Age of arboreous Tamarix austromongolica and its growth response to environment in Tongde County of Qinghai, China
FANGOu-Ya1,*,, JIAHeng-Feng2, QIUHong-Yan1, RENHai-Bao1 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, Chinaand 2College of Biology and Pharmacy, China Three Gorges University, Yichang, Hubei 443002, China 收稿日期:2017-04-2 接受日期:2017-06-16 网络出版日期:2017-07-10 版权声明:2017植物生态学报编辑部本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。 基金资助:国家自然科学基金(31330015) 作者简介: -->* 通信作者Author for correspondence(E-mail:oyfang@ibcas.ac.cn)
关键词:甘蒙柽柳;乔木状;树轮;径流;风速 Abstract Aims The objectives were to identify the age of the arboreous Tamarix austromongolica in the flood plain area of the Qinghai Plateau and clarify the response patterns of T. austromongolica’s growth to the environmental factors. We focused on social issues about whether the T. austromongolica should be protected and how to protect in the reservoir area of a hydropower station. Methods In this study, arboreous T. austromongolica in both reservoir submerged and non-submerged areas were sampled and measured based on the dendrochronology method. The ages were estimated based on the geometrical characteristics of the pith and the identified age of the inner ring. The correlation and response analysis showed the relationship between T. austromongolica’s growth and environmental factors. Important findings We accurately determined the age and historical growth dynamics of the T. austromongolica with large diameter at breast height (DBH). The results showed a special accretion phenomenon in arboreous T. austromongolica, which accelerated the DBH increasing, i.e. no direct relationship existed between the plants’ DBH and ages of the individuals. Radial growth of T. austromongolica, increased rapidly in the 1970s and 1980s and began to stabilize in the late 1980s, and mainly responded to the runoff in July and August of the Yellow River. Increasing runoff would promote the radial growth of T. austromongolica. The growth of the immaturate plant showed significant negative correlation with the wind speed in the growing season. The results will be of theoretical significance to the formation of the special morphology of the T. austromongolica, and will provide scientific practical guidance in designing the protection schemes.
研究区属于秦岭地槽褶皱系的青海南山冒地槽带, 断裂构造发育。黄河对高原面不断侵蚀, 形成阶地和较为宽大的河谷, 并在河流弯曲凸岸形成河漫滩。河漫滩以石砾质冲积土和沙质冲积土为主, 土层较厚, 土壤发育程度差。在此之上分布有少量耐旱耐水抗风且耐碱土的植被, 典型的有甘蒙柽柳和小叶杨(Populus simonii)。该区域为温带大陆性干旱气候, 常年低温干旱, 据兴海气象站1981-2010年数据统计, 全年平均气温1.7 ℃, 最暖月在7月, 平均气温12.7 ℃, 最冷月在1月, 平均气温-11.0 ℃。降水稀少, 且主要集中在5-9月, 最大降水量出现在7月, 平均7月降水总量约86.6 mm, 年降水总量约为377.8 mm。2-4月为该地大风发生频率最高的季节, 受到山地地形的影响, 东西向山谷风偏大。 本研究主要针对羊曲水电站淹没区然果村甘蒙柽柳林(35.54° N, 100.16° E, 海拔2 678 m)开展研究, 同时也涉及了库区附近非淹没区班多村甘蒙柽柳林地(35.33° N, 100.26° E, 海拔2 730 m)(图1)。然果村林地甘蒙柽柳种群呈斑块状分布, 径级呈现较强的正偏态和尖顶分布特征, 胸径集中分布在20-30 cm。林地具有大量胸径超过30 cm的植株, 其中测量胸径值最大为132.1 cm, 该植株被媒体称为“柽柳王”。胸径20 cm以上的植株平均树高约为8 m。班多村林地甘蒙柽柳种群径级呈对称、常峰态分布, 较然果村具有更多的胸径超过30 cm的植株, 然而超过50 cm的植株在该区域十分罕见。两地甘蒙柽柳平均胸径和树高无显著差异, 且林下均缺乏幼苗更新。 显示原图|下载原图ZIP|生成PPT 图1青海同德县甘蒙柽柳采样点。 -->Fig. 1Sampling sites of Tamarix austromongolica in Tongde, Qinghai. -->
1.2 树轮样本采集及测量
我们于2016年11月下旬赴青海省同德县开展了实地调查, 利用直径5.15 mm的生长锥着重针对胸径较大的甘蒙柽柳进行采样并同时对其胸径进行测量。在然果村以及班多村分别采集了37株和15株活立木的树芯样本, 同时分别获取了4株和1株倒木圆盘样本(表1)。针对个别胸径较大且疑似多株合生树木获取多根样芯, 如“柽柳王” (编号RG-X05), 我们进行了5个方向的树芯采集。由于然果村甘蒙柽柳林普遍受到泥石流等灾害的影响, 树木个体存在损伤, 采样时尽量避免树木损伤部位, 对较为明确的竖直干材进行样本采集。依照同样的方法, 在班多村进行了树轮样本的采集。取样中, 尽量钻取到树木髓心位置或者能够在树芯上显示出树轮圆弧的近树木髓心位置, 为后续的树龄准确判断提供依据。 Table 1 表1 表1同德县甘蒙柽柳采样树木年龄 Table 1Ages of sampling Tamarix austromongolica in Tongde County
样本号 Sample ID
胸径 DBH (cm)
年龄1) Age1)
最小年龄2) Minimum age2)
样本号 Sample ID
胸径 DBH (cm)
年龄1) Age 1)
最小年龄2) Minimum age2)
RG-X01
23.2
28
RG-X27
28.0
25
RG-X02
24.8
36
RG-X28
20.4
23
RG-X03
28.6
34
RG-X29
22.6
22
RG-X04
31.2
35
RG-X30
21.3
19
RG-X05A
132.1
86
RG-X31
21.6
15
RG-X05B
132.1
42
393)
RG-X32A
33.7
19
RG-X05C
132.1
31
RG-X33
19.2
22
RG-X05D
132.1
64
RG-X34
25.5
23
RG-X05E
132.1
35
RG-X35
29.6
RG-X06A
105.0
18
RG-X36
36.3
28
RG-X06B
105.0
35
RG-X37
49.7
40
RG-X07
51.3
40
RG-P38
19.7
30
RG-X08
31.5
48
RG-P39
18.5
27
RG-X09A
37.9
28
RG-P40
18.1
39
RG-X10
35.7
32
RG-P41
57.6
115
RG-X11A
104.4
19
BD-X01A
42.3
28
RG-X12A
98.4
39
BD-X02
28.0
24
RG-X13A
69.7
58
BD-X03
29.3
23
RG-X14A
63.0
32
BD-X04
17.2
20
RG-X15A
107.3
86
BD-X05
33.1
52
RG-X16
58.3
86
BD-X06A
89.4
40
RG-X17
43.6
29
BD-X07A
63.0
41
RG-X18
38.2
78
BD-X08A
39.5
41
RG-X19
49.3
23
BD-X09A
65.1
39
RG-X20
37.9
20
BD-X10
45.8
46
RG-X21
42.7
33
BD-X11
30.9
54
RG-X22
28.3
22
BD-X12
37.6
46
RG-X23
26.7
21
BD-X13
22.6
52
RG-X24A
111.7
34
BD-X14
29.0
56
RG-X25A
59.2
24
BD-X15
32.8
45
RG-X26
25.5
24
BD-P16
19.4
38
DBH, diameter at breast height. BD, the specimen from Banduo Village; RG, the specimen from Ranguo Village. P, disc; X, core. Division of the plant is identified by a letter accompanying the number which refer to the plant number in the Sample IDs. 1), Ages identified by the samples with trunk pith; 2), Ages identified by the samples without trunk pith, which just show the first year of the samples; 3), The specimen includes two fragments, of which the inner part does not show the pith.BD, 班多村样本; RG, 然果村样本。P, 圆盘; X, 样芯。样本编号中的数字表示不同植株, 数字后字母表示多株合生树之分株。1), 显示髓心的树轮样本年龄; 2), 未显示髓心的树轮样本最内轮年龄; 3), 该树芯样本包含不同株的两段, 其中内段样本未显示髓心。 新窗口打开 在实验室, 将树芯样本固定后连同圆盘样本用砂纸进行精细打磨, 直至在显微镜下能够清晰显示木质部细胞。继而利用Lintab 6树轮宽度测量仪(Rinntech, Heidelberg, Germany)对所有样本的树轮宽度进行测量, 测量精度为0.001 mm。
同德县甘蒙柽柳的径向生长主要与黄河径流流量以及风速存在较为显著的相关性。甘蒙柽柳径向生长与7、8月黄河径流流量之间存在正相关关系, 显著与7月径流正相关及响应关系(p < 0.05)体现在班多村研究区(图3), 在然果村则与8月的径流量间的相关性更强(图4)。 显示原图|下载原图ZIP|生成PPT 图3班多村甘蒙柽柳生长与径流量及风速的相关及响应。左侧为甘蒙柽柳径向生长与逐月径流流量的相关及响应, 右侧为径向生长与月平均风速的相关及响应。横坐标p表示前一年的月份, 误差条表示95%置信区间。 -->Fig. 3Correlation and response relationship of Tamarix austromongolica growth to monthly runoff and wind in Banduo Village. Left for the relationship between growth and runoff; Right for the relationship between growth and wind. p in the abscissa indicates the month of the previous year, and the error bars show the 95% confidence intervals. -->
显示原图|下载原图ZIP|生成PPT 图4然果村甘蒙柽柳生长与径流量及风速的相关及响应。左侧为甘蒙柽柳径向生长与逐月径流流量的相关及响应, 右侧为径向生长与月平均风速的相关及响应。横坐标p表示前一年的月份, 误差条表示95%置信区间。 -->Fig. 4Correlation and response relationship of Tamarix austromongolica growth to monthly runoff and wind in Ranguo Village. Left for the relationship between growth and runoff; Right for the relationship between growth and wind. p in the abscissa indicates the month of the previous year, and the error bars show the 95% confidence intervals. -->
甘蒙柽柳径向生长与风速之间的显著负相关主要发生在植被生长季, 在班多村, 甘蒙柽柳生长与当年4-8月的风速之间存在显著的负相关(p < 0.05), 明确的显著负响应发生在当年的5-6月(图3)。而在然果村, 甘蒙柽柳径向生长与风速之间的显著负相关关系发生在生长季早期或是生长季前, 同时响应分析结果表明, 径向生长与各月平均风速主成分向量的回归函数并没有达到95%显著性水平, 然果村甘蒙柽柳径向生长对月平均风速不存在显著的响应过程(图4)。 主要研究区年表与环境因子的滑动相关的结果表明, 甘蒙柽柳生长与环境因子的相关关系在时间尺度上存在较为剧烈的变化。近50年, 该流域径流7月径流量与然果村甘蒙柽柳生长的相关性逐渐减弱, 与此同步, 8月份径流流量与甘蒙柽柳生长的相关逐渐增强(图5)。 显示原图|下载原图ZIP|生成PPT 图5然果村甘蒙柽柳生长与径流流量的滑动相关。不同颜色所对应的数值表示不同的相关系数。 -->Fig. 5Moving correlation between Tamarix austromongolica growth and monthly runoff. The values represented by the different colors show the different correlation coefficients. -->
然果村甘蒙柽柳生长与多个月份的月平均风速的负相关在近50年来显著减弱, 且在近年来出现反向特征。强风对生长季甘蒙柽柳生长的不利影响逐渐减弱(图6)。 显示原图|下载原图ZIP|生成PPT 图6然果村甘蒙柽柳与风速的滑动相关。不同颜色所对应的数值表示不同的相关系数。 -->Fig. 6Moving correlation between Tamarix austromongolica growth and monthly wind speed. The values represented by the different colors show the different correlation coefficients. -->
BabstF, PoulterB, TrouetV, TanK, NeuwirthB, WilsonR, CarrerM, GrabnerM, TegelW, LevanicT (2013). Site- and species-specific responses of forest growth to climate across the European continent. , 22, 706-717. [本文引用: 1]
[2]
BiondiF, WaikulK (2004). DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree- ring chronologies. , 30, 303-311. [本文引用: 1]
[3]
BirkenAS, CooperDJ (2006). Processes of Tamarix invasion and floodplain development along the lower Green River, Utah. , 16, 1103-1120. [本文引用: 1]
[4]
BowmanDMJS, BrienenRJW, GloorE, PhillipsOL, PriorLD (2013). Detecting trends in tree growth: Not so simple. , 18, 11-17. [本文引用: 1]
[5]
BrothersonJD, CarmanJG, SzyskaLA (1984). Stem-diameter age relationships of Tamarix ramosissima in central Utah. , 37, 362-364. [本文引用: 2]
[6]
China Weekly (2016). Life and death robbery of Qinghai ancient Tamarix forest . . Cited: 2017-03-12. (in Chinese)[中国周刊 (2016). 青海古柽柳林生死劫 . . Cited: 2017-03-12.]URL [本文引用: 1]
[7]
FangOY, WangY, ShaoXM (2016). The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. , 30, 281-294. [本文引用: 1]
[8]
FriedmanJM, VincentKR, ShafrothPB (2005). Dating floodplain sediments using tree-ring response to burial. , 30, 1077-1091. [本文引用: 1]
[9]
FrumkinA (2009). Stable isotopes of a subfossil tamarix tree from the dead sea region, israel, and their implications for the intermediate bronze age environmental crisis. , 71, 319-328. [本文引用: 1]
[10]
GaoLL, GouXH, DengY, YangMX, ZhangF (2017). Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. , 31, 393-404. [本文引用: 1]
[11]
GouXH, ChenFH, CookE, JacobyG, YangMX, LiJB (2007). Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings. , 43, W06434. doi: 10.1029/2006WR005705. [本文引用: 1]
[12]
GouXH, DengY, GaoLL, ChenFH, CookE, YangMX, ZhangF (2015). Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. , 45, 1761-1770. [本文引用: 1]
[13]
GuoJH, ZengFJ, LiCJ, ZhangB (2014). Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert. , 38, 36-44. (in Chinese with English abstract)[郭京衡, 曾凡江, 李尝君, 张波 (2014). 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略 . , 38, 36-44.] [本文引用: 1]
[14]
HaighSL (1998). Stem diameter-age relationships of Tamarix ramosissima on lake shore and stream sites in southern Nevada. , 43, 425-429. [本文引用: 1]
[15]
HolmesRL (1983). Computer-assisted quality control in tree- ring dating and measurement. , 43, 69-78. [本文引用: 1]
[16]
HortonJL, ClarkJL (2001). Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. , 140, 239-247. [本文引用: 1]
[17]
HouJW, HaimitY, YeM (2015). The sensitivity of ring width of Tamarix ramosissina to lake level of the Bosten Lake. , 35, 667-673. (in Chinese with English abstract)[侯佳文, 海米提·依米提, 叶茂 (2015). 博斯腾湖滨柽柳(Tamarix ramosissina)生长对湖水位的敏感性 . , 35, 667-673.] [本文引用: 1]
[18]
JiangJ, GaoHF (1992). A study on drought resistant ordination of Tamarix L. , 9(4), 41-45. (in Chinese with English abstract)[蒋进, 高海峰 (1992). 柽柳属植物抗旱性排序研究 . , 9(4), 41-45.] [本文引用: 1]
[19]
LiMQ, ShaoXM, YinZY, XuXG (2015). Tree-ring dating of the reshui-1 tomb in Dulan County, Qinghai Province, north-west China. , 10, e0133438. doi: 10.1371/journal.pone.0133438. [本文引用: 1]
[20]
LiYJ, FangKY, CaoCF, LiDW, ZhouFF, DongZP, ZhangY, GanZF (2016). A tree-ring chronology spanning 210 years in the coastal area of southeastern China, and its relationship with climate change. , 67, 209-220. [本文引用: 1]
[21]
LippJ, TrimbornP, EdwardsT, WaiselY, YakirD (1996). Climatic effects on the δ18O and δ13C of cellulose in the desert tree Tamarix jordanis. , 60, 3305-3309. [本文引用: 1]
[22]
LiuGJ, ZhangXM, LiXR, WeiJ, ShanLS (2008). The adaptation of the Tamarix root to the windy environment. , 53, 147-150. (in Chinese)[刘国军, 张希明, 李晓荣, 魏疆, 单立山 (2008). 塔克拉玛干柽柳的根对多风环境的适应 . , 53, 147-150.]
[23]
NortonD, PalmerJ, OgdenJ (1987). Dendroecological studies in new zealand 1. An evaluation of tree age estimates based on increment cores. , 25, 373-383. [本文引用: 1]
[24]
QinL, YuanYJ, ZhangRB, WeiWS, YuSL, FanZ, ChenF, ZhangTW, ShangHM (2016). Tree-ring response to snow cover and reconstruction of century annual maximum snow depth for northern Tianshan Mountains, China. , 43, 9-17. [本文引用: 1]
[25]
RohnerB, WeberP, ThürigE (2016). Bridging tree rings and forest inventories: How climate effects on spruce and beech growth aggregate over time. , 360, 159-169. [本文引用: 1]
[26]
ShaoXM, WangSZ, XuY, ZhuHF, XuXG, XiaoYM (2007). A 3500-year master tree-ring dating chronology from the northeastern part of the Qaidam Basin. , 27, 477-485. (in Chinese with English abstract)[邵雪梅, 王树芝, 徐岩, 朱海峰, 许新国, 肖永民 (2007). 柴达木盆地东北部3500年树轮定年年表的初步建立 . , 27, 477-485.] [本文引用: 1]
[27]
WangH, YangZ, SaitoY, LiuJP, SunX (2006). Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. , 50, 212-225. [本文引用: 1]
[28]
WangXC, ZhangMH, JiY, LiZongshan, LiM, ZhangYD (2017). Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. , 31, 415-427. [本文引用: 1]
[29]
WangXM, ZhangCX, ZhangJW, HuaT, LangLL, ZhangXY, WangL (2010). Nebkha formation: Implications for reconstructing environmental changes over the past several centuries in the Ala Shan Plateau, China. , 297, 697-706. [本文引用: 1]
[30]
WuYH (2012). I am sad for the wild Tamarix in Qinghai . . Cited: 2017-03-12. (in Chinese)[吴玉虎 (2012). 我为青海野生古柽柳悲哀 . . Cited: 2017.3.12.]URL [本文引用: 1]
[31]
XiaJB, ZhaoXM, ChenYP, FangY, ZhaoZG (2016). Responses of water and salt parameters to groundwater levels for soil columns planted with Tamarix chinensis. , 11, e0145828. doi: 10.1371/journal.pone.0145828. [本文引用: 1]
[32]
XiaoSC, PengXM, TianQY (2016). Climatic and human drivers of recent lake-level change in east Juyan Lake, China. , 16, 1063-1073. [本文引用: 1]
[33]
XiaoSC, XiaoHL (2006). Response of radial growth of lakeshore tamarisk to changes in the water environment in extreme and arid regions. , 28(2), 39-45. (in Chinese with English abstract)[肖生春, 肖洪浪 (2006). 极端干旱区湖岸柽柳径向生长对水环境演变的响应 . , 28(2), 39-45.] [本文引用: 1]
[34]
XiaoSC, XiaoHL, PengXM, TianQY (2014). Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River. , 6, 498-510. [本文引用: 1]
[35]
XiaoSC, XiaoHL, SiJH, LiuFM (2005). Growth characteristics of Tamarix ramosissima in arid regions of China. , 25, 1012-1016. (in Chinese with English abstract)[肖生春, 肖洪浪, 司建华, 刘发民 (2005). 干旱区多枝柽柳的生长特性 . , 25, 1012-1016.] [本文引用: 1]
[36]
XiaoSC, XiaoHL, ZhouMS, SiJH, ZhangXY (2004). Water level change of the West Juyan Lake in the past 100 years recorded in the tree ring of the shrubs in the lake banks. , 26, 557-562. (in Chinese with English abstract)[肖生春, 肖洪浪, 周茂先, 司建华, 张小由 (2004). 近百年来西居延海湖泊水位变化的湖岸林树轮记录 . , 26, 557-562.] [本文引用: 1]
[37]
Xinhua News Agency (2016). Wild Tamarix forest facing submerged in Tongde Qinghai, site protection or transplant? . Cited: 2017-03-01. (in Chinese)[新华社 (2016). 青海同德野生柽柳林面临被淹没, 原址保护还是移植? . Cited: 2017-03-01.]URL [本文引用: 1]
[38]
YangW, SpencerRJ, KrouseHR (1996). Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. , 60, 3015-3022. [本文引用: 1]
[39]
YangWK, ZhangDY, YinLK, ZhangLY (2002). Distribution and cluster analysis on the similarity of the Tamarix communities in Xinjiang. , 19(3), 6-11. (in Chinese with English abstract)[杨维康, 张道远, 尹林克, 张立运 (2002). 新疆柽柳属植物(Tamarix L.)的分布与群落相似性聚类分析 . , 19(3), 6-11.]
[40]
YinZ-Y, LiMQ, ZhangY, ShaoXM (2016). Growth-climate relationships along an elevation gradient on a southeast- facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau. , 30, 1095-1109. [本文引用: 1]
[41]
YuanGF, ZhangP, XueSS, ZhuangW (2012). Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramossissima thickets on sand dunes. , 36, 1033-1042. (in Chinese with English abstract)[袁国富, 张佩, 薛沙沙, 庄伟 (2012). 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据 . , 36, 1033-1042.] [本文引用: 1]
[42]
ZhangJC, YaoT, LiuCZ, LiuSZ, SunT, YuanHB, TangJN, DingF, LiXM, LiuR (2014). Climate environmental change and stable carbon isotopes in age layers of Tamarix sand-hillocks in Kumtag Desert. , 34, 943-952. (in Chinese with English abstract)[张锦春, 姚拓, 刘长仲, 刘世增, 孙涛, 袁宏波, 唐进年, 丁峰, 李学敏, 刘瑞 (2014). 库姆塔格柽柳沙包年层稳定碳同位素与气候环境变化 . , 34, 943-952.] [本文引用: 1]
[43]
ZhangQB, EvansMN, LyuLX (2015). Moisture dipole over the Tibetan Plateau during the past five and a half centuries. , 6, 8062. [本文引用: 1]
[44]
ZhuXC, YuanGF, ShaoMA, YiXB, DuT (2015). Spatial pattern of riparian vegetation in desert of the lower Tarim River Basin. , 39, 1053-1061. (in Chinese with English abstract)[朱绪超, 袁国富, 邵明安, 易小波, 杜涛 (2015). 塔里木河下游河岸带植被的空间结构特征 . , 39, 1053-1061.] [本文引用: 1]
Site- and species-specific responses of forest growth to climate across the European continent. 1 2013
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree- ring chronologies. 1 2004
The effect of climate on the net primary productivity (NPP) of Pinus koraiensis in the Changbai Mountains over the past 50 years. 1 2016
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Dating floodplain sediments using tree-ring response to burial. 1 2005
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
Stable isotopes of a subfossil tamarix tree from the dead sea region, israel, and their implications for the intermediate bronze age environmental crisis. 1 2009
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. 1 2017
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings. 1 2007
Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. 1 2015
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Tree-ring dating of the reshui-1 tomb in Dulan County, Qinghai Province, north-west China. 1 2015
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
A tree-ring chronology spanning 210 years in the coastal area of southeastern China, and its relationship with climate change. 1 2016
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Climatic effects on the δ18O and δ13C of cellulose in the desert tree Tamarix jordanis. 1 1996
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
塔克拉玛干柽柳的根对多风环境的适应 2008
Dendroecological studies in new zealand 1. An evaluation of tree age estimates based on increment cores. 1 1987
Tree-ring response to snow cover and reconstruction of century annual maximum snow depth for northern Tianshan Mountains, China. 1 2016
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Bridging tree rings and forest inventories: How climate effects on spruce and beech growth aggregate over time. 1 2016
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
柴达木盆地东北部3500年树轮定年年表的初步建立 1 2007
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. 1 2006
Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia. 1 2017
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
Nebkha formation: Implications for reconstructing environmental changes over the past several centuries in the Ala Shan Plateau, China. 1 2010
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River. 1 2014
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
干旱区多枝柽柳的生长特性 1 2005
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
近百年来西居延海湖泊水位变化的湖岸林树轮记录 1 2004
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. 1 1996
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
新疆柽柳属植物(Tamarix L.)的分布与群落相似性聚类分析 2002
Growth-climate relationships along an elevation gradient on a southeast- facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau. 1 2016
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...
... 目前针对柽柳属(Tamarix)植被的研究对象通常为幼龄树, 成熟甘蒙柽柳分枝结构复杂, 干形较差而较难开展相关研究(Brotherson et al., 1984; 肖生春等, 2005; Xia et al., 2016).以柽柳属植物为研究对象的树木年轮学工作主要集中在树轮水文学方面, 附近河流湖泊或地下水的水位变化与柽柳生长通常具有显著关系(肖生春等, 2004; Xiao et al., 2014), 从而使得在气候变化影响下, 柽柳生长状况、森林群落结构发生改变(Horton & Clark, 2001).另一方面, 柽柳对水分条件的响应有助于分析历史时期水文条件变化(Xiao et al., 2016).由于柽柳独特的生长环境, 其埋藏亚化石样本可以应用于古环境的探究(Lipp et al., 1996; Yang et al., 1996; Frumkin, 2009).以柽柳为对象的树木年轮学研究在多个学科中具有一定的应用价值, 如研究者利用柽柳年轮对堆积物的响应, 判断河漫滩沉积年, 沙丘形成演化, 从而进行地貌学相关研究(Friedman et al., 2005; Birken & Cooper, 2006; Wang et al., 2010; 张锦春等, 2014).基于前期科研工作者的成果, 我们提出假设, 认为位于高原河漫滩的甘蒙柽柳的生长同样也响应于河流水文条件等环境因子的变化.然而, 针对近年来发现的研究区特殊形态的甘蒙柽柳, 其历史生长过程及环境响应关系尚未见报道. ...
Moisture dipole over the Tibetan Plateau during the past five and a half centuries. 1 2015
... 树木年轮学在历史定年(邵雪梅等, 2007; Li et al., 2015)以及树木生长对环境响应的评估(Babst et al., 2013; Gou et al., 2015; Zhang et al., 2015)等方面有着突出的贡献.树木的生长受到环境因素的限制作用, 其长期的轮宽变化与气候、环境变化之间存在一定的相关关系(Li et al., 2016; Yin et al., 2016), 从而使得树木的径向生长对气候、环境等因素具有较为明确的响应(Fang et al., 2016; Qin et al., 2016; Wang et al., 2017).明确这种响应关系有助于评估气候变化、环境变迁对树木生长的影响(Rohner et al., 2016; Gao et al., 2017), 为未来气候变化或者人为改变(如移植等)的植物生境条件下的植物生长评估提供依据. ...