Abstract 【Objective】 This study aimed to understand the yield formation characteristics and water use efficiency (WUE) of indica/japonica hybrid rice (IJHR) cultivar and their physiological bases under alternate wetting and soil drying (AWD) regime.【Method】The field experiment was conducted at Huangtianfan Experimental Farm which belonged to China National Rice Research Institute, Hangzhou, Zhejiang province, Southeast China, in 2018 and 2019. Two newly-bred IJHR cultivars, Yongyou 1540 and Chunyou 927, and two local high-yielding japonica hybrid rice (JHR) cultivars, Changyou 5 and Jiayou 5, were field grown. Two irrigation regimes, conventional irrigation (CI) and AWD, were imposed from 7 days after transplanting to maturity. The goals of this study were to investigate the effects of AWD on the grain yield and WUE of IJHR and its physiological bases. 【Result】Compared with those under CI regime, the grain yields of JHR cultivars were significantly decreased by 12.3%-12.8% under AWD regime, whereas the difference in grain yields of IJHR cultivars was not significant between CI and AWD regimes. Compared with the CI regime, AWD significantly reduced the amount of irrigation water and significantly increased WUE by 5.9%-8.3% and 13.7%-16.8% in JHR and IJHR cultivars, respectively. In comparison with JHR cultivars, IJHR cultivars showed greater tillering capacity, larger sink size and higher grain filling rate, higher leaf area duration and crop growth rate from heading to maturity, higher root oxidation activity, leaf photosynthetic rates, and activities of sucrose synthase and adenosine diphosphate-glucose pyrophosphorylase in grains at the first and second soil drying periods as well as re-watering periods after heading.【Conclusion】IJHR cultivars could obtain higher grain yields and higher WUE than JHR cultivars under AWD regime. Stronger physiological activities of root, including higher root oxidation activity at the first and second soil drying periods as well as re-watering periods after heading, and above ground plants, including higher leaf area duration, crop growth rate from heading to maturity, greater leaf photosynthetic rates, and activities of sucrose synthase and adenosine diphosphate-glucose pyrophosphorylase in grains at the first and second soil drying periods as well as re-watering periods after heading, contributed to their better yield performance and higher WUE of IJHR cultivars under AWD regime. Keywords:rice;alternate wetting and soil drying;indica-japonica hybrid rice;grain yield;water use efficiency;physiological bases
PDF (666KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础[J]. 中国农业科学, 2021, 54(7): 1499-1511 doi:10.3864/j.issn.0578-1752.2021.07.014 CHU Guang, XU Ran, CHEN Song, XU ChunMei, WANG DanYing, ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases[J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511 doi:10.3864/j.issn.0578-1752.2021.07.014
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】水稻(Oryza sativa L.)是我国主要粮食作物之一,稳定水稻产量,对于保障我国粮食安全具有重要的战略意义。然而,目前我国水稻生产正面临着两个重要难题,一是随着人口爆发式的增长、农村青壮年劳动力加速向城镇转移以及耕地面积的不断缩减,水稻单产迫切需要大幅提升[1]。前人研究指出,充分发挥籼粳亚种间的杂种优势,对于大幅提高水稻单产具有重要的科学意义与应用价值[2,3]。二是随着工业与制造业生产规模的迅猛扩张,加之高温、干旱等极端气象灾难频发,灌溉水资源短缺已成为限制我国水稻产业发展的重要瓶颈[4,5]。因此,在培育具有强大增产潜力的籼粳杂交稻新品种的同时,发展节水高效水稻种植模式,已成为当前保障我国粮食安全的重大课题。【前人研究进展】近年来,育种家们通过将粳型不育系与籼粳中间型广亲和恢复系进行配组,克服了早期籼粳杂交后代普遍存在的籽粒充实差、收获指数低、贪青迟熟等问题,成功选育了诸如甬优、春优等系列超高产籼粳杂交稻品种[2,3]。最近较多研究指出,相较于其他类型水稻品种,籼粳杂交稻品种往往具备穗大粒多、库容量巨大;根量大、根系分布广、扎根深、生育中后期根系活力强;群体受光姿态好、冠层结构合理、光合特性优势明显;物质生产能力强、收获指数高、抗倒能力较强等生物学优势[6,7,8,9]。近年来,在节水优先方针的指引下,我国稻作科学工作者以高产和水分高效利用为目标,研发了一批适合我国国情的现代农业节水技术。例如,干湿交替灌溉技术(alternate wetting and soil drying,AWD)、畦沟灌溉技术、间歇湿润灌溉技术、覆盖旱种技术等[10,11,12]。其中,AWD是目前在我国应用面积最大的节水灌溉技术,其技术特点是在水稻的生育过程中,保持田间水层一段时间,然后自然落干一段时间后再复水,再落干,再复水,如此循环,具有明显的节水效果。前人研究指出,AWD可以改善冠层结构、提高群体质量;延缓植株衰老、促进弱势籽粒充实;诱导强健根系形态的建成,提高根系的碳氮代谢及对水分、养分的吸收利用;改善根际土壤微生物对碳源利用程度和代谢多样性,促进根际土壤有机质的氧化和腐殖质的形成,增加根际土壤中养分的有效性,最终提高水稻产量与水分利用效率[13,14,15,16,17]。但也有研究持相反的观点,认为AWD落干阶段的土壤水势过低会引起水稻单位面积有效穗数、每穗粒数、结实率以及千粒重等产量构成因子有不同程度的下降,最终造成减产[18];也有研究者认为,AWD土壤处于频繁的富氧-缺氧的转变过程中,极易造成氮素通过反硝化、淋溶和固定等方式损失,不利于水稻产量形成以及水肥的高效利用[19,20]。【本研究切入点】前人关于籼粳杂交稻高产或超高产生物学优势的解析,大多是在水肥资源充沛的条件下完成的[6,7,8,9]。最新的一项研究结果表明,籼粳杂交稻品种不仅能在当地常规施氮量(200 kg N·hm-2)下实现高产(12.1 t·hm-2),当施氮量减半后依然能够保持较高的产量水平(8.8 t·hm-2)[21]。但籼粳杂交稻品种能否在节水灌溉,特别是AWD条件下实现高产与水分高效利用,目前并不清楚,且其生理基础尚未深入探讨。【拟解决的关键问题】本研究较为系统地分析了AWD对籼粳杂交稻品种产量形成以及水分利用效率的影响及其生理基础,旨在为我国高产与水分高效利用水稻品种的筛选、培育、开发利用以及节水栽培提供理论和实践指导。
Table 2 表2 表2不同灌溉模式下水稻产量、水分利用效率以及部分生理性状的方差分析 Table 2Analysis of variance on yield, WUE and some physiological traits of rice under different irrigation managements
方差分析 Analysis of variance
产量 Grian yield
水分利用效率 Water use efficiency
茎蘖成穗率 Percentage of productive tillers
作物生长速率 Crop growth rate
光合势 Leaf area duration
根系氧化力 Root oxidation activity
剑叶净光合速率 Flag leaf photosynthetic rate
蔗糖合酶 SuSase
腺苷二磷酸 葡萄糖焦磷 酸化酶 AGPase
年份 Year
NS
NS
NS
NS
NS
NS
NS
NS
NS
年份×品种 Year ×Cultivar
NS
NS
NS
NS
NS
NS
NS
NS
NS
年份×处理 Year ×Treatment
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS在P=0.05水平上差异不显著 NS, no significance at 0.05 level
YY-1540:甬优1540;CY-927:春优927;CY-5:常优5号;JY-5:嘉优5号;CI:常规灌溉;AWD:干湿交替灌溉。误差拔表示平均值±标准误,不同处理间进行比较。下同 Fig. 1Changes in soil water potentials under different irrigation managements throughout the rice growing season
YY-1540: Yongyou 1540; CY-927: Chunyou 927; CY-5: Changyou 5; JY-5: Jiayou 5; CI: Conventional irrigation; AWD: Alternate wetting and soil drying. Vertical bars represent mean±standard error. Compared between the different treatments. The same as below
Table 3 表3 表3不同灌溉模式对水稻产量构成因素的影响 Table 3Grain yield and its yield components under different irrigation managements
品种 Cultivar
处理 Treatment
稻谷产量 Grain yield (t·hm-2)
穗数 Number of panicles (×104 hm-2)
每穗粒数 Spikelets per panicle
总颖花量 Total spikelets (×103 m-2)
结实率 Filled grains (%)
千粒重 1000-grain weight (g)
甬优1540 YY-1540
CI
11.5a
202c
326a
65.7a
79.2c
23.0c
AWD
11.4a
198c
304b
59.9b
84.5b
23.3c
春优927 CY-927
CI
11.6a
189d
311b
58.8b
84.2b
24.7b
AWD
11.5a
186d
287c
53.2c
89.6a
25.0b
常优5号 CY-5
CI
10.1b
251a
186e
46.7d
84.4b
26.8a
AWD
8.86c
240b
169f
40.4e
85.3b
26.8a
嘉优5号 JY-5
CI
9.82b
248a
198d
48.9d
80.7c
25.8b
AWD
8.56c
235b
181e
42.3e
81.9c
25.9b
方差分析 ANOVA
品种 Cultivar (C)
**
**
**
**
**
**
处理 Treatment (T)
**
**
**
**
**
NS
品种×处理 C×T
**
*
*
*
**
*
CI:常规灌溉;AWD:干湿交替灌溉。不同字母表示P=0.05水平上差异显著,同栏内比较;*,在P=0.05水平上差异显著;**,在P=0.01水平上差异显著;NS,在P=0.05水平上差异不显著。下同 CI: Conventional irrigation; AWD: Alternate wetting and drying irrigation. Different letters within the same column mean significant difference at 0.05 level. NS means no significance at 0.05 level; *, significance at 0.05 level; **, significance at 0.01 level. The same as below
剑叶净光合速率 Flag leaf photosynthetic rate (µmol·m-2·s-1 )
D1
W1
D2
W2
D1
W1
D2
W2
甬优1540 YY-1540
CI
560a
559b
418a
414b
24.6a
24.3b
21.8a
21.3b
AWD
553a
637a
409a
498a
24.3a
26.7a
21.5a
24.3a
春优927 CY-927
CI
569a
563b
420a
418b
24.9a
24.5b
22.1a
21.6b
AWD
557a
629a
415a
478a
24.2a
26.5a
21.9a
24.8a
常优5号 CY-5
CI
502b
490c
343b
334c
24.5a
24.3b
18.4b
18.1c
AWD
407c
478c
254c
292d
20.7b
23.9b
13.8c
15.5d
嘉优5号 JY-5
CI
496b
486c
358b
360c
24.6a
24.1b
18.1b
18.4c
AWD
415c
481c
269c
287d
21.0b
24.0b
13.9c
15.2d
方差分析 ANOVA
品种 Cultivar (C)
**
**
**
**
**
**
**
**
处理 Treatment (T)
**
**
**
**
**
**
**
**
品种×处理 C×T
*
**
**
*
**
*
*
*
D1和D2分别对应齐穗后2次土壤落干期,为齐穗后14 d与29 d;W1和W2分别对应齐穗后2次土壤复水期,为齐穗后15 d与30 d。下同 D1 and D2: Soil drying period after heading, D1: 14 d after heading, D2: 29 d after heading; W1 and W2: Re-watering period after heading, W1: 15 d after heading, W2: 30 d after heading. The same as below
Table 7 表7 表7不同灌溉模式对灌浆期籽粒中蔗糖合酶(SuSase)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性的影响 Table 7Activities of SuSase and AGPase in grains of rice after heading stage under different irrigation managements
ZOU YB, HUANGM. Opportunities and challenges for crop production in China during the transition period Acta Agronomica Sinica, 2018,44(6):791-795. (in Chinese) [本文引用: 1]
ZHANG GQ . Prospects of utilization of inter-subspecific heterosis between indica and japonica rice Journal of Integrative Agriculture.2020,19(1):1-10. [本文引用: 2]
LIN JR, SONG XW, WU MG, CHENG SH. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding Scientia Agricultura Sinica, 2016,49(2):207-218. (in Chinese) [本文引用: 2]
BELDERP, BOUMAN R. CABANGONG, LUG, QUILANG YH, LIJ, SPIERTZ JH, TUONG TP . Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia Agricultural Water Management, 2004,65(3):193-210. [本文引用: 1]
BOUMANB . A conceptual framework for the improvement of crop water productivity at different spatial scales Agricultural Systems, 2007,93(1/3):43-60. [本文引用: 1]
WEI HH, MENG TY, LIC, XUK, HUO ZY, WEI HY, GUO BW, ZHANG HC, DAI QG . Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties Field Crops Research, 2017,204:101-109. [本文引用: 2]
WEI HY, ZHANG HC, BLUMWALDE, LI HL, CHENG JQ, DAI QG, HUO ZY, XUM, GUO BW . Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice Field Crops Research, 2016,198:179-187. [本文引用: 2]
MENG TY, WEI HH, LI XY, DAI QG, HUO ZY . A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice Field Crops Research, 2018,228:135-146. [本文引用: 3]
ZHOUL, LIU QY, TIAN JY, ZHU MH, CHENGS, CHEY, WANG ZJ, XING ZP, HU YJ, LIU GD, WEI HY, ZHANG HC. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series Acta Agronomica Sinica, 2020,46(5):772-786. (in Chinese) [本文引用: 2]
LIANG KM, ZHONG XH, HUANG RR, LAMPAYAN RM, PAN JF, TIANK, LIUY . Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China Agricultural Water Management, 2016,163:319-331. [本文引用: 1]
ZHANG YN, LIU MJ, SAIZG, DANNENMANNM, GUOL, TAO YY, SHI JC, ZUOQ, BUTTERBACHK, LI GY, LINS . Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system Field Crops Research, 2017,213:186-193. [本文引用: 1]
ZHANG ZC, LI HW, CHEN TT, WANG XM, WANG ZQ, YANG JC. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice Scientia Agricultura Sinica, 2011,44(24):4988-4998. (in Chinese) [本文引用: 1]
YANG JC, ZHOUQ, ZHANG JH . Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission The Crop Journal, 2017,5(2):151-158. [本文引用: 1]
CHUG, ZHAN MF, ZHU KY, WANG ZQ, YANG JC. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice Acta Agronomica Sinica, 2016,42(7):1026-1036. (in Chinese) [本文引用: 2]
ZHANGH, XUE YG, WANG ZQ, YANG JC, ZHANG JH . An alternate wetting and moderate soil drying regime improves root and shoot growth in rice Crop Science, 2009,49(6):2246-2260. [本文引用: 3]
LU DK, DUANH, WANG WW, LIU MS, WEI YQ, XU GW. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms Journal of Plant Nutrition and Fertilizers, 2019,25(8):1362-1372. (in Chinese) [本文引用: 3]
CHEN HF, PANG XM, ZHANGR, ZHANG ZX, XU QH, FANG CX, LI JY, LIN WX. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice Acta Agronomica Sinica, 2017,43(10):1507-1517. (in Chinese) [本文引用: 2]
CARRIJO DR, LUNDY ME, LINQUIST BA . Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis Field Crops Research, 2017,203:173-180. [本文引用: 2]
SAH RN, MIKKELSEN DS . Availability and utilization of fertilizer nitrogen by rice under alternate flooding; I. Kinetics of available nitrogen under rice culture Plant Soil, 1983,75(2):221-226. [本文引用: 2]
ERIKSEN AB, KJELDBYM, NILSENS . The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea Plant Soil, 1985,84(3):387-401. [本文引用: 1]
CHUG, CHENS, XU CM, WANG DY, ZHANG XF . Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions Field Crops Research, 2019,243:107625. [本文引用: 1]
CHUG, CHEN TT, CHENS, XU CM, WANG DY, ZHANG XF . Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China The Crop Journal, 2018,6(5):482-494. [本文引用: 4]
CHUG, CHEN TT, WANG ZQ, YANG JC, ZHANG JH . Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice Field Crops Research, 2014,162:108-119. [本文引用: 3]
YANG JC, ZHANG JH, WANG ZQ, ZHU QS, LIU LJ . Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling Field Crops Research, 2003,81(1):69-81. [本文引用: 1]
YANG JC, ZHANG JH, WANG ZQ, XU GW, ZHU QS . Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling Plant Physiology, 2004,135(3):1621-1629. [本文引用: 1]
YANG JC, ZHANG JH. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat Chinese Science Bulletin, 2018,63(28/29):2932-2943. (in Chinese) [本文引用: 1]
ZHOUQ, JU CX, WANG ZQ, ZHANGH, LIU LJ, YANG JC, ZHANG JH . Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation Journal of Integrative Agriculture, 2017,16(5):1028-1043. [本文引用: 2]
HUANGM, YANG CL, JI QM, JIANG LG, TAN JL, LI YQ . Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China Field Crops Research, 2013,149:187-192. [本文引用: 1]
AO HJ, PENG SB, ZOU YB, TANG QY, VISPERAS RM . Reduction of unproductive tillers did not increase the grain yield of irrigated rice Field Crops Research, 2010,116:108-115. [本文引用: 1]
LIJ, ZHANG HC, GONG JL, CHANGY, WU GC, GUO ZH, DAI QG, HUO ZY, XUK, WEI HY. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas Acta Agronomica Sinica, 2011,37(2):309-320. (in Chinese) [本文引用: 1]
CHUG, WANG ZQ, ZHANGH, YANG JC, ZHANG JH . Agronomic and physiological performance of rice under integrative crop management Agronomy Journal, 2016,108(1):117-128. [本文引用: 1]
CHUG, WANG ZQ, ZHANGH, LIU LJ, YANG JC, ZHANG JH . Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation Food and Energy Security, 2015,4(3):238-254. [本文引用: 2]
ZHANG HC, GONG JL. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China Scientia Agricultura Sinica, 2014,47(7):1273-1289. (in Chinese) [本文引用: 1]
ZHU DF, ZHANG XF, ZHANG YP. Development and prospect of high-yielding cultivation technology in rice Scientia Agricultura Sinica, 2007,40(Suppl.1):127-132. (in Chinese) [本文引用: 1]
BOYERJ, WESTGATEM . Grain yields with limited water Journal of Experimental Botany, 2004,55(407):2385-2394. [本文引用: 2]
SAINIH, WESTGATEM . Reproductive development in grain crops during drought Advances in Agronomy, 2000,68:59-96. [本文引用: 2]
YANG JC, ZHANG JH, LIUK, WANG ZQ, LIU LJ . Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis Journal of Plant Growth Regulation, 2007,26(4):318-328. [本文引用: 2]
ZHANG WY, SHENG JY, XU YJ, XIONGF, WU YF, WANG WL, WANG ZQ, YANG JC, ZHANG JH . Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development BMC Plant Biology, 2019,19(1):409. [本文引用: 1]
ZHANG WY, SHENG JY, FU LD, XU YJ, XIONGF, WU YF, WANG WL, WANG ZQ, ZHANG JH, YANG JC . Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice Environmental and Experimental Botany, 2020,169:103887. [本文引用: 1]
KATOT, TAKEDAK . Associations among characters related to yield sink capacity in space-planted rice Crop Science, 1996,36(5):1135-1139. [本文引用: 1]
ZHANGH, CHEN TT, WANG ZQ, YANG JC, ZHANG JH . Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation Journal of Experimental Botany, 2010,61(13):3719-3733. [本文引用: 1]
ZHANGH, LI HW, YUAN LM, WANG ZQ, YANG JC, ZHANG JH . Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice Journal of Experimental Botany, 2012,63(1):215-227. [本文引用: 1]
WANG GQ, LI HX, FENGL, CHEN MX, MENGS, YE NH, ZHANG JH . Transcriptomic analysis of grain filling in rice inferior grains under moderate soil drying Journal of Experimental Botany, 2019,70(5):1597-1611. [本文引用: 1]
LIANG JS, ZHANG JH, CAO XZ . Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza Sativa) hybrids Physiologia Plantarum, 2001,112(4):470-477. [本文引用: 2]
AHMADIA, BAKER DA . The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat Plant Growth Regulation, 2001,35(1):81-91. [本文引用: 2]
YANG JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization Scientia Agricultura Sinica, 2011,44(1):36-46. (in Chinese) [本文引用: 2]
RAMASAMYS, BERGEH, PURUSHOTHAMANS . Yield formation in rice in response to drainage and nitrogen application Field Crops Research, 1997,51(1/2):65-82. [本文引用: 1]
JIANG YH, XU JW, ZHAOK, WEI HH, SUN JJ, ZHANG HC, DAI QG, HUO ZY, XUK, WEI HY, GUO BW. Root system morphological and physiological characteristics of indica-japonica hybrid rice of Yongyou series Acta Agronomica Sinica, 2015,41(1):89-99. (in Chinese) [本文引用: 1]