Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land
NINGZhi-Ying通讯作者:
版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。
基金资助:
展开
摘要
关键词:
Abstract
Keywords:
-->0
PDF (528KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(Westheimer, 1987; Daufresne & Loreau, 2001; Elser et al., 2001)。光合作用同化的C是植物各生理生化过程的底物和能量来源(杨惠敏和王冬梅, 2011), 而N和P又是植物光合作用所必需的蛋白质、核酸的重要组成元素。一般来讲, 活有机体的元素组成相对稳定, 这种稳定性是通过它们积极调控细胞组成成分或体内环境来保持的。但是植物对其生物化学环境的选择具有更大的弹性, 它们的元素组成变化也比动物和微生物大, 这种变化与气候、土壤养分、植被类型以及植物个体遗传特性有关(Aerts & Chapin, 1999)。因此, 植物C、N、P化学计量学已经广泛应用于限制性养分元素判断、生物地球化学循环、种群动态等研究中(曾德慧和陈广生, 2005)。
作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(Craine & Lee, 2003; Tjoelker et al., 2005; Withington et al., 2006), 认识这种关联性有助于我们理解植物体各性状之间相互作用的机制以及植物对营养物质的利用与分配规律(Eviner & Chapin, 2003; Kerkhoff et al., 2006)。Liu等(2010)对干旱半干旱地区草原植物的研究表明: 植物地上和地下部分许多性状之间具有一定的关联性, 如叶片和根系N含量之间呈显著的正相关关系。此外, 研究植物地上部分和地下部分的元素及其计量比的相关性, 有助于我们通过地上部分来对地下部分相关性状进行估计, 以此加深对植物功能性状的理解。目前, 国内关于植物C、N、P化学计量的研究主要集中在植物叶片上(李玉霖等, 2010; 牛得草等, 2011; 戚德辉等, 2016), 对根系及植物叶片与根系化学计量的关联性的研究并不广泛(徐冰等, 2010; 王晓洁等, 2015), 而根系C、N、P的分解释放在生态系统水平的C及养分循环中占有重要的地位。
科尔沁沙地作为我国北方半干旱农牧交错带的典型代表区域, 由于强烈的风蚀造成土壤中黏粉粒物质大量损失, 土壤养分是该地区植物生长的主要限制因素。目前, 已经有较多研究关注该地区植物叶片元素含量的变异特征(赵红洋等, 2010)、养分再吸收能力、土壤养分与植物元素含量的关系(Chen et al., 2011; 周欣等, 2015)。 但是, 关于科尔沁沙地细根C、N、P化学计量特征及其与叶片元素含量的关系研究鲜见报道。本文通过研究科尔沁沙地60种主要植物细根和叶片的C、N、P含量及其化学计量比, 旨在揭示科尔沁沙地主要植物细根和叶片的C、N、P化学计量特征, 比较不同功能群植物之间细根和叶片C、N、P化学计量比的差异, 分析植物细根和叶片之间C、N、P化学计量特征关联性, 为进一步认识沙质草地植物的养分利用策略, 以及C、N地球化学循环过程提供资料, 为全球变化背景下干旱半干旱地区C、N收支平衡的模拟提供实验依据。
1 材料和方法
1.1 研究区概况
研究区位于内蒙古东北部科尔沁沙地中西部的奈曼旗境内, 地理位置为42.97° N, 120.73° E, 海拔约为360 m。年平均气温6.5 ℃, 最热月(7月)平均气温23.5 ℃, 最冷月(1月)平均气温-13.2 ℃, 全年≥10 ℃的有效积温3 200-3 400 ℃, 无霜期151天, 极端最高气温39 ℃, 极端最低气温-29.3 ℃, 夏季无植被覆盖的沙丘表面最高温度可达57.2-60.0 ℃。年太阳辐射总量为5 200-5 400 MJ·m-2, 多年平均降水量为360 mm, 主要集中在6-8月, 年蒸发量1 935 mm, 属温带大陆型半干旱气候类型(李玉霖等, 2005)。研究区的地貌类型以固定沙丘、半固定沙丘、流动沙丘和丘间甸子交错分布为主。优势植物以盐蒿(Artemisia halodendron)、小叶锦鸡儿(Caragana microphylla)、杠柳(Periploca sepium)等灌木和半灌木, 以及狗尾草(Setarria viridis)、糙隐子草(Cleistogenes squarrosa)、胡枝子(Lespedeza bicolor)和花苜蓿(Medicago ruthenica)等一年生和多年生杂草为主。
1.2 取样方法
在内蒙古农田生态系统国家野外观测研究站3块长期围封样地(样地面积分别为30.00 hm2、5.33 hm2和8.00 hm2, 样地之间空间距离3-5 km)上进行取样, 根据不同植物功能群选择要调查的植物种类, 共选取60种植物作为调查对象。根据植物的生活型, 将调查植物划分为灌木/半灌木植物(7种)、一年生禾草(5种)、多年生禾草(6种)、一年生杂类草(27种)、多年生杂类草(15种)(表1)。Table 1
表1
表1科尔沁沙地60种植物名录
Table 160 kinds of species list in Horqin sandy land
植物种 Species | 拉丁名 Latin name | 生活型 Life form | 类别 Category | 植物种 Species | 拉丁名 Latin name | 生活型 Life form | 类别 Category |
---|---|---|---|---|---|---|---|
艾 | Artemisia argyi | AF | NL | 尖头叶藜 | Chenopodium acuminatum | AF | NL |
白草 | Pennisetum centrasiaticum | PG | NL | 苦参 | Sophora flavescens | PF | L |
火媒草 | Olgaea leucophylla | AF | NL | 苦苣菜 | Sonchus oleraceus | AF | NL |
花苜蓿 | Medicago ruthenica | PF | L | 赖草 | Leymus secalinus | PG | NL |
苍耳 | Xanthium sibiricum | AF | NL | 冷蒿 | Artemisia frigida | SH | NL |
糙隐子草 | Cleistogenes squarrosa | PG | NL | 芦苇 | Phragmites australis | PG | NL |
叉枝蓼 | Polygonum tortuosum | SH | NL | 草麻黄 | Ephedra sinica | PF | NL |
盐蒿 | Arternisia halodendron | SH | NL | 马齿苋 | Portulaca oleracea | AF | NL |
刺藜 | Chenopodium aristatum | AF | NL | 牻牛儿苗 | Erodium stephaniamum | AF | NL |
寸草 | Carex duriuscula | PF | NL | 毛马唐 | Digitaria chrysoblephara | AG | NL |
胡枝子 | Lespedeza bicolor | PF | L | 乳浆大戟 | Euphorbia esula | AF | NL |
大果虫实 | Corispermum macrocarpum | AF | NL | 三芒草 | Aristida adscensionis | AG | NL |
飞燕草 | Consolida ajacis | AF | NL | 蒙古韭 | Allium mongolicum | AF | NL |
大籽蒿 | Artemisia sieversiana | AF | NL | 蓼子朴 | Inula salsoloides | AF | NL |
地锦草 | Euphorbia humifusa | AF | NL | 沙蓬 | Agriophyllum squarrosum | AF | NL |
地梢瓜 | Cynanchum thesioides | AF | NL | 沙生冰草 | Agropyron desertorum | PG | NL |
鹅绒藤 | Cynanchum chinense | AF | NL | 砂蓝刺头 | Echinops gmelini | AF | NL |
二裂委陵菜 | Potentilla bifurca | PF | NL | 砂引草 | Messerschmidia sibirica | AF | NL |
防风 | Saposhnikovia divaricata | PF | NL | 少花蒺藜草 | Cenchrus pauciflorus | AG | NL |
杠柳 | Periploca sepium | SH | NL | 唐松草 | Thalictrum aquilegifolium | PF | NL |
狗尾草 | Setarria viridis | AG | NL | 碱菀 | Tripolium vulgare | PF | NL |
鹤虱 | Lappula myosotis | AF | NL | 雾冰藜 | Bassia dasyphylla | AF | NL |
华北驼绒藜 | Ceratoides arborescens | SH | NL | 尖叶铁扫帚 | Lespedeza hedysaroides | PF | L |
画眉草 | Eragrostis pilosa | AG | NL | 细叶小苦荬 | Ixeridium gracile | AF | NL |
密毛白莲蒿 | Artemisia sacrorum | AF | NL | 小叶锦鸡儿 | Caragana microphylla | SH | L |
草木犀 | Melilotus officinalis | PF | L | 塔落岩黄耆 | Hedysarum fruticosum | PF | L |
黄柳 | Salix gordejevii | SH | NL | 益母草 | Leonurus artemisia | AF | NL |
似棘豆 | Oxytropis ambigua | AF | L | 斜茎黄耆 | Astragalus adsurgens | PF | L |
蒺藜 | Tribulus terrester | PF | NL | 猪毛菜 | Salsola collina | AF | NL |
假苇拂子茅 | Calamagrositis pseudophragmites | PG | NL | 紫苜蓿 | Medicago sativa | PF | L |
新窗口打开
2014年7-8月在样地内对调查物种进行取样, 每个物种随机选取5-10个植株, 用铁锹尽量完整地将植株挖出, 带回实验室后(一般在2 h内), 用蒸馏水轻轻洗去植株上的泥沙, 然后摘取植株上完全伸展、没有明显病虫害的成熟叶片和直径< 2 mm的根系(对于假苇拂子茅等根茎型禾草, 一般采集生长在根茎节上的须根), 植物叶片和根系样品各400个。将采集的样品在60 ℃下烘干48-72 h至恒质量后粉碎, 分别测定粉碎样品中的总C、总N和总P含量。用C/N元素分析仪(Costech ECS4010, Milan, Italy)测定样品总C和总N含量, 并用磷钼蓝比色法测定总P含量。
1.3 数据分析
植物叶片及细根的C、N、P采用质量含量, C:N、N:P、C:P及C:N:P均采用质量比。对研究区域中所调查植物叶片和细根C、N、P含量的测定值求平均值, 分析调查物种叶片和细根C、N、P含量以及C:N、N:P和N:P的分布范围和变异特征, 并将所调查物种按生活型计算各类植物叶片和细根C、N、P含量的测定值及C:N、N:P及C:P的平均值。采用SPSS统计分析软件包(SPSS 16.0 for Windows, Chicago, USA)进行数据统计分析。通过ANOVA分析不同生活型植物叶片和细根C、N、P含量及其比值的差异。利用Pearson相关分析分别检验叶片与细根C、N、P含量及其比值的相关关系, 用回归分析拟合不同植物功能群叶片与细根对应C、N、P含量及其比值之间的关系。为了满足正态分布的要求, 首先对数据进行自然对数转换, 然后进行单因素方差分析、相关和回归分析。数据的正态分布采用One-Sample Kolmogorov-Smirnov Text进行检验。
2 结果和分析
2.1 60种植物叶片与细根C、N、P化学计量特征
科尔沁沙地60种植物叶片C、N、P含量的变化范围分别为322.7-492.1 mg·g-1、11.5-45.4 mg·g-1、0.63-5.92 mg·g-1, 细根C、N、P含量的变化范围分别为345.3-496.6 mg·g-1、5.6-25.0 mg·g-1、0.26- 2.83 mg·g-1。相对于叶片(C: (424.20 ± 1.50) mg·g-1, N: (25.60 ± 0.35) mg·g-1, P: (2.10 ± 0.04) mg·g-1), 细根(C: (434.03 ± 1.2) mg·g-1, N: (13.54 ± 0.19) mg·g-1, P: (1.13 ± 0.02) mg·g-1)具有较低的N、P含量和较高的C含量(p < 0.001)(图1)。细根N和P含量分别比叶片下降了89.6%、85.0%, 而C含量仅比叶片高出2.4%。无论是叶片还是细根, 60种植物C含量的变异均较小, 而N、P含量的变异范围均较大。显示原图|下载原图ZIP|生成PPT
图1科尔沁沙地植物叶片和细根碳(C)、氮(N)、磷(P)化学计量特征。p < 0.001表示叶片和细根的该指标在0.001水平上差异显著。
-->Fig. 1Carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in leaves and fine roots of plants in Horqin sandy land. p < 0.001 represent significant differences between leaves and fine roots (p < 0.001).
-->
60种植物叶片C:N和C:P显著低于细根C:N和C:P (p < 0.001), 叶片C:N和C:P分别为17.8 ± 0.3、228.6 ± 4.2, 细根C:N和C:P分别为34.9 ± 0.6、443.9 ± 9.9, 较叶片分别高出了96.0%和94.2%。尽管叶片和细根的N、P含量存在显著差异, 但叶片和细根N:P比较接近, 分别为12.9 ± 0.2和13.0 ± 0.2, 二者之间无显著差异(p > 0.05)(图1)。
2.2 不同生活型植物叶片与细根C、N、P化学计量特征比较
科尔沁沙地多年生杂类草、一年生杂类草、多年生禾草、一年生禾草以及灌木5种生活型植物样品所占比例分别为24.00%、46.75%、10.25%、8.25%和10.75%。5种生活型之间的叶片和细根C含量、N含量、P含量、C:N、C:P以及N:P差异均达到极显著水平(p < 0.01)(表2)。Table 2
表2
表2不同生活型植物叶片和细根碳(C)、氮(N)、磷(P)化学计量特征(平均值±标准误差)
Table 2Plant leaves and fine roots carbon (C), nitrogen (N) and phosphorus (P) stoichiometry of different life forms (mean ± SE)
生活型 Life form | 样本数 Sample number | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|---|
叶片 Leaves | 多年生杂类草 Perennial forb | 93 | 438.4 ± 2.2a | 30.3 ± 0.6a | 2.2 ± 0.06ab | 15.1 ± 0.4e | 216.4 ± 7.2cd | 14.5 ± 0.4ab |
一年生杂类草 Annual forb | 185 | 411.4 ± 2.4b | 26.0 ± 0.5b | 2.3 ± 0.06a | 16.8 ± 0.3d | 200.5 ± 5.3d | 11.9 ± 0.2c | |
多年生禾草 Perennial grass | 41 | 438.5 ± 2.0a | 19.3 ± 0.7d | 1.5 ± 0.06c | 23.7 ± 0.7a | 300.3 ± 10.2a | 12.8 ± 0.3bc | |
一年生禾草 Annual grass | 33 | 423.6 ± 2.7ab | 20.7 ± 1.0cd | 1.9 ± 0.09bc | 21.9 ± 1.0ab | 248.3 ± 17.3bc | 11.5 ± 0.6c | |
灌木 Shrub | 43 | 435.5 ± 4.3a | 23.7 ± 0.9bc | 1.6 ± 0.08c | 19.6 ± 0.8bc | 292.6 ± 14.3ab | 15.8 ± 0.9a | |
F值 F value | 22.10 | 32.06 | 17.63 | 38.93 | 24.23 | 17.33 | ||
p值 p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
细根 Fine roots | 多年生杂类草 Perennial forb | 93 | 444.1 ± 2.2a | 15.2 ± 0.4a | 1.2 ± 0.03ab | 31.8 ± 1.0b | 425.3 ± 15.5b | 13.9 ± 0.4ab |
一年生杂类草 Annual forb | 185 | 433.1 ± 1.4bc | 13.7 ± 0.2b | 1.2 ± 0.03a | 33.2 ± 0.6b | 416.1 ± 14.5b | 12.5 ± 0.3b | |
多年生禾草 Perennial grass | 41 | 414.8 ± 5.3d | 10.7 ± 0.4d | 1.0 ± 0.04b | 41.7 ± 2.0a | 489.5 ± 36.9ab | 11.7 ± 0.5b | |
一年生禾草 Annual grass | 33 | 423.8 ± 2.7cd | 11.8 ± 0.5cd | 0.9 ± 0.05b | 39.0 ± 2.2a | 482.8 ± 21.3ab | 12.8 ± 0.5ab | |
灌木 Shrub | 43 | 442.1 ± 3.7ab | 13.3 ± 0.8bc | 1.0 ± 0.07b | 38.8 ± 2.5a | 530.3 ± 40.2a | 14.9 ± 1.0a | |
F值 F value | 16.07 | 13.08 | 6.61 | 10.39 | 4.15 | 4.22 | ||
p值 p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.002 |
新窗口打开
本研究结果表明, 叶片与细根的N、P含量在5种生活型植物之间表现出相同的变化趋势, 均是杂类草(多年生杂类草和一年生杂类草)相对较高, 多年生禾草相对较低(p < 0.001; 表2)。但是, 叶片与细根的C含量在5种生活型植物之间的变化存在一定的差异, 表现为一年生植物(一年生杂类草和一年生禾草)具有相对较低的叶片C含量, 而多年生禾草具有相对较低的细根C含量, 多年生杂类草、灌木的叶片和细根以及多年生禾草的叶片均具有较高的C含量(p < 0.001; 表2)。
杂类草(多年生杂类草和一年生杂类草)叶片和细根的C:N、C:P值均相对较小。尽管调查植物N:P在叶片和细根之间无显著差异(p > 0.05; 图1), 但是叶片和细根N:P在不同生活型之间存在显著差异(多年生杂类草和灌木的叶片显著高于一年生杂类草和禾草的叶片, 灌木的细根显著高于一年生杂类草和多年生禾草的细根)。
豆科植物叶片及细根的C、N含量(表3)均极显著大于非豆科植物(p < 0.001), 而叶片的P含量极显著低于非豆科植物。豆科植物的C:N极显著低于非豆科植物, 而叶片的C:P低于非豆科植物。无论是叶片还是细根, 豆科和非豆科植物间的N:P亦均存在显著差异, 豆科植物极显著高于非豆科植物(p < 0.001)。
Table 3
表3
表3豆科与非豆科植物叶片和细根碳(C)、氮(N)、磷(P)化学计量特征(平均值±标准误差)
Table 3Comparisons of plant leaves and fine roots carbon (C), nitrogen (N) and phosphorus (P) stoichiometry between legume and non-legume (mean ± SE)
类别 Category | 样本数 Sample number | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|---|
叶片 Leaves | 豆科植物 Legume | 63 | 441.5 ± 3.2a | 31.2 ± 0.7a | 1.8 ± 0.06b | 14.6 ± 0.3b | 266.8 ± 10.3a | 17.9 ± 0.4a |
非豆科植物 Non-legume | 332 | 420.7 ± 1.6b | 24.5 ± 0.4b | 2.2 ± 0.04a | 18.5 ± 0.3a | 226.2 ± 4.6b | 12.1 ± 0.2b | |
F值 F value | 28.27 | 55.01 | 11.00 | 33.03 | 12.47 | 188.76 | ||
P值 p-value | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | ||
细根 Fine roots | 豆科植物 Legume | 63 | 446.1 ± 3.0a | 18.3 ± 0.5a | 1.1 ± 0.04a | 25.5 ± 0.8b | 441.6 ± 21.8a | 17.2 ± 0.6a |
非豆科植物 Non-legume | 332 | 430.4 ± 1.4b | 11.3 ± 0.2b | 1.1 ± 0.03a | 41.8 ± 0.8a | 443.2 ± 11.2a | 10.8 ± 0.2b | |
F值 F value | 19.98 | 231.09 | 0.01 | 77.27 | 0.001 | 152.96 | ||
p值 p-value | 0.000 | 0.000 | 0.938 | 0.000 | 0.953 | 0.000 |
新窗口打开
2.3 植物叶片和细根C、N、P含量间的关系
科尔沁沙地5种生活型植物叶片的C含量和N含量之间无显著相关性, 而一年生杂类草和多年生禾草细根的C、N含量呈显著负相关关系(一年生杂类草相关系数(rAF ) = -0.335, p < 0.001; 多年生禾草相关系数(rPG ) = -0.495, p < 0.01), 因此60种植物叶片C含量和N含量之间总体上无显著相关性, 但细根C含量和N含量之间总体上呈显著负相关关系(总体相关系数(rTotal) = -0.104, p < 0.05)(图2A、2B); 同样, 60种植物叶片C、P含量之间总体上无显著相关性, 但细根的C、P含量总体上呈显著负相关关系(rTotal = -0.131, p < 0.01), 其中多年生禾草和多年生杂类草细根的C、P含量呈显著负相关关系, 但是一年生杂类草的叶片C、P含量呈显著正相关关系(rAF = 0.166, p < 0.05) (图2E)。60种植物叶片和细根的N、P含量之间存在极显著正相关关系(叶片的rTotal = 0.604, p < 0.001; 细根的rTotal = 0.461, p < 0.001), 并且5种生活型叶片、细根的N含量与P含量之间大多亦呈显著正相关关系, 仅灌木叶片N含量与P含量之间无显著相关性(图2C、2D)。显示原图|下载原图ZIP|生成PPT
图2科尔沁沙地植物叶片与细根的碳(C)、氮(N)、磷(P)含量间的相关性。AF, 一年生杂类草; AG , 一年生禾草; PF, 多年生杂类草; PG , 多年生禾草; SH, 灌木。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
-->Fig. 2Correlation of carbon (C), nitrogen (N) and phosphorus (P) concentrations in leaf and fine root in Horqin sandy land. AF, annual forb; AG , annual grass; PF, perennial forb; PG , perennial grass; SH, shrub. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
-->
2.4 60种植物叶片与细根之间C、N、P化学计量特征的关联
相关分析表明, 60种植物的C含量、N含量、P含量、C:N、C:P和N:P等指标在叶片和细根之间均存在极显著的正相关关系(p < 0.001) (图3); 细根和叶片C、N、P含量及其比值表现同增同减的特点, 说明植物叶片和细根在元素分配和平衡方面存在密切的关联。从图3可以看出, 60种植物叶片和细根C含量和N:P数据点大多分布在y = x直线周围, 而N含量和P含量数据点主要分布在y = x直线的下方, C:N和C:P数据点主要分布在y = x直线的上方, 植物细根的C:N与C:P均大于叶片, N、P含量小于叶片, 但C含量和N:P与叶片相近。显示原图|下载原图ZIP|生成PPT
图3科尔沁沙地植物叶片和细根间的碳(C)、氮(N)、磷(P)及其化学计量比的关系。AF, 一年生杂类草; AG , 一年生禾草; PF, 多年生杂类草; PG , 多年生禾草; SH, 灌木。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
-->Fig. 3Correlation of leaf and fine root in carbon (C), nitrogen (N), phosphorus (P) and their stoichiometric ratio in Horqin sandy land. AF, annual forb; AG , annual grass; PF, perennial forb; PG , perennial grass; SH, shrub. *, p < 0.05; **, p < 0.01; ***, p < 0.001。
-->
尽管总体上60种植物的C、N、P化学计量特征在叶片与细根之间密切相关, 但是不同生活型植物之间这种相关性存在一定的变异。例如禾草的C含量、P含量、N:P、C:P等在叶片和细根之间并不存在显著相关性, 说明不同生活型植物叶片与细根之间元素分配和平衡存在一定的差异。
3 讨论
3.1 植物叶片和细根C、N、P化学计量特征
C、N、P作为植物生长发育所必需的大量元素, 其化学计量特征能反映植物的养分利用状况和元素平衡特点。本研究中, 60种植物叶片的平均C、N、P含量分别为424.20 mg·g-1、25.60 mg·g-1、2.10 mg·g-1, 细根平均C、N、P含量分别为434.03 mg·g-1、13.54 mg·g-1、1.13 mg·g-1。细根的C含量与叶片差别不大, 而N、P含量近似等于叶片平均N、P含量的1/2, 说明在干旱贫瘠的沙地生态系统中, 植物根系吸收养分后对养分的分配更侧重于地上部分, 植物在有限的养分供应条件下维持较高的叶片N、P含量, 以完成其正常的生活史(Chapin, 1980)。徐冰等(2010)在内蒙古锡林河流域的研究发现, 根系与叶片的N含量比值近似为1:2, 本研究结果与之相似; 但是徐冰等(2010)的研究中根系与叶片的P含量比值近似为1:1, 明显高于本研究结果, 说明植物P元素在地上部和地下部之间的分配可能受环境条件变化或植物区系的影响较大。本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1, He et al., 2006)和全球尺度上小于2 mm活根的平均C含量(440 mg·g-1, Yuan et al., 2011), 说明陆地生态系统植物叶片和小于2 mm细根的C含量相对稳定, 变异幅度较小。全球尺度上植物叶片和小于2 mm活根的平均N含量分别为20.2 mg·g-1 (Elser et al., 2000)和10.5 mg·g-1 (Yuan et al., 2011), 低于本研究结果, 说明北方干旱半干旱地区植物具有相对较高的叶片和细根N含量, 这一结果也在中国北方典型荒漠地区及内蒙古锡林河流域典型草原的研究中得到证实。本研究中植物叶片和细根平均P含量明显高于全国、全球尺度的P含量(中国735种植物叶片平均P含量1.46 mg·g-1 (韩文轩等, 2009), 全球尺度上小于2 mm活根的平均P含量为0.85 mg·g-1 (Yuan et al., 2011)。有研究指出中国土壤P含量变异幅度较大, 从湿润区向干旱半干旱区呈增加趋势(汪涛等, 2008), 说明在中国区域内干旱半干旱区土壤具有相对较高的土壤P含量, 这可能是本研究中叶片和细根平均P含量相对较高的原因。但是, 在内蒙古阿拉善干旱荒漠地区, 54种植物叶片平均P含量约为1.04 mg·g-1 (张珂等, 2014), 明显低于本研究结果。造成这一差异的原因是在本研究中, 杂类草占取样植物总数的70%以上, 在内蒙古阿拉善干旱荒漠地区灌木半灌木占取样植物总数的60%以上。杂类草植物叶片具有较高的P含量(李玉霖等, 2010), 而灌木叶片P含量较低(张珂等, 2014)。这说明植物区系组成可能是影响区域植物P含量的重要因素。
生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(Hessen et al., 2004)。本研究中科尔沁沙地60种植物叶片的C:N:P的平均质量比为202: 12:1, 细根的C:N:P为384:12:1, 植物细根的C:N和C:P均远大于植物叶片, 说明在该地区植物根系在生物量形成过程中较叶片具有更大的养分利用率, 但是叶片与细根的N:P并无显著差异(图1), 具有明显的保守性, 反映了植物地上和地下养分吸收与分配的一致性, 从而适应于干旱贫瘠的环境。庾强(2009)也指出高的内稳性和保守的养分利用策略可能是干旱贫瘠的环境中物种生存的关键。N和P作为陆地生态系统植物生长的主要限制因子, 它们的比值N:P通常被用作描述N和P相对限制的一个指标。当N:P小于14时, 植物生长主要受N限制, 当N:P大于16时, 植物生长主要受P限制(Koerselman & Meuleman, 1996; Niklas et al., 2005)。本研究区域植物叶片平均N:P为12.9; 细根平均N:P为13, 而中国和全球水平上叶片的N:P分别为16.3和12.7 (Elser et al., 2000; 韩文轩等, 2009)。5种生活型植物中大部分植物叶片和细根的N:P小于14 (图3D), 但已有的研究发现, 科尔沁沙地由于其强烈的风蚀导致该地区植物生长同时受N和P的双重限制, 所以用该阈值判断沙质草地生态系统的养分限制或许存在一定的缺陷(苏永中等, 2004)。
3.2 不同生活型植物对养分吸收利用的差异
在草地生态系统中, 不同生活型的植物发挥着不同的作用, 对环境变化的响应也不同, 如在典型草原生态系统, 多年生禾草和多年生杂类草功能群多样性决定群落初级生产力稳定性(白永飞等, 2001; Reich et al., 2001)。许多研究发现, 不同功能群或分类群植物叶片的某些性状存在显著差异。Wright等(2004)指出, 草本植物与灌木和乔木植物相比, 单位质量叶N含量较高。Aerts (1996)研究发现, 禾本科植物一般具有相对较低的叶片N含量和P含量。这些差异通常被解释为植物遗传特性或适应环境的结果。本研究中多年生杂类草、一年生杂类草、多年生禾草、一年生禾草和灌木5个生活型植物间叶片和细根的C、N、P含量、C:N、C:P和N:P的差异均达到极显著水平(p < 0.01; 表3), 表明不同生活型植物对养分的适应策略不同。其中, 杂类草叶片和细根具有较高的N、P含量, 这可能是因为杂类草具有较强的养分吸收利用能力, 而禾草类、灌木植物叶片和细根具有相对较高的C:N和C:P, 说明禾草类和灌木植物具有更大的养分利用效率。Han等(2005)也指出植物叶片的N、P元素含量在系统发育组群间具有显著差异, 草本植物叶片的N、P含量高于木本植物, 这是因为短命、快速生长的植物较长命、慢速生长的植物需要更多的N用于其快速生长, 以及更多的P用于其高比例的繁殖分配(Aerts, 1996; Gusewell, 2004)。这些特征可能也是不同生活型植物适应研究区贫瘠环境的养分利用对策。尽管植物叶片和细根对N、P的吸收和分配具有明显的保守性, 不同生活型植物之间叶片和细根N:P仍然存在显著差异(p < 0.001), 反映了不同生活型植物对N、P资源的利用存在较大的差异。在干旱贫瘠的环境中, 豆科植物通过根瘤菌固氮使其N吸收较非豆科植物更具优势。本研究发现豆科与非豆科植物间叶片与细根的化学计量特征值除细根P含量及C:P外均达到极显著水平(p < 0.001)。豆科植物较非豆科植物具有较高的N含量, 而非豆科植物具有较高的C:N, 即较高的N利用效率, 这可能是由于非豆科植物具有高效的资源捕捉及利用能力(朱军涛等, 2010)。豆科植物叶片和细根的N:P大于16, 而非豆科植物叶片和细根的N:P小于14 (表3), 说明豆科植物在受N限制的荒漠环境中较非豆科植物更具优势, 对沙地生态恢复具有重要的意义。
3.3 叶片与细根C、N、P含量及化学计量比间的关系
植物组织C、N、P含量之间具有显著的相关性是高等陆生植物化学计量的普遍特征, 反映了植物体内这3种元素间的耦合机制(Elser et al., 2010)。这一点在本研究60种植物叶片和细根中得到了印证。植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(Kerkhoff et al., 2006)。因此, 植物地上和地下部分许多性状之间具有一定的关联性, 如叶片和根系N含量之间呈显著的正相关关系(Liu et al., 2010)。本研究中, 叶片与细根间的C、N、P含量及其比值均具有极显著的正相关关系(p < 0.001), 反映了植物体在生长代谢过程中的整体性以及光合产物与养分在地上、地下部分之间的分配遵循着一定的规律, 这也是植物能稳定生长的有力保障(吴统贵等, 2010)。但是, 并不是所有生活型植物均表现出这种相关性, 如禾草的C含量、P含量、N:P、C:P等在叶片和细根之间并无显著相关性, 说明不同生活型植物养分利用及代谢过程具有差异性。对阔叶红松林植物的研究发现叶片与细根间N含量的相关性为灌木大于草本, 而P含量为草本大于灌木(王晓洁等, 2015)。Aerts和 Chapin (1999)也指出植物的养分含量及分配受植物自身生长型、生理特性及生活史的影响。产生这种差异性的原因可能有两方面: 1)不同生活型植物叶片和根系结构具有差异(Craine & Lee, 2003), 如灌木较草本植物具有更发达的根系; 2)荒漠中菌根植物所占比例较高(田长彦等, 2006), 不同生活型植物根系所结合的共生真菌类型不同, 这些真菌在植物养分吸收过程中发挥着重要的作用, 因此不同生活型植物的养分利用效率也不同(Vandenkoornhuyse et al., 2003), 体现了不同生活型植物对干旱贫瘠的荒漠环境具有不同的适应策略。
4 结论
本研究发现, 科尔沁沙地60种主要植物细根的N、P含量近似等于叶片平均N、P的1/2, 而叶片与细根的N:P无显著差异; 不同生活型间叶片和细根的C、N、P含量及其化学计量比存在显著差异, 杂类草植物具有较高的叶片N、P含量, 禾草类植物具有较高的叶片C:N、C:P, 一年生杂类草和禾草类植物叶片的N:P较低, 豆科植物具有较高的C、N含量和较低的C:N; 叶片和细根的N、P含量间显著正相关, 细根C含量与N含量之间以及C含量与P含量之间显著负相关; 叶片和细根间的C、N、P及化学计量比存在显著的正相关关系, 反映了植物体在生长代谢过程中的整体性, 以及光合产物与养分在地上、地下部分之间分配比例的一致性。这对于深入认识沙地植物叶片和细根的物质周转和养分循环具有重要的意义。The authors have declared that no competing interests exist.
作者声明没有竞争性利益冲突.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | 84, |
[2] | 30, In this chapter, the advances that have been made in understanding the ecology of the mineral nutrition of wild plants from terrestrial ecosystems have been reviewed. This chapter is organized along three lines. First, the issues of nutrient-limited plant growth and nutrient uptake, with special emphasis on the importance of the uptake of nutrients in organic form—both by mycorrhizal and by non-mycorrhizal plants—and the importance of symbiotic nitrogen fixation is treated. In addition, the influence of allocation patterns on mineral nutrient uptake is described. Next, a few of the nutritional aspects of leaf functioning and how nutrients are used for biomass production by the plant are explored. That is done by studying the nutrient use efficiency (NUE) of plants and the various components of NUE. Finally, the feedback of plant species to soil nutrient availability by reviewing patterns in litter decomposition and nutrient mineralization is investigated. The chapter concludes with a synthesis of the various aspects of the mineral nutrition of wild plants. The chapter ends with a conceptual description of plant strategies with respect to mineral nutrition. |
[3] | 43, . , 43, 内蒙古高原 4类地带性草原群落 ,贝加尔针茅 (StipabaicalensisRoshev .)群落、大针茅 (S .grandisP .Smirn .)群落、克氏针茅 (S .kryloviiRoshev .)群落和小针茅 (S .klemenziiRoshev .)群落初级生产力连续 12年的定位研究结果表明 ,在气候波动下群落生产力及其稳定性与群落多样性特征的变化是一致的 ,从贝加尔针茅群落到小针茅群落 ,植物多样性显著下降 ,群落中起重要作用的植物功能群的数量逐渐减少 ,群落初级生产力及其稳定性也逐渐降低。植物生活型功能群组成中 ,多年生丛生禾草、多年生根茎禾草与苔草和多年生杂类草功能群多样性与群落初级生产力稳定性极显著地呈正相关。生态类群组成中 ,旱生植物和中旱生植物功能群多样性也与群落初级生产力稳定性极显著地呈正相关。生态位互补效应 (nichecomplementaryeffect)可能是高植物多样性群落具有高生产力的机制 ,而植物多样性对群落初级生产力稳定性的影响可能是通过不同功能群间的补偿作用来实现的 |
[4] | 11, Crop responses to nutrient stress were compared with the responses of spp. which have evolved under more natural environments often low in mineral nutrients. |
[5] | 340, Foliar traits are often interpreted to reflect strategies for coping with water and nutrient supply limitations. In this study, we measured several important leaf traits for 147 species sampled from a remnant, temperate deciduous broad-leaved forest in Keerqin Sandy Lands, Northeast China to test whether these traits are ‘invariant’ or dependent on water supply limitations. Our data show that average specific leaf area (SLA), nitrogen (N) and phosphorus (P) concentrations, leaf C/N, C/P and N/P were 27302cm 2 65g 611 , 18.102mg65g 611 , 1.6002mg65g 611 , 28.2, 343 and 12.4, respectively. However, most of these traits were significantly different ( P 65<650.05) for different species groupings based on growth forms, phylogenetic history, photosynthetic pathways, or habitats. SLA was positively correlated with leaf P concentration across the broad spectrum of 118 species and most species functional groupings. However, SLA was not correlated with N concentration across all species or within each species functional group. SLA and N and P concentrations in dry habitats were lower than those in wet habitats, whereas leaf C/N, C/P, and N/P had the opposite trend both across all species and within major species functional groupings (herb, monocots and C3 species). Our data indicate that SLA vs. leaf N and SLA vs. P relationships may be regulated differentially for different species functional groupings and that water limitation may have a greater influence than nutrient limitation for plant growth. |
[6] | 134, Across 30 grassland sites in New Zealand that ranged from native alpine grasslands to low elevation improved pastures, there were consistent patterns of leaf and root traits and significant differences between native and non-native grasses. Plants of high altitude sites have low N concentrations in both their leaves and roots, have thick leaves and roots, yet no differences in tissue density or photosynthetic water use efficiency when compared to plants of low altitude sites. Both the leaves and roots of the low altitude plants were enriched in15N relative to the plants of higher altitude, indicating that the low-N set of traits is associated with a more closed N cycle at high altitude. A second independent set of correlations shows that plants of wetter habitats have lower photosynthetic water use efficiency (more negative$\partial {}^{13}\text{C}$) and lower leaf and root tissue density than the plants of drier sites. For both leaves and roots, plants of native species consistently had traits associated with lower resource availability: lower N concentrations, denser tissues, more negative$\partial {}^{15}\text{N}$, and more positive$\partial {}^{13}\text{C}$than non-native species. If root %N is correlated with root longevity as has been shown in other systems, root longevity may be able to be predicted from simple measurements of leaf %N, though a hysteresis in the relationship between leaf and root N concentrations may make prediction of high longevity roots difficult. |
[7] | 82, Primary producers and decomposers-the two most important groups for the functioning of ecosystems-have complex, indirect interactions. They are indirect mutualists through nutrient cycling, but also competitors for inorganic nutrients due to stoichiometric constraints in decomposers. We examine the conditions under which they are able to coexist, and hence ecosystems are able to persist, using a stoichiometrically explicit minimum model for an ecosystem. The model takes into account the coupling of carbon and a nutrient in the biomass and detritus, the nutrient limitation and the energy-providing role of primary producers, the recycling role of decomposers, and the stoichiometric constraints leading to indirect competition for the nutrient. The model shows that two conditions must be met to ensure coexistence of primary producers and decomposers: (1) decomposers must be limited by the carbon provided by plant detritus, and (2) the difference between the carbon: nutrient ratios of primary producers and decomposers must be sufficiently small. Condition (1) is fulfilled if decomposers are better competitors than primary producers for nutrient uptake. When nutrient uptake by plants and decomposers has a Lotka-Volterra form, these results are robust whether the nutrient cycle is closed or open. When nutrient uptake is donor controlled, however, coexistence is facilitated by an open nutrient cycle. We conclude that ecosystem persistence is not a trivial issue when stoichiometry is taken into account in ecological processes. Strict conditions on the carbon: nutrient ratios and competitive abilities of plants and microorganisms may be required. Given these theoretical results, we highlight the lack of experimental data concerning primary producer and decomposer coexistence conditions, and we suggest that more research has to be performed. |
[8] | 408, Shows both similarities and differences in the carbon: nitrogen: phosphorus ratios of primary producers (autotrophs) and invertebrate primary consumers (herbivores) across habitats. Ratios in autotrophs, which are nutrient-poor, in both terrestrial and lake food webs; Nutrient-rich terrestrial herbivores (insects) and freshwater herbivores (zooplankton), which have identical C:N:P stoichiometry; Stoichiometric constraints on herbivore growth, which appear to be qualitatively similar and widespread in both environments. |
[9] | 186, Abstract Contents Summary 593 I. Introduction 594 II. Variation in plant C:N:P ratios: how much and what are the sources? 595 III. The growth rate hypothesis in terrestrial plants and the scaling of whole-plant N:P stoichiometry and production 597 IV. Scaling from tissues to whole plants 599 V. Applications: large-scale patterns and processes associated with plant stoichiometry 601 VI. Global change and plants: a stoichiometric scaling perspective 603 VII. Synthesis and summary 604 Acknowledgements 605 References 605 Summary Biological stoichiometry theory considers the balance of multiple chemical elements in living systems, whereas metabolic scaling theory considers how size affects metabolic properties from cells to ecosystems. We review recent developments integrating biological stoichiometry and metabolic scaling theories in the context of plant ecology and global change. Although vascular plants exhibit wide variation in foliar carbon:nitrogen:phosphorus ratios, they exhibit a higher degree of toichiometric homeostasis than previously appreciated. Thus, terrestrial carbon:nitrogen:phosphorus stoichiometry will reflect the effects of adjustment to local growth conditions as well as species replacements. Plant stoichiometry exhibits size scaling, as foliar nutrient concentration decreases with increasing plant size, especially for phosphorus. Thus, small plants have lower nitrogen:phosphorus ratios. Furthermore, foliar nutrient concentration is reflected in other tissues (root, reproductive, support), permitting the development of empirical models of production that scale from tissue to whole-plant levels. Plant stoichiometry exhibits large-scale macroecological patterns, including stronger latitudinal trends and environmental correlations for phosphorus concentration (relative to nitrogen) and a positive correlation between nutrient concentrations and geographic range size. Given this emerging knowledge of how plant nutrients respond to environmental variables and are connected to size, the effects of global change factors (such as carbon dioxide, temperature, nitrogen deposition) can be better understood. |
[10] | 82, Laboratory studies are increasingly indicating that the quality of nutrient-limited algae is suboptimal for zooplankton production. However, little is known about how quality is affected by nutrient limitation of phytoplankton in more natural situations. To test for phosphorus (P) limitation of zooplankton growth under realistic food conditions, we performed a set of 5-d experiments using Daphnia dentifera and suspended particulate matter (seston) from three lakes at the Experimental Lakes Area (Ontario, Canada). Neonate Daphnia fed for 6 h per day on freshly collected seston enriched or unenriched with PO4and spent the rest of the day feeding on unaltered natural seston. PO4enrichment did not affect food abundance or concentrations and composition of essential fatty acids but dramatically lowered seston C:P ratio and significantly stimulated Daphnia growth. These results demonstrate that, even with field-collected seston, the effects of algal phosphorus limitation can extend to herbivores through reduced food quality. |
[11] | 34, |
[12] | 164, |
[13] | 168, $\bullet$ Leaf nitrogen and phosphorus stoichiometry of Chinese terrestrial plants was studied based on a national data set including 753 species across the country. $\bullet$ Geometric means were calculated for functional groups based on life form, phylogeny and photosynthetic pathway, as well as for all 753 species. The relationships between leaf N and P stoichiometric traits and latitude (and temperature) were analysed. $\bullet$ The geometric means of leaf N, P, and N : P ratio for the 753 species were 18.6 and $1.21 mg g^{-1}$ and 14.4, respectively. With increasing latitude (decreasing mean annual temperature, MAT), leaf N and P increased, but the N : P ratio did not show significant changes. $\bullet$ Although patterns of leaf N, P and N : P ratios across the functional groups were generally consistent with those reported previously, the overall N : P ratio of China's flora was considerably higher than the global averages, probably caused by a greater shortage of soil P in China than elsewhere. The relationships between leaf N, P and N : P ratio and latitude (and MAT) also suggested the existence of broad biogeographical patterns of these leaf traits in Chinese flora. |
[14] | 45, . , 45, |
[15] | 149, Nitrogen (N) and carbon-nitrogen (C:N) ratio are key foliar traits with great ecological importance, but their patterns across biomes have only recently been explored. We conducted a systematic census of foliar C, N and C:N ratio for 213 species, from 41 families over 199 research sites across the grassland biomes of China following the same protocol, to explore how different environmental conditions and species composition affect leaf N and C:N stoichiometry. Leaf C:N stoichiometry is stable in three distinct climatic regions in Inner Mongolia, the Tibetan Plateau, and Xinjiang Autonomous Region, despite considerable variations among co-existing species and among different vegetation types. Our results also show that life form and genus identity explain more than 70% of total variations of foliar N and C:N ratio, while mean growing season temperature and growing season precipitation explained only less than 3%. This suggests that, at the biome scale, temperature affects leaf N mainly through a change in plant species composition rather than via temperature itself. When our data were pooled with a global dataset, the previously observed positive correlation between leaf N and mean annual temperature (MAT) at very low MATs, disappeared. Thus, our data do not support the previously proposed biogeochemical hypothesis that low temperature limitations on mineralization of organic matter and N availability in soils lead to low leaf N in cold environments. |
[16] | 85, |
[17] | 168, Abstract Plant biomass and nutrient allocation explicitly links the evolved strategies of plant species to the material and energy cycles of ecosystems. Allocation of nitrogen (N) and phosphorus (P) is of particular interest because N and P play pivotal roles in many aspects of plant biology, and their availability frequently limits plant growth. Here we present a comparative scaling analysis of a global data compilation detailing the N and P contents of leaves, stems, roots, and reproductive structures of 1,287 species in 152 seed plant families. We find that P and N contents (as well as N : P) are generally highly correlated both within and across organs and that differences exist between woody and herbaceous taxa. Between plant organs, the quantitative form of the scaling relationship changes systematically, depending on whether the organs considered are primarily structural (i.e., stems, roots) or metabolically active (i.e., leaves, reproductive structures). While we find significant phylogenetic signals in the data, similar scaling relationships occur in independently evolving plant lineages, which implies that both the contingencies of evolutionary history and some degree of environmental convergence have led to a common set of rules that constrain the partitioning of nutrients among plant organs. |
[18] | 33, 1. Nutrient limitation (mostly N or P) is a driving force in ecosystem development. Current techniques to determine the nature of nutrient limitation use laborious fertilization experiments. 2. It was hypothesized that the N:P ratio of the vegetation directly indicates the nature of nutrient limitation on a community level (N vs. P limitation). This hypothesis was tested by reviewing data on fertilization studies in a variety of European freshwater wetland ecosystems (bogs, fens, wet heathlands, dune slacks, wet grasslands). In a subset of the data (dune slacks) between-site intraspecific variation and within-site interspecific variation in nutrient content and N:P ratio was studied in five plant species. 3. A review of 40 fertilization studies reveals that an N:P ratio >16 indicates P limitation on a community level, while an N:P ratio <14 is indicative of N limitation. At N:P ratios between 14 and 16, either N or P can be limiting or plant growth is colimited by N and P together. In only one out of 40 fertilization studies, the N:P ratio gave a false indication of the nature of nutrient limitation. Measuring the N:P ratio of the vegetation is a simple and cheap alternative to fertilization studies. The method can only be used under conditions where either N or P controls plant growth. 4. The dataset contains a large variety of vegetation types and plant species, and 11 of the 40 sites were near-monocultures. This suggests that interspecific differences in critical N:P ratios among species may be insignificant. However, a rigorous test of this hypothesis is required. 5. A survey in 18 dune slacks showed large within-site variation in N:P ratio among five species (Calamagrostis epigejos, Phragmites australis, Lycopus europaeus, Mentha aquatica and Eupatorium cannabinum). The N:P ratios of the five species suggested that within plant communities species can be differentially limited by N or P. Moreover, species with an N:P ratio that suggested P-limitation were found at sites where N controlled community biomass production, and vice versa. Between-site intraspecific variation in N and P contents and N:P ratios was also large, and about equal for the five species. This illustrates the plasticity of plant species with respect to N and P contents, probably in response to differences in N and P supply ratios. 6. The vegetation N:P ratio is of diagnostic value and its use may increase our understanding of numerous facets of physiological, population, community and ecosystem ecology. |
[19] | 25, . , 25, |
[20] | 31, . , 31, |
[21] | 188, Variation in plant functional traits is the product of evolutionary and environmental drivers operating at different scales. Little is known about whether, or how, this variation is coordinated between aboveground and belowground organs across and within spatial scales. We address these questions using a hierarchically designed dataset of pairwise leaf and root traits related to carbon and nutrient economy of 64 species belonging to 14 plant communities in northern Chinese semi-arid and arid regions. While both root and leaf traits showed most of their variance among (individuals and) species within communities, leaf trait variance tended to be relatively higher at coarser spatial scales than root trait variance. While leaf nitrogen (N) per area to root N per length ratio increased and specific leaf area to specific root length and leaf [N] to root [N] ratios decreased from semi-arid to arid environments owing to climatic/edaphic shifts, the matching pairs showed a strong pattern of positive correlation that was upheld across spatial scales and geographic areas. Thus, trade-offs in plant resource investment across organs within individual vascular plants are constrained within a rather narrow range of variation. A new challenge will be to test whether and how such trait coordination is also seen within and across other biomes of the world. |
[22] | 8, We adopted previous N : P stoichiometric models for zooplankton relative growth to predict the relative growth rates of the leaves μL of vascular plants assuming that annual leaf growth in dry mass is dictated by how leaf nitrogen NL is allocated to leaf proteins and how leaf phosphorus PL is allocated to rRNA. This model is simplified provided that NL scales as some power function of PL across the leaves of different species. This approach successfully predicted the μL of 131 species of vascular plants based on the observation that, across these species, NL scaled, on average, as the 3/4 power of PL, i.e. NL ∝ P. When juxtaposed with prior allometric theory and observations, our findings suggest that a transformation in N : P stoichiometry occurs when the plant body undergoes a transition from primary to secondary growth. |
[23] | 28, . , 28, |
[24] | 36, . , 36, |
[25] | 150, 61 To evaluate whether functional groups have a similar response to global change, the responses to CO2 concentration and N availability of grassland species from several functional groups are reported here. 61 Sixteen perennial grassland species from four trait-based functional groups ( C3 grasses, C4 grasses, non-leguminous forbs, legumes) were grown in field monocultures under ambient or elevated (560 μmol mol-1) CO2 using free-air CO2 enrichment (FACE), in low N (unamended field soil) or high N (field soil +4 g N m-2 years-1) treatments. 61 There were no CO2 × N interactions. Functional groups responded differently to CO2 and N in terms of biomass, tissue N concentration and soil solution N. Under elevated CO2, forbs, legumes and C3 grasses increased total biomass by 31%, 18%, and 9%, respectively, whereas biomass was reduced in C4-grass monocultures. Two of the four legume species increased biomass and total plant N pools under elevated CO2, probably due to stimulated N-fixation. Only one species markedly shifted the proportional distribution of below- vs aboveground biomass in response to CO2 or N. 61 Although functional groups varied in responses to CO2 and N, there was also substantial variation in responses among species within groups. These results suggest that current trait-based functional classifications might be useful, but not sufficient, for understanding plant and ecosystem responses to elevated CO2 and N availability. |
[26] | 41, . , 41, This study was carried out to examine the changes of soil physical and chemical properties and their spatial he-t erogeneity on the rainfed farmland of Horqin Sandy Land in the desertification process using methods of classical stat istics and geostatistics. Sixty soil samples of 0~10 cm layer were taken on the 300 m脳90 m scale. The data were analyzed geostatist ically to determine the degree and nature of spatial heterogeneity. The results showed that soil part icle size distribution develop towards being coarse, soil waterholding capacity and porosity distribution deteriorated, and soil organic C and N, P nutrients depleted in the desertification process. The variability of soil parameters increased and the coefficient of variation ranged from 5.9% (bulk density) to 50.7% (organic carbon). Geostatistical analysis revealed that there are clearly regular changes in the pattern of distribution and high degree of spat ial variability in soil properties in the desertification of the farmland. Semivariograms and its model well reflected the degree and spatial scale of the development of desertification. In the studied area, the strip of land, where desertification developed inside the edges of the farmland along the longitudinal direction was about 100 m wide. There were close relationships between soil properties and between semivariograms of soil properties, except for pH. Desertification had very significant effect on soil organic carbon and nutrients, whereas, its effect on soil pH was relatively small. |
[27] | 51, . , 51, 调查了古尔班通古特沙漠中11科的23种一年生和多年生荒漠植物的菌根状况.结果表明,所调查的23种植物中,14种为菌根植物;5种为可能的菌根植物;其余4种为非菌根植物.不同植被类型和生活型的植物形成菌根的状况也存在差异:在灌木和一年生植物中菌根植物所占的比例都分别显著的低于多年生植物和草本植物中菌根植物所占的比例.根区孢子密度普遍较低(5个/20 g±~21个/20 g±)分离和鉴定到隶属于3个属的14种.AM真菌,其中球囊霉属(Glomus)10种,无梗囊霉属(Acaulospora)3种,原囊霉属(Achaeospora)1种.球囊霉属为优势属,Glomus deserticola和Glomus etunicatum为最常见种,其出现频度分别为77.4%和74.8%,相对丰度分别为14.4%和15.5%. |
[28] | 167, Summary 61 68 Here, we tested hypothesized relationships among leaf and fine root traits of grass, forb, legume, and woody plant species of a savannah community. 61 68 CO 2 exchange rates, structural traits, chemistry, and longevity were measured in tissues of 39 species grown in long-term monocultures. 61 68 Across species, respiration rates of leaves and fine roots exhibited a common regression relationship with tissue nitrogen (N) concentration, although legumes had lower rates at comparable N concentrations. Respiration rates and N concentration declined with increasing longevity of leaves and roots. Species rankings of leaf and fine-root N and longevity were correlated, but not specific leaf area and specific root length. The C 3 and C 4 grasses had lower N concentrations than forbs and legumes, but higher photosynthesis rates across a similar range of leaf N. 61 68 Despite contrasting photosynthetic pathways and N 2 -fixing ability among these species, concordance in above- and below-ground traits was evident in comparable rankings in leaf and root longevity, N and respiration rates, which is evidence of a common leaf and root trait syndrome linking traits to effects on plant and ecosystem processes. |
[29] | 12, Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts colonizing the majority of land plants, and are of major importance in plant nutrient supply. Their diversity is suggested to be an important determinant of plant community structure, but the influence of host-plant and environmental factors on AM fungal community in plant roots is poorly documented. Using the terminal restriction fragment length polymorphism (T-RFLP) strategy, the diversity of AM fungi was assessed in 89 roots of three grass species ( Agrostis capillaris , Festuca rubra , Poa pratensis ) that co-occurred in the same plots of a field experiment. The impact of different soil amendments (nitrogen, lime, nitrogen and lime) and insecticide application on AM fungal community was also studied. The level of diversity found in AM fungal communities using the T-RFLP strategy was consistent with previous studies based on clone libraries. Our results clearly confirm that an AM fungal host-plant preference exists, even between different grass species. AM communities colonizing A. capillaris were statistically different from the others ( P < 0.05). Although grass species evenness changed in amended soils, AM fungal community composition in roots of a given grass species remained stable. Conversely, in plots where insecticide was applied, we found higher AM fungal diversity and, in F. rubra roots, a statistically different AM fungal community. |
[30] | 44, . , 44, |
[31] | 34, . , 34, |
[32] | 235, |
[33] | 76, Global data sets provide strong evidence of convergence for leaf structure with leaf longevity such that species having thick leaves, low specific leaf area, low mass-based nitrogen concentrations, and low photosynthetic rates typically exhibit long leaf life span. Leaf longevity and corresponding leaf structure have also been widely linked to plant potential growth rate, plant competition, and nutrient cycling. We hypothesized that selection forces leading to variation in leaf longevity and leaf structure have acted simultaneously and in similar directions on the longevity and structure of the finest root orders. Our four-year study investigated the links between root and leaf life span and root and leaf structure among 11 north-temperate tree species in a common garden in central Poland. Study species included the hardwoods Acer pseudoplatanus L., Acer platanoides L., Fagus sylvatica L., Quercus robur L., and Tilia cordata Mill.; and the conifers Abies alba Mill., Larix decidua Mill., Picea abies (L.) Karst., Pinus nigra Arnold, Pinus sylvestris L., and Pseudotsuga menziesii (Mirbel) Franco. Leaf life span, estimated by phenological observations and needle cohort measurements, ranged from 0.5 to 8 yr among species. Median fine-root life span, estimated using minirhizotron images of individual roots, ranged from 0.5 to 2.5 yr among species. Root life span was not correlated with leaf life span, but specific root length was significantly correlated with specific leaf area. Root nitrogen: carbon ratio was negatively correlated with root longevity, which corroborates previous research that has suggested a trade-off between organ life span and higher organ N concentrations. Specific traits such as thickened outer tangential walls of the exodermis were better predictors of long-lived roots than tissue density or specific root length, which have been correlated with life span in previous studies. Although theories linking organ structure and function suggest that similar root and leaf traits should be linked to life span and that root and leaf life span should be positively correlated, our results suggest that tissue structure and longevity aboveground (leaves) can contrast markedly with that belowground (roots). |
[34] | 428, |
[35] | 34, . , 34, 动态平衡理论是生态化学计量学的理论基础,各种有机体是否存在一个固定的化学计量比是生态学研究的热点问题。该文研究了杭州湾滨海湿地3种优势物种海三棱藨草(Scirpus mariqueter)、糙叶薹草(Carex scabrifolia)和芦苇(Phragmites australis)叶片N、P生态化学计量特征的季节变化。结果发现,3种植物叶片N含量范围分别是7.41–17.12、7.47–13.15和6.03–18.09mg·g–1,平均值(±标准差)分别为(11.69±2.66)、(10.17±1.53)和(11.56±3.19)mg·g–1;叶片P范围分别是0.34–2.60、0.41–1.10和0.35–2.04mg·g–1,平均值为(0.93±0.62)、(0.74±0.23)和(0.82±0.53)mg·g–1;N:P范围分别是7.19–30.63、11.58–16.81和8.62–21.86,平均值为16.83±8.31、14.53±3.91和16.49±5.51,可见不同植物其生态化学计量值范围存在一定差异,但经方差分析发现3种草本植物间生长季节内N、P元素含量差异并不显著(p0.05)。各物种叶片N、P含量均表现出在生长初期显著大于其他生长季节(p0.05),生长旺季(6、7月)随着叶片生物量的持续增加,N、P含量逐渐降低并达到最小值,随后8–9月叶片不再生长而N、P含量逐渐回升,在10月叶片衰老时N、P含量再次下降;叶片N:P则在生长初期较小,在生长旺季先升高后降低,随后叶片成熟不再生长时又逐渐增加并趋于稳定。 |
[36] | 34, . , 34, 植物的叶片与细根分别作为植物体地上和地下部分重要的营养器官, 很多功能性状在二者之间存在着一定的关联性.研究这种关联有助于理解植物各性状之间的相互作用、植物生长过程中对资源的利用和分配,以及建立细根性状的估 算模型.该研究对内蒙古锡林河流域65种植物叶片与细根的氮(N)含量、磷(P)含量、N:P以及比叶面积(SLA)和比根长(SRL)进行了比较研究, 结果表明:在种间尺度上,叶片与细根间的N、P和N:P存在显著的相关性,而SLA与SRL之间相关性较弱;在种内尺度上,叶片和细根的N、P及SLA与 SRL,在不同的物种中呈现出不同的趋势.此外,叶片与细根性状的关联,在不同的植物功能群之间存在差异.例如,双子叶植物叶片与细根间的N含量显著相 关,P含量不相关;而单子叶植物二者之间的P含量显著相关,N含量无关联.该研究的主要结论是,在相对一致的生境中,植物叶片与细根性状的关联主要发生在 不同物种之间,在种内尺度上这种天联不明显,这可能与植物功能性状在种内存在较小的变异幅度有关. |
[37] | 20, . , 20, |
[38] | (in Chinese with English abstract) . 内稳性是生物在长期进化过程中适应环境的结果,是化学计量生态学的基础,具有重要的生态学和进化学意义。生长率假说是当前化学计量生态学研究的热点问题,它从分子和元素的角度来解释生物的生长率。研究生态系统的限制性元素和C:N:P化学计量学对生态系统管理具有重要意义。草原是中国最重要的生态系统类型之一,研究草原植物内稳性、C:N:P及其与生长率间的关系以及限制性元素,不仅具有重要的理论意义,还将为草原生态系统管理提供科学的依据。 通过沙培和野外N/P添加试验、并结合长期监测数据,本论文围绕草原植物的内稳性、生长率和限制性元素三... |
[39] | 2, Most water and essential soil nutrient uptake is carried out by fine roots in plants. It is therefore important to understand the global geographic patterns of fine-root nitrogen and phosphorus cycling. Here, by compiling plant root data from 211 studies in 51 countries, we show that live fine roots have low nitrogen (N) and phosphorus (P), but similar N:P ratios when compared with green leaves. The fine-root N:P ratio differs between biomes and declines exponentially with latitude in roots of all diameter classes. This is in contrast to previous reports of a linear latitudinal decline in green leaf N:P, but consistent with nonlinear declines in leaf litter N:P. Whereas the latitudinal N:P decline in both roots and leaves reflects collective influences of climate, soil age and weathering, differences in the shape of the response function may be a result of their different N and P use strategies. |
[40] | 29, . , 29, The biological sciences developed very fast during the 20th century and have become increasingly sophisticated and predictive. Along with this trend, areas of research also have become increasingly specialized and fragmented. However, this fragmentation and specialization risks overlooking the most inherent biological characteristics of living organisms. One can ask if the living organisms on the earth have unified and essential characteristics that can connect the disparate disciplines and levels of biological study from molecular structure of genes to ecosystem dynamics. By exploring this question, a new science, ecological stoichiometry, has been developed over the past two decades. Ecological stoichiometry is a study of the mass balance of multiple chemical elements in living systems; it analyzes the constraints and consequences of these mass balances during ecological interactions. All biological entities on the earth have a specific elemental composition and specific elemental requirements, which influence their interactions with other organisms and their abiotic environment in predictable ways. Ecological stoichiometry has been incorporated successfully into many levels of biology from molecular, cellular, organismal and population to ecosystem and globe. At present, the principles of ecological stoichiometry have been broadly applied to research on population dynamics, trophic dynamics, microbial nutrition, host-pathogen interactions, symbiosis, comparative ecosystem analysis, and consumer-driven nutrient cycling. This paper reviews the concepts, research history, principles, and applications of ecological stoichiometry and points out future research hotspots in this dynamic field of study with an aim to promote this discipline of research in China. |
[41] | 34, . , 34, 荒漠植物在水分限制、营养元素相对匮缺的条件下,经过长期的进化 适应形成了自身独特的生理生态和生态化学计量特征.在阿拉善荒漠选择52个典型群落类型,分析和研究了54种荒漠植物叶片的碳、氮和磷的化学计量特征.结 果表明:荒漠植物叶片的碳(C mg/g)、氮(N mg/g)和磷(P mg/g)含量变幅较大,分别为(379.01±55.42) mg/g、(10.65±7.91) mg/g和(1.04±0.81) mg/g,变异系数分别为0.15、0.74和0.78;C/N、C/P、和N/P分别为66.70±60.81、683.16±561.94、 11.53±5.06.元素间相关性分析表明,叶片的C和N不相关(P>0.05),C与P显著正相关(P<0.05),N和P极显著正相关 (P<0.01).从植物功能型的角度分析发现,灌木和1年生草本植物对C的存储能力较低;占整体67%的灌木叶片的N、P含量最低,导致总体N、P含量 较低;多年生草本和1年生草本植物叶N含量与灌木植物叶片和整体N含量无差别,而P含量明显高于灌木植物叶片和整体P含量且N/P明显低于灌木植物叶片和 总体N/P,导致总体N/P较低.该研究结果与全球和中国尺度的研究相比发现,荒漠植物叶片C、N、P含量和N/P明显偏低,N/P< 14说明阿拉善荒漠植物在受N、P共同作用的同时更易受N限制. |
[42] | 30, . , 30, |
[43] | 38, . , 38, In order to do the study on the stoichiometric difference and change rule of plant and leaf carbon(C) and nitrogen(N) in the process of sand dune fixation of Horqin Sandy Land,Inner Mongolia,China,mobile dune,semi-fixed dune,fixed dune and grassland——4 habitats were chosen to collect plant samples and leaf samples respectively. Then the carbon and nitrogen content were measured and analyzed on the level of community and functional type. The results showed as follows:(1) with the sand dune stabilization,plant community C and community leaf C increased gradually while their N content decreased,and the coefficient of variation of C was smaller than N;(2) in each habitat,C and N of plant and leaf were in order:shrubs>annuals,C plants>C plants,leguminous plants>non-leguminous plants,and the C and N of each functional type of plants had positive relationship with their leaves’;(3) along the fixed gradient of sand dune,plants and leaves’ C in annuals,C plants and non-leguminous plants tended to rise while plants and leaves’ N in annuals,perennials,C plants and non-leguminous plants tended to decline. Variation of plant community C content in the sand dune stabilization resulted from changes of annuals,C plants and non-leguminous plants,while the drop of N content was caused by changes of perennials,C plants and non-leguminous plants. Replanting shrubs,C plants and leguminous plants appropriately would exert the positive effect on fixing carbon,nitrogen-fixing biologically,and improving soil fertility. |
[44] | 34, . , 34, 在豆科与非豆科植物光合特性的研究中发现,非豆科植物具有更高的光合速率,与其低的叶氮含量 相矛盾。在沙漠中氮素是限制植物生长的关键因子之一,考虑到豆科植物的生物固氮作用和叶氮大部分分配于光合系统,我们假设:(1)非豆科植物具有更低的叶 氮含量;(2)分配更少的叶氮于光合系统;(3)具有更高的最大净光合速率(Pmax)和光合氮素利用效率(PNUE)。为了验证这些假设,以塔克拉玛干 沙漠南缘的豆科植物骆驼刺(Alhagi sparsifolia)和非豆科植物柽柳(Tamarix ramosissima)、花花柴(Karelinia caspica)为研究对象,比较了它们的叶氮含量、氮分配、Pmax和PNUE等。结果表明:(1)非豆科植物比豆科植物确实有更低的叶氮含量,且差异 达到显著水平;(2)非豆科植物分配更少的叶氮于光合系统,但在光合系统内部具有更高效的氮分配机制;(3)非豆科植物具有更高的Pmax和PNUE。在 光合系统内部,非豆科植物分配更多的叶氮于羧化系统,而豆科植物分配更多的叶氮于捕光系统。对于非豆科植物而言,其更高的Pmax、PNUE、水分利用效 率和表观量子产量,取决于将更多的叶氮投入到羧化和电子传递系统中。这些生理优势决定了塔克拉玛干沙漠南缘非豆科植物高效的资源捕捉和利用能力。 |
1
1996
... 在草地生态系统中, 不同生活型的植物发挥着不同的作用, 对环境变化的响应也不同, 如在典型草原生态系统, 多年生禾草和多年生杂类草功能群多样性决定群落初级生产力稳定性(
The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.
1
1999
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响
1
2001
... 在草地生态系统中, 不同生活型的植物发挥着不同的作用, 对环境变化的响应也不同, 如在典型草原生态系统, 多年生禾草和多年生杂类草功能群多样性决定群落初级生产力稳定性(
The mineral nutrition of wild plants.
1
1980
... C、N、P作为植物生长发育所必需的大量元素, 其化学计量特征能反映植物的养分利用状况和元素平衡特点.本研究中, 60种植物叶片的平均C、N、P含量分别为424.20 mg·g-1、25.60 mg·g-1、2.10 mg·g-1, 细根平均C、N、P含量分别为434.03 mg·g-1、13.54 mg·g-1、1.13 mg·g-1.细根的C含量与叶片差别不大, 而N、P含量近似等于叶片平均N、P含量的1/2, 说明在干旱贫瘠的沙地生态系统中, 植物根系吸收养分后对养分的分配更侧重于地上部分, 植物在有限的养分供应条件下维持较高的叶片N、P含量, 以完成其正常的生活史(
Important foliar traits depend on species-grouping: Analysis of a remnant temperate forest at the Keerqin Sandy Lands, China.
1
2011
... 科尔沁沙地作为我国北方半干旱农牧交错带的典型代表区域, 由于强烈的风蚀造成土壤中黏粉粒物质大量损失, 土壤养分是该地区植物生长的主要限制因素.目前, 已经有较多研究关注该地区植物叶片元素含量的变异特征(
Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand.
2
2003
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence.
1
2001
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
Nutritional constraints in terrestrial and freshwater food webs.
2
2000
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.
1
2010
... 植物组织C、N、P含量之间具有显著的相关性是高等陆生植物化学计量的普遍特征, 反映了植物体内这3种元素间的耦合机制(
Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment.
1
2001
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes.
1
2003
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
N:P ratios in terrestrial plants: Variation and functional significance.
1
2004
... 在草地生态系统中, 不同生活型的植物发挥着不同的作用, 对环境变化的响应也不同, 如在典型草原生态系统, 多年生禾草和多年生杂类草功能群多样性决定群落初级生产力稳定性(
Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.
2005
北京及周边地区植物叶的碳氮磷元素计量特征
2
2009
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.
1
2006
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
Carbon, sequestration in ecosystems: The role of stoichiometry.
1
2004
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.
2
2006
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.
1
1996
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
不同沙丘生境主要植物比叶面积和叶干物质含量的比较
1
2005
... 研究区位于内蒙古东北部科尔沁沙地中西部的奈曼旗境内, 地理位置为42.97° N, 120.73° E, 海拔约为360 m.年平均气温6.5 ℃, 最热月(7月)平均气温23.5 ℃, 最冷月(1月)平均气温-13.2 ℃, 全年≥10 ℃的有效积温3 200-3 400 ℃, 无霜期151天, 极端最高气温39 ℃, 极端最低气温-29.3 ℃, 夏季无植被覆盖的沙丘表面最高温度可达57.2-60.0 ℃.年太阳辐射总量为5 200-5 400 MJ·m-2, 多年平均降水量为360 mm, 主要集中在6-8月, 年蒸发量1 935 mm, 属温带大陆型半干旱气候类型(
北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究
2
2010
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems.
1
2010
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth.
1
2005
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
长芒草不同季节碳氮磷生态化学计量特征
1
2011
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应
1
2016
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species.
1
2001
... 在草地生态系统中, 不同生活型的植物发挥着不同的作用, 对环境变化的响应也不同, 如在典型草原生态系统, 多年生禾草和多年生杂类草功能群多样性决定群落初级生产力稳定性(
农田沙漠化演变中土壤性状特征及其空间变异性分析
1
2004
... 生物体C:N:P能反映生物在长期进化过程中对环境变化的适应(
古尔班通古特沙漠丛枝菌根共生体研究
1
2006
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
Linking leaf and root trait syndromes among 39 grassland and savannah species.
1
2005
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
Co-existing grass species have distinctive arbuscular mycorrhizal communities.
1
2003
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
中国土壤磷库的大小、分布及其影响因素
1
2008
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
凉水天然阔叶红松林植物叶片与细根的N:P化学计量特征
2
2015
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
Why nature chose phosphates.
1
1987
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
Comparisons of structure and life span in roots and leaves among temperate trees.
1
2006
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
The worldwide leaf economics spectrum.
2004
杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化
1
2010
... 植物在生长过程中需要大量的N、P来合成光合器官、ATP及酶来促进其光合能力, 而细根也需要N、P等养分元素来保证其正常的生理过程(
内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联
1
2010
... 作为植物体地上部分和地下部分的重要营养器官, 植物的叶片和细根在很多性状上表现出关联性(
草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展
1
2011
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
内蒙古草原植物化学计量生态学研究
2009
Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.
3
2011
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
... (
... (
生态化学计量学: 复杂生命系统奥秘的探索
1
2005
... 碳(C)、氮(N)、磷(P)作为生态系统最重要的生源元素, 对生态系统的结构和功能具有重要的作用(
阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征
2
2014
... 本研究中, 叶片和细根的平均C含量接近于中国北方草地植物叶片平均C含量(438 mg·g-1,
... ), 而灌木叶片P含量较低(
科尔沁沙地52种植物叶片性状变异特征研究
1
2010
... 科尔沁沙地作为我国北方半干旱农牧交错带的典型代表区域, 由于强烈的风蚀造成土壤中黏粉粒物质大量损失, 土壤养分是该地区植物生长的主要限制因素.目前, 已经有较多研究关注该地区植物叶片元素含量的变异特征(
科尔沁沙地不同生境植物及叶片的C、N元素计量特征
1
2015
... 科尔沁沙地作为我国北方半干旱农牧交错带的典型代表区域, 由于强烈的风蚀造成土壤中黏粉粒物质大量损失, 土壤养分是该地区植物生长的主要限制因素.目前, 已经有较多研究关注该地区植物叶片元素含量的变异特征(
塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配
1
2010
... 在干旱贫瘠的环境中, 豆科植物通过根瘤菌固氮使其N吸收较非豆科植物更具优势.本研究发现豆科与非豆科植物间叶片与细根的化学计量特征值除细根P含量及C:P外均达到极显著水平(p < 0.001).豆科植物较非豆科植物具有较高的N含量, 而非豆科植物具有较高的C:N, 即较高的N利用效率, 这可能是由于非豆科植物具有高效的资源捕捉及利用能力(