生态环境演变以及人类与环境之间相互作用的可持续性等密切相关(Hurtt et al., 2011; Lambin & Meyfroidt, 2011; Seto et al., 2012)。以“land use and land cover change”为关键词在Web of Science进行文献搜索, 发现2000年以前的文献较少, 2000年以后呈逐年增长趋势, 并在生态学、环境科学、生物多样性、农学、地理学、地质学、林学、气象学、地球物理科学、草学等研究方向均有相关论文(图1)。我国关于LUCC的研究起步较晚, 2010年后论文数量显著增加, 但占全球论文总量的比例仍较少(图1)。2000年以来的高被引论文的研究主题主要集中在全球LUCC的高分辨数据库以及LUCC对气候、碳循环以及生物多样性等影响方面(表1)。
图1
新窗口打开|下载原图ZIP|生成PPT 图12000-2019年发表的全球和中国的土地利用和土地覆盖变化相关文献数量变化(A)及其主要分布领域(B)。以“land use and land cover change”为关键词在Web of Science搜索而得, 截止时间为2019年11月。
Fig. 1The number of papers published from 2000 to 2019 in China and world (A) and the main subject areas of these publications (B). Based on searching on Web of Science using keyword “land use and land cover change”.
Table 1 表1 表12000年以来土地利用和土地覆盖变化相关研究10篇重要的高被引论文 Table 1Ten highly cited publications in the field of land use and land cover change since 2000
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
AdriantoHA, SpracklenDV, ArnoldSR (2019). Relationship between fire and forest cover loss in Riau Province, Indonesia Between 2001 and 2012 , 10, 889. DOI: 10.3390/f10100889. [本文引用: 1]
BatemanIJ, HarwoodAR, MaceGM, WatsonRT, AbsonDJ, AndrewsB, BinnerA, CroweA, DayBH, DugdaleS, FezziC, FodenJ, HadleyD, Haines-YoungR, HulmeM, KontoleonA, LovettAA, MundayP, PascualU, PatersonJ, PerinoG, SenA, SiriwardenaG, van SoestD, TermansenM (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom , 341, 45-50. [本文引用: 1]
BonfilsC, LobellD (2007). Empirical evidence for a recent slowdown in irrigation-induced cooling , 104, 13582-13587. [本文引用: 1]
BridghamSD, Cadillo-QuirozH, KellerJK, ZhuangQ (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales , 19, 1325-1346. [本文引用: 1]
D’AlmeidaC, V?r?smartyCJ, HurttGC, MarengoJA, DingmanSL, KeimBD (2007). The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution , 27, 633-647. [本文引用: 1]
DevarajuN, BalaG, ModakA (2015). Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects , 112, 3257-3262. [本文引用: 1]
EllisEC, GoldewijkKK, SiebertS, LightmanD, RamankuttyN (2010). Anthropogenic transformation of the biomes, 1700 to 2000 , 19, 589-606. [本文引用: 1]
FalcucciA, MaioranoL, BoitaniL (2007). Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation , 22, 617-631. [本文引用: 1]
FallS, DiffenbaughNS, NiyogiD, PielkeRA, RochonG (2010). Temperature and equivalent temperature over the United States (1979-2005) , 30, 2045-2054. [本文引用: 1]
FindellKL, PitmanAJ, EnglandMH, PegionPJ (2009). Regional and global impacts of land cover change and sea surface temperature anomalies , 22, 3248-3269. [本文引用: 1]
GaoYZ, HanXG, WangSP (2004). The effects of grazing on grassland soils Acta Ecologica Sinica, 24, 790-797. [本文引用: 1]
GoldewijkKK (2001). Estimating global land use change over the past 300 years: the HYDE Database , 15, 417-433. [本文引用: 2]
GrimmNB, ArrowsmithJR, EisingerC, HeffernanJ, MacleodA, LewisDB, PrashadL, RychenerT, RoachWJ, SheibleyRW (2004). Effects of urbanization on nutrient biogeochemistry of aridland streams//Defries RS, Asner GP, Houghton RA. Ecosystems and Land Use Change . 129-146. [本文引用: 1]
Hergoualc’hK, VerchotLV (2011). Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review , 25, GB2001. DOI: 10.1029/2009GB003718. [本文引用: 1]
HoughtonRA, HouseJI, PongratzJ, van der WerfGR, DeFriesRS, HansenMC, Le QuereC, RamankuttyN (2012). Carbon emissions from land use and land-cover change , 9, 5125-5142. [本文引用: 2]
HoughtonRA, NassikasAA (2017). Global and regional fluxes of carbon from land use and land cover change 1850-2015 , 31, 456-472. [本文引用: 5]
HoultonBZ, MarkleinAR, BaiE (2015). Representation of nitrogen in climate change forecasts , 5, 398-401. [本文引用: 1]
HuangY, SunW, ZhangW, YuY, SuY, SongC (2010). Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect , 16, 680-695. [本文引用: 1]
HurttGC, ChiniLP, FrolkingS, BettsRA, FeddemaJ, FischerG, FiskJP, HibbardK, HoughtonRA, JanetosA, JonesCD, KindermannG, KinoshitaT, GoldewijkKK, RiahiK, ShevliakovaE, SmithS, StehfestE, ThomsonA, ThorntonP, van VuurenDP, WangYP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 109, 117-161. [本文引用: 2]
KarlTR, GleasonBE, MenneMJ, McMahonJR, HeimRR, BrewerMJ, KunkelKE, ArndtDS, PrivetteJL, BatesJJ, GroismanPY, EasterlingDR (2012). U.S. temperature and drought: recent anomalies and trends , 93, 473-474. [本文引用: 1]
KoschkeL, FurstC, FrankS, MakeschinF (2012). A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning , 21, 54-66. [本文引用: 1]
KuemmerleT, ErbK, MeyfroidtP, MullerD, VerburgPH, EstelS, HaberlH, HostertP, JepsenMR, KastnerT, LeversC, LindnerM, PlutzarC, VerkerkPJ, van der ZandenEH, ReenbergA (2013). Challenges and opportunities in mapping land use intensity globally , 5, 484-493. [本文引用: 1]
LaiL, HuangX, YangH, ChuaiX, ZhangM, ZhongT, ChenZ, ChenY, WangX, ThompsonJR (2016). Carbon emissions from land-use change and management in China between 1990 and 2010 , 2, e1601063. DOI: 10.1126/sciadv.1601063. [本文引用: 1]
LambinEF, GeistHJ, LepersE (2003). Dynamics of land-use and land-cover change in tropical regions , 28, 205-241. [本文引用: 1]
LambinEF, MeyfroidtP (2011). Global land use change, economic globalization, and the looming land scarcity , 108, 3465-3472. [本文引用: 3]
LiGY, YangXD, ShiQR, MaWJ, WangXH, YanER (2014). Effects of clear-felling on soil nutrient pools and nitrogen mineralization and nitrification in Tiantong, Zhejiang Province Chinese Journal of Ecology, 33, 709-715. [本文引用: 1]
LiuJY, ZhangZX, XuXL, KuangWH, ZhouWC, ZhangSW, LiRD, YanCZ, YuDS, WuSX, NanJ (2010). Spatial patterns and driving forces of land use change in China during the early 21st century , 20, 483-494.
LiuML, TianHQ (2010). China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives , 24, 18. [本文引用: 2]
LongHL, LiuYS, WuXQ, DongGH (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China , 26, 322-333. [本文引用: 1]
NaeemS, PragerC, WeeksB, VargaA, FlynnDFB, GriffinK, MuscarellaR, PalmerM, WoodS, SchusterW (2016). Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity , 283, 20153005. DOI: 10.1098/rspb.2015.3005. [本文引用: 1]
NiyogiD, PyleP, LeiM, AryaSP, KishtawalCM, ShepherdM, ChenF, WolfeB (2011). Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region , 50, 1129-1144. [本文引用: 1]
PanPP, YangGS, SuWZ (2012). Progress on effects of land use change on land productivity Progress in Geography, 31, 539-550. [本文引用: 1]
PanditMK, SodhiNS, KohLP, BhaskarA, BrookBW (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya , 16, 153-163. [本文引用: 1]
Pielke RASr., MarlandG, BettsRA, ChaseTN, EastmanJL, NilesJO, NiyogiDDS, RunningSW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases , 360, 1705-1719. [本文引用: 1]
QuesadaB, ArnethA, RobertsonE, de Noblet-DucoudréN (2018). Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle , 13, 064023. DOI: 10.1088/1748-9326/aac4c3. [本文引用: 1]
RamankuttyN, FoleyJA (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992 , 13, 997-1027. [本文引用: 1]
SetoKC, GuneralpB, HutyraLR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools , 109, 16083-16088. DOI:10.1073/pnas.1211658109URLPMID:22988086 [本文引用: 3] Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km(2), nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr(-1)), equal to approximately 5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.
SorooshianS, LiJ, HsuK-l, GaoX (2011). How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data , 116, D06102. DOI: 10.1029/2010JD014775. [本文引用: 1]
TuretskyMR, KotowskaA, BubierJ, DiseNB, CrillP, HornibrookERC, MinkkinenK, MooreTR, Myers-SmithIH, Nyk?nenH, OlefeldtD, RinneJ, SaarnioS, ShurpaliN, TuittilaE-S, WaddingtonJM, WhiteJR, WicklandKP, WilmkingM (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands , 20, 2183-2197. [本文引用: 1]
TurnerBL, LambinEF, ReenbergA (2007). The emergence of land change science for global environmental change and sustainability , 104, 20666-20671. [本文引用: 1]
TurnerDP, KoerperG, GucinskiH, PetersonC, DixonRK (1993). Monitoring global change: comparison of forest cover estimates using remote sensing and inventory approaches , 26, 295-305. [本文引用: 1]
VerburgPH (2006). Simulating feedbacks in land use and land cover change models , 21, 1171-1183. [本文引用: 1]
VerburgPH, VeldkampA, FrescoLO (1999). Simulation of changes in the spatial pattern of land use in China , 19, 211-233. [本文引用: 1]
ViglizzoEF, ParueloJM, LaterraP, JobbágyEG (2012). Ecosystem service evaluation to support land-use policy , 154, 78-84. [本文引用: 1]
WangC, HoultonBZ, DaiW, BaiE (2017). Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000 , 574, 1044-1053. [本文引用: 2]
WuJG, LüJJ (2008). Effects of land use change on the biodiversity Ecology and Environment, 17, 1276-1281. [本文引用: 1]
ZhaoJ, XiaoH, WuG (2000). Comparison analysis on physical and value assessment methods for ecosystems services , 11, 290-292. [本文引用: 2]
LiXB (2000). Study on hydrologic and water resource effects of land use and land cover change: social demand and scientific issues//Committee of Physical Geography, Geographical Society of China. Land Use and Land Cover Change and Its Environmental Effects. Planet Map Press, Beijing. [本文引用: 1]
Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects 1 2015
... LUCC还能够改变地表物理特性如地表反照率和地表能量平衡(潜热和显热)(Findell et al., 2009).例如, 有很多研究发现, 在自然植被向农田转化的地区, 由于反照率的变化, 局部气温发生变化(Fall et al., 2010; Karl et al., 2012); 森林砍伐通过改变反照率和蒸腾, 可能改变热带辐合带的位置, 从而改变整个季风区的降水量(Devaraju et al., 2015); 观测和模拟研究表明, 灌溉农业的引入可以改变区域温度和降水, 如美国加州的农田灌溉使日最高温度降低约4 ℃ (Bonfils & Lobell, 2007), 且灌溉使加州中央谷地农田的温度冷却3-7 ℃, 并使相对湿度增加9%至20% (Sorooshian et al., 2011).此外, 需要注意的是, 城市“热岛效应”相关研究亦趋于细化城市土地利用方式所造成的小尺度微气候变化(Niyogi et al., 2011), 而评估LUCC对气候的影响则需要依赖气候模型, 这也反映了LUCC与其影响结果之间的交互作用及其在定量分析模型上的跨学科趋势.近十几年来, 高分辨率的气候模式(RegCM2, RegCM3, RAMS, RI-EMS, RegCM-NCC, IPCR-RegCM等)虽然得到了广泛应用, 但是这些模式对碳循环和植被动态考虑较少, 因此开发集成气候模式与LUCC的综合模型, 是未来重要的研究方向. ...
Anthropogenic transformation of the biomes, 1700 to 2000 1 2010
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation 1 2007
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Temperature and equivalent temperature over the United States (1979-2005) 1 2010
... LUCC还能够改变地表物理特性如地表反照率和地表能量平衡(潜热和显热)(Findell et al., 2009).例如, 有很多研究发现, 在自然植被向农田转化的地区, 由于反照率的变化, 局部气温发生变化(Fall et al., 2010; Karl et al., 2012); 森林砍伐通过改变反照率和蒸腾, 可能改变热带辐合带的位置, 从而改变整个季风区的降水量(Devaraju et al., 2015); 观测和模拟研究表明, 灌溉农业的引入可以改变区域温度和降水, 如美国加州的农田灌溉使日最高温度降低约4 ℃ (Bonfils & Lobell, 2007), 且灌溉使加州中央谷地农田的温度冷却3-7 ℃, 并使相对湿度增加9%至20% (Sorooshian et al., 2011).此外, 需要注意的是, 城市“热岛效应”相关研究亦趋于细化城市土地利用方式所造成的小尺度微气候变化(Niyogi et al., 2011), 而评估LUCC对气候的影响则需要依赖气候模型, 这也反映了LUCC与其影响结果之间的交互作用及其在定量分析模型上的跨学科趋势.近十几年来, 高分辨率的气候模式(RegCM2, RegCM3, RAMS, RI-EMS, RegCM-NCC, IPCR-RegCM等)虽然得到了广泛应用, 但是这些模式对碳循环和植被动态考虑较少, 因此开发集成气候模式与LUCC的综合模型, 是未来重要的研究方向. ...
Regional and global impacts of land cover change and sea surface temperature anomalies 1 2009
... LUCC还能够改变地表物理特性如地表反照率和地表能量平衡(潜热和显热)(Findell et al., 2009).例如, 有很多研究发现, 在自然植被向农田转化的地区, 由于反照率的变化, 局部气温发生变化(Fall et al., 2010; Karl et al., 2012); 森林砍伐通过改变反照率和蒸腾, 可能改变热带辐合带的位置, 从而改变整个季风区的降水量(Devaraju et al., 2015); 观测和模拟研究表明, 灌溉农业的引入可以改变区域温度和降水, 如美国加州的农田灌溉使日最高温度降低约4 ℃ (Bonfils & Lobell, 2007), 且灌溉使加州中央谷地农田的温度冷却3-7 ℃, 并使相对湿度增加9%至20% (Sorooshian et al., 2011).此外, 需要注意的是, 城市“热岛效应”相关研究亦趋于细化城市土地利用方式所造成的小尺度微气候变化(Niyogi et al., 2011), 而评估LUCC对气候的影响则需要依赖气候模型, 这也反映了LUCC与其影响结果之间的交互作用及其在定量分析模型上的跨学科趋势.近十几年来, 高分辨率的气候模式(RegCM2, RegCM3, RAMS, RI-EMS, RegCM-NCC, IPCR-RegCM等)虽然得到了广泛应用, 但是这些模式对碳循环和植被动态考虑较少, 因此开发集成气候模式与LUCC的综合模型, 是未来重要的研究方向. ...
放牧对草原土壤的影响 1 2004
... 土地利用及土地覆盖变化的重要表征就是地表植被变化, 因此LUCC也直接影响了生物地球化学循环(Grimm et al., 2004), 最为典型的是影响光合作用、呼吸作用等植被相关的碳氮磷等元素循环过程.此外, LUCC对生物地球化学循环的间接影响也逐渐受到关注, 如生长季长度的变化、火发生的频率和时间、城市引起的暴风雨等也可能引起生物地球化学循环的变化(Adrianto et al., 2019).同时, LUCC还可引起或反映元素转移和空间尺度上的再分配, 例如, 从农业区向非农业区出售农产品是较大尺度的元素转移; 放牧利用中牲畜以排泄物的形式在放牧区内部的小尺度元素转移, 或向非放牧区的相对大尺度的转移, 均可影响相关化学元素的循环和时空分布变化(高英志等, 2004). ...
放牧对草原土壤的影响 1 2004
... 土地利用及土地覆盖变化的重要表征就是地表植被变化, 因此LUCC也直接影响了生物地球化学循环(Grimm et al., 2004), 最为典型的是影响光合作用、呼吸作用等植被相关的碳氮磷等元素循环过程.此外, LUCC对生物地球化学循环的间接影响也逐渐受到关注, 如生长季长度的变化、火发生的频率和时间、城市引起的暴风雨等也可能引起生物地球化学循环的变化(Adrianto et al., 2019).同时, LUCC还可引起或反映元素转移和空间尺度上的再分配, 例如, 从农业区向非农业区出售农产品是较大尺度的元素转移; 放牧利用中牲畜以排泄物的形式在放牧区内部的小尺度元素转移, 或向非放牧区的相对大尺度的转移, 均可影响相关化学元素的循环和时空分布变化(高英志等, 2004). ...
Estimating global land use change over the past 300 years: the HYDE Database 2 2001
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Carbon emissions from land use and land-cover change 2 2012
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
... 全球10个地区的土地利用及土地覆被变化造成的碳年净排放量(译自Houghton和Nassikas (2017)). The net carbon emission fluxes caused by land use and land cover change in the ten regions globally (translated from Houghton & Nassikas, 2017)Fig. 2 LUCC对氮循环最为重要的影响在于由自然生态系统转换成农田过程中氮肥的使用.自1860至2000年, 由于自然系统向农田土地利用的转变, 全球农田氮的输入增加了近9倍, 其中氮肥使用由基本为0增加到70 Tg·a-1.当生态系统氮输入增加后, 氮在生态系统中的一系列循环过程, 比如矿化作用、硝化作用、反硝化作用、氨挥发、氮淋失等过程, 均可能发生改变, 这些过程产生的气态氮(如NH3、N2O、NO和HONO)排放量一般会随之增加(Wang et al., 2017).自1860至2000年, 农田排放的NH3、N2O、NO和淋溶氮流失分别增加了2.7、17、20和10倍(Wang et al., 2017).由于N2O是温室气体, 其增加会加剧全球变暖, 而氮淋溶可造成水体的富营养化等问题, 因此目前相关研究主要集中在LUCC对氮的气体排放和淋溶氮的影响, 而忽略了产生气体和淋溶氮的具体氮循环过程和机制, 需要在未来加强这些方面的研究.此外, 在土地利用不变土地覆盖变化的情况下, 氮循环过程也会受到影响, 比如草地的放牧利用方式不变, 利用强度增加后牲畜排泄物的增多可直接加速氮循环(李香真和陈佐忠, 1997).森林择伐一般会降低土壤氮的有效性, 而对氮循环各个过程的速率的影响比较复杂, 需要对多个过程的协同作用进行研究(李光耀等, 2014).研究大尺度LUCC对氮循环的影响通常需要利用模型, 氮循环过程的模型模拟相关工作较碳循环的模型开发利用滞后许多(Houlton et al., 2015), 因此, 对于氮循环过程的测定、模拟以及如何将氮循环过程更为细致地并入土地利用模型都是目前的研究热点. ...
... The net carbon emission fluxes caused by land use and land cover change in the ten regions globally (translated from Houghton & Nassikas, 2017) Fig. 2 LUCC对氮循环最为重要的影响在于由自然生态系统转换成农田过程中氮肥的使用.自1860至2000年, 由于自然系统向农田土地利用的转变, 全球农田氮的输入增加了近9倍, 其中氮肥使用由基本为0增加到70 Tg·a-1.当生态系统氮输入增加后, 氮在生态系统中的一系列循环过程, 比如矿化作用、硝化作用、反硝化作用、氨挥发、氮淋失等过程, 均可能发生改变, 这些过程产生的气态氮(如NH3、N2O、NO和HONO)排放量一般会随之增加(Wang et al., 2017).自1860至2000年, 农田排放的NH3、N2O、NO和淋溶氮流失分别增加了2.7、17、20和10倍(Wang et al., 2017).由于N2O是温室气体, 其增加会加剧全球变暖, 而氮淋溶可造成水体的富营养化等问题, 因此目前相关研究主要集中在LUCC对氮的气体排放和淋溶氮的影响, 而忽略了产生气体和淋溶氮的具体氮循环过程和机制, 需要在未来加强这些方面的研究.此外, 在土地利用不变土地覆盖变化的情况下, 氮循环过程也会受到影响, 比如草地的放牧利用方式不变, 利用强度增加后牲畜排泄物的增多可直接加速氮循环(李香真和陈佐忠, 1997).森林择伐一般会降低土壤氮的有效性, 而对氮循环各个过程的速率的影响比较复杂, 需要对多个过程的协同作用进行研究(李光耀等, 2014).研究大尺度LUCC对氮循环的影响通常需要利用模型, 氮循环过程的模型模拟相关工作较碳循环的模型开发利用滞后许多(Houlton et al., 2015), 因此, 对于氮循环过程的测定、模拟以及如何将氮循环过程更为细致地并入土地利用模型都是目前的研究热点. ...
Representation of nitrogen in climate change forecasts 1 2015
Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands 2 2011
... LUCC会影响人类生存与发展的自然基础要素, 比如大气、区域气候、土壤、植被、水资源与生物等, 进而影响生物地球化学循环、能量交换、水分循环、土壤侵蚀和堆积等陆地主要生态过程.LUCC可能改变陆地生态系统的生物多样性、植物和动物的种群动态、初级生产力等, 对局地、区域及全球气候等产生广泛而深远的影响, 与全球的气候变化、生物多样性的减少、生态环境演变以及人类与环境之间相互作用的可持续性等密切相关(Hurtt et al., 2011; Lambin & Meyfroidt, 2011; Seto et al., 2012).以“land use and land cover change”为关键词在Web of Science进行文献搜索, 发现2000年以前的文献较少, 2000年以后呈逐年增长趋势, 并在生态学、环境科学、生物多样性、农学、地理学、地质学、林学、气象学、地球物理科学、草学等研究方向均有相关论文(图1).我国关于LUCC的研究起步较晚, 2010年后论文数量显著增加, 但占全球论文总量的比例仍较少(图1).2000年以来的高被引论文的研究主题主要集中在全球LUCC的高分辨数据库以及LUCC对气候、碳循环以及生物多样性等影响方面(表1). ...
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
U.S. temperature and drought: recent anomalies and trends 1 2012
... LUCC还能够改变地表物理特性如地表反照率和地表能量平衡(潜热和显热)(Findell et al., 2009).例如, 有很多研究发现, 在自然植被向农田转化的地区, 由于反照率的变化, 局部气温发生变化(Fall et al., 2010; Karl et al., 2012); 森林砍伐通过改变反照率和蒸腾, 可能改变热带辐合带的位置, 从而改变整个季风区的降水量(Devaraju et al., 2015); 观测和模拟研究表明, 灌溉农业的引入可以改变区域温度和降水, 如美国加州的农田灌溉使日最高温度降低约4 ℃ (Bonfils & Lobell, 2007), 且灌溉使加州中央谷地农田的温度冷却3-7 ℃, 并使相对湿度增加9%至20% (Sorooshian et al., 2011).此外, 需要注意的是, 城市“热岛效应”相关研究亦趋于细化城市土地利用方式所造成的小尺度微气候变化(Niyogi et al., 2011), 而评估LUCC对气候的影响则需要依赖气候模型, 这也反映了LUCC与其影响结果之间的交互作用及其在定量分析模型上的跨学科趋势.近十几年来, 高分辨率的气候模式(RegCM2, RegCM3, RAMS, RI-EMS, RegCM-NCC, IPCR-RegCM等)虽然得到了广泛应用, 但是这些模式对碳循环和植被动态考虑较少, 因此开发集成气候模式与LUCC的综合模型, 是未来重要的研究方向. ...
A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning 1 2012
... 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Challenges and opportunities in mapping land use intensity globally 1 2013
... 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Carbon emissions from land-use change and management in China between 1990 and 2010 1 2016
Dynamics of land-use and land-cover change in tropical regions 1 2003
... 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Global land use change, economic globalization, and the looming land scarcity 3 2011
... LUCC会影响人类生存与发展的自然基础要素, 比如大气、区域气候、土壤、植被、水资源与生物等, 进而影响生物地球化学循环、能量交换、水分循环、土壤侵蚀和堆积等陆地主要生态过程.LUCC可能改变陆地生态系统的生物多样性、植物和动物的种群动态、初级生产力等, 对局地、区域及全球气候等产生广泛而深远的影响, 与全球的气候变化、生物多样性的减少、生态环境演变以及人类与环境之间相互作用的可持续性等密切相关(Hurtt et al., 2011; Lambin & Meyfroidt, 2011; Seto et al., 2012).以“land use and land cover change”为关键词在Web of Science进行文献搜索, 发现2000年以前的文献较少, 2000年以后呈逐年增长趋势, 并在生态学、环境科学、生物多样性、农学、地理学、地质学、林学、气象学、地球物理科学、草学等研究方向均有相关论文(图1).我国关于LUCC的研究起步较晚, 2010年后论文数量显著增加, 但占全球论文总量的比例仍较少(图1).2000年以来的高被引论文的研究主题主要集中在全球LUCC的高分辨数据库以及LUCC对气候、碳循环以及生物多样性等影响方面(表1). ...
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
... 《土地利用/土地覆盖变化科学研究计划》结束后的2005年, IGBP和IHDP联合启动了为期10年的Global Land Project (2006-2016), 并在2016年将计划更名为Global Land Programme (https://glp.earth/)继续进行, 简称GLP.GLP计划的重点是关注土地上人类-环境耦合系统变化的动因、结构和性质, 并且评估这些变化对生态系统服务的影响, 从而确定包括气候变化在内的各种干扰下, 哪些人类-环境耦合系统相对脆弱, 而哪些相对可持续发展, 最终寻求促进土地系统研究和全球可持续性解决方案.GLP计划也标志着土地利用与土地覆被变化的研究领域的一体化趋势, 既关注LUCC的驱动-影响-反馈关系及其人文-自然要素, 也关注包括适应行为(Verburg, 2006)、社会-生态系统相互作用以及跨区域远程连接(Lambin & Meyfroidt, 2011)、城-乡远程耦合等(Seto et al., 2012).因此, LUCC研究在区域与全球可持续发展中显得越发重要, 例如许多重要的全球变化挑战与土地资源的使用有关, 从而促使越来越多的****和组织从不同学科或跨学科角度开展LUCC及相关研究. ...
Spatial patterns and driving forces of land use change in China during the early 21st century 2010
China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives 2 2010
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China 1 2009
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity 1 2016
The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases 1 2002
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle 1 2018
Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools 3 2012
... LUCC会影响人类生存与发展的自然基础要素, 比如大气、区域气候、土壤、植被、水资源与生物等, 进而影响生物地球化学循环、能量交换、水分循环、土壤侵蚀和堆积等陆地主要生态过程.LUCC可能改变陆地生态系统的生物多样性、植物和动物的种群动态、初级生产力等, 对局地、区域及全球气候等产生广泛而深远的影响, 与全球的气候变化、生物多样性的减少、生态环境演变以及人类与环境之间相互作用的可持续性等密切相关(Hurtt et al., 2011; Lambin & Meyfroidt, 2011; Seto et al., 2012).以“land use and land cover change”为关键词在Web of Science进行文献搜索, 发现2000年以前的文献较少, 2000年以后呈逐年增长趋势, 并在生态学、环境科学、生物多样性、农学、地理学、地质学、林学、气象学、地球物理科学、草学等研究方向均有相关论文(图1).我国关于LUCC的研究起步较晚, 2010年后论文数量显著增加, 但占全球论文总量的比例仍较少(图1).2000年以来的高被引论文的研究主题主要集中在全球LUCC的高分辨数据库以及LUCC对气候、碳循环以及生物多样性等影响方面(表1). ...
... Ten highly cited publications in the field of land use and land cover change since 2000 Table 1
序号 No.
文献信息 Literature information
备注 Note
1
Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417-433.
最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data
2
Ellis EC, Goldewijk KK, Siebert S, Lightman, D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606.
综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources
3
Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472.
综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent
4
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle
5
Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161.
将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models
6
Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142.
LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles
7
Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate- change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering, 360, 1705-1719.
全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate
8
Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/ land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631.
以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity
9
Liu J, Zhang Z, Xu X, Kuang W, Zhou W, Zhang S, Li R, Yan C, Yu D, Wu S, Jiang N (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494.
中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy
10
Long H, Liu Y, Wu X, Dong G (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333.
以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data
2 历史回顾 1993年, 国际地圈生物圈计划(IGBP)和全球环境变化的人文因素计划(IHDP)共同拟定并发表了《土地利用/土地覆盖变化科学研究计划》(1994-2005), 其主要领域是监测和模拟诸如森林砍伐和荒漠化等土地覆盖变化对自然系统的生态影响(Turner et al., 1993).随着遥感技术的发展, 全球不同尺度的土地覆盖变化的观测数据持续积累, 使得不同案例或尺度上的LUCC驱动因素及其模式得以综合分析(Lambin et al., 2003), 同时, 随着土地利用模型的开发, 使得探索分析LUCC未来情景研究逐渐成为热点(Verburg et al., 1999), 逐步推动土地变化成为跨学科的研究领域, 来自社会、经济、地理、生态和环境等多个领域的科学家都积极参与其中(Turner et al., 2007), 这也使得LUCC的相关研究也从最开始的土地覆盖显著变化区域转向人类与自然环境相互作用的细微变化区域, 如土地管理(Kuemmerle et al., 2013), 基于生态系统服务的景观规划等(Koschke et al., 2012). ...
... 《土地利用/土地覆盖变化科学研究计划》结束后的2005年, IGBP和IHDP联合启动了为期10年的Global Land Project (2006-2016), 并在2016年将计划更名为Global Land Programme (https://glp.earth/)继续进行, 简称GLP.GLP计划的重点是关注土地上人类-环境耦合系统变化的动因、结构和性质, 并且评估这些变化对生态系统服务的影响, 从而确定包括气候变化在内的各种干扰下, 哪些人类-环境耦合系统相对脆弱, 而哪些相对可持续发展, 最终寻求促进土地系统研究和全球可持续性解决方案.GLP计划也标志着土地利用与土地覆被变化的研究领域的一体化趋势, 既关注LUCC的驱动-影响-反馈关系及其人文-自然要素, 也关注包括适应行为(Verburg, 2006)、社会-生态系统相互作用以及跨区域远程连接(Lambin & Meyfroidt, 2011)、城-乡远程耦合等(Seto et al., 2012).因此, LUCC研究在区域与全球可持续发展中显得越发重要, 例如许多重要的全球变化挑战与土地资源的使用有关, 从而促使越来越多的****和组织从不同学科或跨学科角度开展LUCC及相关研究. ...
How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data 1 2011
... LUCC还能够改变地表物理特性如地表反照率和地表能量平衡(潜热和显热)(Findell et al., 2009).例如, 有很多研究发现, 在自然植被向农田转化的地区, 由于反照率的变化, 局部气温发生变化(Fall et al., 2010; Karl et al., 2012); 森林砍伐通过改变反照率和蒸腾, 可能改变热带辐合带的位置, 从而改变整个季风区的降水量(Devaraju et al., 2015); 观测和模拟研究表明, 灌溉农业的引入可以改变区域温度和降水, 如美国加州的农田灌溉使日最高温度降低约4 ℃ (Bonfils & Lobell, 2007), 且灌溉使加州中央谷地农田的温度冷却3-7 ℃, 并使相对湿度增加9%至20% (Sorooshian et al., 2011).此外, 需要注意的是, 城市“热岛效应”相关研究亦趋于细化城市土地利用方式所造成的小尺度微气候变化(Niyogi et al., 2011), 而评估LUCC对气候的影响则需要依赖气候模型, 这也反映了LUCC与其影响结果之间的交互作用及其在定量分析模型上的跨学科趋势.近十几年来, 高分辨率的气候模式(RegCM2, RegCM3, RAMS, RI-EMS, RegCM-NCC, IPCR-RegCM等)虽然得到了广泛应用, 但是这些模式对碳循环和植被动态考虑较少, 因此开发集成气候模式与LUCC的综合模型, 是未来重要的研究方向. ...
A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands 1 2014