删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

兴安落叶松叶水力与光合性状的变异性和相关性

本站小编 Free考研考试/2022-01-01

李志民, 王传宽*,, 罗丹丹
东北林业大学生态研究中心, 哈尔滨 150040

Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii

LIZhi-Min, WANGChuan-Kuan*,, LUODan-Dan
Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
通讯作者:* 通信作者Author for correspondence (E-mail: wangck-cf@nefu.edu.cn)
收稿日期:2017-02-28
接受日期:2017-08-26
网络出版日期:2017-11-10
版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。
基金资助:国家“十三五”重点研发计划项目(2016YFD0600201)和教育部****和创新团队发展计划(IRT_15R09)

展开

摘要
树木叶水力和光合性状的变异性及权衡策略对评估和预测气候变化对树木的存活、生长及分布至关重要。在帽儿山森林生态站27年生兴安落叶松(Larix gmelinii)人工林从山谷至山脊设立一条由5个样地组成的全坡位样带, 测量兴安落叶松黎明前叶水势(Ψpre)、基于叶面积和叶质量的水力导度(KareaKmass)、抗栓塞能力(P50)、比叶质量(LMA)、净光合速率(A)、叶氮含量(N)等叶水力和光合相关参数, 探索其叶性状随立地条件的变异性和相关性。结果表明: 不同样地的ΨpreKareaKmassP50A、LMAN均存在显著差异(p < 0.05), 表明叶性状随立地条件变化而表现出显著的种内变异性。ΨpreKareaKmass均与P50显著相关(p < 0.05), 表明兴安落叶松种内存在一定的水力效率与安全权衡关系。A、LMAN均存在成对相关关系(p < 0.05)。然而,水力性状与光合性状之间相关不显著。兴安落叶松响应于立地条件变化而表现出的叶水力和光合性状的可塑性和多重相关性, 是该树种的一种生存生长策略。

关键词:叶性状;比叶质量;光合速率;水力导度;种内变异;立地效应
Abstract
Aims Variations and potential trade-offs of leaf hydraulic and photosynthetic traits are essential for assessing and predicting the effect of climate change on tree survival, growth and distribution. Our aims were to examine variations and interrelationships of leaf hydraulic and photosynthetic traits in response to changes in site conditions for Dahurian larch (Larix gmelinii)—a dominant tree species in Chinese boreal forests.
Methods This study was conducted at the Maoershan Forest Ecosystem Research Station. A transect of 27 year-old Dahurian larch plantation was established that consisted of five plots extending from the valley to the ridge of a slope. The predawn leaf water potential (Ψpre), area- and mass-based leaf hydraulic conductance (Karea and Kmass, respectively), resistance to embolism capacity (P50), leaf mass per area (LMA), net photosynthetic rate (A), and leaf nitrogen content (N) were measured in August 2016.
Important findings The Ψpre, Karea, Kmass, P50, A, LMA, and N all varied significantly among the plots (p < 0.05), indicating significant intra-specific variations in these traits in response to the changes in site conditions. The P50 was significantly (p < 0.05) correlated with Ψpre, Karea or Kmass, suggesting that a trade-off between hydraulic efficiency and safety exist within the species to some degree. There were significant (p < 0.05) pairwise correlations between A, LMA, and N. Nevertheless, there was no significant (p < 0.05) correlation between the measured photosynthetic traits and hydraulic traits. We concluded that the intra-specific variations and multiple interrelationships of the leaf hydraulic and photosynthetic traits for the larch reflect the plasticity of its leaf traits and strategies of its survival and growth as a result of its acclimation to diverse site conditions.

Keywords:leaf traits;leaf mass per area;photosynthetic rate;hydraulic conductance;intra-specific variation;site effect

-->0
PDF (1181KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性. 植物生态学报, 2017, 41(11): 1140-1148 https://doi.org/10.17521/cjpe.2017.0049
LI Zhi-Min, WANG Chuan-Kuan, LUO Dan-Dan. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii. Chinese Journal of Plant Ecology, 2017, 41(11): 1140-1148 https://doi.org/10.17521/cjpe.2017.0049
叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014)。在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要。叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015)。叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015)。植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014)。探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015)。
植物叶光合性状和水力性状的变异性和相关性引起人们的普遍关注(Wright et al., 2004), 但研究结果有时出现分歧。例如: Wright等(2004)整合构建了包括全球175个样地的2548个植物种的植物性状数据库(GLOPNET), 分析发现6个主要叶性状的种间变异高达1-2个数量级; ALMAN等叶光合性状之间存在成对相关关系。然而, Funk和Cornwell (2013)从GLOPNET中提取22个不同群落的数据再度分析发现, 在叶寿命差异较小的群落中, ALMAN之间的相关性微弱。Reich (2014)列举了许多案例研究, 提出了植物“快-慢经济谱”假说。该假说认为, 植物叶碳、水性状具有协同性, “快速收益型”物种应具有较高的AKleaf, “慢速收益型”物种则反之。然而, Sack等(2013)综合分析发现叶水力性状(叶脉)与经济性状(LMA)并不相关; Li等(2015)也报道同样的现象, 并推测产生这种不相关现象的原因可能是叶片上层的栅栏组织与下层的海绵组织具有相对独立功能的缘故。与这些种间变异和相关性研究相比, 种内变异及相关性研究较少, 且研究结论也不一致。例如: Blackman等(2016)报道, 栅栏和海绵组织区分不明显的赤桉(Eucalyptus camaldulensis)的水力与光合性状之间也不相关。欧洲山毛榉(Fagus sylvatica)的P50随着干旱程度的增加而增加(Schuldt et al., 2016), 而KleafP50无关(Hajek et al., 2016)。另外, 植物叶性状也会受环境变化、土壤物理和化学性质等影响。例如: 氮添加可降低火炬松(Pinus taeda)叶水分运输效率, 从而降低叶水势, 但磷添加并不影响叶的水力结构(Faustino et al., 2013)。综上所述, 植物叶性状及其相关性在种内和种间是否存在一致性的规律、这种变异性和相关性是否会随环境条件变化而变化等问题还需要进一步的验证, 以便更好地理解和预测植物对全球气候变化的响应和适应。
兴安落叶松(Larix gmelinii)是我国北方森林的优势组成树种, 具有广泛的分布范围和较强的环境适应能力(全先奎和王传宽, 2015)。随着全球气候变暖加剧, 模型预测兴安落叶松会逐渐北移, 甚至可能全部出境(李峰等, 2006)。然而, 更准确的评估与预测需要理解更多的植物生理生态机制。Jin等(2016)测定分析了我国温带10个主要树种(包括兴安落叶松)的叶水力和经济性状, 发现基于叶质量的水力导度随着P50增加而增加, 光合与水力性状之间存在一定程度的协同性, 但他们并没有探究这些树种叶性状的种内变异性和相关性。然而, 本地区不同种源兴安落叶松同质园试验研究发现, 其叶光合特性(全先奎和王传宽, 2016)、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚。基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何?

1 材料和方法

1.1 研究地概况和取样方案

试验地位于东北林业大学帽儿山森林生态站(45.33° N, 127.50° E), 平均海拔400 m, 平均坡度10°-15°, 地带性土壤为暗棕色森林土。该地区属于大陆性季风气候, 夏季温暖多雨, 冬季寒冷干燥, 年平均气温3.1 ℃, 1月平均气温-18.5 ℃, 7月平均气温22.0 ℃, 平均年降水量为629 mm, 多集中在夏季, 无霜期为120-140天(Wang et al., 2013)。
试验地是1989年春季营造的兴安落叶松人工林。造林采用从山谷至山脊的全坡位造林, 所用苗木为相同种源的实生苗, 株行距为1.5 m × 1.0 m。2016年5月随机设置3条全坡位样带(1000 m), 进行每木检尺, 结果发现林分密度和胸高断面积从山谷到山脊呈现出“低-高-低”的趋势, 表明不同坡位兴安落叶松因立地条件差异而发生自然稀疏的强度不一。为此, 根据林分密度和胸高断面积, 在每条样带中建立了5块长20 m、宽3 m的样地(图1); 然后在每块样地内选择胸径(DBH)接近样地平均DBH的样树各4株, 共60株样树(表1)。
Table 1
表1
表1样地和样树的基本特征(平均值±标准偏差, n = 15)
Table 1Basic characteristics of the sample plots and trees (mean ± SD, n = 15)
样地号
Plot code
离山谷的距离
Distance from valley (m)
样地 Plot样树 Sample tree
胸高断面积
Basal area (m2·hm-2)
密度
Density (trees·hm-2)
平均胸径
Mean DBH (cm)
平均胸径
Mean DBH (cm)
平均树高
Mean tree height (m)
P120-4028.2 ± 5.0ab1β778 ± 192ab12.9 ± 3.5a13.9 ± 0.5b13.0 ± 0.6c
P2140-16054.5 ± 21.3a2β222 ± 855ab19.5 ± 7.3a17.2 ± 1.4ab16.3 ± 1.7ab
P3260-28064.5 ± 20.2a2β444 ± 385a17.3 ± 3.3a17.9 ± 1.7a17.3 ± 1.0a
P4540-56028.2 ± 7.2ab1β167 ± 167bc16.1 ± 0.6a17.2 ± 1.3ab15.1 ± 1.0ab
P5980-1β00013.2 ± 4.9b722 ± 192c15.5 ± 2.8a14.9 ± 1.0ab14.3 ± 0.8b

DBH, diameter at breast height. Different lowercase letters in same column indicate significant differences (p < 0.05).同列不同小写字母表示显著差异(p < 0.05)。
新窗口打开
显示原图|下载原图ZIP|生成PPT
图1样地位置示意图。样地代码(P1-P5)同表1
-->Fig. 1Schematic diagram of the plot location. Refer to Table 1 for the plot codes (P1-P5).
-->

为了合理地反映立地条件变化对兴安落叶松叶性状的影响、降低背景干扰, 本研究采用了一种权衡取样方案: 选择样树的冠层上部处于全光照条件下的短枝作为叶水力和光合性状测量对象(Brodribb et al., 2005), 同时考虑到测定针叶所处的不同树高引起重力势差异的影响, 在数据分析中将树高与水力性状进行回归分析, 比较分析树高对水势的影响。所有的叶性状参数测定均在2016年8月进行。

1.2 叶水力性状参数测定

黎明前水势(Ψpre)测定: 在3:00-5:00选取带叶小枝一个, 迅速放入黑色塑料袋中, 装入冷藏箱(4 ℃)。带回实验室后立即用压力室(Model 1505D, PMS Instrument Company, Albany, USA)测定其水势, 即为Ψpre
压力-容积(PV)曲线测定: 在3:00-5:00选取带叶小枝一个, 迅速放入水桶内, 并在水下剪去约10 cm的斜切口, 套上黑色塑料袋。带回实验室水化至饱和(Ψl > -0.1 MPa, 约1 h)后, 取出小枝并吸干其表面水后, 立即用电子天平(0.001 g)称量其饱和鲜质量(SW)。用压力室测定其水势(Ψl)后, 将其置于室温(20-25 ℃)下自然失水一定时间, 再测定对应的鲜质量(FW)和Ψl; 如此反复测定, 直至Ψl下降不明显甚至上升为止。然后用扫描仪(Perfection V33, EPSON, Nagano, Japan)和图像处理软件测定叶面积(LA); 之后置于65 ℃烘箱中烘48 h后称其干质量(DW), 由下式计算叶相对含水量(RWC, %):
RWC = 100 × (FW - DW)/(SW - DW) (1)
RWCΨl作PV曲线, 从中求得失膨点前后线性部分的斜率(ΔRWC/Δψl), 再用下式计算失膨点前后的水容(Cleaf):
${{C}_{\text{leaf}}}=\frac{\Delta RWC}{\Delta {{\psi }_{l}}}\times \left( \frac{DW}{LA} \right)\times \left( \frac{WW}{DW} \right)/M$ (2)
式中: WW为饱和状态下水的质量(即鲜质量-干质量, g); M为水的摩尔质量(18 g·mol-1)。
水力导度和脆弱性曲线测定: 采用复水法(rehydration kinetic technique)测定(Brodribb & Holbrook, 2003)。于3:00-5:00, 在每个样树上采集若干个枝条, 迅速放入水桶内, 并在水下剪去10 cm左右, 套上黑色塑料袋, 带回实验室。将若干个小枝置于自然状态下失水不同时间, 以形成不同的初始水势梯度; 然后将其分别放入黑色塑料袋中密封, 并保存在黑暗处至少30 min, 使其上所有短枝水势平衡。之后, 取两个短枝测其水势差: 若小于0.1 MPa, 则认为达到平衡, 并记录为Ψ0。然后, 再选一相邻短枝, 水下剪茎, 并使之复水一定时间(t); 复水时间取决于初始水势的高低(即高水势复水时间短, 低水势复水
时间长)。之后测定水化后水势(Ψf)。根据电容再补充的原理, 按下式计算水力导度(Kleaf):
Kleaf = Cleaf ln(Ψ0/Ψf)/t(3)
Cleaf分别基于叶面积和叶质量进行标准化, 可计算基于叶面积(Karea)和叶质量的水力导度(Kmass)。
对每株样树的KleafΨ0测量值进行不同函数(线性、逻辑斯蒂和指数函数)回归拟合, 选择其中赤池信息量准则(AIC)值最小的函数作为优化函数(Ocheltree et al., 2016), 得到最适的脆弱性曲线。将导水率为最大导水率(Karea)的50%时所对应叶水势, 确定为P50

1.3 叶光合性状参数测定

选取与水力性状测定小枝位置相邻的小枝, 采用LI-6400便携式CO2/H2O红外分析仪(LI-COR, Lincoln, USA)离体测定其上三簇成熟针叶的净光合速率(A)(唐艳和王传宽, 2011), 取平均值代表此样树A。测定时控制参数设置为: 光强为饱和光强 (1β500 μmol·m-2·s-1), CO2浓度为400 μmol CO2·mol-1, 进入样品室流速为500 μmol·s-1, 温度为20-25 ℃。测定前先用饱和光强对针叶进行充分光诱导(约10 min), 然后再作记录。测定完成后, 立即采下该针叶, 装入封口袋并置于冷藏箱(4 ℃)。带回实验室后, 用扫描仪和图像处理软件测定LA; 之后将叶样品置于65 ℃烘箱烘48 h后称其干质量; 将叶干质量除以LA得到比叶质量(LMA, kg·m-2)。
另外, 采集与测定位置相近的针叶带回实验室烘干粉碎后, 采用全自动凯式定氮仪(Kjeltec 8400, FOSS, Hillerod, Danmark)测定叶氮含量(N, mg·g-1)。

1.4 数据分析

采用单因素方差分析法和Tukey多重比较样地间水力和光合性状参数的差异。以样木为试验单位, 采用回归分析法和主成分分析法探索叶水力和光合性状之间的相关性。在分析叶水力性状与光合性状关系时, 考虑到树高对两者的影响可能因重力势差异而不同, 先将树高与水力导度(Karea)回归, 然后将其残差(eK)与光合速率(A)作回归分析。所有数据处理均采用R3.3.2进行。

2 结果

2.1 不同样地兴安落叶松叶水力和光合性状的变异

不同样地的Ψpre差异显著(p < 0.05, 图2C), 波动在-0.27 MPa与-0.54 MPa之间。Karea的样地间差异也显著(p < 0.05, 图2A), 最小值(40.7 mmol·m-2·s-1·MPa-1)仅为最大值(100.3 mmol·m-2·s-1·MPa-1)的41%。KmassKarea变化趋势类似, 变化范围为382.8-1134.8 mmol·kg-1·s-1·MPa-1。同样, P50的样地间差异显著(p < 0.05, 图2B), 波动在-0.83 MPa与-1.96 MPa之间, 前者是后者的42%。
显示原图|下载原图ZIP|生成PPT
图2不同样地兴安落叶松水力和光合性状的比较(平均值±标准偏差)。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; Ψpre, 黎明前叶水势; A, 净光合速率; LMA, 比叶质量; N, 叶氮含量; P1-P5, 样地代码见表1。不同小写字母表示样地间差异显著(p < 0.05)。
-->Fig. 2Comparisons of leaf hydraulic and photosynthesis traits among the plots of Larix gmelinii (mean ± SD). Karea, area-based leaf hydraulic conductance; Ψpre, predawn leaf water potential; A, net photosynthesis rate; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; LMA, leaf mass per area; N, leaf nitrogen content; P1-P5, refer to Table 1 for Plot codes. Different lowercase letters indicate significant differences among the plots (p < 0.05).
-->

不同样地的ALMAN均存在显著差异(p < 0.05, 图2D-2F), 且三者随坡位从山谷至山脊的变化趋势基本一致, 呈现出“低-高-低”的格局。P2样地的A最大(8.14 mmol·m-2·s-1), 显著高于P1和P5样地(平均值为5.60 mmol·m-2·s-1)。P1样地的LMA最小(0.047 kg·m-2), 显著低于P2、P3、P4样地(平均值为0.065 kg·m-2)。N变化在28.2-34.7 mg·g-1之间。

2.2 兴安落叶松叶水力和光合性状的相互关系

KareaP50均随着Ψpre的降低而减少(图3A、3D)。KareaP50之间存在着极显著的负幂函数关系(R2 = 0.51, n = 60, p < 0.01; 图3C)。KareaP50均与树高(H)呈线性相关关系(图3B、3E), 其R2分别为0.13和0.07, 但ΨpreH相关不显著(p > 0.05, 图3F)。ALMAN之间均存在显著的(p < 0.01)成对相关关系, R2波动在0.13-0.55之间(图4)。
显示原图|下载原图ZIP|生成PPT
图3兴安落叶松水力性状之间的关系。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; Ψpre, 黎明前叶水势; H, 树高. 空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数均为60。
-->Fig. 3Relationships between leaf hydraulic traits for Larix gmelinii. Karea, area-based leaf hydraulic conductance; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; Ψpre, predawn leaf water potential; H, tree height. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
-->

显示原图|下载原图ZIP|生成PPT
图4兴安落叶松光合性状间的关系。A, 净光合速率; N, 叶氮含量; LMA, 比叶质量; 空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数均为60。
-->Fig. 4Relationships between leaf photosynthetic traits for Larix gmelinii. A, net photosynthesis rate; N, leaf nitrogen content; LMA, leaf mass per area. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
-->

KareaA线性相关性较弱(p < 0.05, R2 = 0.07; 图5A)。分离树高影响后, eKA相关不显著(p > 0.05; 图5B)。进一步的主成分分析表明: 水力性状(KareaP50)与光合性状(A、NLMA)之间关系不紧密, 但水力性状之间、光合性状之间均显著相关(图6)。
显示原图|下载原图ZIP|生成PPT
图5兴安落叶松光合和水力性状的关系。A, 净光合速率; Karea, 基于叶面积的水力导度; ek, 水力导度与树高的残差。空心方形、圆形和三角形分别表示P1、P2和P3样地, 实心方形和圆形分别表示P4和P5样地。所有的样本数为60。
-->Fig. 5Relationships between leaf photosynthetic and hydraulic traits for Larix gmelinii. A, net photosynthesis rate; Karea, area-based leaf hydraulic conductance; ek, residuals between Karea and height. Hollow square circle, and triangle represent P1 plot, P2 plot, and P3 plot, respectively; solid square and triangle represent P4 plot and P5 plot, respectively. All sample sizes are 60.
-->

显示原图|下载原图ZIP|生成PPT
图6兴安落叶松水力和光合性状的主成分分析。Karea, 基于叶面积的水力导度; P50, 导水率丢失50%所对应的叶水势; A, 净光合速率; LMA, 比叶质量; N, 叶氮含量。灰色圆形, 光合性状; 黑色圆形, 水力性状。
-->Fig. 6Principal component analysis of the hydraulic and photosynthetic traits for Larix gmelinii. Karea, area-based leaf hydraulic conductance; P50, leaf water potential inducing 50% loss of the leaf hydraulic conductance; A, net photosynthesis rate; LMA, leaf mass per area; N, leaf nitrogen content. Solid and hollow symbols represent hydraulic and photosynthetic traits, respectively.
-->

3 讨论

3.1 兴安落叶松叶水力和光合性状随立地条件的变异性

虽然本研究尚未对全坡位样带的土壤物理和化学性质做全面监测, 但从3条样带不同坡位的5个样地的一些间接测定指标分析看, 不同坡位的立地条件存在显著差异。首先, 各样地在1989年春季造林时所栽植的是年龄和种源相同的兴安落叶松实生苗, 造林初始密度也相同, 而且在过去的27年中(直至2016年调查)没有采取过任何林分抚育经营措施。不同样地的林分密度和胸高断面积差异显著(表1), 表明林木响应于立地条件而产生林分自然稀疏和林木分化的强度不一。虽然各样地的平均DBH差异不显著, 但DBH的变异性(即SD)不一(表1), 从另一个角度反映出林木响应于立地条件变化而产生林木分化程度的差异。其次, 黎明前叶水势(Ψpre)常用于表征根际土壤水势(Ameglio et al., 1999); 样地间Ψpre的显著差异(图2C)表明样地间的土壤供水能力存在差异。再者, 叶氮含量(N)常与土壤肥力密切相关(Ordonez et al., 2009); 样地间N的显著差异(图2F)表明样地间的土壤肥力可能存在差异。由此推断, 处于不同坡位的这5个样地构成了一个立地条件综合变化梯度。
响应于样地间立地条件的差异, 兴安落叶松叶水力和光合性状均产生显著的变异性(图2); 该种内变异主要是叶性状响应于立地条件变化而表现出的表型可塑性。本研究结果显示, 在Ψpre较高样地中, KleafP50也较高(图2), 而且二者与Ψpre相关显著(图3A、3D); 这说明兴安落叶松叶水力性状受土壤水分状况的影响。土壤水分供应显著影响植物水分有效性(Aranda et al., 2014)。在水分供应较好的条件下, 林木能在单位时间内将更多的水分运输到叶, 但其抗栓塞能力较弱(Skelton et al., 2015)。与叶水力性状不同, ALMAN等光合性状随样带坡位变化而显示出相似的变化趋势(图2), 且ALMA均与N呈显著的正相关关系(图4), 说明兴安落叶松叶光合性状的种内变异主要受土壤肥力影响。

3.2 兴安落叶松叶水力和光合性状的相关性

水力效率-安全权衡是植物适应环境和进化的结果(Blackman et al, 2010), 水力效率是保证植物水分供应、进行光合生长的基础; 而水力安全是衡量植物干旱耐性, 决定植物是否能够生长或生存的关键性状(Naridini et al., 2012)。以往不同植物种的叶水力导度与脆弱性之间存在权衡关系(Blackman et al., 2010; Naridini et al., 2012; Jin et al., 2016), 说明水分运输效率较低的植物具有更安全的水力结构, 从而降低木质部栓塞的危险(Jin et al., 2016)。我们发现不同立地条件下的兴安落叶松KareaP50显著相关(图3C), 表明兴安落叶松种内也存在一定的水力效率-安全权衡关系。然而, Hajek等(2016)对100个不同种源欧洲山毛榉的研究结果表明, 所测定的22个生理生态性状中绝大多数参数因种源的遗传分化而使其种内差异显著, 其中抗栓塞能力与水力效率无关, 不是通过调整导管的大小而是通过调整导管的数量来应对水分胁迫。全先奎和王传宽(2015)测定了兴安落叶松17个种源的叶水分利用效率、净光合速率、蒸腾速率、比叶面积和叶氮含量等也发现了类同的种内遗传分化, 而且参数之间存在显著相关关系; 但他们尚未测定叶水力性状。因此, 本研究中兴安落叶松随立地条件变化而呈现出的叶水力效率-安全权衡关系是否也存在于用于观察长期遗传分化的种源试验中, 尚需进一步验证。
Wright等(2004)首次提出了全球植物叶经济性状谱; 随后的许多研究结果也证实了它具有一定的普适性(Reich, 2014)。但Wright等(2004)采用叶性状的平均值代表每个物种的平均水平, 这忽略了叶性状的种内变异和表型可塑性(Niinemets, 2015)。全先奎和王传宽(2016)报道兴安落叶松6个种源的净光合速率与叶氮含量存在显著的正相关关系。本研究对这一研究作了补充, 发现随立地条件变化兴安落叶松叶光合性状之间也存在成对相关关系; 其中AareaLMA正相关(图4A), 可能因为它通过降低叶内部空间或增加叶肉组织的投入来增加LMA (Wright et al., 2004; Hassiotou et al., 2010)。Niinemets (2015)对冬青栎(Quercus ilex)叶性状相关性的研究也得出了类似的结果。
叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007)。但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合。叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014)。因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016)。最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016)。造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同。正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大。二是本研究中水力和光合性状测定部位和方法不同。水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度。与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017)。

4 结论

兴安落叶松叶水力和光合性状随立地条件变化而产生显著的种内变异, 表现出其环境可塑性。较高的Ψpre伴随着较高的叶水力导度和较低的抗栓塞能力, 且两者相关紧密, 展现出一定的叶水力效率-安全权衡关系。叶净光合速率与比叶质量和叶氮含量显著正相关。然而, 叶光合性状与叶水力导度不相关, 表现出该种内碳水代谢过程有一定的独立性。兴安落叶松在适应不同立地条件中表现出的种内水力和光合性状的可塑性以及叶性状之间的多维相关组合, 为其适应多样的环境提供了一种生存和生长策略。至于叶光合与水力性状在不同植物的种间、同种植物的种内是否有确定性规律以及在什么情况下两者耦联或解耦、其内在机理是什么等问题还需要深入研究。
The authors have declared that no competing interests exist.
作者声明没有竞争性利益冲突.

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]Ameglio T, Archer P, Cohen M, Valancogne C, Daudet F-A, Dayau S, Cruiziat P (1999). Significance and limits in the use of predawn leaf water potential for tree irrigation
.Plant and Soil, 207, 155-167.
https://doi.org/10.1023/A:1026415302759URL [本文引用: 1]摘要
Research in estimating the water status of crops is increasingly based on plant responses to water stress. Several indicators can now be used to estimate this response, the most widely available of which is leaf water potential ( LWP ) as measured with a pressure chamber. For many annual crops, the predawn leaf water potential ( PLWP ), assumed to represent the mean soil water potential next to the roots, is closely correlated to the relative transpiration rate, RT. A similar correlation also holds for young fruit trees grown in containers. However, exceptions to this rule are common when soil water content is markedly heterogeneous. Two experimental conditions were chosen to assess the validity of this correlation for heterogeneous soil water content: 1) young walnut trees in split-root containers. The heterogeneity was created by two unequal compartments (20% and 80% of total volume), of which only the smaller was irrigated and kept at a moisture content higher than field capacity (permanent drainage). 2) adult walnut trees in an orchard. In this case, soil water heterogeneity was achieved by limiting the amount of localised irrigation (20% of the irrigated control) which was applied every evening. Values of sap flux and of minimum and predawn leaf water potentials with homogeneous and heterogeneous soil water content were compared for trees grown in the orchard and in containers. In spite of intense drought reflected by very low RT or stem water potential, PLWP of trees under heterogeneous moisture conditions remained high (between -0.2 and -0.4 MPa) both in the orchard and in containers. These values were higher than those usually considered critical under homogeneous soil conditions. A semi-quantitative model, based on the application of Ohm 's analogy to split-root conditions, is proposed to explain the apparently conflicting results in the literature on the relation between PLWP and soil water potential.
[2]Aranda I, Cano FJ, Gascó A, Cochard H, Nardini A, Mancha JA, López R, Sánchez-Gómez D (2014). Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress
. Tree Physiology, 35, 34-46.
https://doi.org/10.1093/treephys/tpu101URLPMID:25536961 [本文引用: 1]摘要
Abstract The aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species. To address these objectives, we conducted a glasshouse experiment in which 2-year-old saplings from six beech populations were subjected to different watering treatments. These populations encompassed central and marginal areas of the range, with variation in macro- and microclimatic water availability. The results highlight subtle but significant differences among populations in their functional response to drought. Interpopulation differences in hydraulic traits suggest that vulnerability to cavitation is higher in populations with higher sensitivity to drought. However, there was no clear relationship between variables related to hydraulic efficiency, such as xylem-specific hydraulic conductivity or stomatal conductance, and those that reflect resistance to xylem cavitation (i.e., (12), the water potential corresponding to a 12% loss of stem hydraulic conductivity). The results suggest that while a trade-off between photosynthetic capacity at the leaf level and hydraulic function of xylem could be established across populations, it functions independently of the compromise between safety and efficiency of the hydraulic system with regard to water use at the interpopulation level. The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[3]Blackman CJ, Aspinwall MJ, Dios VR, Smith RA, Tissue DT (2016). Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2
.Functional Ecology, 30, 1491-1500.
https://doi.org/10.1111/1365-2435.12661URL [本文引用: 1]摘要
Summary Leaf economics and hydraulic traits strongly influence photosynthesis. While the level of coordination among these traits can differ between sets of species, leaf functional trait coordination within species remains poorly understood. Furthermore, elevated concentrations of atmospheric CO2 commonly influence the expression of leaf photosynthetic, economics and hydraulic traits in contrasting ways, yet the effect of variable concentrations of atmospheric CO2 on patterns of trait coordination within species remains largely untested. We examined the relationships among key leaf photosynthetic (e.g. net photosynthesis and photosynthetic biochemistry), economics and water-use (e.g. leaf mass per unit area and stomatal conductance) and hydraulic traits (e.g. vein density) in 14 genotypes of Eucalyptus camaldulensis grown in ambient (aCO2) and elevated (eCO2) [CO2]. We examined the level of coordination among leaf traits in aCO2 and then assessed whether growth in eCO2 altered that coordination. We found that leaf traits related to photosynthetic capacity, economics and water-use, and hydraulics were decoupled among genotypes grown in aCO2, yet strong relationships were generally observed among suites of traits within each unctional group . Significant responses to growth in eCO2 were observed for most leaf photosynthetic and economics and water-use traits, with the magnitude and direction of the response varying among traits. In contrast, leaf hydraulics traits were unaffected by variable growth CO2. Despite this, growth in eCO2 did not substantially alter patterns of leaf trait coordination observed in aCO2. These results suggest suites of leaf traits associated with photosynthetic capacity, economics and water-use and hydraulics, respectively, can form independent axes of variation among genotypes of a single species, regardless of growth CO2. Although growth in eCO2 did not substantially alter patterns of trait coordination, decoupling of leaf functional traits among genotypes may allow genetically distinct populations to produce novel combinations of traits that may be adaptive in response to changes in their local environment.
[4]Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms
.New Phytologist, 188, 1113-1123.
https://doi.org/10.1111/j.1469-8137.2010.03439.xURLPMID:20738785 [本文引用: 1]摘要
090004Hydraulic dysfunction in leaves determines key aspects of whole-plant responses to water stress; however, our understanding of the physiology of hydraulic dysfunction and its relationships to leaf structure and ecological strategy remains incomplete.090004Here, we studied a morphologically and ecologically diverse sample of angiosperms to test whether the water potential inducing a 50% loss in leaf hydraulic conductance (P50leaf) is predicted by properties of leaf xylem relating to water tension-induced conduit collapse. We also assessed the relationships between P50leaf and other traits considered to reflect drought resistance and ecological strategy.090004Across species, P50leaf was strongly correlated with a theoretical predictor of vulnerability to cell collapse in minor veins (the cubed ratio of the conduit wall thickness to the conduit lumen breadth). P50leaf was also correlated with mesophyll traits known to be related to drought resistance, but unrelated to traits associated with carbon economy.090004Our data indicate a link between the structural mechanics of leaf xylem and hydraulic function under water stress. Although it is possible that collapse may contribute directly to dysfunction, this relationship may also be a secondary product of vascular economics, suggesting that leaf xylem is dimensioned to avoid wall collapse.
[5]Brodribb TJ, Field TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulic
.Plant Physiology, 144, 1890-1898.
[本文引用: 1]
[6]Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration correlation with other leaf physiological traits
.Plant Physiology, 132, 2166-2173.
[本文引用: 1]
[7]Brodribb TJ, Holbrook NM, Zwieniechi MA, Palma B (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima
.New Phytologist, 165, 839-846.
[本文引用: 2]
[8]Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV (2014). Conifer species adapt to low-rainfall climates by following one of two divergent pathways
.Proceeding of the National Academy of Science of the United States of America, 111, 14489-14493.
https://doi.org/10.1073/pnas.1407930111URLPMID:25246559 [本文引用: 1]摘要
Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal ) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in and species relies on high levels of the hormone () to close stomata during water stress. A second mechanism, found in the majority of species, uses leaf desiccation rather than high levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar after 30 d without water. The combination of low levels of under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.
[9]Faustino LI, Bulfe NML, Pinazo MA, Monteoliva SE, Graciano C (2013). Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area
. Tree Physiology, 33, 241-251.
https://doi.org/10.1093/treephys/tps129URLPMID:23355634 [本文引用: 1]摘要
ABSTRACT Plants of Pinus taeda L. from each of four families were fertilized with nitrogen (N), phosphorus (P) or N + P at planting. The H family had the highest growth in dry mass while the L family had the lowest growth. Measurements of plant hydraulic architecture traits were performed during the first year after planting. Stomatal conductance (g(s)), water potential at predawn ( (predawn)) and at midday ( (midday)), branch hydraulic conductivity (k(s) and k(l)) and shoot hydraulic conductance (K) were measured. One year after planting, dry weight partitioning of all aboveground organs was performed. Phosphorus fertilization increased growth in all four families, while N fertilization had a negative effect on growth. L family plants were more negatively affected than H family plants. This negative effect was not due to limitations in N or P uptake because plants from all the families and treatments had the same N and P concentration in the needles. Phosphorus fertilization changed some hydraulic parameters, but those changes did not affect growth. However, the negative effect of N can be explained by changes in hydraulic traits. L family plants had a high leaf dry weight per branch, which was increased by N fertilization. This change occurred together with a decrease in shoot conductance. Therefore, the reduction in g(s) was not enough to avoid the drop in (midday). Consequently, stomatal closure and the deficient water status of the needles resulted in a reduction in growth. In H family plants, the increase in the number of needles per branch due to N fertilization was counteracted by a reduction in g(s) and also by a reduction in tracheid lumen size and length. Because of these two changes, (midday) did not drop and water availability in the needles was adequate for sustained growth. In conclusion, fertilization affects the hydraulic architecture of plants, and different families develop different strategies. Some of the hydraulic changes can explain the negative effect of N fertilization on growth.
[10]Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function
. Ecology, 94, 1893-1897.
https://doi.org/10.1890/12-1602.1URLPMID:24279259摘要
The leaf economics spectrum (LES) has revolutionized the way many ecologists think about quantifying plant ecological trade-offs. In particular, the LES has connected a clear functional trade-off (long-lived leaves with slow carbon capture vs. short-lived leaves with fast carbon capture) to a handful of easily measured leaf traits. Building on this work, community ecologists are now able to quickly assess species carbon-capture strategies, which may have implications for community-level patterns such as competition or succession. However, there are a number of steps in this logic that require careful examination, and a potential danger arises when interpreting leaf-trait variation among species within communities where trait relationships are weak. Using data from 22 diverse communities, we show that relationships among three common functional traits (photosynthetic rate, leaf nitrogen concentration per mass, leaf mass per area) are weak in communities with low variation in leaf life span (LLS), especially communities dominated by herbaceous or deciduous woody species. However, globally there are few LLS data sets for communities dominated by herbaceous or deciduous species, and more data are needed to confirm this pattern. The context-dependent nature of trait relationships at the community level suggests that leaf-trait variation within communities, especially those dominated by herbaceous and deciduous woody species, should be interpreted with caution.
[11]Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions
.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English abstract)
[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展
. 植物生态学报, 39, 300-308.]
https://doi.org/10.17521/cjpe.2015.0029URL [本文引用: 1]摘要
叶片是植物进行光合、呼吸、蒸腾作用的主要器官,早期的研究主要集中于水分在叶片中的运输路径,而对叶脉结构及其生态学意义研究甚少。近年来关于叶片叶脉结构、气孔结构的功能及叶片水力学特性的意义研究已经成为植物生理生态的研究热点。该文综述了叶脉的结构性状的指标(叶脉密度、直径、间距等),叶片水力学结构特性对植物生长、水分运输、气体交换、光合作用等生理功能的影响,及其与植物对干旱适应性之间的关系。叶脉结构是决定叶片生理功能的基础,因此在未来的工作中应分析比较不同种类植物叶脉结构形态与导水、光合、呼吸、同化作用之间的关系,建立植物茎干-枝-叶系统水力传导的机理性模型,用以探索不同植物功能结构和高效用水生理生态学机制,据此评估不同种类植物在未来气候情景下的地位。
[12]Hajek P, Kurjar D, Wühlisch G, Delzon S, Schuldt B (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield
.Frontiers in Plant Science, 7, 791.
https://doi.org/10.3389/fpls.2016.00791URLPMID:27379112 [本文引用: 1]摘要
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvaticaL.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0鈥14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature ( 13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and 未13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.
[13]Hassiotou F, Renton M, Ludwig M, Evans JR, Veneklaas EJ (2010). Photosynthesis at an extreme end of the leaf traits spectrum: How does it relate to high leaf dry mass per area and associated structural parameters?
Journal of Experimental Botany, 61, 3015-3028.
https://doi.org/10.1093/jxb/erq128URLPMID:2892145 [本文引用: 1]摘要
Leaf dry mass per area (LMA) is a composite parameter relating to a suite of structural traits that have the potential to influence photosynthesis. However, the extent to which each of these traits contributes to variation in LMA and photosynthetic rates is not well understood, especially at the high end of the LMA spectrum. In this study, the genus Banksia (Proteaceae) was chosen as a model group, and key structural traits such as LMA, leaf thickness, and density were measured in 49 species. Based on the leaf trait variation obtained, a subset of 18 species displaying a wide range in LMA of 13409“507 g m0903’2 was selected for analyses of relationships between leaf structural and photosynthetic characteristics. High LMA was associated with more structural tissue, lower mass-based chlorophyll and nitrogen concentrations, and therefore lower mass-based photosynthesis. In contrast, area-based photosynthesis did not correlate with LMA, despite mesophyll volume per area increasing with increases in LMA. Photosynthetic rate per unit mesophyll volume declined with increasing LMA, which is possibly associated with structural limitations and, to a lesser extent, with lower nitrogen allocation. Mesophyll cell wall thickness significantly increased with LMA, which would contribute to lower mesophyll conductance at high LMA. Photosynthetic nitrogen use efficiency and the nitrogen allocation to Rubisco and thylakoids tended to decrease at high LMA. The interplay between anatomy and physiology renders area-based photosynthesis independent of LMA in Banksia species.
[14]Jin Y, Wang C, Zhou Z, Li Z (2016). Co-ordinated performance of leaf hydraulic and economics in 10 Chinese temperate tree species
.Functional Plant Biology, 42, 1082-1090.
https://doi.org/10.1071/FP16097URL [本文引用: 1]摘要
Exploring relationships between leaf hydraulics and economic traits is important in understanding the carbon–water coupling and in extending the leaf economics spectrum. In this study, leaf hydraulics, photosynthesis, structural and nutrient traits and photosynthetic resource use efficiency were measured for 10 temperate tree species in the north-eastern China. Leaf hydraulic conductance was positively correlated with photosynthetic traits, specific leaf area, leaf nitrogen concentration, photosynthetic water and nitrogen use efficiencies, suggesting co-ordination between leaf hydraulics and economic traits. Principal component analysis revealed that significant correlations existed among leaf hydraulic, photosynthetic and resource use traits (axis 1), and axis 2 was strongly associated with leaf structural and nutrient traits. The 10 species were distributed along the diagonal line between axis 1 and axis 2. Species displaying the ‘fast’ strategy tended to have higher photosynthetic rates, leaf hydraulic conductance and photosynthetic water and nutrient use efficiencies; however, they also had lower carbon investment and faced a greater risk of embolism. These findings indicate that leaf hydraulics, economics and resource uses together play an important role in determining species ecological strategies, and provide supports for the ‘fast–slow’ leaf economics spectrum.
[15]Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits
.Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English abstract)
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展
. 植物生态学报, 39, 1021-1032.]
https://doi.org/10.17521/cjpe.2015.0099URL [本文引用: 2]摘要
叶片既是植物光合产物形成的主要场所,又是整株植物的水力瓶颈、应对灾难性水力失调的安全阀门,是植物碳 水耦合权衡的重要器官.叶经济型谱反映了叶片经济性状"投资-收益"的权衡,为验证植物进化过程中形成的物种对策提供了适用的理论框架.叶片水力性状变化 会影响叶片经济性状及植物存活和生长.因此,探索植物叶片水力与经济性状的权衡关系,对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展植物性状型 谱等均有重要意义.该文首先综述了叶片水力性状、经济性状及两者之间的权衡关系,分析了叶片导水率与水力脆弱性、失膨点水势、水容、安全阈值等水力性状以 及与叶片的形态、结构和气体交换功能性状之间的关系.然后,从叶片形态、解剖和叶脉网络结构以及气孔功能方面探讨了叶片水力性状与经济性状的调节机制.最 后,提出今后应加强三方面的研究:(1)探索建立植物根-茎-叶水力输导系统的碳-氮-水资源的整株经济型谱,以揭示植物功能结构耦合、高效固碳用水的生 理生态学机制;(2)探索叶片水力安全、水力效率和固碳效率之间的普适性权衡关系,以深入理解抗旱植物叶片构建的生物物理结构与生理代谢的关系;(3)探 索个体水平碳水代谢关系、水分运输与生长速率的耦合,为代谢推演理论和植物群落尺度预测提供基础.
[16]Laughlin DC (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly
.Journal of Ecology, 102, 186-193.
https://doi.org/10.1111/1365-2745.12187URL [本文引用: 1]摘要
Plants are multifaceted organisms that have evolved numerous solutions to the problem of establishing, growing and reproducing with limited resources. The intrinsic dimensionality of plant traits is the minimum number of independent axes of variation that adequately describes the functional variation among plants and is therefore a fundamental quantity in comparative plant ecology. Given the large number of functional traits that are measured on plants, the dimensionality of plant form and function is potentially vast.A variety of linear and nonlinear methods were used to estimate the intrinsic dimensionality of three large trait data sets. The results of these analyses indicate that while the dimensionality of plant traits is generally larger than we have admitted in the past, it does not exceed six in the most comprehensive data set.The dimensionality of plant form and function is a blessing, not a curse. The higher the intrinsic dimension of traits in an analysis, the more easily our models will be able to accurately discriminate species in trait space and therefore be able to predict species distributions and abundances. Recent analyses indicate that the ability to predict community composition increases rapidly with additional traits, but reaches a plateau after four to eight traits.Synthesis. There appears to be a tractable upper limit to the dimensionality of plant traits. To optimize research efficiency for advancing our understanding of trait-based community assembly, ecologists should minimize the number of traits while maximizing the number of dimensions, because including multiple correlated traits does not yield dividends and including more than eight traits leads to diminishing returns. It is recommended to measure traits from multiple organs whenever possible, especially leaf, stem, root and flowering traits, given their consistent performance in explaining community assembly across different ecosystems.
[17]Li F, Zhou G, Cao M (2006). Responses of Larix gmelinii geographical distribution to future climate change—A simulation study
. Chinese Journal of Applied Ecology, 17, 2255-2260. (in Chinese with English abstract)
[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟
. 应用生态学报, 17, 2255-2260.]
URL [本文引用: 1]摘要
以温暖指数、寒冷指数、湿润指数、1月最低温度、7月最高温度和年降水量等环境变量为因子,比较分析了广义线性模型(GLM)、逐步回归广义线性模型(SGLM)、广义加法模型(GAM)和分类回归树模型(CART)对兴安落叶松地理分布的模拟效果,其中GAM模型的模拟效果最好.在此基础上,应用GAM模型,结合未来气候变化情景模拟了兴安落叶松分布.结果表明,在SRES-A2排放方案下,2020年兴安落叶松适宜分布面积将减少58.1%,2050年将减少99.7%;在SRES-B2排放方案下,2020年兴安落叶松适宜分布面积将减少66.4%,2050年将减少97.9%.两种排放方案下,到2100年,兴安落叶松适宜分布区将从我国完全消失.
[18]Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets ü, Guo D (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests
.Ecology Letters, 18, 899-906.
https://doi.org/10.1111/ele.12466URLPMID:26108338 [本文引用: 1]摘要
Abstract Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.
[19]Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, Bodegom PM, Cornwell WK, Ellsworth D, Niinemets ü, Ordonez A, Reich PB, Santiago LS (2015). Global effects of soil and climate on leaf photosynthetic traits and rates
.Global Ecology and Biogeography, 24, 706-717.
https://doi.org/10.1111/geb.12296URL [本文引用: 2]摘要
Abstract Aim The influence of soil properties on photosynthetic traits in higher plants is poorly quantified in comparison with that of climate. We address this situation by quantifying the unique and joint contributions to global leaf-trait variation from soils and climate. Location Terrestrial ecosystems world-wide. Methods Using a trait dataset comprising 1509 species from 288 sites, with climate and soil data derived from global datasets, we quantified the effects of 20 soil and 26 climate variables on light-saturated photosynthetic rate ( A area), stomatal conductance ( g s), leaf nitrogen and phosphorus ( N area and P area) and specific leaf area ( SLA ) using mixed regression models and multivariate analyses. Results Soil variables were stronger predictors of leaf traits than climatic variables, except for SLA . On average, N area, P area and A area increased and SLA decreased with increasing soil pH and with increasing site aridity. g s declined and P area increased with soil available P ( P avail). N area was unrelated to total soil N. Joint effects of soil and climate dominated over their unique effects on N area and P area, while unique effects of soils dominated for A area and g s. Path analysis indicated that variation in A area reflected the combined independent influences of N area and g s, the former promoted by high pH and aridity and the latter by low P avail. Main conclusions Three environmental variables were key for explaining variation in leaf traits: soil pH and P avail, and the climatic moisture index (the ratio of precipitation to potential evapotranspiration). Although the reliability of global soil datasets lags behind that of climate datasets, our results nonetheless provide compelling evidence that both can be jointly used in broad-scale analyses, and that effects uniquely attributable to soil properties are important determinants of leaf photosynthetic traits and rates. A significant future challenge is to better disentangle the covarying physiological, ecological and evolutionary mechanisms that underpin trait nvironment relationships.
[20]Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes
. Functional Ecology, 28, 810-818.
https://doi.org/10.1111/1365-2435.12246URL [本文引用: 1]摘要
SummaryLeaf hydraulic capacity and vulnerability to drought stress are key determinants of plant competitive ability and productivity. Yet, it is not clear how these traits correlate to climatic variables across biomes and whether a trade-off exists between them.We collected leaf hydraulics data for 130 woody angiosperms from selected published articles. Species-specific values of leaf hydraulic capacity on a leaf area (Kleaf_area) and dry mass (Kleaf_mass) basis, leaf water potential inducing 50% loss of Kleaf (P50), as well as climatic variables (mean annual temperature, MAT and precipitation, MAP) for study sites were collected. Species were classified as belonging to three major biomes, that is dry sclerophyllous forests (DSF), temperate forests (TMF) and tropical forests (TRF).Significant differences were observed between biomes, with DSF species displaying the lowest hydraulic efficiency (low Kleaf) and the highest resistance to drought stress (low P50). P50 was correlated with both MAP and MAT, with species from low precipitation habitats having the lowest P50 values. Both Kleaf_area and Kleaf_mass were positively correlated with MAP and MAT. Leaf gas exchange rates were positively correlated with both Kleaf_area and Kleaf_mass. Although no correlation was found between P50 and Kleaf_area, a weak trade-off between leaf hydraulic safety and capacity emerged when P50 was plotted versus Kleaf_mass.Leaf hydraulics emerge as an important functional trait underlying plant adaptation to different habitats and contributing to shape vegetation features in different biomes.
[21]Nardini A, Pedà G, Rocca NL (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological consequences
.New Phytologist, 196, 788-798.
https://doi.org/10.1111/j.1469-8137.2012.04294.xURLPMID:22978628 [本文引用: 2]摘要
Abstract Leaf hydraulic conductance (K(leaf) ) and vulnerability constrain plant productivity, but no clear trade-off between these fundamental functional traits has emerged in previous studies. We measured K(leaf) on a leaf area (K(leaf_area)) and mass basis (K(leaf_mass)) in six woody angiosperms, and compared these values with species' distribution and leaf tolerance to dehydration in terms of P(50), that is, the leaf water potential inducing 50% loss of K(leaf) . We also measured several morphological and anatomical traits associated with carbon investment in leaf construction and water transport efficiency. Clear relationships emerged between K(leaf_mass), P(50), and leaf mass per unit area (LMA), suggesting that increased tolerance to hydraulic dysfunction implies increased carbon costs for leaf construction and water use. Low P(50) values were associated with narrower and denser vein conduits, increased thickness of conduit walls, and increased vein density. This, in turn, was associated with reduced leaf surface area. Leaf P(50) was closely associated with plants' distribution over a narrow geographical range, suggesting that this parameter contributes to shaping vegetation features. Our data also highlight the carbon costs likely to be associated with increased leaf tolerance to hydraulic dysfunction, which confers on some species the ability to thrive under reduced water availability but decreases their competitiveness in high-resource habitats. 2012 The Authors. New Phytologist 2012 New Phytologist Trust.
[22]Niinemets ü (2015). Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll
Quercus iles. New Phytologist, 205, 79-96.
https://doi.org/10.1111/nph.13001URLPMID:25580487 [本文引用: 1]摘要
The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10鈥300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses.
[23]Ocheltree TW, Nippert JB, Prasad PVV (2016). A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation
.New Phytologist, 210, 97-107.
https://doi.org/10.1111/nph.13781URLPMID:26680276 [本文引用: 1]摘要
Summary A common theme in plant physiological research is the trade-off between stress tolerance and growth; an example of this trade-off at the tissue level is the safety vs efficiency hypothesis, which suggests that plants with the greatest resistance to hydraulic failure should have low maximum hydraulic conductance. Here, we quantified the leaf-level drought tolerance of nine C4 grasses as the leaf water potential at which plants lost 50% ( P 5002×02RR) of maximum leaf hydraulic conductance ( K sat), and compared this trait with other leaf-level and whole-plant functions. We found a clear trade-off between K sat and P 5002×02RR when K sat was normalized by leaf area and mass ( P = 0.05 and 0.01, respectively). However, no trade-off existed between P 5002×02RR and gas-exchange rates; rather, there was a positive relationship between P 5002×02RR and photosynthesis ( P = 0.08). P 5002×02RR was not correlated with species distributions based on precipitation ( P = 0.70), but was correlated with temperature during the wettest quarter of the year ( P 4</sub> plants and adaptations to pulse-driven systems may provide mechanisms that could decouple hydraulic conductance from other plant functions.
[24]Ordonez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility
.Global Ecology and Biogeography, 18, 137-149.
https://doi.org/10.1111/j.1466-8238.2008.00441.xURL [本文引用: 1]摘要
Aim: This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade-off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gra...
[25]Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf traits relationship: Mass, area, and the leaf economics spectrum
.Science, 340, 741-744.
[本文引用: 1]
[26]Ping C, Wang CK, Quan XK (2014). Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees
. Acta Ecologica Sinica, 34, 1965-1974. (in Chinese with English abstract)
[平川, 王传宽, 全先奎 (2014). 环境变化对兴安落叶松氮磷化学计量特征的影响
. 生态学报, 34, 1965-1974.]
https://doi.org/10.5846/stxb201306301805URL [本文引用: 1]摘要
兴安落叶松(Larix gmelinii)为我国北方人工林优势树种,采集地理和气候差异明显的6个种源种子,在分布区南界的均一立地条件下进行播种,形成了32a林分。采集新老枝、新老叶和不同径级的根样品,测定其氮(N)和磷(P)浓度,比较种源间差异以及其随月份的变化和各器官NP元素之间的相关性。结果表明:老枝叶(P〈0.05)、1—2mm根(P〈0.01)和2—5mm根(P〈0.05)N浓度在种源间差异显著,变化范围分别为21.1—24.2mg/g、5.9—7.8mg/g和4.7—6.5mg/g。P浓度在老枝叶(P〈0.05)和新枝叶(P〈0.05)中都表现出种源问的差异显著,变化范围分别为4.5—5.8mg/g和4.5—6.5mg/g。根系和枝叶的N/P皆存在种源间显著性差异(P〈0.05)。叶片和根系的NP浓度的月份变化呈现先减小再增加的趋势,而新枝则呈现增加一减小一增加的不同趋势。新老枝、新老叶和根系的N和P浓度之间显著相关;新老枝、新老叶和根系之间的N浓度显著相关。不同种源兴安落叶松因对不同环埔的长期适廊而产牛NP化学计量特征的遗传差异。
[27]Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species
.Ecology, 87, 1733-1743.
https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2URLPMID:16922323 [本文引用: 2]摘要
We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assimilation rate 13-fold, mass-based respiration rate 15-fold, stomatal conductance 8-fold, and photosynthetic water use efficiency 4-fold. Photosynthetic traits were strongly coordinated, and specific leaf area predicted mass-based rates of assimilation and respiration; leaf life span predicted many other leaf characteristics. Leaf traits were closely associated with growth, survival, and light requirement of the species. Leaf investment strategies varied on a continuum trading off short-term carbon gain against long-term leaf persistence that, in turn, is linked to variation in whole-plant growth and survival. Leaf traits were good predictors of plant performance, both in gaps and in the forest understory. High growth in gaps is promoted by cheap, short-lived, and physiologically active leaves. High survival in the forest understory is enhanced by the formation of long-lived well protected leaves that reduce biomass loss by herbivory, mechanical disturbance, or leaf turnover. Leaf traits underlay this growth-survival trade-off; species with short-lived, physiologically active leaves have high growth but low survival. This continuum in leaf traits, through its effect on plant performance, in turn gives rise to a continuum in species' light requirements.
[28]Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area
. Chinese Journal of Plant Ecology, 39, 352-361. (in Chinese with English abstract)
[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较
. 植物生态学报, 39, 352-361.]
https://doi.org/10.17521/cjpe.2015.0034URL [本文引用: 2]摘要
研究环境变化下的树木水分利用 效率对探讨森林生态系统碳水耦联关系及其对气候变化的响应和适应对策具有重要意义。落叶松(Larix gmelinii)为我国北方森林的建群种之一。将水热条件不同的17个种源落叶松种植在帽儿山森林生态系统研究站的同质园内30年后,测定其针叶水分利 用效率(WUE)及其相关因子。结果表明:WUE、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、比叶面积(SLA)和叶片氮含量(NL)均 存在显著的种源差异(p0.05)。WUE和Gs呈显著指数相关关系,当Gs0.2时WUE随Gs的增大而明显增大,而当Gs0.2时WUE趋于稳定。 WUE和SLA及NL分别呈线性负相关和正相关关系,且随种源原地的干燥度指数(AI)的增大其相关性明显增强。WUE和种源原地年平均气温、平均年降水 量及AI分别呈线性负相关、负相关和正相关关系,并且相关系数依次增大;Tr则仅和种源原地年平均气温呈线性正相关关系,而Pn和种源原地AI呈线性正相 关关系。不同种源落叶松由于对种源原地环境条件的适应而存在针叶结构和生理特征的显著差异,并因此引起针叶水分利用效率的差异。
[29]Quan XK, Wang CK (2016). Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments
. China Science Bulletin, 61, 2273-2286. (in Chinese)
[全先奎, 王传宽 (2016). 兴安落叶松光合特性对环境的适应及其影响因素
. 科学通报, 61, 2273-2286.]
[本文引用: 1]
[30]Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto
.Journal of Ecology, 102, 275-301.
https://doi.org/10.1111/1365-2745.12211URL [本文引用: 2]摘要
ABSTRACT The leaf economics spectrum (LES) provides a useful framework for examining species strategies as shaped by their evolutionary history. However, that spectrum, as originally described, involved only two key resources (carbon and nutrients) and one of three economically important plant organs. Herein, I evaluate whether the economics spectrum idea can be broadly extended to water – the third key resource –stems, roots and entire plants and to individual, community and ecosystem scales. My overarching hypothesis is that strong selection along trait trade-off axes, in tandem with biophysical constraints, results in convergence for any taxon on a uniformly fast, medium or slow strategy (i.e. rates of resource acquisition and processing) for all organs and all resources. Evidence for economic trait spectra exists for stems and roots as well as leaves, and for traits related to water as well as carbon and nutrients. These apply generally within and across scales (within and across communities, climate zones, biomes and lineages). There are linkages across organs and coupling among resources, resulting in an integrated whole-plant economics spectrum. Species capable of moving water rapidly have low tissue density, short tissue life span and high rates of resource acquisition and flux at organ and individual scales. The reverse is true for species with the slow strategy. Different traits may be important in different conditions, but as being fast in one respect generally requires being fast in others, being fast or slow is a general feature of species. Economic traits influence performance and fitness consistent with trait-based theory about underlying adaptive mechanisms. Traits help explain differences in growth and survival across resource gradients and thus help explain the distribution of species and the assembly of communities across light, water and nutrient gradients. Traits scale up – fast traits are associated with faster rates of ecosystem processes such as decomposition or primary productivity, and slow traits with slow process rates. Synthesis. Traits matter. A single ‘fast–slow’ plant economics spectrum that integrates across leaves, stems and roots is a key feature of the plant universe and helps to explain individual ecological strategies, community assembly processes and the functioning of ecosystems.
[31]Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Alonzo MR, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis
.Journal of Experimental Botany, 64, 4053-4080.
https://doi.org/10.1093/jxb/ert316URLPMID:24123455 [本文引用: 1]摘要
Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.
[32]Sack L, Tyree M, Holbrook NM (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees
.New Phytologist, 167, 403-413.
https://doi.org/10.1111/j.1469-8137.2005.01432.xURLPMID:15998394 [本文引用: 1]摘要
Abstract The leaf hydraulic conductance (K(leaf)) is a major determinant of plant water transport capacity. Here, we measured K(leaf), and its basis in the resistances of leaf components, for fully illuminated leaves of five tree species that regenerate in deep shade, and five that regenerate in gaps or clearings, in Panamanian lowland tropical rainforest. We also determined coordination with stomatal characters and leaf mass per area. K(leaf) varied 10-fold across species, and was 3-fold higher in sun- than in shade-establishing species. On average, 12% of leaf hydraulic resistance (= 1/K(leaf)) was located in the petiole, 25% in the major veins, 25% in the minor veins, and 39% outside the xylem. Sun-establishing species had a higher proportion of leaf resistance in the xylem. Across species, component resistances correlated linearly with total leaf resistance. K(leaf) correlated tightly with indices of stomatal pore area, indicating a coordination of liquid- and vapor-phase conductances shifted relative to that of temperate woody species. Leaf hydraulic properties are integrally linked in the complex of traits that define differences in water use and carbon economy across habitats and vegetation zones. Copyright New Phytologist (2005).
[33]Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees
.Oecologia, 140, 543-550.
https://doi.org/10.1007/s00442-004-1624-1URLPMID:15232729 [本文引用: 2]摘要
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity ( k L ) of upper branches was positively correlated with maximum rates of net CO 2 assimilation per unit leaf area ( A area ) and stomatal conductance ( g s ) across 20 species of canopy trees. Maximum k L showed stronger correlation with A area than initial k L suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch k L was negatively correlated with A area / g s and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics ( k theoretical ) was positively related to A area and k L , consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, k L , A area , net CO 2 assimilation per unit leaf mass ( A mass ), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.
[34]Schuldt B, Knutzen F, Delzon S, Jansen S, Haubold HM, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?
New Phytologist, 210, 443-458.
https://doi.org/10.1111/nph.13798URLPMID:26720626 [本文引用: 1]摘要
Summary Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech ( Fagus sylvatica ) trees along a precipitation gradient (855–594 mm02yr611) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness ( T m) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and T m were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance.
[35]Skelton BP, West AG, Dawson TE (2015). Predicting plant vulnerability to drought in biodiverse regions using functional traits
.Proceeding of the National Academy of Science of the United States of America, 112, 5744-5749.
[本文引用: 1]
[36]Tang Y, Wang CK (2011). A feasible method for measuring photosynthesisin vitro for major tree species in northeastern China
. Chinese Journal of Plant Ecology, 35, 452-462. (in Chinese with English abstract)
[唐艳, 王传宽 (2011). 东北主要树种光合作用可行的离体测定方法
. 植物生态学报, 35, 452-462.]
https://doi.org/10.3724/SP.J.1258.2011.00452URL [本文引用: 1]摘要
树木光合作用的测定常因植株高大而难以开展,其中离体测定是解决 途径之一.但离体测定的方法及其可靠性因树种而异.选取东北东部温带森林中特性各异的7种主要树种:针叶树(红松(pinus koraiensis)、长白落叶松(Larix olgensis))、散孔材(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica))和环孔材(水曲柳(Fraxinus mandshurica)、黄榆(Ulmus macro-carpa)、蒙古栎(Quercus mongolica)),首先采用光合速率恢复到光合诱导前稳定值90%的时间(T90)长短和叶片蒸腾速率(E)的大小评估离体叶片水分供应状况及其光 合活力,以此确定较优的离体测定方案;同时,观测离体叶片的光合活力稳定时间;最后通过比较原位测定和采用所确定的较优离体方案测定的各树种叶片气体交换 参数.论证采用离体测定光合作用的可靠性.结果表明:除蒙古栎外的6个树种的离体叶片均具有较高、较稳定的水分供应和光合活力.离体枝条或复叶插入水中, 环剥去除切口处3 cm左右的韧皮部和剩余叶片的方法,是这6个温带树种叶片光合能力的较优离体测定方法.6个树种叶片的T90受树木特性的影响而差异显著 (P<0.05),其中环孔材树种的T90显著高于散孔材和针叶树种.6个树种离体叶片在1 h内均有较高、较稳定的水分供应和光合活力.在此期间离体所测得的绝大多数叶片的气体交换参数与其原位测定值之间的差异不显著.该研究提出了可行的树木叶 片光合作用的离体测定方案,适用于蒙古栎以外的其他6个温带树种.
[37]Wang C, Han Y, Chen J, Wang X, Zhang Q, Lamberty BB (2013). Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles
.Agricultural and Forest Meteorology, 177, 83-92.
https://doi.org/10.1016/j.agrformet.2013.04.008URL [本文引用: 1]摘要
Changes in characteristics of snowfall and spring freeze–thaw-cycle (FTC) events under the warming climate make it critical to understand biophysical controls on soil CO 2 efflux ( R S ) in seasonally snow-covered ecosystems. We conducted a snow removal experiment and took year-round continuous automated measurements of R S , soil temperature ( T 5 ) and soil volumetric water content at the 5cm depth ( W 5 ) with a half-hour interval in a Chinese temperate forest in 2010–2011. Our objectives were to: (1) develop statistical models to describe the seasonality of R S in this forest; (2) quantify the contribution of seasonal R S to the annual budget; (3) examine biophysical effects of snowpack on R S ; and (4) test the hypothesis that an FTC-induced enhancement of R S is jointly driven by biological and physical processes. Empirical R S – T 5 – W 5 models explained 65.3–94.1% of the variability in the R S data, but the number of the regression terms and their coefficients varied with season. This indicates that the model should be fitted to the seasonal data sets separately to explicitly describe the seasonality of R S . The R S during the winter, spring FTC period, and growing season contributed 5.7%, 3.5%, and 91.1%, respectively, to the total annual R S . The relative enhancement of R S due to snowpack and FTCs averaged 3.4 and 2.5, respectively. The snowpack-induced enhancement of R S exponentially increased with T 5 ( R 2 =0.83) and snow depth ( R 2 =0.16), while the FTC-induced enhancement of R S exponentially decreased with T 5 ( R 2 =0.45) and W 5 ( R 2 =0.67). These results suggest that the snowpack-induced enhancement mainly results from the snow-depth-dependent insulation of soil from low air temperatures, while the FTC-induced enhancement is dominantly driven by biological processes. Accumulatively, the snowpack and spring FTCs made a minor net contribution (2.3% and 1.2%, respectively) to the annual R S budget.
[38]Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Bares JC, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov WI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum
.Nature, 428, 821-827.
[本文引用: 3]
[39]Xiong D, Flexas J, Yu T, Peng S, Huang J (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 inOryza
. New Phytologist, 213, 572-583.
https://doi.org/10.1111/nph.14186URLPMID:27653809 [本文引用: 1]摘要
Abstract Leaf hydraulic conductance (Kleaf ) and mesophyll conductance (gm ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that Kleaf and gm is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, Kleaf , leaf hydraulic conductance inside xylem (Kx ), leaf hydraulic conductance outside xylem (Kox ), A, stomatal conductance (gs ), gm , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H2 O and CO2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. Kleaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (gsmax ), and neither gs nor gsmax were correlated with Kx . Moreover, Kox was linearly correlated with gm and both were closely related to mesophyll structural traits. These results suggest that Kleaf and gm are related to leaf anatomical and structural features, which may explain the mechanism for correlation between gm and Kleaf .
Significance and limits in the use of predawn leaf water potential for tree irrigation
1
1999

... 虽然本研究尚未对全坡位样带的土壤物理和化学性质做全面监测, 但从3条样带不同坡位的5个样地的一些间接测定指标分析看, 不同坡位的立地条件存在显著差异.首先, 各样地在1989年春季造林时所栽植的是年龄和种源相同的兴安落叶松实生苗, 造林初始密度也相同, 而且在过去的27年中(直至2016年调查)没有采取过任何林分抚育经营措施.不同样地的林分密度和胸高断面积差异显著(表1), 表明林木响应于立地条件而产生林分自然稀疏和林木分化的强度不一.虽然各样地的平均DBH差异不显著, 但DBH的变异性(即SD)不一(表1), 从另一个角度反映出林木响应于立地条件变化而产生林木分化程度的差异.其次, 黎明前叶水势(Ψpre)常用于表征根际土壤水势(Ameglio et al., 1999); 样地间Ψpre的显著差异(图2C)表明样地间的土壤供水能力存在差异.再者, 叶氮含量(N)常与土壤肥力密切相关(Ordonez et al., 2009); 样地间N的显著差异(图2F)表明样地间的土壤肥力可能存在差异.由此推断, 处于不同坡位的这5个样地构成了一个立地条件综合变化梯度. ...

Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress
1
2014

... 响应于样地间立地条件的差异, 兴安落叶松叶水力和光合性状均产生显著的变异性(图2); 该种内变异主要是叶性状响应于立地条件变化而表现出的表型可塑性.本研究结果显示, 在Ψpre较高样地中, KleafP50也较高(图2), 而且二者与Ψpre相关显著(图3A、3D); 这说明兴安落叶松叶水力性状受土壤水分状况的影响.土壤水分供应显著影响植物水分有效性(Aranda et al., 2014).在水分供应较好的条件下, 林木能在单位时间内将更多的水分运输到叶, 但其抗栓塞能力较弱(Skelton et al., 2015).与叶水力性状不同, ALMAN等光合性状随样带坡位变化而显示出相似的变化趋势(图2), 且ALMA均与N呈显著的正相关关系(图4), 说明兴安落叶松叶光合性状的种内变异主要受土壤肥力影响. ...

Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2
1
2016

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms
1
2010

... 水力效率-安全权衡是植物适应环境和进化的结果(Blackman et al, 2010), 水力效率是保证植物水分供应、进行光合生长的基础; 而水力安全是衡量植物干旱耐性, 决定植物是否能够生长或生存的关键性状(Naridini et al., 2012).以往不同植物种的叶水力导度与脆弱性之间存在权衡关系(Blackman et al., 2010; Naridini et al., 2012; Jin et al., 2016), 说明水分运输效率较低的植物具有更安全的水力结构, 从而降低木质部栓塞的危险(Jin et al., 2016).我们发现不同立地条件下的兴安落叶松KareaP50显著相关(图3C), 表明兴安落叶松种内也存在一定的水力效率-安全权衡关系.然而, Hajek等(2016)对100个不同种源欧洲山毛榉的研究结果表明, 所测定的22个生理生态性状中绝大多数参数因种源的遗传分化而使其种内差异显著, 其中抗栓塞能力与水力效率无关, 不是通过调整导管的大小而是通过调整导管的数量来应对水分胁迫.全先奎和王传宽(2015)测定了兴安落叶松17个种源的叶水分利用效率、净光合速率、蒸腾速率、比叶面积和叶氮含量等也发现了类同的种内遗传分化, 而且参数之间存在显著相关关系; 但他们尚未测定叶水力性状.因此, 本研究中兴安落叶松随立地条件变化而呈现出的叶水力效率-安全权衡关系是否也存在于用于观察长期遗传分化的种源试验中, 尚需进一步验证. ...

Leaf maximum photosynthetic rate and venation are linked by hydraulic
1
2007

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Stomatal closure during leaf dehydration correlation with other leaf physiological traits
1
2003

... 水力导度和脆弱性曲线测定: 采用复水法(rehydration kinetic technique)测定(Brodribb & Holbrook, 2003).于3:00-5:00, 在每个样树上采集若干个枝条, 迅速放入水桶内, 并在水下剪去10 cm左右, 套上黑色塑料袋, 带回实验室.将若干个小枝置于自然状态下失水不同时间, 以形成不同的初始水势梯度; 然后将其分别放入黑色塑料袋中密封, 并保存在黑暗处至少30 min, 使其上所有短枝水势平衡.之后, 取两个短枝测其水势差: 若小于0.1 MPa, 则认为达到平衡, 并记录为Ψ0.然后, 再选一相邻短枝, 水下剪茎, 并使之复水一定时间(t); 复水时间取决于初始水势的高低(即高水势复水时间短, 低水势复水 ...

Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima
2
2005

... 为了合理地反映立地条件变化对兴安落叶松叶性状的影响、降低背景干扰, 本研究采用了一种权衡取样方案: 选择样树的冠层上部处于全光照条件下的短枝作为叶水力和光合性状测量对象(Brodribb et al., 2005), 同时考虑到测定针叶所处的不同树高引起重力势差异的影响, 在数据分析中将树高与水力性状进行回归分析, 比较分析树高对水势的影响.所有的叶性状参数测定均在2016年8月进行. ...

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Conifer species adapt to low-rainfall climates by following one of two divergent pathways
1
2014

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area
1
2013

... 植物叶光合性状和水力性状的变异性和相关性引起人们的普遍关注(Wright et al., 2004), 但研究结果有时出现分歧.例如: Wright等(2004)整合构建了包括全球175个样地的2548个植物种的植物性状数据库(GLOPNET), 分析发现6个主要叶性状的种间变异高达1-2个数量级; ALMAN等叶光合性状之间存在成对相关关系.然而, Funk和Cornwell (2013)从GLOPNET中提取22个不同群落的数据再度分析发现, 在叶寿命差异较小的群落中, ALMAN之间的相关性微弱.Reich (2014)列举了许多案例研究, 提出了植物“快-慢经济谱”假说.该假说认为, 植物叶碳、水性状具有协同性, “快速收益型”物种应具有较高的AKleaf, “慢速收益型”物种则反之.然而, Sack等(2013)综合分析发现叶水力性状(叶脉)与经济性状(LMA)并不相关; Li等(2015)也报道同样的现象, 并推测产生这种不相关现象的原因可能是叶片上层的栅栏组织与下层的海绵组织具有相对独立功能的缘故.与这些种间变异和相关性研究相比, 种内变异及相关性研究较少, 且研究结论也不一致.例如: Blackman等(2016)报道, 栅栏和海绵组织区分不明显的赤桉(Eucalyptus camaldulensis)的水力与光合性状之间也不相关.欧洲山毛榉(Fagus sylvatica)的P50随着干旱程度的增加而增加(Schuldt et al., 2016), 而KleafP50无关(Hajek et al., 2016).另外, 植物叶性状也会受环境变化、土壤物理和化学性质等影响.例如: 氮添加可降低火炬松(Pinus taeda)叶水分运输效率, 从而降低叶水势, 但磷添加并不影响叶的水力结构(Faustino et al., 2013).综上所述, 植物叶性状及其相关性在种内和种间是否存在一致性的规律、这种变异性和相关性是否会随环境条件变化而变化等问题还需要进一步的验证, 以便更好地理解和预测植物对全球气候变化的响应和适应. ...

Leaf traits within communities: Context may affect the mapping of traits to function
2013

叶片结构的水力学特性对植物生理功能影响的研究进展
1
2015

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield
1
2016

... 植物叶光合性状和水力性状的变异性和相关性引起人们的普遍关注(Wright et al., 2004), 但研究结果有时出现分歧.例如: Wright等(2004)整合构建了包括全球175个样地的2548个植物种的植物性状数据库(GLOPNET), 分析发现6个主要叶性状的种间变异高达1-2个数量级; ALMAN等叶光合性状之间存在成对相关关系.然而, Funk和Cornwell (2013)从GLOPNET中提取22个不同群落的数据再度分析发现, 在叶寿命差异较小的群落中, ALMAN之间的相关性微弱.Reich (2014)列举了许多案例研究, 提出了植物“快-慢经济谱”假说.该假说认为, 植物叶碳、水性状具有协同性, “快速收益型”物种应具有较高的AKleaf, “慢速收益型”物种则反之.然而, Sack等(2013)综合分析发现叶水力性状(叶脉)与经济性状(LMA)并不相关; Li等(2015)也报道同样的现象, 并推测产生这种不相关现象的原因可能是叶片上层的栅栏组织与下层的海绵组织具有相对独立功能的缘故.与这些种间变异和相关性研究相比, 种内变异及相关性研究较少, 且研究结论也不一致.例如: Blackman等(2016)报道, 栅栏和海绵组织区分不明显的赤桉(Eucalyptus camaldulensis)的水力与光合性状之间也不相关.欧洲山毛榉(Fagus sylvatica)的P50随着干旱程度的增加而增加(Schuldt et al., 2016), 而KleafP50无关(Hajek et al., 2016).另外, 植物叶性状也会受环境变化、土壤物理和化学性质等影响.例如: 氮添加可降低火炬松(Pinus taeda)叶水分运输效率, 从而降低叶水势, 但磷添加并不影响叶的水力结构(Faustino et al., 2013).综上所述, 植物叶性状及其相关性在种内和种间是否存在一致性的规律、这种变异性和相关性是否会随环境条件变化而变化等问题还需要进一步的验证, 以便更好地理解和预测植物对全球气候变化的响应和适应. ...

Photosynthesis at an extreme end of the leaf traits spectrum: How does it relate to high leaf dry mass per area and associated structural parameters?
1
2010

... Wright等(2004)首次提出了全球植物叶经济性状谱; 随后的许多研究结果也证实了它具有一定的普适性(Reich, 2014).但Wright等(2004)采用叶性状的平均值代表每个物种的平均水平, 这忽略了叶性状的种内变异和表型可塑性(Niinemets, 2015).全先奎和王传宽(2016)报道兴安落叶松6个种源的净光合速率与叶氮含量存在显著的正相关关系.本研究对这一研究作了补充, 发现随立地条件变化兴安落叶松叶光合性状之间也存在成对相关关系; 其中AareaLMA正相关(图4A), 可能因为它通过降低叶内部空间或增加叶肉组织的投入来增加LMA (Wright et al., 2004; Hassiotou et al., 2010).Niinemets (2015)对冬青栎(Quercus ilex)叶性状相关性的研究也得出了类似的结果. ...

Co-ordinated performance of leaf hydraulic and economics in 10 Chinese temperate tree species
1
2016

... 水力效率-安全权衡是植物适应环境和进化的结果(Blackman et al, 2010), 水力效率是保证植物水分供应、进行光合生长的基础; 而水力安全是衡量植物干旱耐性, 决定植物是否能够生长或生存的关键性状(Naridini et al., 2012).以往不同植物种的叶水力导度与脆弱性之间存在权衡关系(Blackman et al., 2010; Naridini et al., 2012; Jin et al., 2016), 说明水分运输效率较低的植物具有更安全的水力结构, 从而降低木质部栓塞的危险(Jin et al., 2016).我们发现不同立地条件下的兴安落叶松KareaP50显著相关(图3C), 表明兴安落叶松种内也存在一定的水力效率-安全权衡关系.然而, Hajek等(2016)对100个不同种源欧洲山毛榉的研究结果表明, 所测定的22个生理生态性状中绝大多数参数因种源的遗传分化而使其种内差异显著, 其中抗栓塞能力与水力效率无关, 不是通过调整导管的大小而是通过调整导管的数量来应对水分胁迫.全先奎和王传宽(2015)测定了兴安落叶松17个种源的叶水分利用效率、净光合速率、蒸腾速率、比叶面积和叶氮含量等也发现了类同的种内遗传分化, 而且参数之间存在显著相关关系; 但他们尚未测定叶水力性状.因此, 本研究中兴安落叶松随立地条件变化而呈现出的叶水力效率-安全权衡关系是否也存在于用于观察长期遗传分化的种源试验中, 尚需进一步验证. ...

植物叶片水力与经济性状权衡关系的研究进展
2
2015

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... ), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

The intrinsic dimensionality of plant traits and its relevance to community assembly
1
2014

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

兴安落叶松地理分布对气候变化响应的模拟
1
2006

... 兴安落叶松(Larix gmelinii)是我国北方森林的优势组成树种, 具有广泛的分布范围和较强的环境适应能力(全先奎和王传宽, 2015).随着全球气候变暖加剧, 模型预测兴安落叶松会逐渐北移, 甚至可能全部出境(李峰等, 2006).然而, 更准确的评估与预测需要理解更多的植物生理生态机制.Jin等(2016)测定分析了我国温带10个主要树种(包括兴安落叶松)的叶水力和经济性状, 发现基于叶质量的水力导度随着P50增加而增加, 光合与水力性状之间存在一定程度的协同性, 但他们并没有探究这些树种叶性状的种内变异性和相关性.然而, 本地区不同种源兴安落叶松同质园试验研究发现, 其叶光合特性(全先奎和王传宽, 2016)、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚.基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何? ...

Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests
1
2015

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Global effects of soil and climate on leaf photosynthetic traits and rates
2
2015

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... ; Marie et al., 2015). ...

Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes
1
2014

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological consequences
2
2012

... 水力效率-安全权衡是植物适应环境和进化的结果(Blackman et al, 2010), 水力效率是保证植物水分供应、进行光合生长的基础; 而水力安全是衡量植物干旱耐性, 决定植物是否能够生长或生存的关键性状(Naridini et al., 2012).以往不同植物种的叶水力导度与脆弱性之间存在权衡关系(Blackman et al., 2010; Naridini et al., 2012; Jin et al., 2016), 说明水分运输效率较低的植物具有更安全的水力结构, 从而降低木质部栓塞的危险(Jin et al., 2016).我们发现不同立地条件下的兴安落叶松KareaP50显著相关(图3C), 表明兴安落叶松种内也存在一定的水力效率-安全权衡关系.然而, Hajek等(2016)对100个不同种源欧洲山毛榉的研究结果表明, 所测定的22个生理生态性状中绝大多数参数因种源的遗传分化而使其种内差异显著, 其中抗栓塞能力与水力效率无关, 不是通过调整导管的大小而是通过调整导管的数量来应对水分胁迫.全先奎和王传宽(2015)测定了兴安落叶松17个种源的叶水分利用效率、净光合速率、蒸腾速率、比叶面积和叶氮含量等也发现了类同的种内遗传分化, 而且参数之间存在显著相关关系; 但他们尚未测定叶水力性状.因此, 本研究中兴安落叶松随立地条件变化而呈现出的叶水力效率-安全权衡关系是否也存在于用于观察长期遗传分化的种源试验中, 尚需进一步验证. ...

... ., 2010; Naridini et al., 2012; Jin et al., 2016), 说明水分运输效率较低的植物具有更安全的水力结构, 从而降低木质部栓塞的危险(Jin et al., 2016).我们发现不同立地条件下的兴安落叶松KareaP50显著相关(图3C), 表明兴安落叶松种内也存在一定的水力效率-安全权衡关系.然而, Hajek等(2016)对100个不同种源欧洲山毛榉的研究结果表明, 所测定的22个生理生态性状中绝大多数参数因种源的遗传分化而使其种内差异显著, 其中抗栓塞能力与水力效率无关, 不是通过调整导管的大小而是通过调整导管的数量来应对水分胁迫.全先奎和王传宽(2015)测定了兴安落叶松17个种源的叶水分利用效率、净光合速率、蒸腾速率、比叶面积和叶氮含量等也发现了类同的种内遗传分化, 而且参数之间存在显著相关关系; 但他们尚未测定叶水力性状.因此, 本研究中兴安落叶松随立地条件变化而呈现出的叶水力效率-安全权衡关系是否也存在于用于观察长期遗传分化的种源试验中, 尚需进一步验证. ...

Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll
1
2015

... Wright等(2004)首次提出了全球植物叶经济性状谱; 随后的许多研究结果也证实了它具有一定的普适性(Reich, 2014).但Wright等(2004)采用叶性状的平均值代表每个物种的平均水平, 这忽略了叶性状的种内变异和表型可塑性(Niinemets, 2015).全先奎和王传宽(2016)报道兴安落叶松6个种源的净光合速率与叶氮含量存在显著的正相关关系.本研究对这一研究作了补充, 发现随立地条件变化兴安落叶松叶光合性状之间也存在成对相关关系; 其中AareaLMA正相关(图4A), 可能因为它通过降低叶内部空间或增加叶肉组织的投入来增加LMA (Wright et al., 2004; Hassiotou et al., 2010).Niinemets (2015)对冬青栎(Quercus ilex)叶性状相关性的研究也得出了类似的结果. ...

A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation
1
2016

... 对每株样树的KleafΨ0测量值进行不同函数(线性、逻辑斯蒂和指数函数)回归拟合, 选择其中赤池信息量准则(AIC)值最小的函数作为优化函数(Ocheltree et al., 2016), 得到最适的脆弱性曲线.将导水率为最大导水率(Karea)的50%时所对应叶水势, 确定为P50. ...

A global study of relationships between leaf traits, climate and soil measures of nutrient fertility
1
2009

... 虽然本研究尚未对全坡位样带的土壤物理和化学性质做全面监测, 但从3条样带不同坡位的5个样地的一些间接测定指标分析看, 不同坡位的立地条件存在显著差异.首先, 各样地在1989年春季造林时所栽植的是年龄和种源相同的兴安落叶松实生苗, 造林初始密度也相同, 而且在过去的27年中(直至2016年调查)没有采取过任何林分抚育经营措施.不同样地的林分密度和胸高断面积差异显著(表1), 表明林木响应于立地条件而产生林分自然稀疏和林木分化的强度不一.虽然各样地的平均DBH差异不显著, 但DBH的变异性(即SD)不一(表1), 从另一个角度反映出林木响应于立地条件变化而产生林木分化程度的差异.其次, 黎明前叶水势(Ψpre)常用于表征根际土壤水势(Ameglio et al., 1999); 样地间Ψpre的显著差异(图2C)表明样地间的土壤供水能力存在差异.再者, 叶氮含量(N)常与土壤肥力密切相关(Ordonez et al., 2009); 样地间N的显著差异(图2F)表明样地间的土壤肥力可能存在差异.由此推断, 处于不同坡位的这5个样地构成了一个立地条件综合变化梯度. ...

Global leaf traits relationship: Mass, area, and the leaf economics spectrum
1
2013

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

环境变化对兴安落叶松氮磷化学计量特征的影响
1
2014

... 兴安落叶松(Larix gmelinii)是我国北方森林的优势组成树种, 具有广泛的分布范围和较强的环境适应能力(全先奎和王传宽, 2015).随着全球气候变暖加剧, 模型预测兴安落叶松会逐渐北移, 甚至可能全部出境(李峰等, 2006).然而, 更准确的评估与预测需要理解更多的植物生理生态机制.Jin等(2016)测定分析了我国温带10个主要树种(包括兴安落叶松)的叶水力和经济性状, 发现基于叶质量的水力导度随着P50增加而增加, 光合与水力性状之间存在一定程度的协同性, 但他们并没有探究这些树种叶性状的种内变异性和相关性.然而, 本地区不同种源兴安落叶松同质园试验研究发现, 其叶光合特性(全先奎和王传宽, 2016)、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚.基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何? ...

Leaf traits are good predictors of plant performance across 53 rain forest species
2
2006

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

帽儿山17个种源落叶松针叶的水分利用效率比较
2
2015

... 兴安落叶松(Larix gmelinii)是我国北方森林的优势组成树种, 具有广泛的分布范围和较强的环境适应能力(全先奎和王传宽, 2015).随着全球气候变暖加剧, 模型预测兴安落叶松会逐渐北移, 甚至可能全部出境(李峰等, 2006).然而, 更准确的评估与预测需要理解更多的植物生理生态机制.Jin等(2016)测定分析了我国温带10个主要树种(包括兴安落叶松)的叶水力和经济性状, 发现基于叶质量的水力导度随着P50增加而增加, 光合与水力性状之间存在一定程度的协同性, 但他们并没有探究这些树种叶性状的种内变异性和相关性.然而, 本地区不同种源兴安落叶松同质园试验研究发现, 其叶光合特性(全先奎和王传宽, 2016)、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚.基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何? ...

... )、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚.基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何? ...

兴安落叶松光合特性对环境的适应及其影响因素
1
2016

... 兴安落叶松(Larix gmelinii)是我国北方森林的优势组成树种, 具有广泛的分布范围和较强的环境适应能力(全先奎和王传宽, 2015).随着全球气候变暖加剧, 模型预测兴安落叶松会逐渐北移, 甚至可能全部出境(李峰等, 2006).然而, 更准确的评估与预测需要理解更多的植物生理生态机制.Jin等(2016)测定分析了我国温带10个主要树种(包括兴安落叶松)的叶水力和经济性状, 发现基于叶质量的水力导度随着P50增加而增加, 光合与水力性状之间存在一定程度的协同性, 但他们并没有探究这些树种叶性状的种内变异性和相关性.然而, 本地区不同种源兴安落叶松同质园试验研究发现, 其叶光合特性(全先奎和王传宽, 2016)、水分利用效率(全先奎和王传宽, 2015)、叶氮磷含量(平川等, 2014)等性状均因长期适应于种源地的环境条件而表现出种内变异, 但其叶水力和光合性状对局部立地条件差异的响应尚不清楚.基于前期研究, 本文探究的科学问题是: 响应于局部立地条件变化, 兴安落叶松叶光合与水力性状的种内变异性和相关性如何? ...

The world-wide “fast-slow” plant economics spectrum: A traits manifesto
2
2014

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... Wright等(2004)首次提出了全球植物叶经济性状谱; 随后的许多研究结果也证实了它具有一定的普适性(Reich, 2014).但Wright等(2004)采用叶性状的平均值代表每个物种的平均水平, 这忽略了叶性状的种内变异和表型可塑性(Niinemets, 2015).全先奎和王传宽(2016)报道兴安落叶松6个种源的净光合速率与叶氮含量存在显著的正相关关系.本研究对这一研究作了补充, 发现随立地条件变化兴安落叶松叶光合性状之间也存在成对相关关系; 其中AareaLMA正相关(图4A), 可能因为它通过降低叶内部空间或增加叶肉组织的投入来增加LMA (Wright et al., 2004; Hassiotou et al., 2010).Niinemets (2015)对冬青栎(Quercus ilex)叶性状相关性的研究也得出了类似的结果. ...

How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis
1
2013

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees
1
2005

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees
2
2004

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...

How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?
1
2016

... 植物叶光合性状和水力性状的变异性和相关性引起人们的普遍关注(Wright et al., 2004), 但研究结果有时出现分歧.例如: Wright等(2004)整合构建了包括全球175个样地的2548个植物种的植物性状数据库(GLOPNET), 分析发现6个主要叶性状的种间变异高达1-2个数量级; ALMAN等叶光合性状之间存在成对相关关系.然而, Funk和Cornwell (2013)从GLOPNET中提取22个不同群落的数据再度分析发现, 在叶寿命差异较小的群落中, ALMAN之间的相关性微弱.Reich (2014)列举了许多案例研究, 提出了植物“快-慢经济谱”假说.该假说认为, 植物叶碳、水性状具有协同性, “快速收益型”物种应具有较高的AKleaf, “慢速收益型”物种则反之.然而, Sack等(2013)综合分析发现叶水力性状(叶脉)与经济性状(LMA)并不相关; Li等(2015)也报道同样的现象, 并推测产生这种不相关现象的原因可能是叶片上层的栅栏组织与下层的海绵组织具有相对独立功能的缘故.与这些种间变异和相关性研究相比, 种内变异及相关性研究较少, 且研究结论也不一致.例如: Blackman等(2016)报道, 栅栏和海绵组织区分不明显的赤桉(Eucalyptus camaldulensis)的水力与光合性状之间也不相关.欧洲山毛榉(Fagus sylvatica)的P50随着干旱程度的增加而增加(Schuldt et al., 2016), 而KleafP50无关(Hajek et al., 2016).另外, 植物叶性状也会受环境变化、土壤物理和化学性质等影响.例如: 氮添加可降低火炬松(Pinus taeda)叶水分运输效率, 从而降低叶水势, 但磷添加并不影响叶的水力结构(Faustino et al., 2013).综上所述, 植物叶性状及其相关性在种内和种间是否存在一致性的规律、这种变异性和相关性是否会随环境条件变化而变化等问题还需要进一步的验证, 以便更好地理解和预测植物对全球气候变化的响应和适应. ...

Predicting plant vulnerability to drought in biodiverse regions using functional traits
1
2015

... 响应于样地间立地条件的差异, 兴安落叶松叶水力和光合性状均产生显著的变异性(图2); 该种内变异主要是叶性状响应于立地条件变化而表现出的表型可塑性.本研究结果显示, 在Ψpre较高样地中, KleafP50也较高(图2), 而且二者与Ψpre相关显著(图3A、3D); 这说明兴安落叶松叶水力性状受土壤水分状况的影响.土壤水分供应显著影响植物水分有效性(Aranda et al., 2014).在水分供应较好的条件下, 林木能在单位时间内将更多的水分运输到叶, 但其抗栓塞能力较弱(Skelton et al., 2015).与叶水力性状不同, ALMAN等光合性状随样带坡位变化而显示出相似的变化趋势(图2), 且ALMA均与N呈显著的正相关关系(图4), 说明兴安落叶松叶光合性状的种内变异主要受土壤肥力影响. ...

东北主要树种光合作用可行的离体测定方法
1
2011

... 选取与水力性状测定小枝位置相邻的小枝, 采用LI-6400便携式CO2/H2O红外分析仪(LI-COR, Lincoln, USA)离体测定其上三簇成熟针叶的净光合速率(A)(唐艳和王传宽, 2011), 取平均值代表此样树A.测定时控制参数设置为: 光强为饱和光强 (1β500 μmol·m-2·s-1), CO2浓度为400 μmol CO2·mol-1, 进入样品室流速为500 μmol·s-1, 温度为20-25 ℃.测定前先用饱和光强对针叶进行充分光诱导(约10 min), 然后再作记录.测定完成后, 立即采下该针叶, 装入封口袋并置于冷藏箱(4 ℃).带回实验室后, 用扫描仪和图像处理软件测定LA; 之后将叶样品置于65 ℃烘箱烘48 h后称其干质量; 将叶干质量除以LA得到比叶质量(LMA, kg·m-2). ...

Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles
1
2013

... 试验地位于东北林业大学帽儿山森林生态站(45.33° N, 127.50° E), 平均海拔400 m, 平均坡度10°-15°, 地带性土壤为暗棕色森林土.该地区属于大陆性季风气候, 夏季温暖多雨, 冬季寒冷干燥, 年平均气温3.1 ℃, 1月平均气温-18.5 ℃, 7月平均气温22.0 ℃, 平均年降水量为629 mm, 多集中在夏季, 无霜期为120-140天(Wang et al., 2013). ...

The worldwide leaf economics spectrum
3
2004

... 叶片是植物与外界进行碳水交换的主要器官(金鹰和王传宽, 2015); 叶片因环境变化而产生的叶性状变化会显著地影响植物的碳水交换过程(Reich, 2014).在叶形态、结构和功能性状中, 叶光合和水力性状对植物的生存和生长最为重要.叶光合性状主要包括净光合速率(A)、比叶质量(LMA)、叶氮含量(N)等, 是植物碳经济谱的主要参数(Wright et al., 2004; Osnas et al., 2013), 它对环境变化的响应直接影响植物净碳吸收(Marie et al., 2015).叶水力性状主要包括叶水力导度(Kleaf)、抗栓塞能力(P50)等(龚容和高琼, 2014), 它是植物水分运输的重要性状, 显著地影响植物气体交换过程(金鹰和王传宽, 2015).植物通过叶片气孔吸收CO2的同时, 不可避免地伴随大量的水分扩散到大气中(Santiago et al., 2004), 所以充足的水分供应是植物维持光合作用的必要条件(Nardini & Luglio, 2014).探索植物叶光合和水力性状的变异性及其相互关系对理解和预测气候变化对植物的存活、生长及分布至关重要(Poorter & Bongers, 2006; Brodribb et al., 2014; Marie et al., 2015). ...

... 植物叶光合性状和水力性状的变异性和相关性引起人们的普遍关注(Wright et al., 2004), 但研究结果有时出现分歧.例如: Wright等(2004)整合构建了包括全球175个样地的2548个植物种的植物性状数据库(GLOPNET), 分析发现6个主要叶性状的种间变异高达1-2个数量级; ALMAN等叶光合性状之间存在成对相关关系.然而, Funk和Cornwell (2013)从GLOPNET中提取22个不同群落的数据再度分析发现, 在叶寿命差异较小的群落中, ALMAN之间的相关性微弱.Reich (2014)列举了许多案例研究, 提出了植物“快-慢经济谱”假说.该假说认为, 植物叶碳、水性状具有协同性, “快速收益型”物种应具有较高的AKleaf, “慢速收益型”物种则反之.然而, Sack等(2013)综合分析发现叶水力性状(叶脉)与经济性状(LMA)并不相关; Li等(2015)也报道同样的现象, 并推测产生这种不相关现象的原因可能是叶片上层的栅栏组织与下层的海绵组织具有相对独立功能的缘故.与这些种间变异和相关性研究相比, 种内变异及相关性研究较少, 且研究结论也不一致.例如: Blackman等(2016)报道, 栅栏和海绵组织区分不明显的赤桉(Eucalyptus camaldulensis)的水力与光合性状之间也不相关.欧洲山毛榉(Fagus sylvatica)的P50随着干旱程度的增加而增加(Schuldt et al., 2016), 而KleafP50无关(Hajek et al., 2016).另外, 植物叶性状也会受环境变化、土壤物理和化学性质等影响.例如: 氮添加可降低火炬松(Pinus taeda)叶水分运输效率, 从而降低叶水势, 但磷添加并不影响叶的水力结构(Faustino et al., 2013).综上所述, 植物叶性状及其相关性在种内和种间是否存在一致性的规律、这种变异性和相关性是否会随环境条件变化而变化等问题还需要进一步的验证, 以便更好地理解和预测植物对全球气候变化的响应和适应. ...

... Wright等(2004)首次提出了全球植物叶经济性状谱; 随后的许多研究结果也证实了它具有一定的普适性(Reich, 2014).但Wright等(2004)采用叶性状的平均值代表每个物种的平均水平, 这忽略了叶性状的种内变异和表型可塑性(Niinemets, 2015).全先奎和王传宽(2016)报道兴安落叶松6个种源的净光合速率与叶氮含量存在显著的正相关关系.本研究对这一研究作了补充, 发现随立地条件变化兴安落叶松叶光合性状之间也存在成对相关关系; 其中AareaLMA正相关(图4A), 可能因为它通过降低叶内部空间或增加叶肉组织的投入来增加LMA (Wright et al., 2004; Hassiotou et al., 2010).Niinemets (2015)对冬青栎(Quercus ilex)叶性状相关性的研究也得出了类似的结果. ...

Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 inOryza
1
2017

... 叶片碳固定与水散失共用一个通路(气孔)进行碳水交换, 因此叶光合与水力性状之间理论上应存在一定的相关性(Santiago et al., 2004; Brodribb et al., 2005, 2007).但本研究结果显示兴安落叶松叶水力与光合性状之间相关性不强(R2 = 0.07, p = 0.05; 图5A), 而且分离树高对叶水势的影响后, 叶水力导度与叶光合速率则无显著相关关系(图5B, 图6), 表明叶性状存在多维性状组合.叶性状与植物生长、生存和分布紧密相关(Poorter & Bongers, 2006); 每一种性状组合往往代表着植物的一种生存生长策略(Laughlin, 2014).因此, 兴安落叶松的多维性状组合可能为其更好地适应环境变化提供了更多的生存策略(Blackman et al., 2016).最近一些研究也得出类似的结果(Sack et al., 2013; Li et al., 2015; Blackman et al., 2016).造成叶光合与水力性状相互独立的可能原因有: 一是光合性状和水力性状分别表征不同的生理代谢过程, 所受到的控制因子不同.正如前述, 光合性状与土壤养分状况相关性更强, 而水力性状则受土壤水分状况影响更大.二是本研究中水力和光合性状测定部位和方法不同.水力性状测定的是液态水在木质部导管和叶肉组织中的导度, 而光合性状所测定的仅是气态CO2在叶肉组织中的导度.与木质部水力导度相比, 叶肉组织导度是水分运输过程中的主要阻力来源(Sack et al., 2005), 从而AKarea无关(图5B), 而且可能与木质部之外的导度有关(Xiong et al., 2017). ...




相关话题/水力 植物 环境 组织 土壤