Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice
LÜ TengFei1,2, SHEN Jie1, MA Peng1, DAI Zou2, YANG ZhiYuan1, XU Hui1, ZHENG ChuanGang2, MA Jun,1通讯作者:
责任编辑: 杨鑫浩
收稿日期:2020-07-6接受日期:2020-11-23网络出版日期:2021-04-01
基金资助: |
Received:2020-07-6Accepted:2020-11-23Online:2021-04-01
作者简介 About authors
吕腾飞,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (627KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
吕腾飞, 谌洁, 马鹏, 代邹, 杨志远, 徐徽, 郑传刚, 马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响[J]. 中国农业科学, 2021, 54(7): 1410-1423 doi:10.3864/j.issn.0578-1752.2021.07.008
LÜ TengFei, SHEN Jie, MA Peng, DAI Zou, YANG ZhiYuan, XU Hui, ZHENG ChuanGang, MA Jun.
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】钵苗机插是一种新兴的机插秧技术,具有秧龄弹性大、秧苗素质高,可以实现带土带蘖轻植伤精确栽插,提高稻谷产量等诸多优势[1,2,3,4,5],因此探索钵苗机插杂交稻在西南稻区的高产氮素利用特征,对钵苗机插的研究和推广具有重要意义,同时也为我国杂交水稻育插秧节肥丰产技术的应用提供理论和实践依据。【前人研究进展】近年来,随着农村劳动力大量向第二、三产业转移和老龄化现象的加剧,我国水稻种植向机械化发展成为必然趋势。水稻机械化种植具有节本、省工、省力等优点,这对于保障我国粮食安全具有重要意义。毯苗机插省工高效,是目前生产上大面积应用的机插方式,但存在秧龄弹性小、秧苗素质差、移栽植伤重、返青期长,全生育期缩短等缺点[6,7,8],严重制约了水稻生产潜力的发挥和对温光资源的利用。钵苗机插是一种采用机械将钵育壮秧按一定的株行距轻植伤移植到大田的新型机插秧技术,相比毯苗机插,具有秧龄弹性大、秧苗素质高,栽后缓苗期短,分蘖早生快发等优势[1,2,3,4,5],在日本和我国东北、江苏、安徽等水稻主产区的多年生产实践已初步证明了其增产优势[9,10,11]。氮肥的施用是实现现代农业增产最有效的措施,合理的氮肥运筹是水稻生长发育、群体构建和产量形成的有力保障。目前,我国平均稻田单季水稻氮肥用量达到180 kg·hm-2,高出世界平均水平75%,但氮肥利用率仅为30%—35%,部分地区甚至不足20%[12],远低于发达国家的50%—60%[13]。大量的氮素损失不仅造成了资源的浪费,还导致了严重的环境污染并影响了人类的身体健康[14]。优化氮肥管理和开发高效氮肥是当前提高氮素利用效率,确保水稻高产稳产最主要的两条途径。缓释肥作为一种新型高效氮肥,具有养分有效供应期长、环保和省工省肥等优点[15],DENG等[16]研究表明施用缓释肥能减少氮素投入,促进水稻需氮量、供氮量之间的平衡,提高氮素利用率。但陈贤友等[17]研究发现缓释肥存在肥效缓慢的问题,易造成作物前期缺氮,产量效果不佳[18]。【本研究切入点】西南稻区是我国重要的稻米产区之一,而且是典型的多熟制区域,水稻与多种作物的茬口很难衔接,导致水稻移栽秧龄偏大,而毯苗育秧存在秧龄弹性小、秧苗素质差的缺点,加上西南稻区丘陵山区多、地块小的地形地势特点,使得该区域水稻种植机械化的发展十分缓慢,此外,由于四川盆地湿度大、日照少、温差小的独特生态特点,该区域水稻种植面积95%以上为杂交籼稻品种。那么在西南稻区,钵苗机插是否能够发挥其秧龄弹性大、秧苗素质高的优势,以及杂交籼稻在钵苗机插下是否依然能够发挥大穗优势,还鲜有报道。张敬昇等[19]和孙克刚等[20]研究表明在缓释肥中掺混20%—40%尿素一次基施,有利于进一步提高人工移栽稻的产量和氮素利用效率,那么在钵苗机插下,缓释氮肥的氮素释放是否符合杂交籼稻的生长需求?氮肥缓、速配施是否更为有效?这都是当前亟待解决的关键问题。【拟解决的关键问题】本研究以在西南稻区取得高产且大面积推广的大穗型杂交稻品种F优498为试验材料,以不同机插方式和氮肥缓速配施方式为研究手段,并结合15N示踪技术,旨在探索在西南稻区,钵苗机插和氮肥缓速配施能否发挥杂交籼稻的大穗优势获得高产,以及钵苗机插杂交稻在氮肥缓速配施下的氮素吸收利用特征,为西南稻区水稻机械化种植和氮肥高效利用提供理论依据和技术支撑。1 材料与方法
1.1 供试材料与试验地点
本试验供试品种为中籼迟熟杂交稻组合F优498,由四川农业大学水稻研究所选育。本研究于2016年和2017年在四川省眉山市东坡区悦兴镇金光村(30° 12′ N,103° 83′ E)进行,插秧机和育秧作业机由当地合作社提供,水稻全生育期气象数据由四川省气象局提供(图1)。前茬为青菜,故水稻季土壤基础肥力较高,土壤质地为砂壤土,试验田块耕层土壤养分含量见表1,水稻主要生育时期记载见表2。图1
新窗口打开|下载原图ZIP|生成PPT图1生长期间气象资料
Fig. 1Weather data during crop growing period
Table 1
表1
表1试验田土壤基础肥力特性
Table 1
年份 Year | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
2016 | 6.98 | 36.93 | 2.30 | 0.98 | 3.36 | 124.16 | 22.89 | 106.97 |
2017 | 6.70 | 27.87 | 2.08 | 1.03 | 3.08 | 100.36 | 31.93 | 96.81 |
新窗口打开|下载CSV
Table 2
表2
表2不同机插方式下杂交稻主要生育时期
Table 2
年份 Year | 育秧方式 Seedling-raising method | 播种期 Seeding time | 移栽期 Transplanting time | 拔节期 Elongation stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
2016 | 钵苗 Potted | 03-20 | 04-17 | 06-06 | 07-04 | 08-22 |
毯苗 Blanket | 06-07 | 07-08 | 08-24 | |||
2017 | 钵苗 Potted | 03-25 | 04-23 | 06-02 | 07-08 | 08-18 |
毯苗 Blanket | 06-04 | 07-10 | 08-20 |
新窗口打开|下载CSV
1.2 试验设计
本试验采用两因素裂区设计,主区为钵苗机插和毯苗机插2种机插方式,分别记为M1和M2;副区为3种氮肥管理模式,分别是N1(100%缓释肥一次基施),N2(70%缓释肥+30%尿素一次基施(缓速基施))和N3(70%缓释肥做基肥+30%尿素做穗肥(缓基速追)),其中,施肥处理的总施氮量均为150 kg·hm-2,另设一个不施氮肥的处理作为对照,记为N0;随机排列,重复3次,共24个小区。小区长度为6 m,宽度以插秧机行距而定,小区间以田埂分隔,并用塑料薄膜包埋,单区单灌,以防肥水串灌。所用的缓释氮肥为树脂包膜缓释肥,由山东金正大公司提供,100%包膜,含氮率为46.0%。育秧方式为旱育水管育秧。播种密度:钵苗机插35—40 g/盘,毯苗机插70—75 g/盘。机插秧栽插密度:钵苗机插33 cm×14.5 cm,毯苗机插30 cm×16 cm。试验中氮肥基肥在移栽当天撒施;穗肥在第1苞分化期施用(倒4叶)。磷肥(P2O5)75 kg·hm-2和钾肥(K2O)150 kg·hm-2作为基肥一次性施入。试验所用氮、磷、钾肥分别为尿素(含N 46%)、过磷酸钙(含P2O5 12%)和氯化钾(含K2O 60%)。试验期间进行合理的田间管理,整个生育期没有明显的涝害、旱害和病虫草害。
1.3 样品的采集与处理
于水稻拔节期、抽穗期和成熟期,每个小区按平均茎蘖数选取长势均匀且无病害的植株3株,分为茎、叶和穗3部分,置于烘箱中。在105℃条件下杀青30 min,然后在80℃下烘至恒重称重,粉碎后过60目筛,然后用全自动凯氏定氮仪(FOSS-8400,FOSS Analytical A/S,Denmark)测定各器官的全氮含量。1.4 数据计算
各器官氮素积累量(N accumulation,kg·hm-2)=各时期单位面积各器官(叶片、茎鞘、穗)干物重×各器官(叶片、茎鞘、穗)含氮量;茎鞘(或叶片)氮素转运量(Amount of N transportation,kg·hm-2)=抽穗期某器官氮积累量-成熟时该器官氮积累量;
茎鞘(或叶片)氮素转运率(N transportation efficiency,%)=茎鞘(或叶片)氮转运量/抽穗期茎鞘(或叶片)氮积累量×100;
茎鞘(或叶片)氮素转运贡献率(Contribution rate of N transportation,%)=茎鞘(或叶片)氮素转运量/成熟期穗部氮素积累总量×100;
氮素干物质生产效率(N use efficiency for biomass production,kg·kg-1)=成熟期单位面积全株地上部干物重/地上部氮素积累总量;
氮素稻谷生产效率(N use efficiency for grain production,kg·kg-1)=籽粒产量/地上部氮素积累总量;
氮素收获指数(N harvest index,%)=成熟期籽粒氮积累量/全株地上部分氮积累总量×100;
氮肥偏生产力(Partial factor productivity,kg·kg-1)=稻谷产量/施氮量;
氮素回收利用率(N recovery efficiency,%)=(植株吸氮量-空白区植株吸氮量)/施氮量×100;
氮素生理利用率(N physiological efficiency,kg·kg-1)=(施氮区籽粒产量-空白区籽粒产量)/(施氮区植株吸氮量-空白区植株吸氮量);
氮素农学利用率(N agronomic efficiency,kg·kg-1)=(施氮区水稻产量-氮空白区水稻产量)/施氮量。
1.5 数据处理
运用DPS7.05系统软件进行数据统计分析,Microsoft Excel 2013进行图表绘制。使用最小显著差异法(Least significant difference,LSD)进行样本平均数的多重比较。2 结果
2.1 不同机插和氮肥缓速配施方式对杂交稻主要生育时期氮素积累的影响
相比毯苗机插,钵苗机插在抽穗期和成熟期氮素积累量均显著提高,2年平均提升幅度分别为3.65%— 21.98%和2.12%—8.84%(表 3)。就施肥处理而言,2种机插方式下杂交稻的氮素积累量,在拔节期表现为N2>N1>N3,且相互间差异显著;在抽穗期和成熟期则表现为N2处理显著低于N1和N3处理,而且与N1处理相比,N3处理2年平均在钵苗下分别提高了2.34%和1.80%,在毯苗下分别提高了14.76%和5.39%。由此可见,钵苗机插和缓基速追有利于杂交稻抽穗期和成熟期地上部的氮素积累。Table 3
表3
表3氮肥缓速配施对2种机插杂交稻氮素积累量的影响
Table 3
年份 Year | 处理 Treatment | 拔节期 Elongation stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
2016 | M1N0 | 27.20±0.53d | 93.07±1.33d | 138.24±1.25d |
M1N1 | 87.08±2.15b | 220.60±0.81b | 234.28±1.62b | |
M1N2 | 93.50±1.37a | 188.59±0.78c | 215.34±0.83c | |
M1N3 | 70.60±2.14c | 229.21±3.46a | 240.34±0.49a | |
M2N0 | 40.71±0.64d | 79.77±1.83d | 130.67±1.49d | |
M2N1 | 84.97±0.86b | 191.60±3.37b | 220.27±1.42b | |
M2N2 | 90.35±0.71a | 161.51±1.05c | 209.40±2.16c | |
M2N3 | 76.95±0.77c | 221.13±5.70a | 235.36±4.20a | |
M | 20.50* | 134.29** | 225.03** | |
N | 787.38** | 346.68** | 908.66** | |
M×N | 17.72** | 9.42** | 1.71ns | |
2017 | M1N0 | 27.30±0.11d | 87.08±2.29c | 144.60±3.16c |
M1N1 | 92.64±1.55b | 216.92±1.92a | 246.55±1.97a | |
M1N2 | 102.02±2.36a | 174.79±4.52b | 216.91±1.99b | |
M1N3 | 83.41±2.45c | 218.62±4.53a | 249.01±3.08a | |
M2N0 | 31.39±1.00c | 71.90±1.06d | 132.85±2.29d | |
M2N1 | 91.24±1.36a | 177.83±2.73b | 227.15±0.75b | |
M2N2 | 94.93±3.01a | 162.98±2.69c | 210.06±4.96c | |
M2N3 | 84.62±0.82b | 202.21±3.34a | 236.07±2.30a | |
M | 0.60ns | 215.94** | 654.57** | |
N | 662.11** | 904.02** | 551.82** | |
M×N | 3.74* | 10.11** | 1.61ns |
新窗口打开|下载CSV
2.2 不同机插和氮肥缓速配施方式对杂交稻不同生育阶段氮素积累速率与比例的影响
机插杂交稻吸收氮素最快的时期是拔节至抽穗期,同时比较2种机插方式可以发现,氮素积累速率和比例,在拔节—抽穗阶段钵苗分别比毯苗高出了0.49—1.33 kg·hm-2·d-1和1.13—17.76个百分点;而在抽穗—成熟阶段钵苗则分别比毯苗降低了0.08—0.48 kg·hm-2·d-1和1.44—10.44个百分点;而钵苗在播种—拔节阶段的氮素积累比例相比毯苗也有所降低(表 4)。就施肥处理对各生育阶段氮素积累速率而言,播种—拔节和抽穗—成熟阶段均以N2最高,拔节—抽穗阶段则是N2处理最低、N1处理次之、N3处理最高,且相互间的差异均达到显著水平,因此造成了在同一机插水平下,N2处理拔节前的氮素积累量接近甚至远高于拔节至抽穗阶段的氮素积累量,这也是N2处理与另2个施肥处理对机插杂交稻氮素吸收的最大差异之处。Table 4
表4
表4氮肥缓速配施对2种机插杂交稻不同生育阶段氮素积累速率与比例的影响
Table 4
年份 Year | 处理 Treatment | 氮素积累速率 N accumulation rate (kg·hm-2·d-1) | 氮素积累比例 N accumulation ratio (%) | ||||
播种—拔节 Sowing to elongation | 拔节—抽穗 Elongation to heading | 抽穗—成熟 Heading to maturity | 播种—拔节 Sowing to elongation | 拔节—抽穗 Elongation to heading | 抽穗—成熟 Heading to maturity | ||
2016 | M1N0 | 0.35±0.01d | 2.35±0.03d | 0.92±0.03a | 19.68±0.30d | 47.66±0.87c | 32.67±1.06a |
M1N1 | 1.12±0.03b | 4.77±0.10b | 0.28±0.04c | 37.16±0.67b | 57.01±1.51b | 5.83±0.85c | |
M1N2 | 1.20±0.02a | 3.40±0.05c | 0.55±0.03b | 43.42±0.71a | 44.16±0.75d | 12.42±0.70b | |
M1N3 | 0.91±0.03c | 5.66±0.08a | 0.23±0.07c | 29.37±0.86c | 66.00±1.04a | 4.63±1.48c | |
M2N0 | 0.52±0.01d | 1.26±0.06d | 1.08±0.06a | 31.17±0.82c | 29.90±1.55d | 38.93±1.76a | |
M2N1 | 1.08±0.01b | 3.44±0.11b | 0.61±0.04b | 38.58±0.44b | 48.39±1.17b | 13.03±0.97c | |
M2N2 | 1.14±0.01a | 2.30±0.05c | 1.02±0.03a | 43.16±0.75a | 33.97±0.37c | 22.86±0.43b | |
M2N3 | 0.97±0.01c | 4.65±0.20a | 0.30±0.03c | 32.73±0.87c | 61.20±1.63a | 6.07±0.76d | |
M | 9.21ns | 196.32** | 86.12* | 190.45** | 125.75** | 96.84* | |
N | 771.49** | 506.80** | 160.60** | 204.77** | 255.15** | 508.37** | |
M×N | 18.15** | 1.11ns | 11.28** | 22.80** | 13.20** | 9.67** | |
2017 | M1N0 | 0.40±0.01d | 1.66±0.06d | 1.40±0.02a | 18.90±0.44d | 41.31±0.71c | 39.79±0.28a |
M1N1 | 1.34±0.02b | 3.45±0.09b | 0.72±0.09c | 37.57±0.34b | 50.43±1.69b | 12.00±1.41c | |
M1N2 | 1.48±0.03a | 2.02±0.07c | 1.03±0.07b | 47.02±0.67a | 33.54±1.02d | 19.44±1.39b | |
M1N3 | 1.21±0.04c | 3.76±0.06a | 0.74±0.08c | 33.49±0.69c | 54.31±0.83a | 12.21±1.37c | |
M2N0 | 0.44±0.01c | 1.13±0.01d | 1.49±0.03a | 23.62±0.55d | 30.50±0.41c | 45.87±0.32a | |
M2N1 | 1.29±0.02a | 2.41±0.10b | 1.20±0.08b | 40.16±0.48b | 38.13±1.78b | 21.71±1.44b | |
M2N2 | 1.34±0.04a | 1.89±0.06c | 1.15±0.06b | 45.21±1.31a | 32.41±0.87c | 22.38±0.75b | |
M2N3 | 1.19±0.01b | 3.27±0.07a | 0.83±0.04c | 35.85±0.14c | 49.80±0.64a | 14.35±0.71c | |
M | 7.91ns | 113.62** | 27.63* | 28.89* | 61.40* | 41.16* | |
N | 653.02** | 432.46** | 40.13** | 546.40** | 157.13** | 358.70** | |
M×N | 4.99* | 17.03** | 4.75* | 9.36** | 14.64** | 6.01** |
新窗口打开|下载CSV
2.3 不同机插和氮肥缓速配施方式对杂交稻不同生育阶段氮素积累与转运的影响
与毯苗机插相比,钵苗机插在拔节—抽穗阶段茎、叶和穗部氮素积累量,2年平均分别提高了54.35%、18.98%和7.34%,抽穗—成熟阶段茎、叶氮素转运量及穗部氮素增加量分别提高了156.97%、19.44%和16.11%(表 5)。就施氮处理而言,拔节—抽穗阶段,2种机插方式茎、叶的氮素积累量呈现出N3>N1>N2的趋势,且相互间差异显著(钵苗机插茎鞘除外)。抽穗—成熟阶段,2种机插方式下穗部氮素积累量均以N2处理最低,但施肥方式对茎、叶氮素转运量的影响却表现不同。茎鞘氮素转运量,钵苗以N1处理最高,且显著高于另外2个施氮处理,毯苗则表现为N3>N1>N2,且相互间差异显著;叶片氮素转运量,2种机插方式均表现为N3>N1>N2的趋势,钵苗下相互间差异显著,毯苗下只有N2与N3处理之间的差异达到显著水平。由此可见,钵苗机插和缓基速追有利于杂交稻拔节—抽穗阶段茎叶对氮素的吸收与积累以及抽穗—成熟阶段茎叶氮素向穗部的转运。Table 5
表5
表5氮肥缓速配施对2种机插杂交稻不同生育阶段氮素积累与转运的影响
Table 5
年份 Year | 处理 Treatment | 拔节—抽穗 Elongation to heading | 抽穗—成熟 Heading to maturity | ||||
氮素积累量 N accumulation | 氮素转运量 N transportation | 氮素积累量 N accumulation | |||||
茎鞘 Stem-sheath | 叶片 Leaf | 穗部 Panicle | 茎鞘 Stem-sheath | 叶片 Leaf | 穗部 Panicle | ||
2016 | M1N0 | 22.54±0.52c | 24.07±1.06d | 20.69±0.15a | 9.00±0.31c | 27.78±1.20d | 81.95±1.61c |
M1N1 | 51.24±0.79a | 50.89±3.17b | 14.23±0.10d | 39.96±1.17a | 75.96±1.85b | 129.60±1.44a | |
M1N2 | 33.49±1.03b | 31.17±0.66c | 16.14±0.26c | 29.25±1.03b | 63.61±0.73c | 119.61±1.31b | |
M1N3 | 51.40±0.27a | 66.45±2.30a | 17.78±0.44b | 30.84±0.56b | 85.55±2.93a | 127.52±1.60a | |
M2N0 | 11.65±0.16d | 9.06±1.47d | 22.99±0.20a | 3.49±0.69c | 18.50±0.82c | 72.90±2.54b | |
M2N1 | 27.73±0.34b | 46.45±2.75b | 16.94±0.28bc | 13.20±1.65b | 66.41±1.05a | 108.28±1.15a | |
M2N2 | 18.01±1.14c | 25.39±1.93c | 17.19±0.49b | 4.78±0.94c | 52.79±1.25b | 105.46±1.07a | |
M2N3 | 48.89±3.84a | 58.97±2.52a | 16.45±0.47c | 26.44±3.49a | 66.73±0.90a | 107.39±2.68a | |
M | 126.11** | 13.21ns | 7.37ns | 154.23** | 82.64* | 959.23** | |
N | 177.24** | 280.36** | 268.34** | 85.59** | 789.54** | 197.52** | |
M×N | 15.98** | 3.68* | 28.96** | 29.18** | 7.07** | 4.15* | |
2017 | M1N0 | 23.32±1.00c | 17.91±1.13c | 21.29±0.46a | 8.38±1.07d | 19.09±0.52d | 84.99±2.46c |
M1N0 | 53.20±1.35a | 40.81±1.35b | 13.95±0.21c | 47.37±0.80a | 64.16±1.41b | 141.16±1.78a | |
M1N1 | 22.08±2.14c | 21.12±2.46c | 16.91±0.18b | 21.15±1.95c | 58.39±1.35c | 121.66±0.28b | |
M1N2 | 44.22±1.98b | 56.59±2.95a | 15.74±0.79d | 27.28±1.31b | 81.93±3.16a | 139.59±0.02a | |
M1N3 | 15.26±0.91c | 7.62±1.11d | 24.52±0.71a | 0.99±0.67d | 12.18±0.47c | 74.12±1.63c | |
M2N0 | 21.46±1.07b | 35.49±2.91b | 16.66±0.59b | 9.55±1.60b | 58.88±0.97b | 117.76±1.49a | |
M2N1 | 16.73±0.52c | 25.97±1.61c | 15.56±0.11b | 5.04±0.35c | 58.42±1.74b | 110.54±4.05b | |
M2N2 | 35.59±1.22a | 50.77±0.62a | 15.44±0.30b | 19.48±1.67a | 65.02±1.00a | 118.36±2.45a | |
M | 270.63** | 15.81ns | 8.48ns | 268.98** | 1262.75** | 367.75** | |
N | 117.31** | 177.93** | 117.03** | 134.05** | 603.87** | 215.16** | |
M×N | 35.41** | 5.76* | 11.29** | 60.49** | 11.85** | 4.24* |
新窗口打开|下载CSV
2.4 不同机插和氮肥缓速配施方式对杂交稻氮素转运特性的影响
不管是茎、叶氮素转运率和氮素转运对穗部的贡献率,还是干物质和稻谷生产效率,甚至包括氮素收获指数,都表现为钵苗显著高于毯苗,他们的提高幅度平均分别达到了20.77—23.71、6.40—9.71、12.54— 14.57、8.19—11.39、0.66—5.72和5.41—6.42个百分点(表6)。比较不同施肥方式可知,单就稻谷生产效率而言,2种机插方式下,N2处理均高于N1和N3处理;干物质生产效率在钵苗机插条件下的表现与稻谷生产效率一致,但只有N2和N3处理在2年都有显著差异,而其在毯苗机插下则表现为N1处理显著低于N2和N3处理;就茎鞘氮素转运率而言,钵苗以N3处理最低,毯苗则是N3处理最高、N1处理次之,N2处理最低;而叶片氮素转运率,钵苗是N3处理显著高于N1和N2处理,毯苗则表现为N3处理最低,且显著低于N2处理;氮素转运对穗部的贡献率,在钵苗下是N2处理显著低于N1和N3处理,在毯苗条件下是N3处理显著高于N1和N2处理。由此可见,与毯苗机插相比,钵苗机插极大地提升了杂交稻氮素转运能力,而缓基速追有利于杂交稻叶片氮素向穗部运输。Table 6
表6
表6氮肥缓速配施对2种机插杂交稻氮素转运特性的影响
Table 6
年份 Year | 处理 Treatment | 氮素转运率 N transportation efficiency (%) | 氮素转运对穗部的贡献率 Contribution rate of N transportation (%) | 干物质生产效率 N use efficiency for biomass production (kg·kg-1) | 稻谷生产效率 N use efficiency for grain yield (kg·kg-1) | 氮素收获指数 N harvest index (%) | |
茎鞘 Stem-sheath | 叶片 Leaf | ||||||
2016 | M1N0 | 27.98±0.75c | 66.64±1.04c | 44.91±1.30c | 139.03±1.01b | 55.33±1.55a | 73.21±0.39a |
M1N1 | 50.08±0.81a | 69.39±0.71b | 89.47±1.50a | 132.92±0.26c | 51.46±0.51c | 68.72±0.40c | |
M1N2 | 44.89±1.08ab | 68.38±0.58b | 77.65±1.10b | 145.64±0.71a | 54.18±0.98ab | 69.68±0.11bc | |
M1N3 | 42.00±0.51b | 74.34±1.24a | 91.29±2.72a | 130.10±0.60c | 52.46±0.80bc | 70.02±0.37b | |
M2N0 | 13.36±2.71c | 52.54±0.46d | 30.26±1.32d | 129.50±2.29a | 54.07±0.52a | 69.81±1.19a | |
M2N1 | 23.01±2.74b | 65.23±0.68a | 73.50±1.97b | 122.54±2.90b | 49.17±1.28b | 63.89±0.17b | |
M2N2 | 9.69±1.74c | 62.29±0.73b | 54.60±0.82c | 126.96±0.23a | 50.15±0.57b | 63.62±0.44b | |
M2N3 | 35.79±3.16a | 59.85±0.77c | 86.67±1.76a | 127.23±0.25a | 48.49±0.23b | 61.06±0.04c | |
M | 441.98** | 262.13** | 171.53** | 202.50** | 58.86* | 629.25** | |
N | 30.67** | 41.48** | 599.12** | 14.82** | 11.31** | 53.50** | |
M×N | 17.87** | 22.91** | 16.72** | 8.85** | 1.24ns | 10.18** | |
2017 | M1N0 | 25.57±2.70c | 53.20±0.98d | 32.27±0.90c | 146.40±4.18a | 50.73±0.11a | 71.58±0.51a |
M1N1 | 56.20±0.47a | 62.66±1.12c | 79.06±2.38a | 145.45±0.19a | 47.20±0.45c | 69.53±0.10b | |
M1N2 | 36.46±1.85b | 66.76±0.54b | 65.39±2.13b | 149.30±1.70a | 51.58±0.75a | 69.73±0.29b | |
M1N3 | 38.16±1.14b | 72.64±0.65a | 78.23±2.44a | 132.69±0.70b | 48.92±1.01b | 69.88±0.33b | |
M2N0 | 3.92±2.55d | 41.78±1.23d | 17.77±0.09c | 128.86±4.39ab | 51.85±0.29a | 69.05±0.74a | |
M2N1 | 18.14±2.70b | 61.41±0.06b | 58.17±2.38b | 124.22±0.51b | 47.52±0.45b | 64.89±0.44b | |
M2N2 | 10.36±0.70c | 65.68±0.92a | 57.46±0.98b | 127.83±2.49ab | 50.14±0.65a | 64.66±0.68b | |
M2N3 | 30.34±1.91a | 60.79±0.42b | 71.38±1.26a | 134.26±1.16a | 47.62±0.33b | 63.36±0.53c | |
M | 146.60** | 391.46** | 72.26* | 37.02* | 0.35ns | 224.07** | |
N | 55.92** | 212.10** | 392.87** | 1.94ns | 23.48** | 19.23** | |
M×N | 20.93** | 23.94** | 8.37** | 10.32** | 2.49ns | 4.66* |
新窗口打开|下载CSV
2.5 不同机插和氮肥缓速配施方式对杂交稻氮素利用特征的影响
相比毯苗机插,钵苗的氮肥农学利用率、生理利用率和偏生产力平均分别提高了12.62%、11.94%和8.69%(表 7)。与N1处理相比,N2处理钵苗和毯苗的氮素生理利用率分别提升了20.05%和9.11%,偏生产力分别提升了58.15%和54.98%,氮素回收利用率则分别下降了16.19和9.32个百分点,氮素农学利用率分别下降了10.65%和8.46%;而N3处理钵苗和毯苗的氮素回收利用率、农学利用率、生理利用率和偏生产力平均提升的幅度是2.84和8.00个百分点、12.54%和13.44%、8.01%和0.34%以及52.55%和50.71%。由此可见,钵苗机插和缓基速追有利于提高杂交稻对氮肥的吸收利用效率。2.6 氮肥缓速配施对2种机插杂交稻产量及其构成的影响
2016—2017年钵苗机插产量平均分别比毯苗机插高出1 042.40 kg·hm-2和722.30 kg·hm-2,提高幅度分别达到了10.30%(8.2%—11.3%)和7.20%(6.3%— 8.3%),这是因为相比毯苗机插,钵苗机插2年的有效穗数分别提高了4.16%和5.34%,每穗粒数分别提高了4.12%和3.02%,因此单位面积颖花数分别增加了8.46%和9.03%,而且在2016年其结实率和千粒重也显著提高,因此其单穗重也显著提高(表 8)。与N1处理相比,N2处理在钵苗和毯苗下的每穗粒数2年平均分别下降了3.03%和3.51%,单位面积颖花数分别下降了6.37%和5.64%,单穗重分别下降了3.37%和2.10%,进而导致产量分别下降了418.40 kg·hm-2和298.10 kg·hm-2,下降幅度分别达到了3.67%和2.84%;而N3处理在钵苗和毯苗下的每穗粒数2年平均分别提高了4.07%和3.25%,单位面积颖花数分别增加了4.22%和4.86%,单穗重分别提高了3.05%和2.47%,进而产量分别提高了512.76 kg·hm-2和513.99 kg·hm-2,提升幅度分别为4.32%和4.75%。这说明钵苗机插和缓基速追有利于有效穗数和每穗粒数提高,进而提高了单位面积颖花数、单穗重和稻谷产量。此外,钵苗机插还能显著提高杂交籼稻的收获指数。Table 7
表7
表7氮肥缓速配施对2种机插杂交稻氮素利用特征的影响
Table 7
年份 Year | 处理 Treatment | 回收利用率 N recovery efficiency (%) | 农学利用率 N agronomic efficiency (kg·kg-1) | 生理利用率 N physiological efficiency (kg·kg-1) | 偏生产力 Partial factor productivity (kg·kg-1) |
2016 | M1N1 | 64.03±1.91a | 29.40±0.78ab | 45.95±0.83b | 50.98±1.28b |
M1N2 | 51.40±1.38b | 26.79±1.03b | 52.30±1.43a | 80.38±1.17a | |
M1N3 | 68.07±0.99a | 33.08±1.78a | 48.58±1.44ab | 77.77±1.22a | |
M2N1 | 59.73±1.79b | 25.09±2.17ab | 41.93±2.89a | 47.11±0.83b | |
M2N2 | 52.48±1.56c | 22.90±0.24b | 43.71±1.39a | 72.20±1.82a | |
M2N3 | 69.79±3.69a | 28.96±1.83a | 41.46±0.57a | 70.01±1.06a | |
M | 0.69ns | 13.29ns | 11.63ns | 341.82** | |
N | 67.78** | 10.27** | 1.66ns | 373.78** | |
M×N | 2.54ns | 0.01ns | 0.51ns | 2.32ns | |
2017 | M1N1 | 67.97±3.33a | 28.67±2.03ab | 42.12±1.29c | 48.91±1.13b |
M1N2 | 48.21±2.08b | 25.70±1.96b | 53.19±1.96a | 77.58±1.18a | |
M1N3 | 69.61±1.38a | 32.28±1.03a | 46.45±2.25b | 74.61±1.71a | |
M2N1 | 62.87±1.12a | 26.04±0.72ab | 41.43±1.20b | 45.93±0.97b | |
M2N2 | 51.47±4.61b | 24.26±2.27b | 47.22±2.12a | 71.97±0.75a | |
M2N3 | 68.81±1.91a | 29.02±0.83a | 42.18±0.30ab | 70.19±1.32a | |
M | 0.05ns | 4.38ns | 9.62ns | 110.61** | |
N | 56.32** | 7.76* | 14.82** | 216.19** | |
M×N | 2.34ns | 0.20ns | 1.44ns | 0.41ns |
新窗口打开|下载CSV
Table 8
表8
表8氮肥缓速配施对2种机插杂交稻产量及其构成的影响
Table 8
年份 Year | 处理 Treatment | 有效穗数 Panicle (×104 hm-2) | 每穗粒数 No. of spikelet per panicle | 结实率 Grain filling percentage (%) | 千粒重 1000-grain weight (g) | 产量 Yield ( kg·hm-2) | 单穗重 Panicle weight (g) | 收获指数 Harvest index (%) |
2016 | M1N0 | 164.80±3.20c | 170.34±1.35d | 92.68±0.18a | 31.59±0.01a | 7647.32±191.73c | 4.99±0.04c | 61.09a |
M1N1 | 259.21±3.64a | 190.43±2.04b | 87.52±0.55c | 30.83±0.17c | 12057.53±175.03b | 5.14±0.06b | 58.72b | |
M1N2 | 250.16±0.24b | 183.67±3.74c | 89.33±0.46b | 30.73±0.16c | 11665.74±182.51b | 5.04±0.10bc | 57.59b | |
M1N3 | 263.95±4.42a | 197.27±2.65a | 87.88±0.36c | 31.25±0.10b | 12608.57±197.97a | 5.42±0.06a | 59.35ab | |
M2N0 | 173.75±1.50b | 162.35±1.50c | 89.34±0.04a | 30.87±0.14a | 7066.64±123.93c | 4.48±0.04c | 60.45a | |
M2N1 | 237.64±3.37a | 186.55±2.03a | 86.04±0.65b | 30.60±0.09b | 10830.51±272.57b | 4.91±0.05ab | 55.49b | |
M2N2 | 235.83±1.80a | 179.36±1.84b | 86.82±0.31b | 30.53±0.20b | 10501.40±159.28b | 4.75±0.06b | 54.82b | |
M2N3 | 240.56±0.92a | 191.68±1.88a | 86.02±0.19b | 30.69±0.06ab | 11410.96±151.36a | 5.06±0.05a | 55.09b | |
M | 110.55** | 34.10* | 78.34* | 571.60** | 272.61** | 756.27** | 104.74** | |
N | 334.08** | 53.39** | 84.00** | 27.84** | 267.08** | 23.22** | 11.89** | |
M×N | 11.86** | 0.31ns | 3.69* | 6.00** | 1.43ns | 1.92ns | 1.70ns | |
2017 | M1N0 | 160.79±2.87b | 165.62±2.64c | 96.26±0.67a | 31.31±0.03a | 7336.30±169.64d | 4.99±0.10b | 59.36a |
M1N1 | 260.10±5.46a | 175.54±2.09b | 94.66±0.99ab | 29.71±0.12bc | 11636.94±176.42b | 4.94±0.10bc | 57.50bc | |
M1N2 | 252.80±5.63a | 171.46±2.36b | 91.87±3.56b | 29.64±0.20c | 11191.95±256.75c | 4.73±0.21c | 56.25c | |
M1N3 | 256.03±3.04a | 183.52±1.67a | 94.95±0.67ab | 30.14±0.12b | 12178.10±187.51a | 5.25±0.10a | 57.79ab | |
M2N0 | 164.35±0.93c | 152.05±1.35c | 97.08±0.43a | 31.25±0.37a | 6889.11±145.79c | 4.62±0.04b | 58.90a | |
M2N1 | 243.06±4.88ab | 171.69±1.68b | 93.85±1.01ab | 29.78±0.29b | 10794.88±111.85ab | 4.82±0.05ab | 55.25b | |
M2N2 | 234.95±0.23b | 166.68±3.02b | 95.78±0.28a | 29.94±0.06b | 10527.79±198.08b | 4.78±0.11ab | 55.14b | |
M2N3 | 247.44±2.61a | 178.14±2.46a | 91.78±1.51b | 30.09±0.21b | 11242.41±171.13a | 4.91±0.06a | 54.71b | |
M | 30.90* | 7.62ns | 0.04ns | 1.02ns | 52.26* | 4.19ns | 40.34* | |
N | 239.15** | 42.39** | 1.96ns | 23.35** | 233.49** | 4.42* | 11.55** | |
M×N | 3.14ns | 2.49ns | 1.99ns | 0.35ns | 0.61ns | 2.11ns | 1.65ns |
新窗口打开|下载CSV
2.7 不同机插和氮肥缓速配施方式下杂交稻氮素吸收与产量的相关系数
分析2年不同机插方式和氮肥缓速配施方式下氮素吸收与产量间的相关性(表9),发现拔节期、抽穗期和成熟期的氮积累量,播种—拔节和拔节—抽穗阶段的氮积累速率,以及拔节—抽穗阶段茎叶氮积累量和抽穗—成熟阶段氮转运量,与有效穗数、穗粒数、单穗重和产量都有显著或极显著正相关关系,而与结实率和千粒重则有一定的负相关关系;抽穗—成熟阶段的氮积累速率与结实率呈极显著正相关,但与有效穗数、穗粒数、单穗重和产量均呈显著或极显著的负相关。Table 9
表9
表9杂交稻氮素吸收与产量的相关系数
Table 9
项目 Item | 氮积累量 N accumulation | 氮积累速率 N accumulation rate | 拔节—抽穗氮积累量 N accumulation from elongation to heading | 抽穗—成熟氮转运量 N translocation from heading to maturity | ||||||
拔节期 Elongation | 抽穗期 Heading | 成熟期 Maturity | 播种—拔节 Sowing to elongation | 拔节—抽穗 Elongation to heading | 抽穗—成熟 Heading to maturity | 茎鞘 Stem- sheath | 叶片 Leaf | 茎鞘 Stem- sheath | 叶片 Leaf | |
产量 Yield | 0.88** | 0.99** | 0.99** | 0.83** | 0.79** | -0.74** | 0.72** | 0.82** | 0.73** | 0.98** |
有效穗数 Panicles | 0.91** | 0.98** | 0.98** | 0.90** | 0.70** | -0.66** | 0.64** | 0.73** | 0.70** | 0.95** |
穗粒数 No. of spikelets per panicle | 0.65** | 0.77** | 0.77** | 0.41 | 0.94** | -0.93** | 0.78** | 0.89** | 0.66** | 0.85** |
结实率 Grain filling percentage | -0.45 | -0.33 | -0.39 | -0.14 | -0.56* | 0.71** | -0.29 | -0.43 | -0.23 | -0.41 |
千粒重 1000-grain weight | -0.57* | -0.57* | -0.60* | -0.88** | 0.03 | -0.05 | -0.57* | -0.15 | -0.25 | -0.46 |
单穗重 Panicle weight | 0.33 | 0.60* | 0.53* | 0.13 | 0.86** | -0.72** | 0.60* | 0.82** | 0.65** | 0.68** |
新窗口打开|下载CSV
3 讨论
3.1 钵苗机插杂交籼稻氮素吸收利用特征
水稻高产群体构建,高效合理的物质生产只是外在的表现,氮素吸收与积累才是水稻产量形成的内在推动力。籽粒氮素来自两个方面:一是抽穗前贮藏于植株内的氮素转运,二是穗后的氮素吸收。水稻氮素吸收和积累,主要受自身遗传调控,但种植方式[21,22]、栽插密度[23]和氮肥运筹[24,25]等栽培技术措施对其也有显著影响。胡雅杰等[22]通过研究6个不同穗型粳稻品种得出与毯苗机插相比,钵苗机插水稻抽穗期和成熟期吸氮量显著提高,拔节至抽穗阶段和抽穗至成熟阶段的氮素积累量和氮素吸收速率较高。本研究结果也表明,与毯苗机插相比,钵苗机插杂交籼稻抽穗期和成熟期吸氮量平均分别提高了12.63%和5.20%,拔节至抽穗阶段氮素积累量和氮素吸收速率平均分别提高了25.38%和0.84 kg·hm-2·d-1,这与胡雅杰等[22]研究粳稻的结果是一致的,但与毯苗机插相比,钵苗机插杂交籼稻抽穗至成熟阶段氮素积累量和氮素吸收速率分别降低了29.85%和0.26 kg·hm-2·d-1,这可能是因为钵苗机插杂交籼稻花前氮素吸收量大,后期籽粒氮素主要依靠花前的氮素转运,故而花后植株氮素吸收慢而少,而毯苗机插花前氮素积累量不足,难以满足后期籽粒氮素的需求,故而仍需较多地从土壤中吸收氮素。以上两点,是钵苗机插杂交籼稻氮素吸收积累区别于毯苗机插的重要特征,这可能是受环境条件影响,也可能是水稻品种类型的遗传特性本身就对花后氮素吸收特征存在差异。邓飞等[26]研究认为成熟期穗部的氮素主要依靠抽穗至成熟阶段茎鞘和叶片的氮素转运,许轲等[27]进一步研究指出不同生育时期叶片氮素积累量与产量的相关系数高于同一时期茎鞘氮素积累量与产量的相关系数,因此在保持茎鞘氮素积累量的基础上,提高叶片氮素积累,有利于进一步提高水稻产量[28]。本研究结果表明,钵苗机插抽穗至成熟阶段的茎叶氮素转运量、转运率以及氮素转运对穗部的贡献率均显著高于毯苗机插,且2种机插下叶片的氮素转运量、转运率以及拔节至抽穗阶段氮素积累量和抽穗至成熟阶段氮素转运量与产量的相关系数都明显高于茎鞘。说明相比毯苗机插,钵苗机插杂交稻生育中后期茎叶氮素转运量大,叶片对籽粒氮素积累贡献率要高于茎鞘,这与水稻茎叶干物质转运是密不可分的。氮素干物质生产效率是评价氮素利用率的重要指标,同时也是连接物质生产和氮素吸收的直观指标[29]。本研究结果显示,钵苗机插成熟期氮素干物质生产效率平均比毯苗机插高出9.79%,进一步说明了钵苗机插干物质生产和氮素吸收与转运能力优于毯苗机插。
水稻氮素利用效率的评价指标,除了干物质生产效率之外,还有氮素回收利用率、农学利用率、生理利用率、偏生产力、稻谷生产效率和收获指数等[30]。胡雅杰等[22]研究表明,钵苗机插杂交稻的氮肥偏生产力显著高于毯苗,氮素收获指数也略高于毯苗机插。本研究结果表明相比毯苗机插,钵苗的氮肥农学利用率、生理利用率和偏生产力平均分别提高了12.62%、11.94%和8.69%,氮素收获指数显著提高了5.41—6.42个百分点。这说明钵苗机插杂交稻比毯苗机插稻在氮素利用效率方面更具优势,这与钵苗机插杂交稻生育中后期具有较强的光合物质生产能力和氮素转运能力密不可分[22]。
3.2 氮肥缓基速追下机插杂交籼稻氮素吸收利用特征
众多研究认为在水稻生产中,合理的氮肥运筹可以提高氮素积累量和氮肥利用效率[31,32]。已有研究表明,缓释氮肥可以通过调节养分释放模式,实现水稻氮素养分的平衡状态,进而提高水稻氮素吸收利用,这是因为缓释氮肥养分释放周期长,减少了氨挥发、氮的径流淋溶和硝化-反硝化等途径的损失[33]。但陈贤友等[17]研究发现缓释氮肥存在肥效缓慢,易造成作物前期缺氮,黄旭等[34]也发现,施用缓释肥料是通过改善水稻后期的生育性状,进而提高了产量和养分利用率。而付月君等[33]研究认为一次性施用过多的缓释肥不仅会降低成熟期籽粒中氮素的积累量,还会导致水稻后期贪青晚熟,产量降低,而适当比例的缓释氮肥与尿素配施能够显著提高水稻籽粒中氮素的积累量[25]。本研究结果表明,与缓释肥一次性基施相比,以30%的尿素取代缓释肥作为基肥施用(缓速基施),机插杂交稻拔节期氮素积累量显著提高,而抽穗期和成熟期氮素积累量,以及拔节至抽穗阶段的茎叶氮素积累量和抽穗至成熟阶段的茎叶氮素转运量均显著降低,进而显著降低了氮肥的回收利用率。这是因为水稻生长前期根量少,尿素作基肥施用在前期流失快,而相同当量的缓释肥损失更小,所以缓速基施的氮素回收利用率低,同时也说明施用缓释肥并不会导致机插杂交稻前期缺氮,这也可能与本试验前茬作物是青菜,土壤基础肥力过高有关。也有研究指出水稻对氮素的吸收主要集中在幼穗分化期,而一次性施用缓释肥很难满足水稻生育中后期对氮的需求[35]。本研究结果表明,机插杂交稻氮素吸收最快的时期是拔节至抽穗期,且与缓释肥一次性基施相比,以30%的尿素取代缓释肥作为穗肥施用(缓基速追),使钵苗机插杂交稻拔节—抽穗阶段氮素吸收速率加快了0.60 kg·hm-2·d-1,因此其拔节—抽穗阶段的氮素积累量显著提高,进而使抽穗期氮素积累量提高了2.34%,尽管抽穗—成熟阶段氮素吸收速率有所下降,但成熟期氮素积累量依然提高了1.79%,这与氮素转运对穗部的贡献率显著提高有一定关联,此外氮肥回收利用、农学利用率、生理利用率和偏生产力也均有不同程度的提升,而拔节期氮素积累量则显著降低。这些特征与戢林等[36]总结的人工移栽水稻高产氮高效群体主要生育时期氮素积累特征非常吻合,即拔节前氮素积累量低,拔节—抽穗阶段氮素积累量迅速升高,而抽穗—成熟阶段仍保持较高的氮素积累能力。原因可能是缓基速追这种施肥方式下能弥补杂交稻幼穗分化期缓释肥营养供应不足的问题,且适当的无机氮供应可以增加土壤微生物数量,水稻能吸收更多的养分供植株生长和幼穗发育,从而促进了干物质和氮素积累,为水稻高产和氮肥高效利用打下了坚实的基础[37]。4 结论
与毯苗机插相比,钵苗机插杂交稻在氮素利用效率方面更具优势。钵苗机插杂交稻高产氮素高效利用特征可总结为拔节前氮素积累量不宜过高,拔节至抽穗阶段氮素积累应快而多,而抽穗—成熟阶段要保持较高的茎叶氮素转运能力和一定的氮素吸收能力。而且在钵苗机插下,采用70%缓释肥做基肥+30%尿素做穗肥的缓基速追的施肥方式,能适当降低拔节前氮素积累速率和积累量,进一步加快拔节至抽穗阶段氮素吸收速率,提高机插杂交稻抽穗期和成熟期氮素积累量,进而提高氮肥利用率。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
.,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 5]
[本文引用: 5]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]