Response and Adaptation of Maize Production System to Climate Change
XIE RuiZhi,, MING BoInstitute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
责任编辑: 杨鑫浩 收稿日期:2021-08-3接受日期:2021-08-20
基金资助:
国家重点研发计划(2017YFD0300300)
Received:2021-08-3Accepted:2021-08-20 作者简介 About authors 谢瑞芝,E-mail: xieruizhi@caas.cn
PDF (256KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17): 3587-3591 doi:10.3864/j.issn.0578-1752.2021.17.003 XIE RuiZhi, MING Bo. Response and Adaptation of Maize Production System to Climate Change. Scientia Acricultura Sinica, 2021, 54(17): 3587-3591 doi:10.3864/j.issn.0578-1752.2021.17.003
LIS K, ZHAOJ R, DONGS T, ZHAOM, LIC H, CUIY H, LIUY H, GAOJ L, XUEJ Q, WANGL C, WANGP, LUW P, WANGJ H, YANGQ F, WANGZ M. Advances and prospects of maize cultivation in China Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. (in Chinses) [本文引用: 1]
LOBELLD B, BURKEM B, TEBALDIC, MASTRANDREAM D, FALCONW P, NAYLORR L. Prioritizing climate change adaptation needs for food security in 2030 , 2008, 319(5863): 607-610. DOI:10.1126/science.1152339URL [本文引用: 1]
LOBELLD B, SCHLENKERW, COSTA-ROBERTSJ. Climate trends and global crop production since 1980 , 2011, 333: 616-620. DOI:10.1126/science.1204531URL [本文引用: 1]
HEH Y, HUQ, PANX B, MAX Q, HUL T, WANGX C, HEQ J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China plain under climate change Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese) [本文引用: 1]
CAIRNSJ E, CROSSAJ, ZAIDIP H. Identification of drought, heat, and combined drought and heat tolerant donors in maize , 2013, 53(4): 1335-1346. DOI:10.2135/cropsci2012.09.0545URL [本文引用: 1]
SONGF W, WUP, XINGJ M, ZHOUX Y, CUIX R, YUX P, WANGJ. Influences of heat stress on viability of pollen grain inbred lines of male parent Journal of Maize Sciences, 2014, 22(3): 153-158. (in Chinese) [本文引用: 1]
ZHENGD Z. Effects of meteorological factors on growth, yield and quality of maize in cold regions Haerbin: Northeast Agricultural University, 2013. (in Chinese) [本文引用: 1]
CAMPBELLC, ATKINSONL, ZARAGOZA-CASTELLSJ, LUNDMARKM, ATKINO, HURRYV. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group , 2007, 176(2): 375-389. DOI:10.1111/nph.2007.176.issue-2URL [本文引用: 1]
SHAOJ Y, LIX F, YUW Z, LIUP, ZHAOB, ZHANGJ W, RENB Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize Scientia Agricultura Sinica, 2021, 54(17): 3623-3631. (in Chinese) [本文引用: 1]
SUNH, ZHANGX, CHENS, PEID, LIUC. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain , 2006, 25(3): 239-247. DOI:10.1016/j.indcrop.2006.12.003URL [本文引用: 1]
RENB Z, GAOF, WEIY J, DONGS T, ZHAOB, LIUP, ZHANGJ W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system Acta Agronomica Sinica, 2018, 44(1): 137-143. (in Chinese) DOI:10.3724/SP.J.1006.2018.00137URL [本文引用: 1]
CHENJ, RENB Z, ZHAOB, LIUP, YANGJ S, ZHANGJ W. Determination on suitable sowing date of summer maize hybrids based on effective accumulated temperature in growth period Scientia Agricultura Sinica, 2021, 54(17): 3632-3646. (in Chinese) [本文引用: 1]
Department of Science, Technology and Climate Change, China Meteorological Administration. 2017 China Greenhouse Gases Bulletin Beijing, 2019. (in Chinese) [本文引用: 1]
ELIZABETHA A, STEPHENP L. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 , 2005, 165(2): 351-372. DOI:10.1111/nph.2005.165.issue-2URL [本文引用: 1]
ZONGY Z, SHANGGUANZ P. Nitrogen deficiency limited the improvement of photosynthesis in maize by elevated CO2 under drought , 2014, 13(1): 73-81. DOI:10.1016/S2095-3119(13)60349-4URL [本文引用: 1]
REICHP B, HUNGATEB A, LUOY Q. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide , 2006, 37: 611-636. DOI:10.1146/annurev.ecolsys.37.091305.110039URL [本文引用: 1]
NIUX G, YANGR Q, LIM, DUANB H, DIAOT T, MAF, GUOL P. Effects of interaction between elevated atmospheric CO2 concentration and nitrogen fertilizer on photosynthetic characteristic and yield of maize Chinese Journal of Ecological Agriculture, 2020(2): 255-264. (in Chinese) [本文引用: 1]
LIM, LIY C, NIUX G, MAF, WEIN, HAOX Y, DONGL B, GUOL P. Effects of elevated atmospheric CO2 concentration and nitrogen fertilizer on the yield of summer maize and carbon and nitrogen metabolism after flowering Scientia Agricultura Sinica, 2021, 54(17): 3647-3665. (in Chinese) [本文引用: 1]
NORBYR J, DELUCIAE H, GIELENB, CALFAPIETRAC, GIARDINAC P, KINGJ S, LEDFORDJ, MCCARTHYH R, MOORED J P, CEULEMANSR, DEANGELIS P, FINZIA C, KARNOSKYD F, KUBISKEM E, LUKACM, PREGITZERK S, SCARASCIA-MUGNOZZAG E, SCHLESINGERW H, ORENR. Forest response to elevated CO2 is conserved cross a broad range of productivity , 2005, 102(50): 18052-18056. [本文引用: 1]
WANGY H, YUZ H, LIY S, LIUJ J, WANGG H, LIUX B, XIEZ H, HERBERTS J, JINJ. Carbon flow in the plant-soil-microbe continuum in response to atmospheric elevated CO2 Soils and Crops, 2018, 7(1): 22-30. (in Chinese) [本文引用: 1]
KUZYAKOVY, GAVRICHKOVAO. Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controls , 2010, 16(12): 3386-3406. DOI:10.1111/j.1365-2486.2010.02179.xURL [本文引用: 1]
OSANAIY, KNOXO, NACHIMUTHUG, WILSONAB. Increasing soil organic carbon with maize in cotton-based cropping systems: Mechanisms and potential. Agriculture, , 2020, 229: 106985. [本文引用: 1]
FANGR, YUZ H, LIY S, XIEZ H, LIUJ J, WANGG H, LIUX B, CHENY, LIUJ D, ZHANGS Q, WUJ J, HERBERTS J, JINJ. Effects of elevated CO2 concentration and warming on soil carbon pools and microbial community composition in farming soils Scientia Agricultura Sinica, 2021, 54(17): 3666-3679. (in Chinese) [本文引用: 1]
LIL, XUJ H, HUJ X, HANJ R. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer , 2014, 48(9): 5290-5297. DOI:10.1021/es404728sURL [本文引用: 1]
THOMPSONR L, LASSALETTAL, PATRAP K, WILSONC, WELLSK C, GRESSENTA, KOFFIE N, CHIPPERDIELDM, WINIWARTERW, DAVIDSONE A, TIANH, CANADELLJ G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion , 2019, 9(2): 1-6. DOI:10.1038/s41558-018-0385-5URL [本文引用: 1]
GUDAPATYP, SRINIVASI, RAOK V, SHANKERA K, RAJUB M K, CHOUDHARYD, RAOK S, SRINIVASRAOC, MANDAPAKAM. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India , 2016, 145: 239-250. DOI:10.1016/j.atmosenv.2016.09.039URL [本文引用: 1]
ZHANGJ T, TIANH Q, SHIH, ZHANGJ F, WANGX K, PANS F, YANGJ. Increased greenhouse gas emission intensity of major croplands in China: Implications for food security and climate change mitigation , 2020, 26(11): 6116-6133. DOI:10.1111/gcb.v26.11URL [本文引用: 1]
KANTERD R, SEARCHINGERT D. A technology-forcing approach to reduce nitrogen pollution , 2018, 1(10): 544-552. DOI:10.1038/s41893-018-0143-8URL [本文引用: 1]
MCGEOUGHK L, WATSONC J, MŰLLERC, LAUGHLINR. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils , 2016, 94: 222-232. DOI:10.1016/j.soilbio.2015.11.017URL [本文引用: 1]
ZHAOX, GUOL P, XIEL Y, SUNX, ZHAOH L, XUJ. Impacts of different farming managements on N2O emission and carbon footprint for maize from brown soil Chinese Journal of Agrometeorology, 2016, 37(3): 270-280. (in Chinese) [本文引用: 1]
YAOF Y, LIUZ M, CAOY J, LÜY J, WEIW W, WUX H, WANGY J, XIER Z. Diurnal variation of N2O and CO2 emissions in spring maize fields in northeast China under different nitrogen fertilizers Scientia Agricultura Sinica, 2021, 54(17): 3680-3690. (in Chinese) [本文引用: 1]