关键词:干旱胁迫;木质部栓塞;气候变化;气孔调节;水力失衡;植物性状 Abstract Water is a vital resource for plant survival, growth and distribution, and it is of significance to explore mechanisms of plant water-relations regulation and responses to drought in ecophysiology and global change ecology. Plants adapt to different climates and soil water regimes and develop divergent water-regulation strategies involving a suite of related traits, of which two typical types are isohydric and anisohydric behaviors. It is critical to distinguish water-regulation strategies of plants and reveal the underlying mechanisms for plant breeding and vegetation restoration especially in xeric regions; and it is also important for developing more accurate vegetation dynamic models and predicting vegetation distribution under climate change scenarios. In this review, we first recalled the definitions of isohydric and anisohydric regulations and three quantitative classification methods that were established based on the relationships (1) between stomatal conductance and leaf water potential, (2) between stomatal conductance and vapor pressure deficit, (3) between predawn and midday leaf water potentials. We then compared the two water-regulation strategies in terms of hydraulics and carbon-economics traits. We synthesized the mechanisms of plant water-regulation and found that the interaction between hydraulic and chemical signals was the dominant factor controlling plant water-regulation behavior. Last, we proposed three promising aspects in this field: (1) to explore reliable and universal methods for classifying plant water-regulation strategies based on extensive investigation of the traits related with plant water-relations in various regions; (2) to explore relationships between plant water-regulation strategies and traits of hydraulics, morphology, structure, and function in order to provide reliable parameters for improving vegetation dynamic models; and (3) to deeply understand the processes of plant water-regulation at different spatial and temporal scales, and reveal mechanisms of plants’ responses and adaption to environmental stresses (especially drought).
Keywords:drought stress;xylem embolism;climate change;stomatal regulation;hydraulic failure;plant trait -->0 PDF (1013KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41(9): 1020-1032 https://doi.org/10.17521/cjpe.2016.0366 LUODan-Dan, WANGChuan-Kuan, JINYing. Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41(9): 1020-1032 https://doi.org/10.17521/cjpe.2016.0366 随着全球气候变化的加剧, 极端气象事件频发、气温升高、降雨格局变化等导致持续严重的干旱, 使植物生产力下降、森林大面积死亡(Meinzer et al., 2014)。为此, 干旱诱导的植物死亡机制研究备受关注。近期人们提出了树木死亡的3种可能机制假说, 即碳饥饿、水力失衡、抗病虫害能力下降(McDowell et al., 2008), 但对它们的相对重要性及相互作用关系尚无明确结论(McDowell et al., 2013; Mencuccini et al., 2015)。因此, 阐明植物对干旱的应对和调节机制, 对于理解和预测全球变化背景下植物生存、生长及分布有着重要意义。 植物对水分限制的响应和调节机制很复杂, 其中气孔调节是通过控制水分运输和叶片蒸腾来防止木质部栓塞的最重要机制(Martínez-Vilalta et al., 2014)。气孔既是植物光合作用CO2固定的入口, 又是蒸腾作用水分散失的出口, 在平衡优化植物光合与蒸腾关系中发挥着重要作用(范嘉智等, 2016)。在干旱胁迫时, 植物根系至叶片水分运输中的低阻通路——木质部的导管会产生栓塞, 使植物水力导度(K)下降、水分运输受阻。在这种情况下, 有些植物的气孔响应敏感, 可通过迅速关闭气孔来维持一定的水势, 光合速率也随之降低, 这常被称为气孔的等水调节行为(isohydric behavior); 相反, 另一些植物的气孔仍能维持一定的开度, 以维持较高的光合速率, 这即为气孔的非等水调节行为(anisohydric behavior)。植物气孔的行为除了受植物内因控制之外, 还受土壤水分状况、大气水汽压亏缺(VPD)等的影响, 进而限制植物的气体交换(Tardieu & Simonneau, 1998; Domec & Johnson, 2012)。在土壤-植物-大气连续体(SPAC)中, 气孔和水力运输系统将土壤和叶片紧密联系在一起(Brodribb & Jordan, 2008)。植物响应于土壤含水量和VPD的变化而调节其气孔保卫细胞和相邻上皮细胞的膨压, 进而改变孔径大小(Rogiers et al., 2012)。 在上述内外因的联合作用下, 不同植物针对干旱胁迫会在水分调节对策、水力响应、耐旱性等方面形成不同的应对策略, 表现出其水分调节对策与形态学(如叶片厚度)、解剖学(如木材密度)、生理学(如K、光合速率)、生态学(如物候)等性状之间存在一定的关联性(Braga et al., 2016)。生长在干旱环境中的植物通常有抗空穴化能力强、气孔调节力强、边材水容大、落叶、根深、枝干可营光合作用等特征(Pivovaroff et al., 2016)。Lachenbruch和Mcculloh (2014)报道, 植物木质部密度与K负相关, 而与抗栓塞能力正相关。Martínez-Vilalta等(2014)也发现气孔导度(Gs)与叶水势(ΨL)高度相关, 并通过调节木质部水势差降低空穴化的概率。因此, 为了理解植物碳-水耦合机理过程(范嘉智等, 2016)、评价预测植物及其群落对气候变化的响应, 迫切需要开展植物的水分调节对策及其机理研究。为推进该领域研究进展, 本文综述植物等水与非等水调节行为的概念及定量分类方法; 在此基础上, 比较分析这两种植物水力调节对策的性状差异; 之后阐述植物应对干旱的水分调节机理; 最后指出该领域值得关注的研究问题。
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper.“N” 代表没有争议; “Y” 代表尚有争议; “-”代表该性状由其他研究成果总结归纳得出, 但没有文献直接验证支持。 新窗口打开
AcheP, BauerH, KollistH, Al-RasheidKA, LautnerS, HartungW, HedrichR (2010). Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements. 62, 1072-1082. [本文引用: 1]
[2]
AttiaZ, DomecJC, OrenR, WayDA, MoshelionM (2015). Growth and physiological responses of isohydric and anisohydric poplars to drought. 66, 4373-4381. [本文引用: 1]
[3]
BartlettMK, ScoffoniC, SackL (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. 15, 393-405. [本文引用: 1]
[4]
BlackmanCJ, BrodribbTJ, JordanGJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. 188, 1113-1123. [本文引用: 1]
[5]
BorelC, AudranC, FreyA, Marion-PollA, TardieuF, SimonneauT (2001). N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit. 52, 427-434. [本文引用: 1]
[6]
BragaNDS, VitóriaAP, SouzaGM, BarrosCF, FreitasL (2016). Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. 48, 453-464. [本文引用: 2]
[7]
BrodribbTJ, HolbrookNM (2004). Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms. 162, 663-670. [本文引用: 1]
[8]
BrodribbTJ, JordanGJ (2008). Internal coordination between hydraulics and stomatal control in leaves. 31, 1557-1564. [本文引用: 2]
[9]
BucciS, ScholzF, GoldsteinG, MeinzerF, SternbergL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels. 26, 1633-1645. [本文引用: 1]
[10]
BucciSJ, GoldsteinG, MeinzerFC, FrancoAC, CampanelloP, ScholzFG (2005). Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees. 19, 296-304. [本文引用: 1]
[11]
ChavesMM, ZarroukO, FranciscoR, CostaJ, SantosT, RegaladoAP, RodriguesML, LopesCM (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data. 105, 661-676.
[12]
ChenYT, XuZZ (2014). Review on research of leaf economics spectrum. 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展 . , 38, 1135-1153.] [本文引用: 1]
[13]
CocozzaC, CherubiniP, RegierN, SaurerM, FreyB, TognettiR (2010). Early effects of water deficit on two parental clones of 37, 244-254. [本文引用: 1]
[14]
ConesaMR, RosaJMDL, DomingoR, BañonS, Pérez-PastorA (2016). Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson Seedless) grown in pots. 202, 9-16. [本文引用: 2]
[15]
DomecJC, JohnsonDM (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of 32, 245-248. [本文引用: 2]
[16]
DomecJC, PalmrothS, WardE, MaierCA, ThérézienM, OrenR (2009). Acclimation of leaf hydraulic conductance and stomatal conductance of ( 32, 1500-1512. [本文引用: 1]
[17]
FanJZ, WangD, HuYL, JingPP, WangPP, ChenJQ (2016). Optimal stomatal behavior theory for simulating stomatal conductance. 40, 631-642. (in Chinese with English Abstract)[范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟 . , 40, 631-642.] [本文引用: 2]
[18]
FisherRA, WilliamsM, Do ValeLR, Da CostaAL, MeirP (2006). Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. 29, 151-165. [本文引用: 1]
[19]
FlexasJ, Ribas-CarboM, BotaJ, GalmesJ, HenkleM, Martinez-CanellasS, MedranoH (2006). Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. 172, 73-82. [本文引用: 1]
[20]
FranksPJ, DrakePL, FroendRH (2007). Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. 30, 19-30. [本文引用: 1]
[21]
FreyA, EffroyD, LefebvreV, SeoM, PerreauF, BergerA, SechetJ, ToA, NorthHM, Marion-PollA (2012). Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. 70, 501-512. [本文引用: 2]
[22]
GalléA, CsiszarJ, BenyoD, LaskayG, LeviczkyT, ErdeiL, TariI (2013). Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses. 170, 1389-1399. [本文引用: 2]
[23]
GalléA, FellerU (2007). Changes of photosynthetic traits in beech saplings ( 131, 412-421. [本文引用: 1]
[24]
GongR, GaoQ (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. 39, 300-308. (in Chinese with English Abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展 . , 39, 300-308.] [本文引用: 1]
[25]
GuóthA, TariI, GalléÁ, CsiszárJ, PécsváradiA, CseuzL, ErdeiL (2009). Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: Changes in flag leaf photosynthetic activity, ABA levels, and grain yield. 28, 167-176. [本文引用: 1]
[26]
GuyotG, ScoffoniC, SackL (2012). Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control. 35, 857-871. [本文引用: 1]
[27]
HackeUG, SperryJS, WheelerJK, CastroL (2006). Scaling of angiosperm xylem structure with safety and efficiency. 26, 689-701. [本文引用: 1]
[28]
Holloway-PhillipsM, BrodribbTJ (2011). Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. 34, 302-313. [本文引用: 1]
[29]
HölttäT, CochardHN, NikinmaaE, MencucciniM (2009). Capacitive effect of cavitation in xylem conduits: Results from a dynamic model. 32, 10-21. [本文引用: 1]
[30]
JinY, WangCK (2015). Trade-offs between plant leaf hydraulic and economic traits. 39, 1021-1032. (in Chinese with English Abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展 . , 39, 1021-1032.] [本文引用: 2]
[31]
JinY, WangCK, ZhouZH, LiZM (2016). Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. 43, 1082-1090. [本文引用: 1]
[32]
KleinT, NiuS (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. 28, 1313-1320. [本文引用: 1]
[33]
LachenbruchB, MccullohKA (2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. 204, 747-764.
LiR, DangW, CaiJ, ZhangSX, JiangZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. 40, 255-263. (in Chinese with English abstract)[李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系 . , 40, 255-263.] [本文引用: 3]
[36]
LiR, JiangZM, ZhangSX, CaiJ (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. 39, 838-848. (in Chinese with English Abstract)[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展 . , 39, 838-848.] [本文引用: 1]
[37]
LovisoloC, HartungW, SchubertA (2002). Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. 29, 1349-1356. [本文引用: 1]
[38]
LovisoloC, Lavoie-LamoureuxA, TramontiniS, FerrandinoA (2016). Grapevine adaptations to water stress: New perspectives about soil/plant interactions. 28, 53-66. [本文引用: 1]
[39]
LovisoloC, PerroneI, CarraA, FerrandinoA, FlexasJ, MedranoH, SchubertA (2010). Drought-induced changes in development and function of grapevine ( 37, 98-116. [本文引用: 2]
[40]
LovisoloC, PerroneI, HartungW, SchubertA (2008a). An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. 180, 642-651. [本文引用: 2]
[41]
LovisoloC, TramontiniS, FlexasJ, SchubertA (2008b). Mercurial inhibition of root hydraulic conductance in 63, 178-182.
[42]
Martínez-VilaltaJ, PoyatosR, AguadéD, RetanaJ, MencucciniM (2014). A new look at water transport regulation in plants. 204, 105-115. [本文引用: 3]
[43]
McAdamSA, BrodribbTJ (2012). Stomatal innovation and the rise of seed plants. 15, 1-8. [本文引用: 1]
[44]
McCullohKA, MeinzerFC (2015). Further evidence that some plants can lose and regain hydraulic function daily. 35, 691-693. [本文引用: 2]
[45]
McDowellN, PockmanWT, AllenCD, BreshearsDD, CobbN, KolbT, PlautJ, SperryJ, WestA, WilliamsDG, YepezEA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? 178, 719-739. [本文引用: 2]
[46]
McDowellNG, RyanMG, ZeppelMJ, TissueDT (2013). Feature: Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling. 200, 289-293. [本文引用: 2]
[47]
MeinzerF (2002). Co-ordination of vapour and liquid phase water transport properties in plants. 25, 265-274. [本文引用: 1]
[48]
MeinzerFC, JohnsonDM, LachenbruchB, McCullohKA, WoodruffDR (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. 23, 922-930. [本文引用: 2]
[49]
MeinzerFC, McCullohKA (2013). Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? 33, 331-334. [本文引用: 3]
[50]
MeinzerFC, WoodruffDR, MariasDE, McCullohKA, SevantoS (2014). Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. 37, 2577-2586. [本文引用: 1]
[51]
MencucciniM, MinunnoF, SalmonY, Martinez-VilaltaJ, HolttaT (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants. 208, 396-409. [本文引用: 2]
[52]
MiyashitaK, TanakamaruS, MaitaniT, KimuraK (2005). Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. 53, 205-214. [本文引用: 1]
[53]
MoshelionM, HalperinO, WallachR, OrenR, WayDA (2015). Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: Crop water- use efficiency, growth and yield. 38, 1785-1793. [本文引用: 3]
[54]
NardiniA, DimasiF, KlepschM, JansenS (2012). Ion-mediated enhancement of xylem hydraulic conductivity in four 32, 1434-1441. [本文引用: 1]
[55]
NeginB, MoshelionM (2016). The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. 251, 82-89. [本文引用: 1]
[56]
OcheltreeTW, NippertJB, PrasadPV (2016). A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. 210, 97-107. [本文引用: 1]
[57]
OgasaM, MikiNH, MurakamiY, YoshikawaK (2013). Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. 33, 335-344. [本文引用: 1]
[58]
OrenR, SperryJ, KatulG, PatakiD, EwersB, PhillipsN, SchaferK (1999). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. 22, 1515-1526.
[59]
PantinF, MonnetF, JannaudD, CostaJM, RenaudJ, MullerB, SimonneauT, GentyB (2013). The dual effect of abscisic acid on stomata. 197, 65-72. [本文引用: 1]
[60]
PivovaroffAL, PasquiniSC, de GuzmanME, AlstadKP, StemkeJS, SantiagoLS, FieldK (2016). Multiple strategies for drought survival among woody plant species. 30, 517-526. [本文引用: 1]
[61]
PoniS, BernizzoniF, CivardiS (2007). Response of “Sangiovese” grapevines to partial root-zone drying: Gas-exchange, growth and grape composition. 114, 96-103.
[62]
PouA, FlexasJ, AlsinaMDM, BotaJ, CarambulaC, HerraldeFD, GalmésJ, LovisoloC, JiménezM, Ribas-CarbóM (2007). Is there an association between weight and dental caries among pediatric patients in an urban dental school? A correlation study. 71, 1435-1440. [本文引用: 1]
[63]
PouA, MedranoH, FlexasJ, TyermanSD (2013). A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. 36, 828-843. [本文引用: 1]
[64]
PouA, MedranoH, TomàsM, MartorellS, Ribas-CarbóM, FlexasJ (2012). Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. 359, 335-349. [本文引用: 2]
[65]
QueroJL, SterckFJ, Martínez-VilaltaJ, VillarR (2011). Water-use strategies of six co-existing Mediterranean woody species during a summer drought. 166, 45-57. [本文引用: 3]
[66]
ReichPB, LuoYJL, JohnBB, PoorterH, PerryCH, OleksynJ (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. 111, 13721-13726.
[67]
RogiersSY, GreerDH, HatfieldJM, HuttonRJ, ClarkeSJ, HutchinsonPA, SomersA (2012). Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. 32, 249-261. [本文引用: 2]
[68]
RomanDT, NovickKA, BrzostekER, DragoniD, RahmanF, PhillipsRP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. 179, 641-654. [本文引用: 1]
[69]
RoseL, RubarthMC, HertelD, LeuschnerC (2013). Management alters interspecific leaf trait relationships and traitbased species rankings in permanent meadows. 24, 239-250. [本文引用: 1]
[70]
SadeN, MoshelionM (2014). The dynamic isohydric-anisohydric behavior of plants upon fruit development: Taking a risk for the next generation. 34, 1199-1202. [本文引用: 3]
[71]
SadeN, VinocurBJ, DiberA, ShatilA, RonenG, NissanH, WallachR, KarchiH, MoshelionM (2009). Improving plant stress tolerance and yield production: Is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? 181, 651-661. [本文引用: 1]
[72]
SalleoS, NardiniA, PittF, GulloMAL (2000). Xylem cavitation and hydraulic control of stomatal conductance in laurel ( 23, 71-79. [本文引用: 1]
[73]
SchultzHR (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown 26, 1393-1405. [本文引用: 1]
[74]
SecchiF, ZwienieckiMA (2014). Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. 164, 1789-1799. [本文引用: 1]
[75]
SoarCJ, SpeirsJ, MaffeiS, PenroseA, McCarthyMG, LoveysB (2006). Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue. 12, 2-12. [本文引用: 1]
[76]
SperryJS (2000). Hydraulic constraints on plant gas exchange. 104, 13-23. [本文引用: 1]
[77]
SperryJS, HackeUG (2004). Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. 91, 369-385. [本文引用: 1]
[78]
SperryJS, TyreeMT (1988). Mechanism of water stress-induced xylem embolism. 88, 581-587. [本文引用: 1]
[79]
TardieuF, SimonneauT (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. 49, 419-432. [本文引用: 3]
[80]
ThompsonAJ, MulhollandBJ, JacksonAC, McKeeJM, HiltonHW, SymondsRC, SonneveldT, BurbidgeA, StevensonP, TaylorIB (2007). Regulation and manipulation of ABA biosynthesis in roots. 30, 67-78. [本文引用: 1]
[81]
TrifilòP, NardiniA, RaimondoF, GulloMAL, SalleoS (2011). Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of 38, 606-613. [本文引用: 1]
[82]
TyreeMT, SperryJS (1988). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. 88, 574-580. [本文引用: 1]
[83]
VandeleurRK, MayoG, SheldenMC, GillihamM, KaiserBN, TyermanSD (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. 149, 445-460.
[84]
VillagraM, CampanelloPI, BucciSJ, GoldsteinG (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. 33, 1308-1318. [本文引用: 1]
[85]
VogtUK (2001). Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of 52, 1527-1536. [本文引用: 1]
[86]
WangCS, WangSP (2015). A review of research on responses of leaf traits to climate change. 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015) 植物叶片性状对气候变化的响应研究进展 . , 39, 206-216.]
[87]
WilkinsonS, DaviesWJ (2002). ABA-based chemical signalling: The co-ordination of responses to stress in plants. 25, 195-210. [本文引用: 2]
[88]
WilkinsonS, DaviesWJ (2010). Drought, ozone, ABA and ethylene: New insights from cell to plant to community. 33, 510-525. [本文引用: 1]
[89]
WoodruffDR, MeinzerFC, MariasDE, SevantoS, JenkinsMW, McDowellNG (2015). Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in 206, 411-421. [本文引用: 2]
[90]
WrightIJ, ReichPB, CornelissenJH, FalsterDS, GroomPK, HikosakaK, LeeW, LuskCH, NiinemetsÜ, OleksynJ (2005). Modulation of leaf economic traits and trait relationships by climate. 14, 411-421. [本文引用: 2]
[91]
ZhangY, OrenR, KangS (2012). Spatiotemporal variation of crown-scale stomatal conductance in an arid 32, 262-279. [本文引用: 1]
[92]
ZhangYQ, WangCK (2008). Transpiration of boreal and temperate forests. 14, 838-845. (in Chinese with English abstract)[张彦群, 王传宽 (2008). 北方和温带森林生态系统的蒸腾耗水 . , 14, 838-845.] [本文引用: 1]
Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements. 1 2010
... 水力信号主要是指由蒸腾所引起的ΨL变化(Meinzer, 2002), 这是调节气孔开关的又一个因素.干旱胁迫会使植物木质部产生空穴化和栓塞, 导致ΨL下降; 气孔感受到木质部空穴化的产生之后做出反馈而关闭(Brodribb & Jordan, 2008).有研究表明, 气孔关闭与表皮细胞和叶肉细胞的膨压变化相关(Ache et al., 2010).在ΨL较低时, 膨压值为正的植物的气体交换和生长速率均较高(Blackman et al., 2010).干旱胁迫会引起失膨, 因此植物通过渗透调节改变失膨点, 是植物提高耐旱性的一种重要策略(Bartlett et al., 2012). ...
Growth and physiological responses of isohydric and anisohydric poplars to drought. 1 2015
... 保持根-叶之间水分运输的连续性, 不仅可避免木质部空穴化, 而且是维持气体交换和植物生长的基础(Meinzer & McCulloh, 2013; Attia et al., 2015).非等水调节植物通过延迟对Kleaf的调控应对干旱胁迫, 其ΨMD会大幅下降, 延迟气孔关闭, 使自身保持较高的光合能力和光能合成容量, 促使其复水后某些指标更快地恢复(Pou et al., 2012; Martínez-Vilalta et al., 2014).在相似条件下, 等水调节植物则表现出对Kleaf和Gs更强的调节作用, 在干旱胁迫期间保持较高的ΨMD及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. 1 2012
... 水力信号主要是指由蒸腾所引起的ΨL变化(Meinzer, 2002), 这是调节气孔开关的又一个因素.干旱胁迫会使植物木质部产生空穴化和栓塞, 导致ΨL下降; 气孔感受到木质部空穴化的产生之后做出反馈而关闭(Brodribb & Jordan, 2008).有研究表明, 气孔关闭与表皮细胞和叶肉细胞的膨压变化相关(Ache et al., 2010).在ΨL较低时, 膨压值为正的植物的气体交换和生长速率均较高(Blackman et al., 2010).干旱胁迫会引起失膨, 因此植物通过渗透调节改变失膨点, 是植物提高耐旱性的一种重要策略(Bartlett et al., 2012). ...
Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. 1 2010
... 水力信号主要是指由蒸腾所引起的ΨL变化(Meinzer, 2002), 这是调节气孔开关的又一个因素.干旱胁迫会使植物木质部产生空穴化和栓塞, 导致ΨL下降; 气孔感受到木质部空穴化的产生之后做出反馈而关闭(Brodribb & Jordan, 2008).有研究表明, 气孔关闭与表皮细胞和叶肉细胞的膨压变化相关(Ache et al., 2010).在ΨL较低时, 膨压值为正的植物的气体交换和生长速率均较高(Blackman et al., 2010).干旱胁迫会引起失膨, 因此植物通过渗透调节改变失膨点, 是植物提高耐旱性的一种重要策略(Bartlett et al., 2012). ...
N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit. 1 2001
... 干旱胁迫主要通过控制生物合成的转录基因来诱导ABA的生成, 但ABA的生物合成涉及多个基因表达的产物合成调控, 其中9-顺式-环氧类胡萝卜素加双氧酶蛋白(NCED)是关键的调控酶(Thompson et al., 2007).对拟南芥(Arabidopsis)的研究表明, 在干旱期间NCED的表达显著上调, 可提高干旱胁迫下ABA生物合成速度(Frey et al., 2012).NCED家族中的5个成员涉及ABA的生物合成, 其中NCED3基因在ABA合成中起主导作用(Frey et al., 2012); 另一种同工型PaNCED1在脱水时表达量也增加.此外, 干旱胁迫诱导的ABA生物合成还涉及其他基因(如玉米黄质环氧酶(ZEP)、脱落醛氧化酶(AAO)、钼辅因子硫化酶(MCSU)等)的表达(Borel et al., 2001); 这些基因表达的增加也会促进ABA在植物中的快速积累. ...
Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. 2 2016
... 水力信号主要是指由蒸腾所引起的ΨL变化(Meinzer, 2002), 这是调节气孔开关的又一个因素.干旱胁迫会使植物木质部产生空穴化和栓塞, 导致ΨL下降; 气孔感受到木质部空穴化的产生之后做出反馈而关闭(Brodribb & Jordan, 2008).有研究表明, 气孔关闭与表皮细胞和叶肉细胞的膨压变化相关(Ache et al., 2010).在ΨL较低时, 膨压值为正的植物的气体交换和生长速率均较高(Blackman et al., 2010).干旱胁迫会引起失膨, 因此植物通过渗透调节改变失膨点, 是植物提高耐旱性的一种重要策略(Bartlett et al., 2012). ...
Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels. 1 2003
Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees. 1 2005
... 自然界中, 植物的水分调节方式始终在保守型的等水调节与冒险型的非等水调节之间发生着连续变化, 这主要是由植物内在基因型决定的(Tardieu & Simonneau, 1998).在等水调节植物中, 气孔通过控制水分散失速率, 保守地调节自身水分状况, 使其与SPAC系统的水分供给能力相匹配.为了降低水力失衡的风险, 等水植物随ΨS的降低而降低其Gs和Tr, 保持相对恒定的最小ΨL和叶相对含水量(Moshelion et al., 2015).等水调节植物的Tr与Kleaf呈线性相关; 而非等水调节植物的Tr随Kleaf的增加而逐渐增加, 使其最小ΨL随Kleaf而变化(Bucci et al., 2005).在较干旱的条件下, 非等水植物随着Tr需求的增加而降低其ΨL和相对含水量, 以保持支撑水分到达叶片的驱动力(Moshelion et al., 2015).Pou等(2012)的研究表明, 植株导水率(Kplant)和ΨMD之间的相关性在等水调节植物中比在非等水调节植物中更高.因此, 等水调节植物的Kplant对干旱胁迫更敏感; 而非等水调节植物的最大Kleaf和Gs更大, 且两者之间有很强的线性关系, 表明非等水调节植物在应对干旱胁迫时其Kleaf下降较慢, 气孔关闭程度较低.因此, 植物水力特征和气孔响应之间有很强的相互作用(Salleo et al., 2000). ...
Grapevine under deficit irrigation: Hints from physiological and molecular data. 2010
Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. 1 2006
Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. 1 2007
... 气孔对蒸腾(Tr)的控制主要有两种途径: (1)气孔本身对Tr的敏感性(叶片水分状况和水通量之间的正负反馈); (2)在不考虑叶膨压和ΨL的情况下, 气孔对ΨS下降的敏感性(Franks et al., 2007).K是量化植物水分运输能力的重要指标.K高的植物可将水分从根部迅速运至叶片, 使Gs和净CO2同化量(AN)最大化; 当水分供应不足时, Gs会降低, 避免木质部产生空穴化, 以保护植物的水力系统(Sperry, 2000).研究表明, 最大Gs对叶水力导度(Kleaf)变化很敏感(Domec et al., 2009); ΨL随Kleaf下降而下降, 使气孔关闭、生产力显著降低.在气孔持续关闭下, 水力调控占主导地位(Lovisolo et al., 2008a). ...
Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. 2 2012
... 干旱胁迫主要通过控制生物合成的转录基因来诱导ABA的生成, 但ABA的生物合成涉及多个基因表达的产物合成调控, 其中9-顺式-环氧类胡萝卜素加双氧酶蛋白(NCED)是关键的调控酶(Thompson et al., 2007).对拟南芥(Arabidopsis)的研究表明, 在干旱期间NCED的表达显著上调, 可提高干旱胁迫下ABA生物合成速度(Frey et al., 2012).NCED家族中的5个成员涉及ABA的生物合成, 其中NCED3基因在ABA合成中起主导作用(Frey et al., 2012); 另一种同工型PaNCED1在脱水时表达量也增加.此外, 干旱胁迫诱导的ABA生物合成还涉及其他基因(如玉米黄质环氧酶(ZEP)、脱落醛氧化酶(AAO)、钼辅因子硫化酶(MCSU)等)的表达(Borel et al., 2001); 这些基因表达的增加也会促进ABA在植物中的快速积累. ...
... 基因在ABA合成中起主导作用(Frey et al., 2012); 另一种同工型PaNCED1在脱水时表达量也增加.此外, 干旱胁迫诱导的ABA生物合成还涉及其他基因(如玉米黄质环氧酶(ZEP)、脱落醛氧化酶(AAO)、钼辅因子硫化酶(MCSU)等)的表达(Borel et al., 2001); 这些基因表达的增加也会促进ABA在植物中的快速积累. ...
Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses. 2 2013
... 不同植物种的气孔对ABA的敏感性不同(Lovisolo et al., 2002), 因此研究者认为ABA的生理机能决定着等水与非等水调节行为.在等水调节植物的根组织中, 干旱胁迫提高了NCED基因的转录水平, 提高了ABA的生物合成速度; 而且这种调节行为还表现出较高的底物活性和醛氧化同工酶的诱导, 从而将脱落醛转化为ABA; 根部ABA生物合成的快速激活, 引起枝条中ABA的增加, 从而加快气孔关闭, 维持植物叶片水势.另外, 等水调节植物根部过氧化氢酶、过氧化物酶、谷胱甘肽还原酶和谷胱甘肽转移酶活性增加, 也表明它们在干旱条件下对活性氧的消除能力更强(Gallé et al., 2013).然而, 有研究表明干旱胁迫并没有增加非等水型植物根系中ABA的合成, 叶片中ABA浓度也保持稳定, 因而其气孔对水分亏缺响应较慢(Gallé et al., 2013). ...
... ).然而, 有研究表明干旱胁迫并没有增加非等水型植物根系中ABA的合成, 叶片中ABA浓度也保持稳定, 因而其气孔对水分亏缺响应较慢(Gallé et al., 2013). ...
Changes of photosynthetic traits in beech saplings ( 1 2007
... 保持根-叶之间水分运输的连续性, 不仅可避免木质部空穴化, 而且是维持气体交换和植物生长的基础(Meinzer & McCulloh, 2013; Attia et al., 2015).非等水调节植物通过延迟对Kleaf的调控应对干旱胁迫, 其ΨMD会大幅下降, 延迟气孔关闭, 使自身保持较高的光合能力和光能合成容量, 促使其复水后某些指标更快地恢复(Pou et al., 2012; Martínez-Vilalta et al., 2014).在相似条件下, 等水调节植物则表现出对Kleaf和Gs更强的调节作用, 在干旱胁迫期间保持较高的ΨMD及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: Changes in flag leaf photosynthetic activity, ABA levels, and grain yield. 1 2009
... ABA是一种参与植物许多发育阶段和应对多种环境胁迫的植物激素, 有重要的水分调节作用(Lovisolo et al., 2016; Negin & Moshelion, 2016).土壤水分亏缺会使植物叶片ABA含量升高, 促使气孔关闭, 并抑制植株生长(Wilkinson & Davies, 2002, 2010).其次, ABA还能通过其间接水力效应来降低叶片导管组织的透水性, 促进气孔关闭(Pantin et al., 2013); Gs的下降会进一步影响CO2在叶绿体基质中的扩散速度和核酮糖-1,5-双磷酸盐羧化/加氧酶(Rubisco)的羧化效率, 从而抑制光合作用过程(Guóth et al., 2009). ...
Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control. 1 2012
... 同一种植物在不同环境条件下会表现出不同的水分调节行为(Schultz, 2003; Lovisolo et al., 2010; Conesa et al., 2016), Franks等(2007)将这种调节方式称为动态等水调节行为(isohydro-dynamic behavior).在这种模式中, ΨMD的波动与土壤水分有效性同步, 从而使ΨS与ΨMD之间的水势差保持季节性恒定(Domec & Johnson, 2012).Chaves等(2010)对9个植物种的研究发现: 当土壤含水量较高时, 等水调节物种的气孔随VPD的增加而变化显著, Tr随VPD增加由几乎不变(等水调节)到显著增长(非等水调节); 而非等水调节物种的气孔对VPD响应微弱, 但当保持VPD恒定并降低土壤含水量时, 它会以降低ΨL作为响应.在ΨS极低时, 作为非等水调节对策的葡萄(Vitis vinifera)的Gs也会受到约束(Rogiers et al., 2012; Zhang et al., 2012).也就是说, 随着干旱加剧, 植物需水量增加、Tr太低时, 植物的水分调节对策会由非等水调节转换为等水调节, 以便确保植物水力系统的安全; 而当土壤水含量增加时, 气孔对Tr的调节力度便会下降.如上节所述, 土壤水分亏缺也会引起内源ABA增加, 从而触发并增强气孔对VPD的响应, 致使气孔关闭(Guyot et al., 2012).因此, 水力信号和化学信号的协同作用是植物应对干旱所采取水分调节行为的重要驱动力. ...
Scaling of angiosperm xylem structure with safety and efficiency. 1 2006
... 植物水力性状与经济性状的协调和权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展叶经济型谱等均有重要意义.有研究表明, 叶水力性状和光合特性之间存在协调关系, 而叶水力导度、木质部栓塞阻力和LMA之间存在权衡关系(Villagra et al., 2013; Jin et al., 2016).植物一般会根据自身的功能性状优化配置资源, 形成生存与生长过程中“安全性-有效性”的权衡.等水调节植物通过严格的气孔控制保持ΨL相对恒定, 避免水力失衡, 但同时也限制了光合作用和碳同化, 并且植物因吸收过剩的光能会诱导产生大量的活性氧化物, 导致叶片脱落.非等水调节植物气孔敏感度低, 但其木质部有更强的栓塞抗性, 在干旱胁迫下以牺牲稳定的ΨL为代价保持气孔开放, 以维持植物的光合作用和碳同化(金鹰和王传宽, 2015).Gs和ΨL的协调作用使Kleaf和碳同化及ΨL和碳储量之间相联系, 从而导致不同水分调节对策植物在长期干旱胁迫中产生不同的碳水化合物储量.虽然有研究支持植物经济性状和水力性状之间相关联的论点(e.g., Woodruff et al., 2015), 但仍需要更多的验证. ...
Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. 1 2016
... 植物水力性状与经济性状的协调和权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展叶经济型谱等均有重要意义.有研究表明, 叶水力性状和光合特性之间存在协调关系, 而叶水力导度、木质部栓塞阻力和LMA之间存在权衡关系(Villagra et al., 2013; Jin et al., 2016).植物一般会根据自身的功能性状优化配置资源, 形成生存与生长过程中“安全性-有效性”的权衡.等水调节植物通过严格的气孔控制保持ΨL相对恒定, 避免水力失衡, 但同时也限制了光合作用和碳同化, 并且植物因吸收过剩的光能会诱导产生大量的活性氧化物, 导致叶片脱落.非等水调节植物气孔敏感度低, 但其木质部有更强的栓塞抗性, 在干旱胁迫下以牺牲稳定的ΨL为代价保持气孔开放, 以维持植物的光合作用和碳同化(金鹰和王传宽, 2015).Gs和ΨL的协调作用使Kleaf和碳同化及ΨL和碳储量之间相联系, 从而导致不同水分调节对策植物在长期干旱胁迫中产生不同的碳水化合物储量.虽然有研究支持植物经济性状和水力性状之间相关联的论点(e.g., Woodruff et al., 2015), 但仍需要更多的验证. ...
The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. 1 2014
Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. 1 2002
... 不同植物种的气孔对ABA的敏感性不同(Lovisolo et al., 2002), 因此研究者认为ABA的生理机能决定着等水与非等水调节行为.在等水调节植物的根组织中, 干旱胁迫提高了NCED基因的转录水平, 提高了ABA的生物合成速度; 而且这种调节行为还表现出较高的底物活性和醛氧化同工酶的诱导, 从而将脱落醛转化为ABA; 根部ABA生物合成的快速激活, 引起枝条中ABA的增加, 从而加快气孔关闭, 维持植物叶片水势.另外, 等水调节植物根部过氧化氢酶、过氧化物酶、谷胱甘肽还原酶和谷胱甘肽转移酶活性增加, 也表明它们在干旱条件下对活性氧的消除能力更强(Gallé et al., 2013).然而, 有研究表明干旱胁迫并没有增加非等水型植物根系中ABA的合成, 叶片中ABA浓度也保持稳定, 因而其气孔对水分亏缺响应较慢(Gallé et al., 2013). ...
Grapevine adaptations to water stress: New perspectives about soil/plant interactions. 1 2016
... ABA是一种参与植物许多发育阶段和应对多种环境胁迫的植物激素, 有重要的水分调节作用(Lovisolo et al., 2016; Negin & Moshelion, 2016).土壤水分亏缺会使植物叶片ABA含量升高, 促使气孔关闭, 并抑制植株生长(Wilkinson & Davies, 2002, 2010).其次, ABA还能通过其间接水力效应来降低叶片导管组织的透水性, 促进气孔关闭(Pantin et al., 2013); Gs的下降会进一步影响CO2在叶绿体基质中的扩散速度和核酮糖-1,5-双磷酸盐羧化/加氧酶(Rubisco)的羧化效率, 从而抑制光合作用过程(Guóth et al., 2009). ...
Drought-induced changes in development and function of grapevine ( 2 2010
... Contrasting plant traits between isohydric and anisohydric regulation strategies
性状 Trait
等水调节 Isohydric regulation
非等水调节 Anisohydric regulation
是否存在争议 Challenged or not
水力性状 Hydraulics
生长策略 Growth strategy
保守型 Conservative behaviour
冒险型 Risk-taking behaviour
N
最小叶水势 Minimum leaf water potential
相对恒定(高) Constant (High)
低 Low
N
气孔导度 Stomatal conductance
低 Low
相对恒定(高) Constant (High)
Y (Quero et al., 2011)
导水率 Hydraulic conductance
低 Low
高 High
N
耐旱性 Drought tolerance
弱 Weak
强 Strong
Y (Quero et al., 2011)
木质部脆弱性 Xylem vulnerability
小 Small
大 Large
N
水力安全阈值 Safety margin
大 Large
小 Small
N
栓塞恢复力 Embolism recovery ability
弱 Weak
强 Strong
Y (McCulloh & Meinzer., 2015)
纹孔膜 Pit membrane
厚; 总面积小 Thick; Smaller total area
薄; 总面积大 Thin; Larger total area
-
碳经济性状 Carbon economics
光合速率 Photosynthetic rate
小 Small
大 Large
Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
... 同一种植物在不同环境条件下会表现出不同的水分调节行为(Schultz, 2003; Lovisolo et al., 2010; Conesa et al., 2016), Franks等(2007)将这种调节方式称为动态等水调节行为(isohydro-dynamic behavior).在这种模式中, ΨMD的波动与土壤水分有效性同步, 从而使ΨS与ΨMD之间的水势差保持季节性恒定(Domec & Johnson, 2012).Chaves等(2010)对9个植物种的研究发现: 当土壤含水量较高时, 等水调节物种的气孔随VPD的增加而变化显著, Tr随VPD增加由几乎不变(等水调节)到显著增长(非等水调节); 而非等水调节物种的气孔对VPD响应微弱, 但当保持VPD恒定并降低土壤含水量时, 它会以降低ΨL作为响应.在ΨS极低时, 作为非等水调节对策的葡萄(Vitis vinifera)的Gs也会受到约束(Rogiers et al., 2012; Zhang et al., 2012).也就是说, 随着干旱加剧, 植物需水量增加、Tr太低时, 植物的水分调节对策会由非等水调节转换为等水调节, 以便确保植物水力系统的安全; 而当土壤水含量增加时, 气孔对Tr的调节力度便会下降.如上节所述, 土壤水分亏缺也会引起内源ABA增加, 从而触发并增强气孔对VPD的响应, 致使气孔关闭(Guyot et al., 2012).因此, 水力信号和化学信号的协同作用是植物应对干旱所采取水分调节行为的重要驱动力. ...
a). An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. 2 2008
... 气孔对蒸腾(Tr)的控制主要有两种途径: (1)气孔本身对Tr的敏感性(叶片水分状况和水通量之间的正负反馈); (2)在不考虑叶膨压和ΨL的情况下, 气孔对ΨS下降的敏感性(Franks et al., 2007).K是量化植物水分运输能力的重要指标.K高的植物可将水分从根部迅速运至叶片, 使Gs和净CO2同化量(AN)最大化; 当水分供应不足时, Gs会降低, 避免木质部产生空穴化, 以保护植物的水力系统(Sperry, 2000).研究表明, 最大Gs对叶水力导度(Kleaf)变化很敏感(Domec et al., 2009); ΨL随Kleaf下降而下降, 使气孔关闭、生产力显著降低.在气孔持续关闭下, 水力调控占主导地位(Lovisolo et al., 2008a). ...
... AQPs在控制植物水分状况、K (Lovisolo et al., 2008a)、膜渗透、气孔控制以及干旱胁迫中空穴化修复(Secchi & Zwieniecki, 2014)等方面均发挥着重要作用(Li et al., 2014; Moshelion et al., 2015).植物的液泡膜内水通道蛋白(TIP APQ)在各种非生物胁迫下的表达量均显著升高(Sade et al., 2009); 液泡可通过TIP APQ补偿细胞质的水分亏缺(Sade & Moshelion, 2014).叶肉中的TIP AQP活动与导管系统中的细胞膜之间的关系是控制叶片水分状况的关键因素: 它一方面受环境条件或物候期调控, 另一方面决定着植物的水分调节行为(Sade & Moshelion, 2014). ...
b). Mercurial inhibition of root hydraulic conductance in 2008
A new look at water transport regulation in plants. 3 2014
Further evidence that some plants can lose and regain hydraulic function daily. 2 2015
... Contrasting plant traits between isohydric and anisohydric regulation strategies
性状 Trait
等水调节 Isohydric regulation
非等水调节 Anisohydric regulation
是否存在争议 Challenged or not
水力性状 Hydraulics
生长策略 Growth strategy
保守型 Conservative behaviour
冒险型 Risk-taking behaviour
N
最小叶水势 Minimum leaf water potential
相对恒定(高) Constant (High)
低 Low
N
气孔导度 Stomatal conductance
低 Low
相对恒定(高) Constant (High)
Y (Quero et al., 2011)
导水率 Hydraulic conductance
低 Low
高 High
N
耐旱性 Drought tolerance
弱 Weak
强 Strong
Y (Quero et al., 2011)
木质部脆弱性 Xylem vulnerability
小 Small
大 Large
N
水力安全阈值 Safety margin
大 Large
小 Small
N
栓塞恢复力 Embolism recovery ability
弱 Weak
强 Strong
Y (McCulloh & Meinzer., 2015)
纹孔膜 Pit membrane
厚; 总面积小 Thick; Smaller total area
薄; 总面积大 Thin; Larger total area
-
碳经济性状 Carbon economics
光合速率 Photosynthetic rate
小 Small
大 Large
Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
... 水容也是影响水力安全阈值的重要因素之一(Meinzer et al., 2009).水容缓冲水势的波动(Hölttä et al., 2009)和木质部液流浓度的快速增加, 可以提高功能性导管的导度(Nardini et al., 2012), 从而避免过度栓塞.枝干水容与最小枝干水势正相关, 而与栓塞脆弱性负相关(Meinzer et al., 2009).木质部液流离子浓度的增加, 可以部分补偿栓塞引起的K损失, 从而限制木质部张力的增加(Trifilò et al., 2011).等水和非等水调节对策分别代表了木质部张力控制连续体的两个端点(Meinzer & McCulloh, 2013): 等水调节植物往往表现出相对恒定的最大木质部张力值; 而非等水调节植物的木质部张力会因环境条件变化而改变. ...
... 保持根-叶之间水分运输的连续性, 不仅可避免木质部空穴化, 而且是维持气体交换和植物生长的基础(Meinzer & McCulloh, 2013; Attia et al., 2015).非等水调节植物通过延迟对Kleaf的调控应对干旱胁迫, 其ΨMD会大幅下降, 延迟气孔关闭, 使自身保持较高的光合能力和光能合成容量, 促使其复水后某些指标更快地恢复(Pou et al., 2012; Martínez-Vilalta et al., 2014).在相似条件下, 等水调节植物则表现出对Kleaf和Gs更强的调节作用, 在干旱胁迫期间保持较高的ΨMD及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. 1 2014
... 随着全球气候变化的加剧, 极端气象事件频发、气温升高、降雨格局变化等导致持续严重的干旱, 使植物生产力下降、森林大面积死亡(Meinzer et al., 2014).为此, 干旱诱导的植物死亡机制研究备受关注.近期人们提出了树木死亡的3种可能机制假说, 即碳饥饿、水力失衡、抗病虫害能力下降(McDowell et al., 2008), 但对它们的相对重要性及相互作用关系尚无明确结论(McDowell et al., 2013; Mencuccini et al., 2015).因此, 阐明植物对干旱的应对和调节机制, 对于理解和预测全球变化背景下植物生存、生长及分布有着重要意义. ...
Coordination of physiological traits involved in drought-induced mortality of woody plants. 2 2015
... 随着全球气候变化的加剧, 极端气象事件频发、气温升高、降雨格局变化等导致持续严重的干旱, 使植物生产力下降、森林大面积死亡(Meinzer et al., 2014).为此, 干旱诱导的植物死亡机制研究备受关注.近期人们提出了树木死亡的3种可能机制假说, 即碳饥饿、水力失衡、抗病虫害能力下降(McDowell et al., 2008), 但对它们的相对重要性及相互作用关系尚无明确结论(McDowell et al., 2013; Mencuccini et al., 2015).因此, 阐明植物对干旱的应对和调节机制, 对于理解和预测全球变化背景下植物生存、生长及分布有着重要意义. ...
... (3)加深理解不同时空尺度上植物水分调节过程, 揭示植物对环境胁迫(尤其是干旱)的响应和适应机制.面对干旱胁迫, 等水调节植物一方面会因光合速率的降低而增加碳饥饿风险, 另一方面碳限制会反过来限制木质部栓塞的修复; 同样, 非等水调节植物会因气孔开放过度失水而增加水力失衡的风险, 同时水限制也会反馈影响植物对碳的获取、运输和利用(McDowell et al., 2013; Mencuccini et al., 2015; Conesa et al., 2016).因此, 在全球变化背景下, 究竟是等水调节植物还是非等水调节植物的适应性更强、其时间动态如何等一系列关键问题尚无定论. ...
Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. 1 2005
... 保持根-叶之间水分运输的连续性, 不仅可避免木质部空穴化, 而且是维持气体交换和植物生长的基础(Meinzer & McCulloh, 2013; Attia et al., 2015).非等水调节植物通过延迟对Kleaf的调控应对干旱胁迫, 其ΨMD会大幅下降, 延迟气孔关闭, 使自身保持较高的光合能力和光能合成容量, 促使其复水后某些指标更快地恢复(Pou et al., 2012; Martínez-Vilalta et al., 2014).在相似条件下, 等水调节植物则表现出对Kleaf和Gs更强的调节作用, 在干旱胁迫期间保持较高的ΨMD及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: Crop water- use efficiency, growth and yield. 3 2015
... 自然界中, 植物的水分调节方式始终在保守型的等水调节与冒险型的非等水调节之间发生着连续变化, 这主要是由植物内在基因型决定的(Tardieu & Simonneau, 1998).在等水调节植物中, 气孔通过控制水分散失速率, 保守地调节自身水分状况, 使其与SPAC系统的水分供给能力相匹配.为了降低水力失衡的风险, 等水植物随ΨS的降低而降低其Gs和Tr, 保持相对恒定的最小ΨL和叶相对含水量(Moshelion et al., 2015).等水调节植物的Tr与Kleaf呈线性相关; 而非等水调节植物的Tr随Kleaf的增加而逐渐增加, 使其最小ΨL随Kleaf而变化(Bucci et al., 2005).在较干旱的条件下, 非等水植物随着Tr需求的增加而降低其ΨL和相对含水量, 以保持支撑水分到达叶片的驱动力(Moshelion et al., 2015).Pou等(2012)的研究表明, 植株导水率(Kplant)和ΨMD之间的相关性在等水调节植物中比在非等水调节植物中更高.因此, 等水调节植物的Kplant对干旱胁迫更敏感; 而非等水调节植物的最大Kleaf和Gs更大, 且两者之间有很强的线性关系, 表明非等水调节植物在应对干旱胁迫时其Kleaf下降较慢, 气孔关闭程度较低.因此, 植物水力特征和气孔响应之间有很强的相互作用(Salleo et al., 2000). ...
... 和相对含水量, 以保持支撑水分到达叶片的驱动力(Moshelion et al., 2015).Pou等(2012)的研究表明, 植株导水率(Kplant)和ΨMD之间的相关性在等水调节植物中比在非等水调节植物中更高.因此, 等水调节植物的Kplant对干旱胁迫更敏感; 而非等水调节植物的最大Kleaf和Gs更大, 且两者之间有很强的线性关系, 表明非等水调节植物在应对干旱胁迫时其Kleaf下降较慢, 气孔关闭程度较低.因此, 植物水力特征和气孔响应之间有很强的相互作用(Salleo et al., 2000). ...
... AQPs在控制植物水分状况、K (Lovisolo et al., 2008a)、膜渗透、气孔控制以及干旱胁迫中空穴化修复(Secchi & Zwieniecki, 2014)等方面均发挥着重要作用(Li et al., 2014; Moshelion et al., 2015).植物的液泡膜内水通道蛋白(TIP APQ)在各种非生物胁迫下的表达量均显著升高(Sade et al., 2009); 液泡可通过TIP APQ补偿细胞质的水分亏缺(Sade & Moshelion, 2014).叶肉中的TIP AQP活动与导管系统中的细胞膜之间的关系是控制叶片水分状况的关键因素: 它一方面受环境条件或物候期调控, 另一方面决定着植物的水分调节行为(Sade & Moshelion, 2014). ...
Ion-mediated enhancement of xylem hydraulic conductivity in four 1 2012
... 水容也是影响水力安全阈值的重要因素之一(Meinzer et al., 2009).水容缓冲水势的波动(Hölttä et al., 2009)和木质部液流浓度的快速增加, 可以提高功能性导管的导度(Nardini et al., 2012), 从而避免过度栓塞.枝干水容与最小枝干水势正相关, 而与栓塞脆弱性负相关(Meinzer et al., 2009).木质部液流离子浓度的增加, 可以部分补偿栓塞引起的K损失, 从而限制木质部张力的增加(Trifilò et al., 2011).等水和非等水调节对策分别代表了木质部张力控制连续体的两个端点(Meinzer & McCulloh, 2013): 等水调节植物往往表现出相对恒定的最大木质部张力值; 而非等水调节植物的木质部张力会因环境条件变化而改变. ...
The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. 1 2016
... ABA是一种参与植物许多发育阶段和应对多种环境胁迫的植物激素, 有重要的水分调节作用(Lovisolo et al., 2016; Negin & Moshelion, 2016).土壤水分亏缺会使植物叶片ABA含量升高, 促使气孔关闭, 并抑制植株生长(Wilkinson & Davies, 2002, 2010).其次, ABA还能通过其间接水力效应来降低叶片导管组织的透水性, 促进气孔关闭(Pantin et al., 2013); Gs的下降会进一步影响CO2在叶绿体基质中的扩散速度和核酮糖-1,5-双磷酸盐羧化/加氧酶(Rubisco)的羧化效率, 从而抑制光合作用过程(Guóth et al., 2009). ...
A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. 1 2016
A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. 1 2013
... Vandeleur等(2009)将AQPs作为区分植物等水与非等水调节行为的基础.等水调节植物的气孔在干旱胁迫下调节更快、更强, 从而维持较高的ΨL、较低的AN (Soar et al., 2006; Pou et al., 2013); 而非等水调节植物在复水后的恢复力更强.产生这一现象的可能原因: 一是根部AQPs增加导致水分消耗更多; 二是不同的ABA合成或气孔对ABA的不同响应; 三是较低水势下渗透调节促使气孔持续开放.另外, AQPs的超表达, 也能使等水调节植物在多变的环境条件下表现出非等水调节行为(Sade & Moshelion, 2014). ...
Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. 2 2012
... 保持根-叶之间水分运输的连续性, 不仅可避免木质部空穴化, 而且是维持气体交换和植物生长的基础(Meinzer & McCulloh, 2013; Attia et al., 2015).非等水调节植物通过延迟对Kleaf的调控应对干旱胁迫, 其ΨMD会大幅下降, 延迟气孔关闭, 使自身保持较高的光合能力和光能合成容量, 促使其复水后某些指标更快地恢复(Pou et al., 2012; Martínez-Vilalta et al., 2014).在相似条件下, 等水调节植物则表现出对Kleaf和Gs更强的调节作用, 在干旱胁迫期间保持较高的ΨMD及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
... 及较低的光合能力和光能合成容量的恢复力(Pou et al., 2012; Martínez- Vilalta et al., 2014).在干旱胁迫复水之后, 植物碳平衡的恢复不仅依赖于光合作用恢复的速度和程度, 而且依赖于在干旱胁迫时光合作用的下降速度和程度.例如: 四季豆(Phaseolus vulgaris)遭受严重干旱胁迫后复水第一天, 其最大光合速率只能恢复40%-60%; 继续复水数天后, 也不能恢复到对照水平(Miyashita et al., 2005; Gallé & Feller, 2007). ...
Water-use strategies of six co-existing Mediterranean woody species during a summer drought. 3 2011
... Contrasting plant traits between isohydric and anisohydric regulation strategies
性状 Trait
等水调节 Isohydric regulation
非等水调节 Anisohydric regulation
是否存在争议 Challenged or not
水力性状 Hydraulics
生长策略 Growth strategy
保守型 Conservative behaviour
冒险型 Risk-taking behaviour
N
最小叶水势 Minimum leaf water potential
相对恒定(高) Constant (High)
低 Low
N
气孔导度 Stomatal conductance
低 Low
相对恒定(高) Constant (High)
Y (Quero et al., 2011)
导水率 Hydraulic conductance
低 Low
高 High
N
耐旱性 Drought tolerance
弱 Weak
强 Strong
Y (Quero et al., 2011)
木质部脆弱性 Xylem vulnerability
小 Small
大 Large
N
水力安全阈值 Safety margin
大 Large
小 Small
N
栓塞恢复力 Embolism recovery ability
弱 Weak
强 Strong
Y (McCulloh & Meinzer., 2015)
纹孔膜 Pit membrane
厚; 总面积小 Thick; Smaller total area
薄; 总面积大 Thin; Larger total area
-
碳经济性状 Carbon economics
光合速率 Photosynthetic rate
小 Small
大 Large
Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
... Y (Quero et al., 2011)
木质部脆弱性 Xylem vulnerability
小 Small
大 Large
N
水力安全阈值 Safety margin
大 Large
小 Small
N
栓塞恢复力 Embolism recovery ability
弱 Weak
强 Strong
Y (McCulloh & Meinzer., 2015)
纹孔膜 Pit membrane
厚; 总面积小 Thick; Smaller total area
薄; 总面积大 Thin; Larger total area
-
碳经济性状 Carbon economics
光合速率 Photosynthetic rate
小 Small
大 Large
Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
... Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. 2014
Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. 2 2012
... Vandeleur等(2009)将AQPs作为区分植物等水与非等水调节行为的基础.等水调节植物的气孔在干旱胁迫下调节更快、更强, 从而维持较高的ΨL、较低的AN (Soar et al., 2006; Pou et al., 2013); 而非等水调节植物在复水后的恢复力更强.产生这一现象的可能原因: 一是根部AQPs增加导致水分消耗更多; 二是不同的ABA合成或气孔对ABA的不同响应; 三是较低水势下渗透调节促使气孔持续开放.另外, AQPs的超表达, 也能使等水调节植物在多变的环境条件下表现出非等水调节行为(Sade & Moshelion, 2014). ...
Improving plant stress tolerance and yield production: Is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? 1 2009
... AQPs在控制植物水分状况、K (Lovisolo et al., 2008a)、膜渗透、气孔控制以及干旱胁迫中空穴化修复(Secchi & Zwieniecki, 2014)等方面均发挥着重要作用(Li et al., 2014; Moshelion et al., 2015).植物的液泡膜内水通道蛋白(TIP APQ)在各种非生物胁迫下的表达量均显著升高(Sade et al., 2009); 液泡可通过TIP APQ补偿细胞质的水分亏缺(Sade & Moshelion, 2014).叶肉中的TIP AQP活动与导管系统中的细胞膜之间的关系是控制叶片水分状况的关键因素: 它一方面受环境条件或物候期调控, 另一方面决定着植物的水分调节行为(Sade & Moshelion, 2014). ...
Xylem cavitation and hydraulic control of stomatal conductance in laurel ( 1 2000
... 自然界中, 植物的水分调节方式始终在保守型的等水调节与冒险型的非等水调节之间发生着连续变化, 这主要是由植物内在基因型决定的(Tardieu & Simonneau, 1998).在等水调节植物中, 气孔通过控制水分散失速率, 保守地调节自身水分状况, 使其与SPAC系统的水分供给能力相匹配.为了降低水力失衡的风险, 等水植物随ΨS的降低而降低其Gs和Tr, 保持相对恒定的最小ΨL和叶相对含水量(Moshelion et al., 2015).等水调节植物的Tr与Kleaf呈线性相关; 而非等水调节植物的Tr随Kleaf的增加而逐渐增加, 使其最小ΨL随Kleaf而变化(Bucci et al., 2005).在较干旱的条件下, 非等水植物随着Tr需求的增加而降低其ΨL和相对含水量, 以保持支撑水分到达叶片的驱动力(Moshelion et al., 2015).Pou等(2012)的研究表明, 植株导水率(Kplant)和ΨMD之间的相关性在等水调节植物中比在非等水调节植物中更高.因此, 等水调节植物的Kplant对干旱胁迫更敏感; 而非等水调节植物的最大Kleaf和Gs更大, 且两者之间有很强的线性关系, 表明非等水调节植物在应对干旱胁迫时其Kleaf下降较慢, 气孔关闭程度较低.因此, 植物水力特征和气孔响应之间有很强的相互作用(Salleo et al., 2000). ...
Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown 1 2003
... 同一种植物在不同环境条件下会表现出不同的水分调节行为(Schultz, 2003; Lovisolo et al., 2010; Conesa et al., 2016), Franks等(2007)将这种调节方式称为动态等水调节行为(isohydro-dynamic behavior).在这种模式中, ΨMD的波动与土壤水分有效性同步, 从而使ΨS与ΨMD之间的水势差保持季节性恒定(Domec & Johnson, 2012).Chaves等(2010)对9个植物种的研究发现: 当土壤含水量较高时, 等水调节物种的气孔随VPD的增加而变化显著, Tr随VPD增加由几乎不变(等水调节)到显著增长(非等水调节); 而非等水调节物种的气孔对VPD响应微弱, 但当保持VPD恒定并降低土壤含水量时, 它会以降低ΨL作为响应.在ΨS极低时, 作为非等水调节对策的葡萄(Vitis vinifera)的Gs也会受到约束(Rogiers et al., 2012; Zhang et al., 2012).也就是说, 随着干旱加剧, 植物需水量增加、Tr太低时, 植物的水分调节对策会由非等水调节转换为等水调节, 以便确保植物水力系统的安全; 而当土壤水含量增加时, 气孔对Tr的调节力度便会下降.如上节所述, 土壤水分亏缺也会引起内源ABA增加, 从而触发并增强气孔对VPD的响应, 致使气孔关闭(Guyot et al., 2012).因此, 水力信号和化学信号的协同作用是植物应对干旱所采取水分调节行为的重要驱动力. ...
Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. 1 2014
... AQPs在控制植物水分状况、K (Lovisolo et al., 2008a)、膜渗透、气孔控制以及干旱胁迫中空穴化修复(Secchi & Zwieniecki, 2014)等方面均发挥着重要作用(Li et al., 2014; Moshelion et al., 2015).植物的液泡膜内水通道蛋白(TIP APQ)在各种非生物胁迫下的表达量均显著升高(Sade et al., 2009); 液泡可通过TIP APQ补偿细胞质的水分亏缺(Sade & Moshelion, 2014).叶肉中的TIP AQP活动与导管系统中的细胞膜之间的关系是控制叶片水分状况的关键因素: 它一方面受环境条件或物候期调控, 另一方面决定着植物的水分调节行为(Sade & Moshelion, 2014). ...
Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue. 1 2006
... Vandeleur等(2009)将AQPs作为区分植物等水与非等水调节行为的基础.等水调节植物的气孔在干旱胁迫下调节更快、更强, 从而维持较高的ΨL、较低的AN (Soar et al., 2006; Pou et al., 2013); 而非等水调节植物在复水后的恢复力更强.产生这一现象的可能原因: 一是根部AQPs增加导致水分消耗更多; 二是不同的ABA合成或气孔对ABA的不同响应; 三是较低水势下渗透调节促使气孔持续开放.另外, AQPs的超表达, 也能使等水调节植物在多变的环境条件下表现出非等水调节行为(Sade & Moshelion, 2014). ...
Hydraulic constraints on plant gas exchange. 1 2000
... 气孔对蒸腾(Tr)的控制主要有两种途径: (1)气孔本身对Tr的敏感性(叶片水分状况和水通量之间的正负反馈); (2)在不考虑叶膨压和ΨL的情况下, 气孔对ΨS下降的敏感性(Franks et al., 2007).K是量化植物水分运输能力的重要指标.K高的植物可将水分从根部迅速运至叶片, 使Gs和净CO2同化量(AN)最大化; 当水分供应不足时, Gs会降低, 避免木质部产生空穴化, 以保护植物的水力系统(Sperry, 2000).研究表明, 最大Gs对叶水力导度(Kleaf)变化很敏感(Domec et al., 2009); ΨL随Kleaf下降而下降, 使气孔关闭、生产力显著降低.在气孔持续关闭下, 水力调控占主导地位(Lovisolo et al., 2008a). ...
Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. 1 2004
Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. 3 1998
The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. 2009
Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. 1 2013
... 植物水力性状与经济性状的协调和权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展叶经济型谱等均有重要意义.有研究表明, 叶水力性状和光合特性之间存在协调关系, 而叶水力导度、木质部栓塞阻力和LMA之间存在权衡关系(Villagra et al., 2013; Jin et al., 2016).植物一般会根据自身的功能性状优化配置资源, 形成生存与生长过程中“安全性-有效性”的权衡.等水调节植物通过严格的气孔控制保持ΨL相对恒定, 避免水力失衡, 但同时也限制了光合作用和碳同化, 并且植物因吸收过剩的光能会诱导产生大量的活性氧化物, 导致叶片脱落.非等水调节植物气孔敏感度低, 但其木质部有更强的栓塞抗性, 在干旱胁迫下以牺牲稳定的ΨL为代价保持气孔开放, 以维持植物的光合作用和碳同化(金鹰和王传宽, 2015).Gs和ΨL的协调作用使Kleaf和碳同化及ΨL和碳储量之间相联系, 从而导致不同水分调节对策植物在长期干旱胁迫中产生不同的碳水化合物储量.虽然有研究支持植物经济性状和水力性状之间相关联的论点(e.g., Woodruff et al., 2015), 但仍需要更多的验证. ...
Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of 1 2001
... ABA是一种参与植物许多发育阶段和应对多种环境胁迫的植物激素, 有重要的水分调节作用(Lovisolo et al., 2016; Negin & Moshelion, 2016).土壤水分亏缺会使植物叶片ABA含量升高, 促使气孔关闭, 并抑制植株生长(Wilkinson & Davies, 2002, 2010).其次, ABA还能通过其间接水力效应来降低叶片导管组织的透水性, 促进气孔关闭(Pantin et al., 2013); Gs的下降会进一步影响CO2在叶绿体基质中的扩散速度和核酮糖-1,5-双磷酸盐羧化/加氧酶(Rubisco)的羧化效率, 从而抑制光合作用过程(Guóth et al., 2009). ...
Modulation of leaf economic traits and trait relationships by climate. 2 2005
... Contrasting plant traits between isohydric and anisohydric regulation strategies
性状 Trait
等水调节 Isohydric regulation
非等水调节 Anisohydric regulation
是否存在争议 Challenged or not
水力性状 Hydraulics
生长策略 Growth strategy
保守型 Conservative behaviour
冒险型 Risk-taking behaviour
N
最小叶水势 Minimum leaf water potential
相对恒定(高) Constant (High)
低 Low
N
气孔导度 Stomatal conductance
低 Low
相对恒定(高) Constant (High)
Y (Quero et al., 2011)
导水率 Hydraulic conductance
低 Low
高 High
N
耐旱性 Drought tolerance
弱 Weak
强 Strong
Y (Quero et al., 2011)
木质部脆弱性 Xylem vulnerability
小 Small
大 Large
N
水力安全阈值 Safety margin
大 Large
小 Small
N
栓塞恢复力 Embolism recovery ability
弱 Weak
强 Strong
Y (McCulloh & Meinzer., 2015)
纹孔膜 Pit membrane
厚; 总面积小 Thick; Smaller total area
薄; 总面积大 Thin; Larger total area
-
碳经济性状 Carbon economics
光合速率 Photosynthetic rate
小 Small
大 Large
Y (Quero et al., 2011)
呼吸速率 Respiratory rate
小 Small
大 Large
N
内在水分利用效率 Intrinsic water use efficiency
高 High
低 Low
Y (Lovisolo et al., 2010)
非结构性碳水化合物 Nonstructural carbohydrate
低 Low
高 High
Y (Woodruff et al., 2015)
比叶质量 Leaf mass per area
大 Large
小 Small
-
叶寿命 Leaf lifespan
长 Long
短 Short
-
“N” is uncontroversial; “Y” represents controversial; “-” represents that the trait was summarized by the authors from the literature rather than specific paper. ...
... 植物水力性状与经济性状的协调和权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展叶经济型谱等均有重要意义.有研究表明, 叶水力性状和光合特性之间存在协调关系, 而叶水力导度、木质部栓塞阻力和LMA之间存在权衡关系(Villagra et al., 2013; Jin et al., 2016).植物一般会根据自身的功能性状优化配置资源, 形成生存与生长过程中“安全性-有效性”的权衡.等水调节植物通过严格的气孔控制保持ΨL相对恒定, 避免水力失衡, 但同时也限制了光合作用和碳同化, 并且植物因吸收过剩的光能会诱导产生大量的活性氧化物, 导致叶片脱落.非等水调节植物气孔敏感度低, 但其木质部有更强的栓塞抗性, 在干旱胁迫下以牺牲稳定的ΨL为代价保持气孔开放, 以维持植物的光合作用和碳同化(金鹰和王传宽, 2015).Gs和ΨL的协调作用使Kleaf和碳同化及ΨL和碳储量之间相联系, 从而导致不同水分调节对策植物在长期干旱胁迫中产生不同的碳水化合物储量.虽然有研究支持植物经济性状和水力性状之间相关联的论点(e.g., Woodruff et al., 2015), 但仍需要更多的验证. ...
Spatiotemporal variation of crown-scale stomatal conductance in an arid 1 2012