1.State Key Laboratory of Numerical modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 2.University of Chinese Academy of Sciences, Beijing 100049, China 3.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081, China Manuscript received: 2021-04-05 Manuscript revised: 2021-08-05 Manuscript accepted: 2021-08-23 Abstract:A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau (EPTP) in August 2020. Using hourly rain gauge records and the ERA5 reanalysis dataset, we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data. This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP. This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes. The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall. An amplification effect of the topography was observed, with the precipitation over the EPTP showing a more significant change with terrain height in August 2020. A circulation analysis showed that cold (warm) anomalies existed over the north (south) of approximately 35°N compared with those in the years when the southern EPTP received more rain. The western Pacific subtropical high was more intense and extended to the west, and the low-level cold air from the north was more active. The enhanced low-level southerly winds on the periphery of the subtropical high injected warm, moist air further north than the climatological mean. These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain. Keywords: intense rainfall, summer 2020, Eastern Periphery of the Tibetan Plateau, western Sichuan Basin 摘要:2020年8月在青藏高原东坡出现了异常大的累积降水量。利用逐小时站点观测资料和ERA5再分析数据,本文分析了2020年8月降水的独特特征和对应的环流条件,并与历史记录进行了比较。这一创纪录的累积降水量集中在青藏高原东坡的北段。该位置与历史记录中降水集中在中坡和南坡的情况明显不同。相比气候平均,2020年8月的小时降水更加频繁、强度更强。2020年8月,青藏高原东坡地形对降水的增幅效应比以往更加明显。环流分析表明,与降水集中在青藏高原东坡南段的年份相比,降水集中在北段时,在约35°N以北(以南)存在冷(暖)异常。西太平洋副热带高压强度更强,并向西延伸,来自北部的低层冷空气更活跃。副热带高压外围增强的低层偏南风将暖湿空气注入比多年平均更北的地方,并在青藏高原东坡北段附近转为偏东风,在陡峭地形的作用下强迫上升。 关键词:强降水, 2020年夏季, 青藏高原东坡, 四川盆地西部
HTML
--> --> --> -->
3.1. Accumulated rainfall amount: magnitude and distribution
Figure. 2 shows the accumulated rainfall in August 2020 (Fig. 2c) compared to the average accumulated rainfall from August 2017 to August 2019 (Fig. 2b) and from 1986 to 2019 (Fig. 2a). The average cumulative amount of rainfall in August from 2017 to 2019 is shown by a denser network of stations and had a similar spatial pattern as that averaged in August from 1986 to 2019. In general, the largest amount of rainfall was distributed around the EPTP in both August 2020 and previous months of August. The region with the highest amount of rainfall in earlier years was around Ya’an and its southeastern slope (south to 30°N, S_EPTP, Fig. 2b). The amount of rainfall decreased from the S_EPTP to the northeastern SCB (Figs. 2a and b). In contrast, in August 2020, the high rainfall region was around Ya’an and the northern slope of the EPTP (north to 30°N, N_EPTP, Fig. 2). The accumulated rainfall over the Ya’an region and the N_EPTP was much larger than the average in previous months of August, and the amount of rainfall decreased from the N_EPTP to the southeastern SCB. Specifically, the regional maximum of the cumulative amount of the previous year’s average was approximately 926 mm, and there were only 50 stations where the amount of rainfall was ≥500 mm. The maximum accumulated rainfall at a single station in August 2020 was 1708 mm, almost twice the average of the previous August. A total of 150 stations recorded ≥1000 mm of rainfall. We calculated the regional average and maximum rainfall since 1986 for the Ya’an region and the N_EPTP (Fig. 3). The rainfall in these two regions varied in a similar manner. The multiyear averages of the regional maximum amount of rainfall in the Ya’an region and the N_EPTP were 525 and 345 mm, respectively. The amount of rainfall reached a peak in 2020 in both regions. The amount of rainfall was larger in the Ya’an region than in the N_EPTP in the previous August but was larger in the N_EPTP region in August 2020. Figure3. (a) Regional maximum and (b) mean accumulated rainfall (mm) averaged over the N_EPTP (dashed lines) and Ya’an (solid lines) regions, as shown in Fig. 2 in August from 1986 to 2020.
2 3.2. Hourly scale rainfall characteristics -->
3.2. Hourly scale rainfall characteristics
The accumulated rainfall around the EPTP in August 2020 had unique characteristics: the amount of rainfall was the largest recorded in the last 35 years, and the rainfall was distributed over both the Ya’an region and the N_EPTP. The spatial distributions shown in Figs. 2a and 2b are similar, despite the large discrepancy in the number of stations and the time periods of the calculations. The mean state of the dense station network in August 2017?19 was taken as the climatological mean in the following analyses, and some fine-scale characteristics were analyzed. The hourly average amount, frequency, and intensity of rainfall from August 2017?19 were compared with those in August 2020 (Fig. 4). The distribution of the hourly rainfall was similar to that of the accumulated rainfall (compare Figs. 4a and 4d with Figs. 2b and 2c), which was centered over the Ya’an region and the S_EPTP in the previous August and over the Ya’an region and the N_EPTP in August 2020. The frequency of rainfall in the basin was relatively homogeneous in 2017?19, with values generally between 5% and 10%. The frequency over the EPTP was high, with the maximum rainfall in the funnel-shaped terrain around Ya’an, where some stations exceeded 25%. In contrast, the frequency was much larger over the N_EPTP and the Ya’an region in August 2020, whereas the frequency was lower over the eastern SCB than in the previous August (Fig. 4b). The frequency clearly increased from the southeastern SCB to the N_EPTP, presenting a northeast-southwest striped structure. The largest intensity of rainfall also occurred over the EPTP (Fig. 4c). Intense rainfall was recorded over the S_EPTP in the previous August, whereas the N_EPTP region had the heaviest rainfall in August 2020 (Fig. 4f). Therefore, the large amount of rainfall over Ya’an and the N_EPTP in August 2020 was recorded as frequent, intense rainfall. Intense precipitation distributed in the SCB is also noted in Fig. 4f, which may result from the interaction between the local topography and different leading synoptic systems, such as the southwest vortex and low-level jets (Xiao et al., 2021). The amount and frequency of rainfall over the southeastern SCB were both lower in August 2020 than in previous years. Figure4. (a, d) Hourly mean (mm d?1), (b, e) frequency (%) and (c, f) intensity of rainfall (mm h?1) averaged for (a–c) August 2017–19 and (d–f) August 2020. The stations where the values were below the minimum level are omitted. The gray shading represents the topography (m).
The distributions of the amount, frequency and intensity of rainfall showed a close relationship with the height of the terrain (cf. Fig. 4). To show this relationship more clearly, the average amount, frequency and intensity of rainfall were calculated in each black box in Fig. 2, from the Tibetan Plateau (box 1) to the southeastern SCB (box 50) (Fig. 5). The terrain is higher in the northwest and lower in the southeast (gray line in Fig. 5a). There exists a steep change in terrain height from boxes 16 to 26, roughly corresponding to the location of the N_EPTP. From east to west (boxes 50 to 1), the amount of rainfall in August 2020 first slowly increases as the terrain height increases and then sharply increases around box 26, where the terrain height changes rapidly (solid black line in Fig. 5a). The amount and frequency of rainfall reaches a peak at approximately 1300 m (box 23, solid black lines in Fig. 5a and Fig. 5b). The amount and intensity of rainfall decreases rapidly when the terrain height is >1300 m (solid black lines in Fig. 5a and Fig. 5c), but the change in the frequency of rainfall is slower and occurs at a higher altitude (solid black line in Fig. 5c). This result may be because there was less water vapor over the high-altitude region, which had a greater influence on the intensity than the frequency of rainfall. Figure5. Regional mean of the (a) hourly amount (mm d?1), (b) frequency (%) and (c) intensity (mm h?1) of rainfall in August 2017–19 (dashed lines) and in August 2020 (black solid lines) and the terrain height (gray solid lines; m) averaged in the black boxes in Fig. 2. Box numbers 1–50 represent boxes from northwest to southeast.
The intensity of rainfall was much lower over the Tibetan Plateau than over the SCB, whereas the frequency was slightly higher (solid black lines in Fig. 5b and Fig. 5c). Therefore, the amount of rainfall was slightly lower over the Tibetan Plateau than over the basin (solid black line in Fig. 5a). The average results for previous years showed some similar characteristics to August 2020: (1) the amount and frequency of rainfall first increased and then decreased with the height of the terrain; (2) the frequency of rainfall was higher over the Tibetan Plateau than over the basin, whereas the intensity of rainfall over the Tibetan Plateau was weaker than that over the basin; and (3) the intensity of rainfall decreased as the height of the terrain increased. However, there are also some differences. In the previous August, the amount and frequency of rainfall shows little change from boxes 50 to 26 and then shows a larger increase from boxes 26 to 22, reaching a peak at box 22 (dashed lines in Fig. 5a and Fig. 5b). In contrast, there is a steady change from boxes 50 to 26 in August 2020, and a significantly larger increase is seen from boxes 26 to 22, with the peak on the EPTP at lower altitudes (box 23, solid black lines in Fig. 5a and Fig. 5b). From boxes 26 to 23, the amount of rainfall (terrain height) increases by approximately 14 mm d?1 (726 m) in August 2020 (solid line in Fig. 5a), which is significantly larger than the 4 mm d?1 in previous years (dashed line in Fig. 5a). The intensity of rainfall was homogeneous over the SCB and the Tibetan Plateau in the previous August (dashed line in Fig. 5c), with only a sharp decrease from boxes 24 to 21. In August 2020, however, there was a sharp increase in intensity over the N_EPTP, showing a large amplification of the effect of the terrain and then a decrease in intensity over the plateau (solid black line in Fig. 5c). The amount, frequency and intensity of rainfall were all larger in the previous August over the southeastern SCB (beyond box 46). The diurnal cycle is another important hourly characteristic of rainfall (e.g., Yu et al., 2007; Yuan et al., 2013; Chen, 2020). Figure. 6 shows the diurnal phase of the precipitation amount, which is defined as the time when the maximum precipitation occurred, following Yu et al. (2007). In the previous August, rainfall over the Ya’an region and the S_EPTP mainly peaked between 0100 and 0500 LST [Local Standard Time (LST) = UTC+8 h, Fig. 6]. The N_EPTP was dominated by rainfall in the morning and afternoon, and the eastern SCB was dominated by rainfall in the afternoon and evening. In contrast, the rainfall peaks over the S_EPTP in August 2020 generally occurred from 2300 to 0300 LST, and the N_EPTP was dominated by rainfall in the 0100?0500 LST time period, earlier than in the previous August. Figure6. Diurnal phase [Local Standard Time (LST) = UTC+8 h] of (a, d) amount, (b, e) frequency and (c, f) intensity of rainfall in August 2017–19 (a–c) and in August 2020 (d–f). The gray shading represents the topography (m).
This time shift in the diurnal phase was also observed in the frequency of rainfall. Unlike the previous morning to noon phases, the N_EPTP showed a predawn diurnal phase of rainfall frequency in August 2020. The eastern part of the SCB was dominated by an afternoon and evening diurnal phase in the previous August and by a morning phase in August 2020. The diurnal phase of rainfall intensity was not distributed homogeneously in either the previous August or August 2020. Even though nocturnal rainfall intensity dominated the EPTP in the previous August, more stations showed a noon to afternoon diurnal phase over the N_EPTP in August 2020.