Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering
LI Ming,1, LI YingChun1, NIU XiaoGuang1, MA Fen1, WEI Na1, HAO XingYu2, DONG LiBing1,2, GUO LiPing,11Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081 2College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
Received:2020-09-10Accepted:2020-12-18 作者简介 About authors 李明,E-mail: liming3633@163.com。
摘要 【目的】研究大气CO2浓度升高(eCO2)及氮肥施用对夏玉米开花吐丝后不同组分碳氮代谢物含量及动态和产量的影响,为全球气候变化下玉米生理过程及产量形成的变化提供理论支撑,同时为玉米作物模型调参提供实证数据。【方法】利用自由大气CO2富集(FACE)平台,以夏玉米品种农大108为试验材料开展田间试验。在常规大气CO2浓度(aCO2,(400±15) μmol·mol-1)和高CO2浓度(eCO2,(550±20) μmol·mol-1)下分别设置不施氮(ZN)和施氮(CN,180 kg N·hm-2)2个氮水平。对夏玉米产量及其构成要素、干物质积累、花后碳代谢物(可溶性糖、淀粉、总碳)动态和氮代谢物(硝态氮,游离氨基酸、可溶性蛋白、非溶性氮化合物细胞壁氮素和类囊体氮素、总氮)动态以及碳氮比动态进行监测。【结果】(1) eCO2与施氮对夏玉米生物量积累有一定促进作用,但对产量及产量构成因素的影响均不显著。(2)eCO2使玉米花后功能叶碳组份中的可溶性糖浓度显著提高,灌浆后期叶片碳氮比显著提高。(3)eCO2下花后玉米功能叶氮代谢中的必需功能氮组分浓度未受影响,而一些结构性氮组分浓度有降低,eCO2对功能叶中功能氮组分(如可溶性蛋白)的含量没有显著影响;氮代谢中的简单组分(如游离氨基酸)在功能叶中的浓度仅在开花期比aCO2有显著增加,后期没有显著影响;但eCO2下氮代谢中的非溶性氮组分(如细胞壁氮素和类囊体氮素)含量在花后一些时期显著降低。(4)氮肥施用使玉米从抽雄到灌浆后期功能叶非结构性碳水化合物(如可溶性糖)浓度、硝态氮浓度、细胞壁氮素和类囊体氮素含量显著提高;中等土壤肥力下不施氮处理的功能叶可溶性蛋白含量没有受影响,但非溶性氮组分(如类囊体氮和细胞壁氮)含量降低,氮素优先满足作物生长必需的可溶性蛋白。(5)eCO2和氮肥交互作用对不同组分碳氮代谢物的影响不同,体现在不同时期,主要表现为提高了玉米功能叶简单碳氮组分(如可溶性糖和硝态氮)在后期的浓度,且碳氮比提高;提高了灌浆初期细胞壁氮素含量,功能叶总氮浓度仅在灌浆后期表现降低、其他时期没有显著影响。【结论】eCO2对夏玉米的生物量增加有一定作用,玉米穗位叶碳氮比在一些时期显著增加,但对产量无显著影响;eCO2下玉米花后穗位叶非结构性碳水化合物浓度增加,但总氮和非溶性氮素化合物在花后均发生不同程度降低。在未来大气CO2浓度升高为特征之一的气候变化情景下,合理增施氮肥对促进作物碳氮代谢的协调有一定必要性。 关键词:玉米;CO2浓度升高;氮肥;产量;碳氮代谢
Abstract 【Objective】 To provide the theoretical support on the mechanism on the sustainable production of maize under future climate change and give suggestions on associate parameter adjustment for crop models, the effects of elevated atmospheric CO2 concentrations (eCO2) and nitrogen application on the content and dynamics of different carbon and nitrogen metabolites after flowering of summer maize were studied. 【Method】 Based on the free atmospheric CO2 enrichment (FACE) platform, a field experiment was carried out with Nongda 108, a summer maize variety, as the experimental material. Two nitrogen levels (ZN-zero nitrogen and CN-180 kg N·hm-2) were set under the ambient atmospheric CO2 concentration (aCO2) of about (400±15) μmol·mol-1 and high CO2 concentration of (550±20) μmol·mol-1, respectively. The following measurements were monitored in the experiment: the maize yield and its components, accumulation of dry matter, content and dynamics of carbon metabolites, including non-structural carbohydrates (ie. soluble sugar and starch), total carbon and nitrogen metabolites including soluble nitrogen (ie. nitrate nitrogen, free amino acids, and soluble protein), and insoluble nitrogen compounds (ie. cell walls-N, thylakoid-N, and total-N), and the carbon to nitrogen ratio. 【Result】 (1) eCO2 and nitrogen application could promote the accumulation of biomass of summer maize, however the effects on maize yield and yield components were not significant. (2) Under eCO2, the concentration of soluble sugar, one of the components of carbon metabolites, showed significant increase in the functional leaves after the flowering stage, as well as the C/N ration at the late seed-filling stage. (3) Under eCO2, the concentration of essential functional N components did not show obvious variation in the functional leaves after the flowering stage, but the content of some structural nitrogen components were decreased: The content of soluble protein, the functional N component, was not affected by eCO2 in the functional leaves. The concentration of free amino acid, one of the simple N components, only showed increase at the flowering stage and then showed less change at the later growth period compared with that under aCO2. However, the content of cell wall-N and thylakoid-N, the non-soluble N components, were significantly decreased at the late period after flowering stage. (4) Nitrogen fertilizer application could increase the concentration of non-structural carbohydrates (soluble sugars) and nitrate-N significantly in functional leaves from tasseling to the later stage of filling, as well as the content of cell wall-N and thylacoid-N. However, the content of soluble protein was not affected in functional leaves without nitrogen application under the medium soil fertility. In comparison, the content of thylakoid-N and cell wall-N showed decrease in the functional leaves in the treatment without nitrogen fertilizer application, implying that nitrogen was usually preferentially supplied for the soluble protein to meet the necessary requirement of crop growth. (5) The interaction function of eCO2 and nitrogen fertilizer showed difference for varied components of the carbon and nitrogen metabolites, usually exhibited at different stages: combination of N application and eCO2 improved the concentration of simple carbon and nitrogen components, such as soluble sugars and nitrate nitrogen in the later stage of maize functional leaves, and increased the C/N ration. The content of cell wall nitrogen could be increased at the early stage of grouting for summer maize. For total nitrogen content in functional leaves, it showed decreased only at the later stage of seed filling grouting, and there was no other impact on the total nitrogen at other stages in summer maize growth period. 【Conclusion】 eCO2 had a certain effect on the biomass increase of summer maize, and the carbon nitrogen ratio of ear to leaf increase significantly in some stages, but had no significant effect on the yield. Under eCO2, the content of unstructured carbohydrates in ear leaves increased, but the total nitrogen and insoluble nitrogen compounds decreased to different degrees after flowering. Therefore, it was important to increase nitrogen application level rationally under the future climate change scenarios in which eCO2 would be one of the characteristics. Keywords:maize(Zea mays L.);elevated CO2 concentration;nitrogen fertilizer;production;carbon and nitrogen metabolism
PDF (610KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李明, 李迎春, 牛晓光, 马芬, 魏娜, 郝兴宇, 董李冰, 郭李萍. 大气CO2浓度升高与氮肥互作对玉米花后碳氮代谢及产量的影响. 中国农业科学, 2021, 54(17): 3647-3665 doi:10.3864/j.issn.0578-1752.2021.17.008 LI Ming, LI YingChun, NIU XiaoGuang, MA Fen, WEI Na, HAO XingYu, DONG LiBing, GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering. Scientia Acricultura Sinica, 2021, 54(17): 3647-3665 doi:10.3864/j.issn.0578-1752.2021.17.008
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】气候正在以人类能够明显感知到的速度发生着变化。2017年全球和中国陆地区域大气中的CO2平均浓度已分别达(405.5±0.1)μmol•mol-1和(407.0±0.2)μmol•mol-1[1]。根据不同的温室气体排放情景预估,到2050年大气CO2浓度将达到450— 550 μmol•mol-1(IPCC,2001);到21世纪末,将增加到约900 μmol•mol-1(IPCC,2014)。大气CO2浓度升高(简称eCO2)可以通过影响植物的各项生理活动而影响根、茎、叶等器官的生长发育,并影响作物的产量[2]。目前国内外关于eCO2对植物影响的研究手段主要有控制环境试验(controlled environment,CE)、开顶式气室(open-top chambers,OTC)和自由开放式高浓度CO2试验(free-air CO2 enrichment,FACE)[3],eCO2对作物生长的影响研究方面,目前主要对C3植物开展的研究较多。氮素是植物生长发育中所不可或缺并且也是最重要的矿质营养元素,是植物生长和产量形成的重要限制因子,在植物的各种生长代谢过程中都起到直接作用。氮素是氨基酸、蛋白质、叶绿体、细胞核等组份及细胞器的重要组成元素,根据氮素的存在状态可将含氮化合物分为可溶性含氮化合物(包括氨基酸、硝态氮、可溶性蛋白等)和非溶性氮素化合物(包括细胞壁、类囊体、细胞膜氮素等)两大类[4]。碳水化合物是植物光合作用的主要产物,按其存在形式可分为结构性碳水化合物(SC)和非结构性碳水化合物(NSC)两大类,NSC是光合碳同化物在植物源库间转运的主要形式,对植株生理代谢过程和产量形成起直接作用[5]。碳代谢指碳水化合物代谢,它包括碳的同化即光合作用、复杂碳水化合物的合成、分解(包括呼吸作用)和碳水化合物的相互转化等方面。氮代谢则是指植物体内含氮化合物的吸收、合成、分解和再合成,如由铵态氮合成为氨基酸、氨基酸合成蛋白质的过程等。碳氮代谢是作物生长最基本的代谢过程,其在生育期间的动态变化与光合作用各过程及光合产物的形成、转化以及矿质营养的吸收、蛋白质的合成密切相关,并受到环境因素的影响。氮代谢需要依赖碳代谢提供碳源和能量,而碳代谢则又需要氮代谢提供酶和光合色素等重要物质,多种代谢过程共同完成作物产量建成及品质形成[6]。碳、氮代谢的协调程度不仅影响作物生长发育进程,还是源-库关系协调的基础,最终关系到产量和品质高低[7,8,9]。作为光合底物,eCO2不仅会影响植物的光合作用过程,而且会影响碳氮代谢及产量形成[10]。eCO2对植物生长的影响还与养分供应及水分状况等环境因素密切相关[11,12]。玉米花后储存在营养器官中的养分开始转移到籽粒中并决定粒数和粒重[4, 13]。养分是影响植物生长的主要因素之一,生产实践中气候变化是与多种环境因子共同交互存在的,有必要开展多因素互作(如eCO2与氮肥对不同光合途径作物花后的碳氮代谢及产量反应的互作)效应研究。【前人研究进展】ZONG等[14]通过对玉米的研究发现,eCO2会缓解干旱对光合作用的限制,缓解情况随供氮水平的不同而不同。在eCO2下,一些植物碳同化能力增强,生物量积累加快,对氮素供给提出了更高的要求[15]。土壤养分通过影响光合作用和植株生长发育而影响CO2同化,进而影响产量和品质[16]。这与作物体内C/N[17]和源库关系[3]有关。梁煜等[18]采用OTC盆栽试验的研究表明,氮素胁迫在aCO2(常规大气CO2浓度)和eCO2下均显著降低了谷子叶片比叶质量和叶片氮含量。eCO2下谷子叶片光合性能较aCO2对氮素胁迫的响应更加敏感,但构成籽粒产量的参数并未显著下降。王小娟等[19]在油菜上的研究表明,eCO2下氮素胁迫的植株中根茎粗和地上部干重的增加幅度显著低于充足氮素处理。有研究表明,eCO2环境下,植物光合作用显著提高将促进植物的碳同化,导致茶树叶片中的葡萄糖、果糖和淀粉等碳水化合物明显增加[20,21,22];另一方面,eCO2下茶叶中的游离氨基酸有所下降[23],并改变茶树的碳氮代谢。eCO2促进了茶树的碳同化,而叶片中的氮素含量会显著降低,进而导致植株碳氮比升高[20,21]。LEAKEY等[23]证明eCO2促进了淀粉代谢、糖代谢、糖酵解、三羧酸循环及线粒体电子转移链相关基因的表达,这些基因表达水平的改变与光合作用碳固定效率和暗呼吸速率的提升有关联。有报道表明,在相同施氮水平下,eCO2对于玉米产量没有显著影响[24]。也有研究显示,eCO2长期处理会使得茶树的光合作用不再上升,甚至可能慢慢低于对照。这种由于在eCO2环境下长期培养而导致的植物光合能力下降的现象被称为“光适应现象”[20]。目前关于光适应现象的发生机理,学界还没有达成共识。【本研究切入点】目前关于eCO2和氮肥互作对作物影响的研究主要集中在C3作物上,并且大多数利用开顶式气室进行,对C4作物的研究较少,C4作物产量及碳氮代谢在eCO2和氮肥互作下的影响尚不明确。玉米作为重要的C4作物,是全球及我国种植面积最广的作物,气候变化是一个多因素变化的综合体现,在当前全球变化背景下,研究eCO2与其他因子如供氮水平等的交互作用对玉米生长的实际影响非常必要。无论从影响机理、对产量和品质的影响及对模型评估参数的校准等各方面都需要这些直接的试验数据。【拟解决的关键问题】本研究利用中国农业科学院建立在北京市昌平区的FACE平台系统,研究eCO2与氮素互作对玉米生物量和产量以及花后功能叶不同碳氮组分的含量及动态的影响,为全球气候变化下玉米的稳产增产提供理论指导及为玉米作物模型调参提供实证数据。
在aCO2和eCO2下分别设置无氮和施氮(分别简称ZN和CN)2个氮水平,对应的氮肥用量分别为 0和180 kg N·hm-2,氮肥基追比为4﹕6,追肥在玉米大喇叭口期降雨前撒施。各处理的磷钾肥用量相同,分别为 150 kg P2O5·hm-2和 90 kg K2O·hm-2;磷肥和钾肥全部作为基肥一次性施入。2019年6月19日施基肥、施入方式为条施。夏玉米于2019年6月20日播种、9月28日收获。其中,6月21日喷灌约3 cm以保证出苗整齐;7月29日雨后土壤湿润、8月1日撒施氮肥追肥;灌浆后期(8月30日)由于土壤偏干,进行了一次渠灌,灌溉量约5 cm,夏玉米生育期气温和降水情况见图2。
ZN、CN分别指不施氮和常规氮用量处理,aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理。V6:6叶期;V12:大喇叭口期;VT:吐丝期;R2:吐丝后14 d;R3:吐丝后28 d;R6:成熟期。不同小写字母表示在同一时期不同处理间差异达5%显著水平。ns表示不显著。下同 Fig. 3The above-ground biomass of summer maize under different treatments
ZN and CN mean the treatments of no nitrogen and control nitrogen. aCO2 and eCO2 mean the CO2 treatment of control concentration and elevated concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: Silking stage; R2: 14 days after silking stage; R3: 28 days after silking stage; R6: Physiological maturity. Different lowercase letters indicate a 5% significant difference between different treatments in the same stage. ns means not significant among different treatments at 5% level. The same as below
Table 1 表1 表1不同处理下的夏玉米产量及产量要素 Table 1The yield and associated compositional elements of summer maize under different treatments
处理 Treatment
穗重 Ear weight (g)
穗粒重 Kernel weight (g)
千粒重 1000-kernel weight (g)
产量 Grain yield (t·hm-2)
ZN-aCO2
185.2±14.7a
129.6±8.2a
264.6±8.3a
8.64±0.55a
ZN-eCO2
184.6±14.4a
129.8±0.3a
264.0±2.8a
8.65±0.02a
CN-aCO2
202.9±6.4a
132.7±0.2a
270.0±0.7a
8.85±0.01a
CN-eCO2
203.9±8.3a
135.6±5.9a
272.0±4.5a
9.04±0.40a
差异显著性 Significance
CO2
ns
ns
ns
ns
N
ns
ns
ns
ns
CO2×N
ns
ns
ns
ns
ZN、CN分别指不施氮和常规氮用量处理,aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理,ns表示不显著。下同 ZN and CN denote the treatments of zero-N and conventinal-N, respectively; aCO2 and eCO2 mean the ambient CO2 concentration and elevated CO2 concentration, respectively, ns means no significance. The same as below
** 表示同一生育期CO2、氮肥及其交互作用在P<0.01水平显著。下同 Fig. 4The concentration of soluble sugar in the functional leaves after flowering during summer maize growth stage
** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P<0.01. The same as below
氮肥过量施用也会使植物产生一定程度的贪青晚熟而引起一定的负面影响。李雪涛等[70]对玉米的研究结果表明,土壤中氮素过多会使玉米茎秆变得细嫩、易倒伏,而倒伏率每增加1%,玉米大约减产108 kg·hm-2。孟战赢等[71]的研究结果表明,相同水分条件下,氮肥追肥量为180 kg N·hm-2的处理产量高于追肥量为120 kg N·hm-2的处理,而追氮量为240 kg N·hm-2的处理产量低于追肥量为180 kg N·hm-2的处理。水肥互作共同对作物产量产生影响,本试验7月中旬至8月中旬为夏玉米拔节期,此期间的降水量占到全玉米生育期降水量的60%(图2),玉米生育期水分充足、加之土壤基础肥力高保证了氮供应,在此基础上再施氮玉米生长速度快、易发生徒长。试验记录表明,试验期间7月22日夜间发生极端大风灾害事件,玉米出现倒伏现象,其中施氮处理的玉米较不施氮玉米倒伏现象更为严重,虽未发生根折茎折并且在随后一周内自行恢复,但也可能对产量造成了一定的影响。这也可能是造成本试验施氮处理产量差异不显著的又一原因。
Department of Science, Technology and Climate Change, China Meteorological Administration. 2017 China Greenhouse Gases Bulletin Beijing, 2019. (in Chinese) [本文引用: 1]
WANGY, GAOS J, LIJ H, HUX L. The influence of crop’s morphological characters and breeding by elevated atmospheric CO2 concentrations Acta Agriculturae Boreali-Sinica, 2009, 024(B08): 126-130. (in Chinese) [本文引用: 1]
MUX H. The physiological mechanism of efficient nitrogen use in maize at leaves [D]. Beijing: China Agricultural University, 2017. (in Chinese) [本文引用: 4]
PANQ M, HANX G, BAIY F, YANGJ C. Advances in physiological and ecological studies on stored non-structure carbohydrates in plants Bulletin of Botany, 2002, 19(1): 30-38. (in Chinese) [本文引用: 1]
SHENL X, WANGP. Determination of C-N metabolism indices in ear-leaf of maize (Zeamays L.) Chinese Agricultural Sciences Bulletin, 2009, 25(24): 155-157. (in Chinese) [本文引用: 1]
WANGQ, ZHONGX H, HUANGN R, ZHENGH B. Interactions of nitrogen with light in the photosynthetic traits and metabolism of carbon and nitrogen of crop Guangdong Agricultural Sciences, 2006(2): 37-40. (in Chinese) [本文引用: 1]
DAIM H, ZHAOJ R, YANGG H, WANGR H, CHENG P. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties Scientia Agricultura Sinica, 2011, 44(8): 1585-1595. (in Chinese) [本文引用: 1]
ELIZABETHA A, STEPHENP L. What have we learned from 15 years of free-air CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 , 2005, 165(2): 351-372. DOI:10.1111/nph.2005.165.issue-2URL [本文引用: 1]
LIF S, KANGS Z. Effects of CO2 concentration enrichment, nitrogen and water on soil nutrient content and nutrient uptake of spring wheat Journal of Plant Nutrition and Fertilizers, 2002, 8(3): 303-309. (in Chinese) [本文引用: 1]
QIAOY Z, ZHANGH Z, DONGB D, SHIC H, LIY X, ZHAIH M, LIUM Y. Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes , 2010, 97(11): 1742-1748. DOI:10.1016/j.agwat.2010.06.007URL [本文引用: 1]
SUNL J. Management technology of spring maize in middle and late stage Friends of Farmers Getting Rich, 2014(7): 105. (in Chinese) [本文引用: 1]
ZONGY Z, SHANGGUANZ P. Nitrogen deficiency limited the improvement of photosynthesis in maize by elevated CO2 under drought , 2014, 13(1): 73-81. DOI:10.1016/S2095-3119(13)60349-4URL [本文引用: 1]
REICHP B, HUNGATEB A, LUOY Q. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide , 2006, 37: 611-636. DOI:10.1146/annurev.ecolsys.37.091305.110039URL [本文引用: 1]
WANGS. Effects of long-term different fertilization on photosynthesis and photosystem function of maize leaves [D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese) [本文引用: 1]
TANGM L, XIAOM L, YUANH C, WANGG J, LIUS L, ZHUZ K, GET D, WUJ S. Effect of CO2 Doubling and different plant growth stages on rice carbon, nitrogen, and phosphorus and their stoichiometric Ratios Environmental Science, 2018, 39(12): 5708-5716. (in Chinese) [本文引用: 1]
LIANGY, CHANGC C, HAOX Y, ZHANGD S, WANGW F, GAOZ Q, ZONGY Z. Effects of elevated CO2 concentration and nitrogen stress on the physiological characteristics and yield components of foxtail millet Shanxi Agricultural Sciences, 2020, 48(3): 401-406, 410. (in Chinese) [本文引用: 1]
WANGX J, WANGW M, ZHANGZ H, ZHANGL, YANGC, SONGH X, GUANC Y. Effects of atmospheric CO2 concentration and N application levels on the growth, N uptake and utilization of oilseed rape during vegetative stage Journal of Ecology, 2014, 33(1): 83-88. (in Chinese) [本文引用: 1]
LIX, ZHANGL, AHAMMEDG J, LIZ X, WEIJ P, SHENC, YANP, ZHANGL P, HANW Y. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L , 2017, 7(1): 81-89. DOI:10.1038/s41598-017-00116-9URL [本文引用: 4]
LIL K, WANGM F, SABINS P, LIC X, MEGHAN P, CHENF J, FANGW P. Effects of elevated CO2 on foliar soluble nutrients and functional components of tea, and population dynamics of tea aphid, Toxoptera aurantii , 2019, 145: 84-94. DOI:10.1016/j.plaphy.2019.10.023URL [本文引用: 3]
JIANGY L, ZHANGQ G, ZHANGS D. Effects of atmospheric CO2 concentration on tea quality Tea Science, 2006(4): 299-304. (in Chinese) [本文引用: 2]
LEAKEYA D B, XUF X, GILLESPIEK M, MCGRATHJ M, AINSWORTHE A, ORTD R, OGRENW L. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide , 2009, 106(9): 3597-3602. [本文引用: 2]
NIUX G, YANGR Q, LIM, DUANB H, DIAOT T, MAF, GUOL P. Effects of interaction between elevated atmospheric CO2 concentration and nitrogen fertilizer on photosynthetic characteristic and yield of maize Chinese Journal of Ecological Agriculture, 2020(2): 255-264. (in Chinese) [本文引用: 2]
JUH, JIANGS, LIJ T, HANX, GAOJ, QINX C, LINE D. Interactive effects of elevated co2 and nitrogen on the physiology and yield of winter wheat in north winter wheat region of China Scientia Agricultura Sinica, 2015, 48(24): 4948-4956. (in Chinese) [本文引用: 1]
GAOJ F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006: 142-148. (in Chinese) [本文引用: 2]
CATALDOD A, MAROONM, SCHRADERL E, YOUNGSV L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid , 1975, 6(1): 71-80. DOI:10.1080/00103627509366547URL [本文引用: 1]
CAIY P. Experimental Guidance of Plant Physiology. Beijing: China Agricultural University Press, 2014: 166-169. (in Chinese) [本文引用: 1]
ONODAY, HIKOSAKAK, HIROSET. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency , 2004, 18: 419-425. DOI:10.1111/fec.2004.18.issue-3URL [本文引用: 1]
ZHANGL, PAAKKARINENV, VANW K J, AROE M. Co-translational assembly of the D1 protein into photosystem II , 1999, 274(23): 16062-16067. DOI:10.1074/jbc.274.23.16062URL [本文引用: 1]
PENGL W, MAJ F, CHIW, GUOJ K, ZHUS Y, LUQ T, LUC M, ZHANGL X. Low PSII accumulationl is involved in efficient assembly of photosystem II in Arabidopsis thaliana , 2006, 18(4): 955-969. DOI:10.1105/tpc.105.037689URL [本文引用: 1]
XIAOY B, DUANZ Y, ZHANGF S, SUF, JINH, CHENX P, LEIB K. Study on the nitrogen diagnosis of transplanting maize recommenation of nitrogen fertilizer as top dressing Soil Fertilizer, 2001(6): 16-20. (in Chinese) [本文引用: 1]
LIX N, ULFATA, LVZ Y, FANGL, DONGJ, LIUF L. Effect of multigenerational exposure to elevated atmospheric CO2 concentration on grain quality in wheat , 2019, 157: 310-319. DOI:10.1016/j.envexpbot.2018.10.028URL [本文引用: 1]
QIANL, JIANGX C, LIUJ Y, LUOL F, GUIF R. Effect of elevated CO2 concentration on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) and nutrients of their host plant, Phaseolus vulgaris Journal of Ecology, 2015, 34(6): 1553-1558. (in Chinese) [本文引用: 2]
ARANJUELOI, SANZSÁEZÁ, JÁUREGUII, IRIGOYENJ J, ARAUSJ L,SÁNCHEZDÍAZ M, ERICEG. Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2 , 2013, 64(7): 1879-1892. DOI:10.1093/jxb/ert081URL [本文引用: 1]
WATANABEC K, SATOS, YANAGISAWAS, UESONOY, TERASHIMAI, NOGUCHIK. Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: Possible relationships with respiratory rates , 2014, 55(2): 341-357. [本文引用: 1]
PANT T. Effects of nitrogen fertilizer on carbon and nitrogen metabolism and tree nutrition of jackfruit [D]. Zhanjiang: Guangdong Ocean University, 2019. (in Chinese) [本文引用: 1]
LIUN, SONGB Q, YANZ S, FANY J, YANGJ. Effect of nitrogen application on the content of soluble sugar and key enzyme activities in sugar metabolism of sugar beet Chinese Agricultural science bulletin, 2015, 31(27): 183-189. (in Chinese) [本文引用: 1]
CHENF J, GEF, LIUX H. Responses of cotton to elevated CO2 and the effects on cotton aphid occurrences Ecologica Sinica, 2004, 24(5): 991-996. (in Chinese) [本文引用: 1]
MUX H, CHENQ W, CHENF J, YUANL X, MIG H. Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize , 2018, 129: 27-34. DOI:10.1016/j.plaphy.2018.05.020URL [本文引用: 1]
HONGY. Effect of nitrogen addition on nitrogen metabolism of 5 species in desert area [D]. Hohhot: Inner Mongolia Normal University, 2018. (in Chinese) [本文引用: 2]
YUH R, GUOY, ZHUA M, LUF Y, WANGL, ZHANGY X. Effects of nitrogen fertilizer level on non-structural carbon and nitrogen metabolite levels in oats grown in sandy desert soil Acta Prataculturae Sinica, 2016, 27(5): 61-72. (in Chinese) [本文引用: 1]
HUANGR, WUY P, XIAZ Y, WANGZ Y, LIY K. Effect of nitrogen level on free amino acid and protein contents of Honghuadajinyuan tobacco leaves China tobacco science, 2017, 38(5): 50-55. (in Chinese) [本文引用: 1]
LIANGX H. Effects of various nitrogen levels on carbon-nitrogen metabolism and leaves quality of flue-cured tobacco [D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese) [本文引用: 1]
LIUB. Research on nitrogen nutrition characteristics under different N applying levels and preliminary study on nitrogen nutrition diagnose on cassava [D]. Haikou: Hainan University, 2016. (in Chinese) [本文引用: 1]
HUZ J. The study on the influence of different nitrogen levels on metabolism of carbon and nitrogen in wine grape ‘Cabernet Gernischet’ tree [D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese) [本文引用: 1]
TIANF F, JIH F, WANGL Y, ZHENGX L, XINJ, NENGH. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil Environmental Science, 2018, 39(10): 4717-4726. (in Chinese) [本文引用: 2]
GEX M, WANGR H, TANGL Z, JIAZ Y, ZHUL, LIY. Study on the effects of temperature and moisture on nitrogen mineralization of soil in poplar plantations Chinese Agricultural Science Bulletin, 2015, 31(10): 208-213. (in Chinese) [本文引用: 2]
GUOL P, WANGX R, ZHANGF S, CHENX P, MAOD R. Effect of fertilizer application in different years on crop yields and fertilizer recovery Chinese Journal of Agrometeorology, 1999(4): 3-5. (in Chinese) [本文引用: 1]
HUANGY, LIT X, ZHANGX Z, JIL, WUY P. Characteristics of nitrogen transportation and fractions in different organs of barley genotype with high nitrogen utilization efficiency Scientia Agricultura Sinica, 2015, 48(6): 1151-1161. (in Chinese) [本文引用: 1]
CLAVERI P, ZHOUH. Enzymatic hydrolysis of defatted wheat germ by proteases and the effect on the functional properties of resulting protein hydrolysates , 2005, 29(1): 13-26. DOI:10.1111/jfbc.2005.29.issue-1URL [本文引用: 1]
DELUCIAE H, SASEKT W, STRAINB R. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide , 1985, 7(2): 175-184. DOI:10.1007/BF00037008URL [本文引用: 1]
STITTM. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells , 2006, 14(8): 741-762. [本文引用: 1]
SAWADAS, KUNINAKAM, WATANABEK, STATOA, KAWAMURAH, KOMINEK, SAKAMOTOT, KASAIM. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment , 2001, 42(10): 1093-1102. [本文引用: 1]
ZHANGL J, PANG X, ZHANGX H, LIL Q, ZHENGJ W, ZHENGJ F, YUX Y, WANGJ F. Effect of experimental CO2 enrichment and warming on uptake and distribution of C and N in rice plant soils, 2015, 47(1): 26-32. (in Chinese) [本文引用: 1]
ZHUC W, ZISKAL, ZHUJ G, ZENGQ, XIEZ B, TANGH Y, JIAX D, HASEGAWAT. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide , 2012, 145(3): 395-405. DOI:10.1111/ppl.2012.145.issue-3URL [本文引用: 1]
LIP, HANX, ZONGY Z, LIH Y, LINE D, HANY H, HAOX Y. Effects of free-air CO2 enrichment (FACE) on the uptake and utilization of N, P and K in Vigna radiata , 2015, 202: 120-125. DOI:10.1016/j.agee.2015.01.004URL [本文引用: 1]
LONGS P, AINSWORTHE A, LEAKEYA D B, NÖSBERGERJ, ORTD R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations , 2006, 312(5782): 1918-1921. DOI:10.1126/science.1114722URL [本文引用: 1]
MAL. Study on the effects of climate changes and CO2 concentration increase on forest ecosystem Forest Resources Management, 2014(5): 28-34. (in Chinese) [本文引用: 1]
YANGS S. The transcriptome analysis of tomato response to TMV infection under high concentration of CO2 [D]. Taigu: Shanxi Agricultural University, 2018. (in Chinese) [本文引用: 1]
ORLAD, BRIDGETF O, ARTHURR Z, MAYR B, EVANH D. Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem , 2008, 2(3): 125-135. DOI:10.1007/s11829-008-9045-4URL [本文引用: 1]
CHENF J, WUG, GEF. Responses of spring wheat to elevated CO2 and their effects on Sitobion avenae aphid growth, development and reproduction Chinese Journal of Applied Ecology, 2006, 17(1): 91-96. (in Chinese) [本文引用: 1]
KOBAYASHIT, ISHIGUROK, NAKAJIMAT, KIMH Y, OKADAM, KOBAYASHIK. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight , 2006, 96(4): 425-431. DOI:10.1094/PHYTO-96-0425URL [本文引用: 1]
LIUZ J, LIP, ZONGY Z, DONGQ, HAOX Y. Effect of elevated [CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica) Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. (in Chinese) [本文引用: 1]
MENGZ Y, LINT B, WANGY H. Effects of water-fertilizer on summer corn nitrogen metabolism Maize Science, 2009, 17(5): 100-103. (in Chinese) [本文引用: 1]
LEAKEYA D B, URIBELARREAM, AINSWORTHE A, NAIDUS L, ROGERSA, ORTD R, LONGS P. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought , 2006, 140(2): 779-790. [本文引用: 1]