删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

外源茉莉酸甲酯诱导茶树鲜叶及其采后乌龙茶加工关键工序中七种脂溶性色素变化

本站小编 Free考研考试/2021-12-26

施江,1, 王佳童1,2, 彭群华1, 吕海鹏1, BALDERMANN Susanne,3, 林智,11中国农业科学院茶叶研究所/农业部茶树生物学与资源利用重点实验室,中国杭州 310008
2中国农业科学院研究生院,中国北京 100081
3德国莱布尼茨蔬菜与园艺作物研究所,德国柏林 14979

Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing

SHI Jiang,1, WANG JiaTong1,2, PENG QunHua1, LÜ Haipeng1, BALDERMANN Susanne,3, LIN Zhi,11Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008, China
2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
3Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany

通讯作者: BALDERMANN susanne,E-mail: baldermann@igzev.cn 林智,E-mail: linzhi@caas.cn

责任编辑: 赵伶俐
收稿日期:2020-10-26接受日期:2020-12-29
基金资助:国家现代农业产业技术体系建设专项资金(CARS-23)
国家自然科学基金面上项目(NSFC31270734)
中国农业科学院创新工程(CAAS-ASTIP-2014-TRICAAS)


Received:2020-10-26Accepted:2020-12-29
作者简介 About authors
施江,E-mail: shijiang@caas.cn








摘要
【目的】系统开展外源茉莉酸甲酯诱导以及“做青”阶段机械损伤双重胁迫下茶叶中脂溶性色素的动态变化研究,阐明外源茉莉酸甲酯诱导后茶树鲜叶制得乌龙茶中类胡萝卜素含量提高的机理,为合理利用外源诱导提升鲜叶品质和加工制得的乌龙茶品质提供科学依据。【方法】0.25%外源茉莉酸甲酯喷施3—4年生盆栽‘金萱’茶树叶面,至均匀挂滴,对不同诱导时间(0、12、24、48和168 h)的鲜叶及利用该鲜叶制作得到的乌龙茶样品进行基于UPLC-QToFMS的靶标代谢组学分析,解析叶黄素、β-胡萝卜素、新叶黄素、玉米黄质、α-胡萝卜素和叶绿素a/b的含量变化;同时对乌龙茶制作的关键工序“做青”以及杀青后揉捻阶段样品中这些脂溶性色素的动态变化进行监测分析。同时,开展不同诱导时间采摘的鲜叶加工得到成品乌龙茶的香气感官评价。【结果】靶标代谢组学分析结果表明,叶黄素是‘金萱’鲜叶中含量最高的类胡萝卜素,其含量达到(405.06±17.71)µg·g-1,在成品乌龙茶中含量显著下降,仅为(277.36±32.72)µg·g-1。外源茉莉酸甲酯诱导后,脂溶性色素含量变化显著,诱导48 h内,茶树鲜叶中叶绿素a含量较对照鲜叶中(0 h)增加,随后显著下降;叶绿素b在诱导后的鲜叶中始终处于减少的趋势。叶黄素在12 h样品中含量显著下降,在24 h的样品中其含量均较对照升高;β-胡萝卜素在诱导后的鲜叶中含量始终低于对照,其中12 h的样品中含量仅为116.36 µg·g-1,减少34.55%。利用茉莉酸甲酯诱导后的鲜叶(12、24和48 h)制作得到的成品茶样品中叶绿素a含量较对照均显著下降;叶黄素含量显著升高,其中48 h的样品中含量最高,达到377.82 µg·g -1。“做青”过程中(W1—W3),对7种脂溶性色素含量变化进行相应的热图分析,与对照相比,叶绿素a含量均显著下降,而叶绿素b含量则在12 h样品中显著升高。5种类胡萝卜素的含量动态变化则更加复杂,含量最高的叶黄素在12 h样品中含量显著下降,随后在24和48 h的样品中含量略有升高;β-胡萝卜素的含量始终低于对照。此外,玉米黄质和α-胡萝卜素在诱导12 h以后的样品中始终维持非常高的含量。揉捻阶段的样品,7种脂溶性色素也呈现出显著变化,除了β-胡萝卜素含量较对照样品减少,叶黄素、新叶黄素、玉米黄质以及α-胡萝卜素的含量在诱导12 h后的样品中均比对照高。茉莉酸甲酯诱导的样品中,叶绿素a的含量降低,叶绿素b的含量在诱导12 h后增加。此外,茶叶感官审评结果表明,外源茉莉酸甲酯诱导后茶树鲜叶加工得到的乌龙茶香气品质显著提升,具有持久浓郁的花香,然而其叶底明亮度和柔软性较未处理的对照样品有所下降。【结论】外源茉莉酸甲酯诱导茶树鲜叶,24 h内可以显著提高鲜叶及成品茶中的类胡萝卜素含量,诱导12 h后鲜叶加工得到的成品茶香气品质显著提高,具有浓郁的花香。外源诱导与“做青”机械损伤双重胁迫激发茶鲜叶中脂溶性色素的差异积累。
关键词: 茉莉酸甲酯;做青;脂溶性色素;类胡萝卜素;乌龙茶

Abstract
【Objective】The dynamic changes of lipid-soluble pigments in tea under the dual stress of exogenous methyl jasmonate induction and mechanical damage trigged during "making green" stage were systematically studied. It could greatly clarify the mechanism of improvement in the content of carotenoids in making oolong teas prepared from the leaves treated by methyl jasmonate. This will offer the scientific guidance applying of exogenous elicitors improving fresh tea leaves quality and the made tea quality.【Method】The 3-4-years ‘Jinxuan’ tea cultivars in greenhouse were used as plant materials, which were applied 0.25% (v/v) methyl jasmonate solution by spraying on tea leaves homogenously until it was evenly dripped. Fresh leaves under different treated time duration (0, 24, 48, and 168 h) and the responding made oolong teas were prepared using the fresh leaves. In this study, the targeted metabolomics analysis was carried out utilizing UPLC-QToFMS aiming at analysis of changes in content of lutein, β-carotene, neoxanthin, zeaxanthin, α-carotene and chlorophyll a/b. At the same time, the dynamic changes of the lipid-soluble pigments during crucial procedure “making-green” and rolling stage were monitored. Furthermore, the sensory evaluation of made oolong teas focusing on the aroma quality was investigated.【Result】The quantitative results showed that the content of lutein reached (405.06±17.71) µg·g -1 in fresh leaves which was the highest of all other carotenoids, however, it decreased dramatically in made oolong teas (277.36±32.72) µg·g-1. Lipid-soluble pigments changed significantly in methyl jasmonate treated tea samples. In the first 48 h after methyl jasmonate inducement, chlorophyll a behaved significantly increased in content compared with control (0 h) in fresh leaves, successively decreased in 168 h samples. Chlorophyll b decreased in all methyl jasmonate induced samples. Lutein exhibited an apparently decreasing in 12 h samples, thus achieved improvement in content in 24 h samples. The content of β-Carotene was lower in methyl jasmonate induced samples than that in controls, especially in 12H samples, its content was 116.36 µg·g -1, decreased by 34.55%. In made oolong teas prepared from methyl jasmonate-induced tea leaves (12, 24 and 48 h), the content of chlorophyll a behaved significantly decrease compared with 0 h, whilst lutein prompted quite absolutely, especially in 48 h, whose content reached 377.82 µg·g -1. Aiming at a clear glance, the heatmaps of the content changes of the lipid-soluble pigments were prepared, and the results showed that the content of chlorophyll a decreased in all treated samples during “making-green” stage (W1-W3) comparing with the control samples. Meanwhile, chlorophyll b apparently increased after 12h duration of methyl jasmonate inducement. Besides, the changes of the carotenoids behaved more complicated. Lutein behaved a decreasing tendency in 12 h samples, however increased in 24 and 48 h samples. β-Carotene exhibited a lower content in all treated samples, thus, zeaxanthin and α-carotene maintained a higher content compared with the control samples. In the rolling stage, the above-mentioned lipid-soluble pigments changed significantly in content. With exception of β-carotene which decreased in all treated samples, lutein, neoxanthin, zeaxanthin, and α-carotene achieved a higher content in 12, 24 and 48 h samples. It was clear that chlorophyll a decreased in methyl jasmonate treated samples in rolling stage, whilst chlorophyll b increased after 12 h. Moreover, the sensory assessment confirmed the results of aroma quality promotion in made oolong teas prepared from methyl jasmonate treated fresh leaves, however with a loss of brightness and softness in the foliage fundus.【Conclusion】In conclusion, the content of carotenoids in fresh tea leaves and the made oolong tea were absolutely improved within 24 h time duration after methyl jasmonate treatment. It was confirmed that the aroma quality was improved in made oolong tea prepared from MeJA-treated fresh leaves after 12 h which was in rich of fragrancy flavor. Differential accumulation of lipid-soluble pigments was primed under the dual stress of exogenous methyl jasmonate induction and mechanical damage trigged during “making-green” stage.
Keywords:Methyl jasmonate;making-green;lipid-soluble pigments;carotenoids;Oolong tea


PDF (1228KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
施江, 王佳童, 彭群华, 吕海鹏, BALDERMANN Susanne, 林智. 外源茉莉酸甲酯诱导茶树鲜叶及其采后乌龙茶加工关键工序中七种脂溶性色素变化. 中国农业科学, 2021, 54(18): 3984-3997 doi:10.3864/j.issn.0578-1752.2021.18.016
SHI Jiang, WANG JiaTong, PENG QunHua, LÜ Haipeng, BALDERMANN Susanne, LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing. Scientia Acricultura Sinica, 2021, 54(18): 3984-3997 doi:10.3864/j.issn.0578-1752.2021.18.016


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】茶叶是我国重要的经济作物,目前已有18个省种植茶叶,截至2018年底,茶园面积达到2.93×106 hm2。茶叶品质是决定其市场价值的关键因素,主要表现在内在品质因子,如香气、滋味,以及外在品质因子,特别是干茶和叶底的色泽[1,2]。目前,国内外针对茶叶香气和滋味品质化学方面已有系统的研究[3,4],然而对干茶色泽,特别是主要贡献成分-脂溶性色素,包括叶绿素类(叶绿素a和b)和类胡萝卜素类(叶黄素、α-胡萝卜素、β-胡萝卜素、新叶黄素、玉米黄质等)[5,6]的研究并不多见。茶叶中多种品质成分的组成及含量容易受到外源诱导以及不同的加工工艺影响发生显著变化[7,8],深入研究茶叶中脂溶性色素响应外源诱导变化规律,充分掌握乌龙茶制作关键加工工序中脂溶性色素的动态变化,有助于为高品质的茶叶制作提供采前外源诱导调控和采后精准加工的科学依据。【前人研究进展】目前,利用外源挥发性成分诱导植物体内次生代谢产物的组分及含量发生变化的研究已经成为热点[7,8,9,10,11]。外源茉莉酸甲酯诱导茶树后鲜叶中多种挥发性物,包括绿叶挥发物、萜类化合物等,非挥发性次生代谢产物,主要是氨基酸类、多酚类、类胡萝卜素类等[12]发生显著变化。类胡萝卜素成分是茶叶中一类重要的脂溶性色素,在成品茶中贡献橙色和黄色,同时是一类非常重要的茶叶香气前体[13,14],其降解挥发性产物—(α/β)-紫罗酮、二氢猕猴桃内酯、柠檬醛、香叶酯等都是茶叶香气的贡献成分[15]。茶树体内的类胡萝卜素在不同品种[14,16]、不同叶位之间的差异较大[17,18,19]。此外,茶叶中另外一类脂溶性色素—叶绿素a/b,决定了成品茶的色泽(偏绿),直接反映其新鲜度。此前研究表明,这些色素类成分容易受到非生物胁迫,包括茶树鲜叶采前外源诱导,以及采后加工过程中机械损伤引起的诱导,其组成和含量上发生改变[20,21,22]。乌龙茶是我国特有的一类茶,其加工过程较为复杂[23,24,25],关键的“做青”工序,从细胞的状态来看则是一个失水和机械损伤胁迫的生理变化过程[18,23]。“做青”过程中,类胡萝卜素部分中间产物会裂解为(α/β)-紫罗酮、β-柠檬醛、二氢猕猴桃内酯、香叶醇等,这些挥发性成分都是成品茶中重要的芳香贡献成分[25,26]。最新研究结果表明,茶树鲜叶萎凋过程中,鲜叶失水胁迫激发类胡萝卜素裂解酶基因CCD1高表达,催化类胡萝卜素裂解生成紫罗酮等重要香气贡献成分[27]。此外,萎凋过程中鲜叶受到机械损伤则会诱导CCD4高表达,使得茶叶中紫罗酮大量积累[28]。笔者课题组此前利用外源茉莉酸甲酯诱导茶树鲜叶,并将该鲜叶加工成红茶和绿茶,茶叶香气品质显著提升[7-8,29],受诱导后鲜叶中基因、蛋白水平也发生显著变化。【本研究切入点】目前此类研究主要集中在茶叶加工过程中类胡萝卜素裂解产生的香气成分定性定量分析,以及部分脂溶性色素在不同茶树品种之间的差异,尚未有对7种脂溶性色素(5种类胡萝卜素和2种叶绿素)的含量差异及响应外源诱导及乌龙茶加工过程中动态变化的详细研究报道。【拟解决的关键问题】本研究利用外源茉莉酸甲酯诱导提高鲜叶中类胡萝卜素含量,掌握外源诱导后的茶树鲜叶在乌龙茶加工过程中脂溶性色素动态变化规律,为制作高品质的茶叶提供理论指导。

1 材料与方法

试验于2020年在中国农业科学院茶叶研究所进行。

1.1 材料与试剂

3—4年生盆栽‘金萱’茶树400盆,种植于温室中。

甲醇、四氢呋喃分别购买于德国柏林Th. Geyer公司和美国VWR International公司,二氯甲烷、2-丁醇购买于德国Merck公司。

分析色谱柱:C30-column(YMC Co. Ltd.,Kyoto,Japan,YMC C30,100 mm×2.1 mm,3 μm)。

1.2 仪器与设备

安捷伦超高效液相色谱(Infinity 1290,Agilent Tech,美国)串联四级杆飞行时间质谱(Q-ToF 6540,Agilent Tech,美国)。

1.3 方法

1.3.1 茶叶样品制备 0.25%茉莉酸甲酯溶液(2.5 mL茉莉酸甲酯标准品预溶于22.5 mL无水乙醇中,后溶解于1 L纯水中),均匀喷施于茶树鲜叶表面至挂滴,分别于喷施后0(对照样品,CK)、12、24、48和168 h采摘一芽二叶,每次采摘1—2 kg,匀堆后取3份(每份30 g)小袋分装,立即用液氮速冻并保存于-80℃超低温冰箱,剩余鲜叶进行传统乌龙茶加工工艺:鲜叶(FL)→做青1(W1)→做青2(W2)→做青3(W3)→杀青→揉捻(R)→烘干(OT)加工,得到成品乌龙茶。具体的“做青”工艺如下:第一次摇青30 s,摊放2 h(W1),随后收拢并第二次摇青45 s,摊放4 h(W2),收拢鲜叶进行第三次摇青60 s,摊放6 h(W3)。随后进行杀青(320℃,2 min),揉捻(“轻-重-轻”)1 h,最后干燥(110℃,15 min;95℃,35 min)。

1.3.2 茶叶中类胡萝卜素提取 准确称量50 mg冷冻干燥茶样(均匀研磨),置于Eppendorf试管,加入500 µL甲醇/四氢呋喃(THF)(1﹕1,v/v),在20℃下以1 400 r/min振荡5 min,随后在4 500 r/min转速下离心5 min,收集离心后上清液于4 mL玻璃瓶中,重复以上步骤3—5次,合并上清液。玻璃瓶置于氮吹仪上,吹干上清液中的有机溶剂。继续充入少量N2作为保护气体,迅速盖上瓶盖,保存到-80℃冰箱,用于UHPLC-QToFMS分析。

1.3.3 UHPLC-QToFMS分析 取出保存的样品,用50 µL二氯甲烷(DCM)复溶后涡旋,继续加入200 µL异丙醇后涡旋(可借助超声水浴助溶),PTEE过滤膜过滤复溶液后以3 000 r/min离心2 min,吸取离心液置于进样瓶,充入少量保护性气体N2,进行UHPLC-QToFMS进样分析,具体参数如下:色谱柱选择YMC C30 (100 mm×2.1 mm,3 µm,YMC Co. Ltd.,Japan);流动相A为甲醇、甲基叔丁基醚、水混合溶液(体积比81﹕14﹕4),B为甲醇、甲基叔丁基醚、水混合溶液(体积比6﹕90﹕4);流速控制0.2 mL∙min-1;类胡萝卜素分离梯度设置,30 min内流动相A梯度由100%均匀降低至0;分析设备为Agilent 1290 Infinity UHPLC串联Agilent 6230 ToFMS,离子源切换至APCI,正离子模式。

1.3.4 定性定量分析 本研究中所用的5种类胡萝卜素及叶绿素a/b,均为通过单一标样建立外标法进行定性定量分析得到,具体参考MAGENEY等[30]提出的方法。首先,精确称取α-胡萝卜素、β-胡萝卜素、叶黄素、玉米黄质、新叶黄素、叶绿素a和叶绿素b各2.5 mg分别置于25 mL容量瓶中,少量二氯甲烷溶解,纯乙腈定容,配制成浓度为100 μg·mL-1的标准储备液,-20℃保存。分别配制0.01、0.05、0.1、0.5、1、5、10和40 μg·mL-1等浓度的单一标准品溶液。UPLC-QToFMS采集相应的质谱峰面积,α-胡萝卜素、β-胡萝卜素([M+H]+ 537.446)、叶黄素([M-H2O+H]+ 551.425)、玉米黄质([M+H]+ 569.435)以及新叶黄素([M-H2O+H]+ 583.415)建立外标曲线。随后借助Agilent Mass Hunter进行定性定量分析获得的数据,对茶叶中类胡萝卜素含量进行分析。所有样本进行3次生物学分析,表与图中的数据均是3次重复的平均值,并且本研究中的定量结果均以在干茶中的含量表示。

1.3.5 统计分析 数据定性定量后,进行在线多元统计分析(MetaboAnalyst)。

2 结果

2.1 茶树鲜叶及成品茶中脂溶性色素组成及含量

根据笔者实验室前期已经建立的靶标代谢组学方法对7种脂溶性色素定性定量分析(图1)。从表1的数据分析可以看出,‘金萱’茶树鲜叶中叶绿素a的含量为986.71 µg·g-1,叶绿素b的含量为521.48 µg·g-1,而类胡萝卜素类成分的含量则相对较低,其中含量最高的叶黄素为405.06 µg·g-1,含量最低的α-胡萝卜素含量仅为42.24 µg·g-1。据报道[19,28],茶中的类胡萝卜素主要分布于叶片,叶黄素和β-胡萝卜素是茶叶中主要的类胡萝卜素,其他含量相对较低的有α-胡萝卜素、新叶黄素、玉米黄质等。茶树鲜叶采摘后按照乌龙茶加工工艺,制作得到的成品茶中,除了α-胡萝卜素含量略有增加,其他脂溶性色素含量均有所下降。叶绿素a下降最显著,仅为鲜叶中含量的18.34%,叶绿素b下降至164.92 µg·g-1,叶黄素减少至277.36 µg·g-1,下降了31.53%,β-胡萝卜素下降最显著。

图1

新窗口打开|下载原图ZIP|生成PPT
图1茶叶中7种脂溶性色素总离子流图及450 nm特征离子流色谱图

Fig. 1Total ion chromatogram and characteristic chromatogram (450 nm) of 7 lipid-soluble pigments in tea leaves



Table 1
表1
表1外源茉莉酸甲酯诱导后的鲜叶加工成乌龙茶过程中叶绿素和类胡萝卜素含量变化
Table 1Changes of carotenoids and chlorophyll a/b in oolong tea manufacturing from tea leaves treated with methyl jasmonate (µg·g-1 DW)
样品
Sample
叶黄素
Lutein
β-胡萝卜素
β-Carotene
新叶黄素
Neoxanthin
玉米黄质
Zeaxanthin
α-胡萝卜素
α-Carotene
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
0H-F405.06±17.71e177.81±5.34c117.49±6.98c117.38±10.22h42.24±3.87i986.71±96.83e521.48±49.1cd
0H-W1457.17±33.65bc227.31±4.33a70±5.76hi73.2±4.16n34.95±0.73k1284.89±126.09a472.84±44.52d
0H-W2457.67±14.78bc216.95±5.28ab84.77±8.05fg73.2±4.16n33.28±0.47kl1217.31±119.45b488.22±45.97cd
0H-W3427.22±9.86cd192.1±2.67b90.01±1.1ef94.66±8.28k33.28±0.47kl1080.04±105.98d440.22±41.45e
0H-R331.29±4.28hi115.85±0.39hi84.48±3.07fg114.36±25.05hi30.56±0.18l634.34±62.25jk346.81±32.65gh
0H-OT277.36±32.72j32.23±1.78k69.77±2.87i67.23±8.6350.06±0.87fg181.03±17.76n164.92±15.53k
12H-F306.84±12.45i116.36±3.03hi104.6±4.11de108.8±3.65j40.48±1.09ij915.49±89.84e499.63±47.04cd
12H-W1371.05±9.64fg138.97±5.29fg86.05±6.69f79.35±7.41mn34.95±0.73k796.17±78.13gh419.05±39.45ef
12H-W2359.35±8.33g142.57±3.06f84.75±1.61fg80±1.64mn33.28±0.47kl807.17±79.21g419.98±39.54ef
12H-W3345.36±15.67gh127.41±4.4g90.91±5.25ef87.03±6.62l33.49±0.79kl719.86±70.64hi389.96±36.72fg
12H-R340.32±22.29h94.49±3.43j89.71±2.07ef114.36±25.05hi38.8±2.89j510.94±50.14l324.28±30.53h
12H-OT332.76±9.34hi23.03±0.42lm101.97±1.9de159.92±14.99f50.35±0.6gh117.87±11.57n193.76±18.24ij
24H-F436.19±16.67cd148.05±3.44ef156.4±6.44a159.46±18.4fg48.25±0.92gh590.95±57.99kl354.62±33.39gh
24H-W1467.24±15.08bc119.26±13.6h89.54±3.78ef204±43.21bc81.04±14.66bc647.49±63.54j597.51±56.26b
24H-W2413.49±15.61de127.37±5.44gh71.92±9.74hi182.35±13.46de51.78±13.71f691.16±67.82i567.33±53.42bc
24H-W3463.59±16.9cd159.88±5.08de94.86±4.2e193.53±4.28cd48.32±1.44g866.7±85.05fg599.04±56.4ab
24H-R472.44±22.76b114.32±3.21hi107.88±9.32de219.36±12.68b90.83±6.47a614.67±60.32k440.66±41.49e
24H-OT306.84±18.44i23.88±0.89l101.22±3.92e194.56±10.32cd85.21±4.12b93.93±9.22o186.66±17.57j
48H-F447.09±7.61c149.78±7.42e62.46±0.86i82.76±20.67m30.01±1.06l1137.84±111.66c408.4±38.45f
48H-W1516.06±6.99a159.7±1.13de132.37±10.17b230.16±10.54a79.93±4.67c863.38±84.72fg631.3±59.44a
48H-W2417.33±3.31de160.16±8.31d79.35±4.21gh159.11±5.35fg71.06±2.37e868.99±85.27f517.39±48.71cd
48H-W3425.05±8.59d153.88±5.39de73.11±0.74hi151.08±2.24g67.52±1.07ef834.25±81.87fg532.58±50.14c
48H-R410.59±5.46de89.22±1.16k77.51±4.75gh174.48±4.46de77.36±1.55cd474.9±46.6m388.54±36.58fg
48H-OT377.82±23.33f22.1±0.87m72.13±4.39hi154.56±9.2fg67.81±3.55ef112.16±11.01no198.43±18.68i
168H-F386.78±12.48ef147.76±2.82ef73.35±1.19h171.93±3.89e50.06±0.87gh642.37±63.04jk358.43±33.75g
168H-W1393.76±1.56ef111.86±2.4hi87.6±3.24f195.69±4.61c87.29±1.69ab597.65±58.65kl492.37±46.36cd
168H-W2369.34±7.64fg139.05±5.1fg81.59±2.04g182.62±2.11d81.86±0.85bc746.53±73.26h506.17±47.66cd
168H-W3409.1±6.92de149.62±1.87ef73.11±0.74hi170.36±5.05ef75.34±2.13d805.08±79gh530.75±49.97cd
168H-R394.28±14.68ef109.56±2.29i77.51±4.75170.93±6.1476.38±2.52587.16±57.62451.54±43.1
168H-OT189.43±12.28k16.65±0.5150.2±0.14104.26±4.4546.43±1.8184.69±8.31126.01±10.64
H:小时;F:鲜叶;W1:第二次摇青开始前取样;W2:第三次摇青开始前取样;W3:萎凋结束杀青前取样;R:杀青后揉捻完成取样;OT:成品乌龙茶。不同字母表示差异显著(P<0.05,Tukey s-b (K) test)
H: Hour; F: Fresh leaves; W1: Samples collected before the second “making green” stage; W2: Samples collected before the third “making green” stage; W3: Samples collected at the ending of the third “making green” stage; R: Samples collected after rolling stage; OT: Made oolong tea. Different letters mean significant differences (P<0.05, Tukey s-b (K) test)

新窗口打开|下载CSV

2.2 外源茉莉酸甲酯诱导后茶叶中脂溶性色素组成及其含量

外源茉莉酸甲酯诱导后,‘金萱’茶树鲜叶中叶绿素a/b的含量随着时间推移变化明显。如图2所示,诱导后48 h内,叶绿素a含量较对照鲜叶中(0 h)增加,随后含量显著下降;叶绿素b在茉莉酸甲酯诱导后的鲜叶中始终处于下降的趋势。

图2

新窗口打开|下载原图ZIP|生成PPT
图2外源茉莉酸甲酯诱导后鲜叶中叶绿素a/b含量

*表示差异显著(P<0.05),**表示差异极显著(P<0.01)。下同
Fig. 2Concentration of chlorophyll a/b in methyl jasmonate treated tea leaves

* indicate significant difference (P<0.05), ** indicate extremely significant difference (P<0.01). The same as below


外源茉莉酸甲酯诱导后,‘金萱’茶树鲜叶中5种类胡萝卜素含量随着时间的推移变化复杂(图3)。此前,研究人员[19,23]对超过100份茶种质资源中的β-胡萝卜素和叶黄素含量进行分析,也表明该两种成分是茶叶中含量最高的类胡萝卜素成分,且在不同品种中变异倍数显著,表现为成熟叶的含量高于嫩叶。鲜叶中含量最高的叶黄素在12 h样品中含量显著下降,在24 h的样品中其含量较对照升高(图3)。香叶基香叶基焦磷酸(geranylgeranyl diphosphate,GGPP)是类胡萝卜素合成的直接前体,有研究表明,提高1-脱氧木酮糖-5-磷酸合成酶、1-脱氧木酮糖-5-磷酸还原酶(1-deoxy-D-xylulose-5-phosphate synthase, DXS;1-deoxy-D-xylulose 5-phosphate reductoisomerase,DXR)等基因表达能够显著提高茶叶中类胡萝卜素合成积累,而这些关键基因能够响应多种外源激素诱导,包括茉莉酸甲酯[28,29]β-胡萝卜素在茉莉酸甲酯诱导后的鲜叶中含量始终低于对照样品,其中诱导12 h的样品中含量仅为116.36 µg·g-1,减少了34.55%。新叶黄素和α-胡萝卜素含量响应外源茉莉酸甲酯诱导的变化规律较为相似,诱导后的鲜叶中含量有不同程度下降,仅在24 h样品中含量略高于对照。玉米黄质在外源诱导后的鲜叶中变化较为显著,其中48 h样品中含量下降至82.76 µg·g-1,仅为对照含量的70.5%,然而在168 h样品中该成分含量上升至171.93 µg·g-1,增幅达到1倍以上。根据此前报道[23,30-34],番茄红素β-环化酶(lycopene β-cyclase,LCYB)和番茄红素ε-环化酶(lycopene ε-cyclase,LCYE)对底物(α-胡萝卜素和β-胡萝卜素)选择的偏好性造成了植物体内环化类胡萝卜素(叶黄素、玉米黄质、新叶黄素等)的比例差异,利用外源诱导这些基因表达调控类胡萝卜素的生物合成也是一种重要的品质调控手段。

图3

新窗口打开|下载原图ZIP|生成PPT
图3外源茉莉酸甲酯诱导后鲜叶中类胡萝卜素含量

Fig. 3Concentration of carotenoids in methyl jasmonate treated tea leaves



成品茶样中叶绿素a含量与0 h对照相比均显著下降,而叶绿素b含量则在前48 h样品中略有升高,但未达到显著差异水平,直至诱导168 h样品中含量显著下降(图4-A)。成品茶中5个类胡萝卜素中,叶黄素含量最高,利用茉莉酸甲酯诱导后的鲜叶制作得到的成品茶样品(12、24、48 h)含量较对照显著升高,其中48 h的样品中含量最高,达到377.82 µg·g-1,而在168 h样品中含量急剧下降至189.43 µg·g-1。类胡萝卜素是茶叶重要致香物质的前体物,特别是β-胡萝卜素是茶叶香气形成的重要来源,其含量及变化对茶叶品质起着至关重要的作用[5]β-胡萝卜素含量在诱导后的成品茶中都较对照下降,但未达到显著差异。茶叶加工过程中,类胡萝卜素主要通过酶促和非酶促(光、热等)2种方式氧化降解形成茶叶香气品质贡献成分((α/β)-紫罗酮、橙花叔醇、二氢猕猴桃内酯、α-法呢烯、香叶基丙酮等)[24,27-28,30,32]。最新研究表明,茶树鲜叶萎凋过程中,β-紫罗酮大量积累主要是类胡萝卜素裂解酶(carotenoid cleavage dioxygenase 1 and 4)催化类胡萝卜素裂解产生[27,28]。茉莉酸甲酯诱导后前48 h制得的乌龙茶样品中,新叶黄素和玉米黄质的含量都较对照有所升高,并且都在24 h的处理样中达到最高值(图4-B),两者在48 h处理样中含量显著下降。α-胡萝卜素的含量变化不同于其他4种类胡萝卜素,受茉莉酸甲酯诱导,其含量在24 h的样品中达到最大值。

图4

新窗口打开|下载原图ZIP|生成PPT
图4外源茉莉酸甲酯诱导成品乌龙茶中主要叶绿素(A)和类胡萝卜素(B)含量变化

Fig. 4Constituents of chlorophyll a/b (A) and major carotenoids (B) in oolong tea prepared from methyl jasmonate treated tea leaves



2.3 外源茉莉酸甲酯诱导后茶叶感官品质提升

类胡萝卜素是茶叶中多种重要香气成分的前体物质,其含量的提高必然影响成品茶香气品质。因此,本研究开展成品茶感官品质评价分析,进一步验证了外源茉莉酸甲酯诱导后茶树鲜叶加工制作的乌龙茶香气品质显著提升(表2)。实验室组建的5人感官审评小组开展多次感官评价,结果表明,利用茉莉酸甲酯诱导12 h的鲜叶制作得到的乌龙茶香气品质最高,表现出持久的浓郁花香,茶汤中也带有轻微的花香,然而其叶底较对照样品柔软性更差,也更加偏暗一些。诱导24和48 h后的鲜叶加工得到的乌龙茶香气品质也得到了显著提升,茶汤中也有轻微花香。诱导168 h(一周)的鲜叶制作得到的乌龙茶,香气品质表现出持久的果蜜香。感官结果一定程度上可以证实茉莉酸甲酯诱导后,鲜叶加工成乌龙茶香气品质得到显著提升。

Table 2
表2
表2外源茉莉酸甲酯诱导后茶鲜叶加工的成品乌龙茶感官品质
Table 2Sensory evaluation of made oolong tea prepared from fresh leaves treated by exogenous methyl jasmonate
处理时间
MeJA treated time (h)
感官评价 Sensory evaluation
香气 Aroma得分 Score滋味 Taste得分 Score叶底 Foliage Fundus得分 Score
0高纯
High and pure aroma
88.2±2.5甘滑醇厚
Smooth, mellow and thick
89.4±2.7较柔软,尚完整,亮
Slight soft and intact, and bright
88.4±2.1
12花香浓郁,持久
Lasting rih floral aroma
94.2±2.48**甘滑醇厚,花香显
Smooth, mellow and thick, with floral flavor
92.1±2.15**尚柔软,较完整,尚亮
Slight soft, intact, and bright
86.4±1.98*
24显花香
Floral aroma
90.8±2.86*甘滑醇厚
Mellow and thick
92.8±2.36**尚柔软,较完整,尚亮
Slight soft, intact, and bright
86.1±2.03*
48带果蜜香
Fruity aroma
93.1±1.83**甘滑醇厚,带花香
Smooth, mellow and thick, with floral flavor)
91.7±2.12**尚柔软,较完整,尚亮
Slight soft, intact, and bright
87.1±2.13*
168带果蜜香,持久
Lasting fruity aroma
94.8±2.09**甘滑醇厚,蜜香
Smooth, mellow and thick, with floral flavor
91.8±1.99**较柔软,完整,尚亮
Slight soft, and bright, and intact
88.6±2.08*
*表示差异显著(P<0.05),**表示差异极显著(P<0.01)。数据为3次生物学重复的平均值
* indicate significant difference (P<0.05), ** indicate extremely significant difference (P<0.01). Result was the mean value of three biological replicates

新窗口打开|下载CSV

2.4 乌龙茶“做青”工序前后茶叶中脂溶性色素动态变化

本研究对乌龙茶加工过程中的关键“做青”工序以及杀青后揉捻的样品中这些脂溶性色素的含量进行动态变化监测,对数据进行均一化处理后制作相应的热图,便于更加清晰比较脂溶性色素的变化规律(表1,图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5乌龙茶加工关键工序做青和揉捻阶段类胡萝卜素和叶绿素动态变化

Fig. 5Dynamics of carotenoids and chlorophyll a/b during oolong tea manufacturing crucial stage of “making green” and rolling



整个“做青”过程中(W1—W3),与对应阶段的对照样品相比,叶绿素a含量在茉莉酸甲酯诱导后的样品中均显著下降,而叶绿素b含量则在12 h后的样品中显著升高。5种类胡萝卜素的含量动态变化则更加复杂,含量最高的叶黄素,经历第一次摇青摊放后,在24和48 h的样品中含量显著上升(与0 h样品相比);第二次摇青摊放后,对照样品中叶黄素含量则显著高于茉莉酸甲酯诱导处理后样品中的含量;第三次摇青摊放后的样品中,除了茉莉酸甲酯诱导处理24 h的样品中叶黄素含量略有升高外,其余诱导后的样品中该物质的含量均比对照样品低。β-胡萝卜素的含量变化表现简单一些,茉莉酸甲酯诱导后,该成分在整个鲜叶“做青”过程中,处理后样品中的含量始终比对照低。与该成分变化规律相反,玉米黄质和α-胡萝卜素的含量在茉莉酸甲酯诱导后的鲜叶“做青”后的样品中,始终维持非常高的含量,表现出极显著差异。在第一次摇青摊放后的茉莉酸甲酯诱导样品中,新叶黄素含量显著高于0 h样,第二次和第三次“做青”样品中,其含量大幅度下降。

鲜叶“做青”结束后,高温杀青钝化酶活性,此后进行揉捻工序。对揉捻后的茶样进行脂溶性色素含量动态变化分析,结果表明这些脂溶性成分受加工工艺以及茉莉酸甲酯外源诱导双重影响。在茉莉酸甲酯诱导后的样品中,叶绿素a的含量显著下降,尽管在24 h样品中的含量(614.67 µg·g-1)与对照样含量(634.32 µg·g-1)较为接近,但依旧有所减少。叶绿素b则呈现相反的趋势,与对照相比(346.8 µg·g-1),茉莉酸甲酯诱导12 h后样品中该类胡萝卜素成分含量显著升高,最高达到440.66 µg·g-1。叶黄素、α-胡萝卜素、玉米黄质(12 h样品除外)在茉莉酸甲酯诱导后的样品中含量均显著高于对照;β-胡萝卜素的含量显著低于对照;新叶黄素的含量则在12和24 h的样品中较高。

3 讨论

茶叶中脂溶性色素是直接影响干茶、茶汤色泽的重要因子,具有非常重要的研究意义[9-10,18]。利用外源茉莉酸甲酯诱导调控茶鲜叶中脂溶性色素,掌握乌龙茶制作关键加工工序中脂溶性色素的动态变化,有望为今后茶树鲜叶采后精准加工以达到提高茶叶品质提供充足的科学依据。

3.1 外源茉莉酸甲酯诱导提高茶叶中类胡萝卜素含量,提升成品茶香气品质

茉莉酸甲酯是一种高效的诱导子,已被广泛应用于改善作物品质,如香气、滋味、保质期等[12,13],然而,此前利用外源茉莉酸甲酯诱导提升茶叶品质的研究和应用仍不多见。有****研究了茉莉酸酯类对葡萄果实着色及品质的影响[14],结果表明外源茉莉酸甲酯诱导能够在前期提升类胡萝卜素含量,后期其含量下降。本研究明确了茶鲜叶以及成品茶中叶黄素是含量最高的类胡萝卜素类成分,而外源茉莉酸甲酯诱导处理后一定时间段内(24 h),鲜叶中以叶黄素为主的类胡萝卜素类成分含量能够显著增加,制作得到的成品茶叶黄素含量较对照高。通过对对照(未受茉莉酸甲酯诱导)鲜叶加工得到成品乌龙茶中脂溶性色素的结果分析,本研究中鉴定的2种叶绿素和5种类胡萝卜素含量均呈下降趋势,且下降幅度较大;然而,利用茉莉酸甲酯诱导处理后的茶树鲜叶在加工过程中类胡萝卜素下降幅度较小。采前外源诱导显著影响脂溶性色素的组成及含量,同时加工工艺对成品茶中最终含量的影响也十分显著。此外,外源茉莉酸甲酯诱导后的鲜叶加工成乌龙茶,其香气品质得到显著提升,呈现持久浓郁的花果香。类胡萝卜素降解形成的香气成分,如β-紫罗酮、二氢猕猴桃内酯、柠檬醛等在茶叶中贡献花果香。茶叶加工过程中,由于存在高温(杀青、干燥)和酶促(揉捻、发酵)等作用,茶叶中类胡萝卜素类成分,特别是叶黄素大幅度降解,较对照减少约65%以上。此外,在茶叶加工过程中,尤其是鲜叶萎凋过程中的α-和β-胡萝卜素等则降解成为挥发性成分α-和β-紫罗酮,玉米黄质和新叶黄素则会在类胡萝卜素氧化裂解酶的作用下降解成其他一些挥发性成分[27,28]

3.2 外源诱导与“做青”机械损伤双重胁迫调控茶叶中脂溶性色素的动态变化

笔者课题组前期的研究结果表明[7,8],外源茉莉酸甲酯诱导处理茶树鲜叶后,多条香气合成相关的代谢通路,尤其是萜类代谢通路发生显著变化,该途径中DXSDXRNECD,以及类胡萝卜素氧化裂解酶(carotenoids cleavage dioxygenases,CCDs)等基因表达发生显著变化。在诱导的前24 h,这些基因大部分呈现上调的趋势,成为采前诱导调控类胡萝卜素积累的主要因素。ZENG等[35]在最新的乌龙茶香气品质形成的论文中总结出乌龙茶加工过程中茶树鲜叶仍处于较为鲜活状态,鲜叶中多条茉莉酸依赖代谢通路中基因和酶活性差异表达,能够显著影响成品茶中香气品质成分的组分及含量。乌龙茶作为我国特有的一种高香型特种茶,其特殊的“做青”工艺多被看作是一种持续性机械损伤,而这些代谢途径中基因受到外源诱导调控和“做青”机械损伤发生差异表达,最终调节茶叶中次生代谢产物的组分和含量。“做青”过程相当于茶树叶片处于逆境胁迫的过程,茶鲜叶中多条代谢途径中的基因差异表达,尤其是萜类代谢途径中的牻牛儿基牻牛儿基焦磷酸合成酶(geranyl geranyl diphosphate synthase,GGPPS)以及萜类化合物形成相关的酶基因(CsMVK)等表达增长显著[26,27,28]。在乌龙茶“做青”过程中,一方面离体为鲜叶叶片营造了一个逆境环境,促使细胞内发生微妙的变化,如细胞膜透性改变、多酚类物质氧化、脂质降解、叶绿素a/b降解等;另一方面持续的外源诱导和机械损伤加剧激发细胞内各种内含物的转化,这些变化为乌龙茶独特品质的形成奠定了基础[23,29]。安徽农业大学宋传奎教授课题组最新研究发现,CCD4在鲜叶受到机械损伤等胁迫下,表达量显著提升,催化类胡萝卜素类成分的9-10以及9’-20’双键生成β-紫罗酮等芳香成分;而CCD1则被证明在鲜叶萎凋失水胁迫的过程中大量表达,催化类胡萝卜素裂解生成β-紫罗酮等[27,28]。此外,脱落酸在植物逆境胁迫响应中发挥着重要作用,9-顺式环氧类胡萝卜素双加氧酶(9-cis-epoxycarotenoid dioxygenase,NCED)是植物脱落酸(abscisic acid,ABA)生成的关键酶,调控该酶合成的关键基因在“做青”阶段的表达先升高后降低[36,37],而茶鲜叶中多种类胡萝卜素均是ABA合成途径中的重要中间代谢物。

然而,本研究重点关注了茶叶中7种脂溶性色素在乌龙茶加工过程中的动态变化,仅从代谢水平研究了脂溶性色素响应外源诱导和加工机械损伤,并未深入研究涉及到的基因、蛋白等分子水平。因此,查明类胡萝卜素代谢途径中相关基因与中间代谢产物受到采前外源诱导后的差异表达,及其与采后“做青”加工工序中机械损伤引起的二次诱导之间关系的研究亟待深入。然而,外源茉莉酸甲酯诱导提升鲜叶及成品茶中类胡萝卜素含量仍旧处于基础研究阶段,目前仅在大棚温室中进行,实际茶园的大面积应用还受到环境气候影响。此外,由于目前茉莉酸甲酯价格昂贵,后续可寻找茉莉酸甲酯廉价替代诱导剂在茶园大面积应用。

4 结论

本研究利用外源茉莉酸甲酯诱导茶树鲜叶,对诱导后的鲜叶进行乌龙茶加工,成品茶香气品质得到显著提升。此外,通过基于UPLC-QToF/MS靶标代谢组学技术对茶叶中7种脂溶性色素成分进行绝对定量,明确了叶黄素是茶鲜叶和成品茶中含量最高的类胡萝卜素成分,掌握了类胡萝卜素成分在乌龙茶加工过程中的变化规律。本研究利用外源诱导改变鲜叶中5种重要类胡萝卜素含量,提高成品茶中类胡萝卜素含量,诱导24 h的样品中类胡萝卜素含量显著提升。解析了乌龙茶加工过程中关键加工工序—“做青”阶段脂溶性色素动态变化规律,探明了采前茉莉酸甲酯诱导以及采后“做青”机械损伤双重胁迫下,茶叶中脂溶性色素类成分的组分及其含量变化。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

宛晓春, 李大祥, 张正竹, 夏涛, 凌铁军, 陈琪. 茶叶生物化学研究进展
茶叶科学, 2015, 35(1): 1-10.

[本文引用: 1]

WAN X C, LI D X, ZHANG Z Z, XIA T, LING T J, CHEN Q. Research advance on tea biochemistry
Journal of Tea Science, 2015, 35(1): 1-10. (in Chinese)

[本文引用: 1]

张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语基元语素研究与风味轮构建
茶叶科学, 2019, 39(4): 474-483.

[本文引用: 1]

ZHANG Y B, LIU X, LU C Y. Study on primitive morpheme in sensory terminology and flavor wheel construction of Chinese tea
Journal of Tea Science, 2019, 39(4): 474-483. (in Chinese)

[本文引用: 1]

WEI C L, YANG H, WANG S B, ZHAO J, LIU C, GAO L P, XIA E H, LU Y, TAI Y L, SHE G B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality
Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 201719622.

[本文引用: 1]

陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响
中国农业科学, 2019, 52(6): 1066-1077.

[本文引用: 1]

CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia sinensis (L) O.Kuntze) leaves based on metabolomics analysis
Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese)

[本文引用: 1]

张海峰, 陈梅春, 陈峥. 初制茶色泽形成的影响因素研究现状
食品安全质量检测学报, 2017, 8(7): 2687-2691.

[本文引用: 2]

ZHANG H F, CHEN M C, CHEN Z. Research progress in influencing factors of crude tea color
Journal of Food Safety & Quality, 2017, 8(7): 2687-2691. (in Chinese)

[本文引用: 2]

冯琳, 龚自明, 郑鹏程, 刘盼盼, 刘艳丽. 茶类胡萝卜素研究进展
植物科学学报, 2018, 36(6): 899-905.

[本文引用: 1]

FENG L, GONG Z M, ZHENG P C, LIU P P, LIU Y L. Advances in studies on carotenoids in Camellia sinensis
Plant Science Journal, 2018, 36(6): 899-905. (in Chinese)

[本文引用: 1]

SHI J, MA C Y, QI D D, LV H P, YANG T, PENG Q H, CHEN Z M, LIN Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves
BMC Plant Biology, 2015, 15(1): 233.

DOI:10.1186/s12870-015-0609-zURL [本文引用: 4]

SHI J, XIE D C, QI D D, PENG Q H, CHEN Z M, SCHREINER M, LIN Z, BALDERMANN S. Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea
Frontiers in Plant Science, 2019, 10:781.

DOI:10.3389/fpls.2019.00781URL [本文引用: 4]

崔席席, 李富军, 张新华, 郭衍银, 李晓安. 茉莉酸甲酯调控果蔬采后品质的机制及应用研究进展
食品科学, 2019(13): 304-311.

[本文引用: 2]

CUI X X, LI F J, ZHANG X H, GUO Y Y, LI X A. Recent progress in mechanism of action and application of methyl jasmonate in postharvest quality regulation of fruits and vegetables
Food Science, 2019(13): 304-311. (in Chinese)

[本文引用: 2]

张知晓, 泽桑梓, 户连荣, 刘凌, 季梅. 茉莉酸甲酯生物活性研究进展
河南农业科学, 2018, 47(11): 1-7.

[本文引用: 2]

ZHANG Z X, ZE S Z, HU L R, LIN L, JI M. Research advance in biological activities of methyl jasmonate
Journal of Henan Agricultural Sciences, 2018, 47(11): 1-7. (in Chinese)

[本文引用: 2]

孙晓文, 高登涛, 魏志峰, 郭景南, 曹锰. 茉莉酸酯类对‘圣诞玫瑰’葡萄果实着色及品质的影响
果树学报, 2016, 33(1): 43-51.

[本文引用: 1]

SUN X W, GAO D T, WEI Z F, GUO J N, CAO M. Effect of jasmonates on coloration and quality of the ‘Christmas Rose’ grape berry
Journal of Fruit Science, 2016, 33(1): 43-51. (in Chinese)

[本文引用: 1]

施江. 外源茉莉酸甲酯诱导对茶树鲜叶次生代谢产物的影响
[D]. 北京: 中国农业科学院, 2014.

[本文引用: 2]

SHI J. Effect on secondary metabolites in tea leaves induced by exogenous methyl jasmonate
[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)

[本文引用: 2]

姚雪倩, 岳川, 杨国一, 陈丹, 张冬桃, 陈桂信, 叶乃兴. 茶树牻牛儿基牻牛儿基焦磷酸合成酶基因CsGGDPS的克隆及表达分析
茶叶科学, 2017, 37(1): 86-96.

[本文引用: 2]

YAO X Q, YUE C, YANG G Y, CHEN D, ZHANG D T, CHEN G X, YE N X. Cloning and expression analysis of geranylgeranyl diphosphate synthase gene CsGGDPS in tea plant (Camellia sinensis)
Journal of Tea Science, 2017, 37(1): 86-96. (in Chinese)

[本文引用: 2]

HO C T, ZHENG X, LI S M. Tea aroma formation
Food Science and Human Wellness, 2015, 4(1): 9-27.

DOI:10.1016/j.fshw.2015.04.001URL [本文引用: 3]

邵晨阳, 吕海鹏, 朱荫, 张悦, 林智. 不同茶类中挥发性萜类化合物的对映异构体
中国农业科学, 2017, 50(6): 1109-1125.

[本文引用: 1]

SHAO C Y, LÜ H P, ZHU Y, ZHANG Y, LIN Z. Enantiomeric analysis of volatile terpenoids in different teas
Scientia Agricultura Sinica, 2017, 50(6): 1109-1125. (in Chinese)

[本文引用: 1]

范延艮. ‘黄金芽’茶树不同色泽新梢多组学比较及生理特性研究
[D]. 泰安: 山东农业大学, 2019.

[本文引用: 1]

FAN Y G. Multiomics comparison and physiological characteristics of different colour shoots of Camellia sinensis var. Huangjinya
[D]. Tai’an: Shandong Agricultureal University, 2019. (in Chinese)

[本文引用: 1]

WANG X C, CHEN L, MA C L, YAO M Z, YANG Y J. Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze
Journal of food composition and analysis, 2010, 23(1): 9-14.

DOI:10.1016/j.jfca.2009.01.016URL [本文引用: 1]

陈文凤, 郭雅玲. 乌龙茶做青过程中细胞变化研究进展
茶叶通讯, 2019, 46(3): 263-268.

[本文引用: 3]

CHEN W F, GUO Y L. Research progress on cell changes during rotating process of oolong tea
Tea Communication, 2019, 46(3): 263-268. (in Chinese)

[本文引用: 3]

何加兴, 欧伊伶, 宋加艳, 肖力争. 黄金茶1号夏秋乌龙茶加工过程化学成分变化与品质形成分析
食品工业科技, 2020, 41(18): 223-230.

[本文引用: 3]

HE J X, OU Y L, SONG J Y, XIAO L Z. Analysis of chemical components changes and quality formation of Huangjincha 1 summer oolong tea during processing
Science and Technology of Food Industry, 2020, 41(18): 223-230. (in Chinese)

[本文引用: 3]

张磊, 曹德美, 胡建军. 植物叶色形成调控机制研究进展
植物遗传资源学报. 2021(2): 293-303.

[本文引用: 1]

ZHANG L, CAO D M, HU J J. Advance of the regulation mechanism of leaf color formation in plants
Journal of Plant Genetic Resources, 2021(2): 293-303. (in Chinese)

[本文引用: 1]

DU Y Y, SHIN S, WANG K R, LU J L, LIANG Y R. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea
The Journal of Horticultural Science and Biotechnology, 2009, 84(3): 365-369.

DOI:10.1080/14620316.2009.11512533URL [本文引用: 1]

FENG L, GAO M J, HOU R Y, HU X Y, ZHANG L, WAN X C, WEI S. Determination of quality constituents in the young leaves of albino tea cultivars
Food Chemistry, 2014, 155:98-104.

DOI:10.1016/j.foodchem.2014.01.044URL [本文引用: 1]

ZENG L T, ZHOU X C, SU X G, YANG Z Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses
Trends in Food Science & Technology, 2020, 106:242-253.

[本文引用: 5]

陈寿松, 林宏政, 孙云, 金心怡, 胡娟, 周子维. 乌龙茶萜类物质及其代谢调控研究进展
中国农业科技导报, 2016, 18(5): 72-80.

[本文引用: 2]

CHEN S S, LIN H Z, SUN Y, JIN X Y, HU J, ZHOU Z W. Research progress on terpenoids and metabolic regulation in oolong tea
Journal of Agricultural Science and Technology, 2016, 18(5): 72-80. (in Chinese)

[本文引用: 2]

ZENG L T, WATANABE N, YANG Z Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma
Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.

DOI:10.1080/10408398.2018.1506907URL [本文引用: 2]

FENG Z H, LI Y F, LI M L, WANG Y J, ZHANG L, WAN X C, YANG X G. Tea aroma formation from six model manufacturing processes
Food chemistry, 2019, 285:347-354.

DOI:10.1016/j.foodchem.2019.01.174URL [本文引用: 2]

WANG J M, WU B, ZHANG N, ZHAO M Y, JING T T, WU Y, HU Y Q, YU F, WAN X C, SCHWAB W, SONG C K. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering
Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.

DOI:10.1021/acs.jafc.0c04208URL [本文引用: 6]

WANG J M, ZHANG N, ZHAO M Y, JING T T, JIN J Y, WU B, WAN X C, SCHWAB W, SONG C K. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering
Journal of Agricultural and Food Chemistry, 2020, 68(6): 1684-1690.

DOI:10.1021/acs.jafc.9b07578URL [本文引用: 8]

SHI J A, WANG L, MA C Y, LV H P, CHEN Z M, LIN Z. Aroma changes of black tea prepared from methyl jasmonate treated tea plants
Journal of Zhejiang University Science B, 2014, 15(4): 313-321.

DOI:10.1631/jzus.B1300238URL [本文引用: 3]

MAGENEY V, BALDERMANN S, ALBACH D C. Intraspecific variation in carotenoids of brassica oleracea var. sabellica
Journal of Agricultural and Food Chemistry, 2016, 64(16): 3251-3257.

DOI:10.1021/acs.jafc.6b00268URL [本文引用: 3]

郭亚飞, 王君雅, 郭飞, 倪德江. 茶树1-脱氧-D-木酮糖-5-磷酸合成酶基因CsDXS1的克隆与表达分析
生物技术通报, 2018, 34(1): 144-152.



GUO Y F, WANG J Y, GUO F, NI D J. Cloning and expression analysis of CsDXS1 gene encoding 1-deoxy-D-xylulose-5-phosphate synthase in Camellia sinensis
Biotechnology Bulletin, 2018, 34(1): 144-152. (in Chinese)



付建玉. 茶树倍半萜类物质代谢及其对虫害胁迫响应
[D]. 北京: 中国农业科学院, 2017.

[本文引用: 1]

FU J Y. The sesquiterpene metabolism and response to diverse biotic stresses in tea plant
[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

[本文引用: 1]

蒋正中. 茶树MEP途径中HDS与HDR基因的cDNA全长克隆、功能分析与表达特征研究
[D]. 合肥: 安徽农业大学, 2013.



JIANG Z Z. Molecular cloning, functional identification and expression characteristic of the HDR, HDS gene from MEP pathway in Camellia sinensis
[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)



FREDE K, SCHREINE M, BALDERMANN S. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis
Journal of Photochemistry and Photobiology B: Biology, 2019, 193:18-30.

DOI:10.1016/j.jphotobiol.2019.02.001URL [本文引用: 1]

ZENG L T, ZHOU Y, FU X M, MEI X, CHENG S H, GUI J D, DONG F, TANG J C, MA S Z, YANG Z Y. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma
Food chemistry, 2017, 237:488-498.

DOI:10.1016/j.foodchem.2017.05.137URL [本文引用: 1]

TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids
The Plant Journal, 2008, 54(4): 733-749.

DOI:10.1111/j.1365-313X.2008.03447.xURL [本文引用: 1]

CHO J Y, MIZUTANI M, SHIMIZU B I, KINOSHITA T, OGURA M, TOKORO K, LIN M L, SAKATA K. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “oriental beauty”
Bioscience, Biotechnology, and Biochemistry, 2007, 71(6): 1476-1486.

DOI:10.1271/bbb.60708URL [本文引用: 1]

相关话题/基因 机械 科学 数据 诱导