删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

灌溉下限对设施土壤N2O和NO排放特征的影响

本站小编 Free考研考试/2021-12-26

张丽媛,, 吕金东, 石欣悦, 虞娜,, 邹洪涛, 张玉玲, 张玉龙沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程实验室,沈阳110866

Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil

ZHANG LiYuan,, Lü JinDong, SHI XinYue, YU Na,, ZOU HongTao, ZHANG YuLing, ZHANG YuLongCollege of Land and Environment, Shenyang Agricultural University/Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866

通讯作者: 虞娜,E-mail:sausoilyn@syau.edu.cn

责任编辑: 李云霞
收稿日期:2020-05-22接受日期:2020-06-28网络出版日期:2021-03-01
基金资助:国家自然科学基金项目.41401322
国家重点研发计划项目.2016YFD0300807


Received:2020-05-22Accepted:2020-06-28Online:2021-03-01
作者简介 About authors
张丽媛,E-mail:zhangliyuan1027@163.com









摘要
【目的】合理灌溉是设施生产控制N2O和NO排放,提高氮肥利用率的有效措施。研究不同灌水下限设施土壤N2O和NO排放动态与土壤水分、无机氮和可溶性有机氮关系,分析N2O和NO排放特征及影响因素,以期为N2O、NO减排和设施土壤灌溉管理提供科学依据。【方法】基于连续7年的设施土壤不同灌溉下限的田间定位试验,以番茄为供试作物,设4个土壤水吸力处理,分别为25 kPa(W1)、35 kPa(W2)、45 kPa(W3)和55 kPa(W4)。采用密闭静态箱-气相色谱和氮氧化物分析仪法,分别对番茄生长季的N2O和NO进行田间原位同步观测。【结果】番茄生长季不同灌水下限处理土壤N2O和NO排放通量分别为 -34.46—1 671.78 μg N·m-2·h-1和6.83—269.89 μg N·m-2·h-1,二者排放峰值期同步且主要发生在施肥和灌溉后,各处理NO/N2O均小于1。土壤N2O和NO累积排放量分别为W2和W1处理最低(P <0.01),各处理N2O+NO总累积排放量表现为W4处理>W3处理>W1处理>W2处理。W2处理番茄产量较W1、W3和W4处理分别增加84%、32.4%和12%。单位产量N2O+NO排放量表现为W4处理最高(P <0.01),W2处理最低。各处理施肥和收获后土壤无机氮和可溶性有机氮含量的重复测量方差分析表明,除灌水下限和观测时间交互对亚硝态氮含量影响不显著外,灌水下限和观测时间及二者交互效应对土壤无机氮和可溶性有机氮均有极显著影响(P <0.01)。冗余分析和相关分析表明,NO2--N、NH4+-N和土壤孔隙含水量(WFPS)可分别解释设施土壤N2O和NO变异的55%、32.5%和20.7%,均是极显著影响不同灌溉下限N2O和NO排放的主要影响因素。【结论】综合考虑产量和N2O、NO减排效应,灌水下限35 kPa的W2处理为本试验最适宜的灌溉管理措施。
关键词: 灌溉下限;设施土壤;N2O排放;NO排放

Abstract
【Objective】 Reasonable irrigation in greenhouse is an effective measure to control N2O and NO emissions and to improve utilization rate of nitrogen fertilizer. In order to provide a scientific basis for N2O and NO emission reduction and soil irrigation management in greenhouse, the dynamics of soil N2O and NO emissions under different irrigation regimes and its relationship with soil moisture and inorganic nitrogen and soluble organic nitrogen were studied, and the N2O and NO emissions characteristics and its influencing factors were also analyzed.【Method】A seven-year long term field experiment was conducted in greenhouse, tomatoes were used as the experimental crop, and four irrigation regimes were conducted to control lower irrigation limits of 25 kPa (W1), 35 kPa (W2), 45 kPa (W3) and 55 kPa (W4), respectively. The N2O and NO emission were monitored in-situ simultaneously by using closed static chamber-gas chromatography and NOx analyzer, respectively. 【Result】 The soil N2O and NO emission fluxes of different irrigation regimes varied between -34.46-1 671.78 μg N·m-2·h-1and 6.83-269.89 μg N·m-2·h-1 in tomato growing season, respectively. The peak periods of N2O and NO emissions were synchronous and mainly occurred after fertilization and irrigation, and NO/N2O was less than 1 for each treatment. The cumulative soil N2O and NO emissions were the lowest under W2 and W1 treatments (P <0.01) respectively, and the total N2O+NO emissions for each treatment were W4 >W3 >W1 >W2. Compared with W1, W3 and W4 treatments, tomato yields under W2 treatment was increased by 84%, 32.4% and 12%, respectively. The yield-scaled N2O+NO emissions was the highest under W4 treatment and the lowest under W2 treatment (P <0.01). Repeated measurements anova of soil inorganic nitrogen and soluble organic nitrogen after fertilizations and harvest showed that except for the interaction of irrigation regime and measure time had no significant effect on the nitrite content, irrigation regimes, measure time and their interaction had a significant effect on soil inorganic nitrogen and soluble organic nitrogen (P <0.01). Redundancy and correlation analysis indicated that NO2--N, NH4+-N and WFPS could explain 55%, 32.5% and 20.7% variations of N2O and NO for greenhouse soil, which were the main influencing factors that affected N2O and NO emissions very significantly under different irrigation regimes.【Conclusion】Comprehensive consideration of yield, N2O and NO emission reduction effect, W2 treatment with irrigation lower limit of 35 kPa was the most appropriate irrigation management measurement for this experiment condition.
Keywords:irrigation low limits;greenhouse soil;N2O emission;NO emission


PDF (722KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张丽媛, 吕金东, 石欣悦, 虞娜, 邹洪涛, 张玉玲, 张玉龙. 灌溉下限对设施土壤N2O和NO排放特征的影响[J]. 中国农业科学, 2021, 54(5): 992-1002 doi:10.3864/j.issn.0578-1752.2021.05.011
ZHANG LiYuan, Lü JinDong, SHI XinYue, YU Na, ZOU HongTao, ZHANG YuLing, ZHANG YuLong. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil[J]. Scientia Acricultura Sinica, 2021, 54(5): 992-1002 doi:10.3864/j.issn.0578-1752.2021.05.011


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】N2O和NO是土壤气态氮损失的主要途径,对全球气候变暖和臭氧层破坏有着重要影响[1]。N2O是全球第三大温室气体,其百年的增温潜势(global warming potential)约为CO2的300倍[2]。NO参与复杂的光化学反应,其催化形成对流层的臭氧进而导致间接温室效应[3]。农田土壤是N2O和NO排放的主要来源[4],而设施土壤N2O排放占农田排放量的20%[5]。我国设施菜地普遍具有高额灌水施肥的特点,这造成氮素以硝态氮淋溶和N2O、NO、NH3和N2的气态形式损失。随着设施生产面积的不断扩大,N2O和NO排放导致的氮损失越来越引起关注。在土壤氮生物地球化学循环中,N2O和NO是硝化和反硝化过程损失的主要成分,而水分是影响这些氮转化过程的重要因子,直接制约着N2O和NO的消长。因此,探究不同灌水对设施土壤N2O和NO排放规律的影响,对设施土壤合理灌溉、减少N2O和NO排放具有重要意义。【前人研究进展】目前关于农田土壤N2O和NO排放同步观测的研究主要集中在灌水、施肥、添加硝化抑制剂和生物炭改良等方面,有机无机肥配施、添加硝化抑制剂和生物炭肥料可显著降低N2O和NO排放[6,7,8,9,10,11]。水分通过影响土壤中O2的扩散而间接地影响土壤中微生物的活性及其主导的硝化和反硝化氮素转化过程,直接决定着无机氮形态(NO3--N和NH4+-N)[12,13,14],进而调控土壤N2O和NO排放。灌溉是设施生产中土壤水分补充的唯一来源,与常规灌溉相比,采用滴灌施肥[15,16,17]、加气[18]和减量灌溉[19,20]可在保证作物产量的同时,显著减少设施土壤N2O 和 NO 排放。沟灌土壤N2O通量显著高于滴灌和地下灌溉[21]。土壤孔隙含水量(WFPS)是影响N2O和NO排放的重要因子[22],当WFPS在30%—60%,NO是土壤气态氮排放主要成分;63%WFPS时,N2O/NO接近于1;WFPS>65%时,土壤有利于反硝化反应发生,以N2O排放为主[23,24]。灌水下限30 kPa时,设施土壤N2O排放通量最低,分别较灌水下限20 kPa和40 kPa低8%和36%[25]。【本研究切入点】目前,关于灌水对N2O和NO排放的研究主要集中在灌溉方式或灌溉量方面,不同灌溉下限对设施土壤N2O和NO同步排放的研究鲜有报道,关于其影响因素的研究还需进一步加强。【拟解决的关键问题】本试验基于连续7年设施番茄田间不同灌溉下限的定位试验,研究设施土壤N2O、NO同步排放特征及其影响因素,旨在寻求设施土壤适宜的灌水下限,为设施土壤灌溉管理、N2O和NO减排提供理论依据。

1 材料与方法

1.1 研究区概况

试验始于2012年,在沈阳农业大学设施生产试验基地内进行(41°49′N,123°34′E),每年4—8月进行番茄种植,其余时间土地休耕。本研究在2019年进行,供试土壤为棕壤,供试作物为番茄。2012年春季试验开始前0—20 cm土层基本理化性质如表1所示。

Table 1
表1
表12012年试验开始前土壤基本理化性质
Table 1Soil basic physiochemical properties before the experiment in 2012
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Available N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
容重
Bulk density (g·cm-3)
pH
10.91.457.825.290.21.517.0

新窗口打开|下载CSV

1.2 试验设计

设施田间试验设4个不同灌溉下限处理,其对应的土壤水吸力分别为25 kPa(W1)、35 kPa(W2)、45 kPa(W3)和55 kPa(W4),灌溉上限均为土壤田间持水量(6.3 kPa)。试验小区在始建前,用埋深60 cm的塑料布做防渗透隔离处理,防止小区间水分、养分的运移,小区面积2.5 m2,设4次重复。每个小区种植番茄16株,番茄栽植行距平均50 cm,株距30 cm,保留四穗后打顶。

各处理肥料种类和用量一致,有机肥(膨化鸡粪26.4 t·hm-2)、尿素(300 kg N·hm-2)、过磷酸钙(220 kg P2O5·hm-2)和硫酸钾(300 kg K2O·hm-2)。定植前,各小区统一施用有机肥和过磷酸钙作基肥。氮、钾肥分3次在定植前、第一和第二穗果膨大期等量施入。番茄从移栽到收获历时101 d,两次追肥时间分别为定植后第48天和第71天。

灌溉采用膜下滴灌方式进行灌溉,在定植后距植株5 cm左右铺设滴灌带,然后覆盖地膜。番茄定植后相继滴灌定植和缓苗水后,进行水分处理。为确定灌溉时间和灌溉量,各小区埋设张力计和TDR探头指示土壤水吸力变化。灌水下限土壤含水量由设计土壤吸力值算出,即当清晨8:00—8:30的20 cm土层张力计读数达到灌溉下限土壤吸力值时,依据实测值,使用水分特征曲线θ=0.5205[1+(6382.43h)11.501]-0.0094r=0.995,P<0.01)计算土壤体积含水量。其中,h:土壤水吸力(kPa),θ:土壤体积含水量(cm3·cm-3)。然后以公式(1)进行小区单次灌溉量计算:

Q=(Qf-Q1)×H×R×S
式中:Q是一次灌水水量(m3),QfQl分别是灌水上限和下限土壤含水量(m3·m-3),H是计划湿润层厚度(m),取H=0.3 m;R是土壤湿润比,取R=0.5;S是小区面积(m2)。本试验各处理生育期灌水量见表2。定植时各处理灌溉量相同,定植后第14天开始第一次灌溉,各处理平均灌溉间隔天数为3.5 d(W1)、4.4 d(W2)、5.3 d(W3)、6.3 d(W4)。

Table 2
表2
表2不同灌溉下限处理灌水次数、总灌水量和平均单次灌水量
Table 2Irrigation frequency, total irrigation amount and average single irrigation amount under different irrigation regimes
处理
Treatment
灌水次数
Irrigation time
总灌水量
Total irrigation amount (m3·hm-2)
平均单次灌水量
Average single irrigation amount (m3·hm-2)
W1292957.2102.0
W2232543.8110.6
W3192274.0119.7
W4162102.0131.4

新窗口打开|下载CSV

1.3 样品采集与分析

气体样品于2019年设施番茄定位试验定植后第2天开始采集,收获当天采集最后一次,共采样18次,采样间隔为6 d,施肥后增加观测一次,随机从各处理的重复中选择3个固定位点采气。采用静态箱法进行气体采集,箱体由PVC材料制成,定植前将静态箱底座(40 cm×40 cm×10 cm)埋入作物两株之间且箱体内无植株,底座埋入土壤深度为5 cm,底座外侧带有水槽。气体采集时,将40 cm×40 cm×40 cm箱体罩于底座上,水槽灌水密封。静态箱顶端装有温度计测定箱内温度,气泵连接气袋进行采气。当气体采集和灌水同一天时,先进行灌水,后进行气体采集。采样在上午8:00—11:00完成,分别在密闭后0、10、30 min各采集一次,同时记录箱内温度,每次分别抽取40 mL和1 000 mL气体置两个气袋中密闭带回实验室分别观测N2O和NO。采用Agilent 7890B气相色谱仪及电子捕获检测器(ECD)测定N2O含量和42i型NO-NO2 -NOx分析仪(Thermo Environmental Instruments Inc., USA)测定NO含量。

土壤样品的采样(除第2次未采样)与气体同步采集,采集表层(0—10 cm)土壤。每个静态箱底座内多点采集土样混匀装密封袋,冰柜保存备用。测试前,解冻鲜样,烘干法测定含水量。土壤无机氮和可溶性有机氮采用0.01 mol·L-1 CaCl2浸提,可溶性总氮(STN)采用碱性过硫酸钾氧化,NO3--N、NH4+-N和NO2--N采用AA3自动分析仪测定(Seal Analytical,USA),滤液中可溶性总氮与矿质氮(NO3--N+NH4+-N+ NO2--N)之差即为土壤可溶性有机氮(SON)。

1.4 数据分析

静态箱内气体的排放通量采用公式(2)计算:

$F=\rho \times h \times \frac{\mathrm{d} c}{\mathrm{~d} t} \times \frac{273}{273+T} \times k$
式中,F是N2O或NO的排放通量(μg N·m-2·h-1),ρ是标准状态下气体密度(N2O-N:1.25 kg·m-3;NO-N:0.625 kg·m-3),h是密闭箱净高度(m),dc/dt是采样箱内N2O或NO浓度变化率(μL·L-1min-1),T是采样过程中箱内空气平均温度(℃),k是时间转换系数(60 min·h-1)。由于箱内气体压强几乎不变,对N2O和NO的影响可忽略,因此计算时不考虑压强影响。

生长季累积N2O或NO排放量采用公式(3)计算:

$ CF=\sum_{i=1}^{n}\left(\frac{F_{i+1}+F_{i}}{2}\right) \times\left(t_{i+1}-t_{i}\right) \times 24 \times f$
式中,CF是累积N2O或NO排放量(N2O、NO:kg N·hm-2),F是第i次N2O或NO排放通量(单位同上),24是每小时排放量换算为每天排放量的转换系数,(ti+1-ti)是连续两次测定的间隔天数,n是观测的总次数,f是单位换算系数(10-5)。

单位产量N2O+NO累积排放量采用公式(4)计算:

$Y-S_{\left(\mathrm{N}_{2} \mathrm{O}+\mathrm{NO}\right)}=\frac{C F \times 1000}{Y}$
式中,Y-S(N2O+NO)是单位产量N2O+NO累积排放量(Yield-scaled N2O+NO intensity)(g·kg-1),CF是N2O+NO总累积排放量(kg N·hm-2),Y是番茄产量(kg·hm-2),1000是单位换算系数。

土壤孔隙含水量(water-filled pore spaces,WFPS)(%),如公式(5):

$WFPS=Q_{w} \frac{\rho}{1-\rho / 2.65}$
式中Qw是土壤质量含水量(%);ρ是土壤容重(g·cm-3);2.65是土壤密度(g·cm-3)。采用DPS 7.05进行单因素完全随机分析和SPSS 21.0进行重复测量方差分析和Pearson相关分析, 利用LSD法进行差异显著性检验,Canoco 5.0进行冗余分析(RDA)。Origin9.3进行制图,图表中数据均为平均值±标准误。

2 结果

2.1 不同灌溉下限设施土壤N2O排放特征

不同灌水下限番茄生长季土壤N2O排放通量和累积量动态变化如图1所示。由图1-a可知,整个番茄生长季各处理土壤N2O排放通量变化趋势基本一致,其变化范围为-34.46—1 671.78 μg N·m-2·h-1,在第47天出现负值,表现为N2O的吸收。在定植后第2天,各处理N2O排放表现为最大排放峰,W4极显著高于其余处理,其他灌水下限之间差异不显著。随后各处理排放表现为降低的变化,在第一、二次追肥和番茄收获结束表现出三次排放次高峰。第一、二次追肥后,各处理N2O排放均表现为W3>W1>W2>W4,W3处理极显著高于其他处理(P<0.01)。第一次追肥后W1极显著高于W2和W4处理,W2与W4处理间差异不显著;第二次施肥后W1显著高于W2与W4处理,后二者间差异不显著。番茄收获结束前各处理N2O排放表现为极显著差异,依次为:W1>W3>W2>W4P<0.01)。由图1-b可知,整个生长季不同灌水下限累积N2O排放量总体表现为W4>W3>W1>W2,W4处理在整个生长季均明显高于其余处理。从定植后1—26 d及26—101 d排放累积量表现出分段的线性变化,为此分前期后期研究分段的线性斜率,其表征了单位时间内累积量的变化即排放速率大小,结果表明前期排放速率为第二阶段的3.88—6.95倍。各处理排放速率表现为,前期W4处理速率最大,W3和W1接近,后期W3处理最大,W2处理在整个观测期均最小的变化特点。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同灌溉下限N2O排放通量和累积量动态变化(箭头表示施肥)

Fig. 1Dynamic of flux and cumulative of N2O emissions under different irrigation regimes (Arrows for fertilization)



2.2 不同灌溉下限设施土壤NO排放特征

不同灌水下限番茄生长季土壤NO排放通量和累积量动态变化如图2所示。由图2-a可知,NO排放通量与N2O表现出类似规律,其通量在6.83—269.89 μg N·m-2·h-1之间变化。番茄定植后20 d内,土壤NO的排放通量呈波动变化,最大峰值(269.89 μg N·m-2·h-1)为定植后13 d W4处理,之后NO的排放通量维持在相对较低且稳定的排放水平。两次追肥后又出现阶段性峰值,分别为33.06和56.14 μg N·m-2·h-1,二者均显著低于定植初期NO的排放峰值。番茄生长期内,除W3处理NO排放通量的变异为中等变异外,其余处理均为强变异(其变异系数大于1)。由图2-b可见,整个生长季不同灌水下限累积NO排放量总体表现为W4>W2≈W3>W1,W4处理最高,其分段线性斜率最大。生长季前期和后期,均表现为随着灌水下限降低,其排放速率减小的变化特征,其前期速率为后期的3.61—6.87倍,后期W1、W2和W3之间排放速率接近。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同灌溉下限NO排放通量和累积量动态变化(箭头表示施肥)

Fig. 2Dynamic of flux and cumulative of NO emissions under different irrigation regimes (Arrows for fertilization)



2.3 灌溉下限对番茄产量及NO/N2O排放比的特征

表3为不同灌水下限番茄产量及NO/N2O排放比的特征。不同灌水下限番茄产量整体间差异达极显著水平,以W2处理产量最高,分别比W1、W3和W4高84.0%、32.4%和12.0%,除W3和W4之间为5%显著水平外,其余任意两个处理间均为1%极显著差异。W4处理N2O+NO总累积排放量最高,与其他处理存在极显著差异(P<0.01),W4处理分别比W1、W2、W3高64.2%、78.3%、45.8%,W2处理其总累积量最低且仅与W1显著差异(P<0.05),其余差异为极显著(P<0.01)。不同灌溉下限单位产量N2O+NO累积排放量的变化表现为W4处理最高,与W1差异不显著,与其余处理差异极显著,以W2处理最低。各处理NO/N2O均小于1,且不同灌水下限间存在极显著差异(P<0.01),表现为W2>W4>W3>W1处理的变化特征。

Table 3
表3
表3不同灌水下限番茄产量及土壤NO和N2O的排放参数
Table 3Tomato yield and NO and N2O emission indexes from soil under different irrigation regimes
处理
Treatment
番茄产量
Tomato yield (×103 kg·hm-2)
N2O+NO总累积排放量
N2O+NO total cumulative emissions (kg N·hm-2)
单位产量N2O+NO排放
Yield-scaled N2O+NO (×10-3g·kg-1)
NO/N2O
W140.38±1.04dC1.90±0.01cC47.01±1.49aA0.49±0.01dD
W274.31±1.55aA1.75±0.03dC23.60±0.65cC0.89±0.01aA
W356.13±2.81cB2.14±0.04bB38.32±1.54bB0.65±0.01cC
W466.34±2.91bAB3.12±0.04aA47.15±1.83aA0.74±0.01bB
平均值±标准误,同一列不同小、大写字母分别表示处理间差异显著和极显著(P<0.05和P<0.01)
Means ± standard error, different lowercase and uppercase letters in the same column show significance at 5% and 1% level, respectively

新窗口打开|下载CSV

2.4 不同灌溉下限设施土壤N2O和NO排放的影响因素

2.4.1 土壤孔隙含水量(WFPS)的动态变化 图3为不同灌水下限WFPS的动态变化,整个番茄生长季在30%—92%范围变化。定植初始土壤水分统一控制,土壤孔隙含水量接近饱和,各处理WFPS均较高且差异较小。在第14天开始水分处理以后,各处理随灌溉和水分消耗呈起伏变化,W1和W2处理的WFPS以50%—75%居多,而W3和W4处理的WFPS以30%—50%变化为主。不同灌溉下限平均WFPS表现为随灌水下限增加而降低,W1处理最高。与W1处理相比,W2、W3和W4处理分别降低10.1%、23.5%和26.8%,且W3和W4差异不显著。生长季各处理WFPS的变异表现为随灌水下限增加而增加的特点,均为中等变异(0.1<C.V.<1)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同灌水下限土壤孔隙含水量(WFPS)的动态变化

Fig. 3Dynamic changes of soil water filled pore space under different irrigation regimes



2.4.2 设施土壤无机氮和可溶性有机氮含量变化 不同灌水下限土壤无机氮和可溶性有机氮含量如图4所示,总体上土壤无机氮和可溶性有机氮含量从高到低依次为硝态氮、可溶性有机氮、铵态氮及亚硝态氮。土壤硝态氮和可溶性有机氮作为土壤可溶性氮的主要成分,在番茄生长季波动较为频繁。土壤亚硝态氮在定植初期达到峰值(4.3 mg·kg-1),随后逐渐降低,土壤铵态氮与气体排放规律相似。考虑到尿素转化,对各处理基肥和追肥后10—13 d及收获结束后4次土壤无机氮和可溶性有机氮进行重复测量方差分析,结果表明除灌水下限和观测时间交互对亚硝态氮含量差异不显著外,灌水下限、观测时间及二者交互作用对土壤无机氮和可溶性有机氮均有极显著影响(P<0.01)。不同灌水下限亚硝态氮含量表现为随灌水下限增加而降低,W1极显著地高于W3和W4,W1和W2差异显著。灌水下限对铵态氮含量表现为W2>W1>W4>W3,仅W1、W2和W3差异显著。灌水下限对硝态氮含量表现为W4>W3>W2>W1,各水平之间差异极显著。灌水下限对可溶性有机氮含量表现为W3>W4>W1>W2处理,除W1和W4差异显著,其余均为极显著差异。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同灌水下限土壤无机氮和可溶性有机氮含量

Fig. 4The soil inorganic nitrogen and soluble organic nitrogen content under different irrigation regimes



2.5 设施土壤N2O、NO排放量与各影响因素间关系

对不同灌溉下限设施土壤N2O、NO排放通量、无机氮、可溶性有机氮及WFPS进行相关分析,如表4所示。结果表明,N2O、NO、铵态氮、亚硝态氮和WFPS各指标间任意二者均呈极显著正相关(P<0.01)。可溶性总氮与硝态氮和可溶性有机氮呈极显著正相关(P<0.01)。WFPS与STN、SON和硝态氮均为极显著负相关(P<0.01)。

Table 4
表4
表4不同灌溉下限土壤N2O、NO与无机氮、可溶性有机氮及孔隙含水量的相关分析
Table 4Correlation analysis of soil N2O, NO, inorganic nitrogen, soluble organic nitrogen and WFPS under different irrigation regimes
项目
Item
N2ONO铵态氮
NH4+-N
硝态氮
NO3--N
亚硝态氮
NO2--N
可溶性总氮STN可溶性有机氮SONWFPS
N2O10.696**0.619**-0.036ns0.884**-0.050ns-0.093ns0.415**
NO10.509**-0.051ns0.622**-0.136ns-0.168ns0.435**
NH4+-N10.213ns0.577**0.119ns-0.146ns0.319**
NO3--N1-0.086ns0.696**0.008ns-0.472**
NO2--N1-0.168ns-0.189ns0.474**
STN10.688**-0.602**
SON1-0.399**
WFPS1
* 表示显著相关(P<0.05);**表示极显著相关(P<0.01); ns表示无显著差异,n=68
Asterisks indicated 0.05 level significances (*P<0.05) and 0.01 level significances (**P<0.01); ns indicated no significant difference; n=68

新窗口打开|下载CSV

图5为土壤无机氮、可溶性有机氮、WFPS与两种气体排放量的冗余分析(RDA),用以阐明各因子对N2O和NO排放的影响程度。由图5可见,土壤无机氮和可溶性有机氮含量及WFPS对土壤N2O和NO排放的变异程度在第一轴(Axis 1)和第二轴(Axis 2)的解释量分别达到60.83%和3.2%,即前两轴累计解释N2O和NO排放量变异的64.03%,且主要以第一轴主导,N2O和NO在第一轴上具有相似的载荷。蒙特卡洛检验表明,第一轴(F=306.0,P=0.002)和所有轴的总和(F=58.5,P=0.02)差异极显著。蒙特卡洛检验排序后表明,影响气体排放的影响程度由大到小依次为亚硝态氮、铵态氮和WFPS。亚硝态氮、铵态氮和WFPS均与N2O、NO呈极显著正相关(P<0.01),对土壤N2O和NO排放差异性大小的解释率分别为55%、32.5%和20.7%,这与Pearson相关分析结果基本一致。

图5

新窗口打开|下载原图ZIP|生成PPT
图5土壤N2O和NO与其影响因素的冗余分析

Fig. 5Redundancy analysis of soil N2O and NO and its influencing factor



3 讨论

3.1 灌水下限对设施土壤N2O和NO排放的影响

土壤含水量调节着土壤通气性及含氧量的动态变化,进而调控着土壤微生物的硝化和反硝化过程[26],当土壤含水量较高时,O2含量快速下降导致反硝化产生的N2O和NO的大量排放[27]。本研究中,N2O和NO峰值出现在基肥施用后1—2 d,这与已有研究结果一致[28,29]。定植后基肥施入大量的氮肥和有机肥,为微生物活动提供了充足的营养条件。同时,充足的缓苗水灌溉使得此时期土壤含水量较高(WFPS接近饱和),从而有利于土壤的硝化-反硝化作用。W4处理累积N2O和NO排放量最高,与其他3个处理存在极显著差异。这可能是W4处理灌水下限较高,总灌水量较其他处理分别降低7%—29%,灌水时间间隔较大,单次灌水量大,导致W4处理存在明显的干湿交替过程。与其他常处于湿润的土壤相比,频繁地干湿交替促进了土壤中硝化作用和反硝化作用交替循环进行[30],这与ZHOU等[31]的研究结果一致。W1处理累积NO排放最低,极显著低于W2和W3处理(P<0.01),这是因为NO主要源于自养和异养硝化细菌参与的硝化过程[32],而W1处理灌水充足,土壤长期处于湿润状态,土壤可能以反硝化作用为主。上述结果与ABALOS等[33]研究结果一致,与低频灌水相比,高频灌水可以减少NO的排放。W2处理的单位产量N2O+NO排放量极显著低于其他处理(P<0.01),在保证产量的同时减少了N2O和NO的排放。整个番茄生长季累积N2O排放量高于NO,各处理NO/N2O均小于1,其表明N2O和NO可能以反硝化排放为主[34,35]

3.2 设施土壤NO、N2O排放与土壤可溶性总氮、WFPS的关系

土壤的氮素形态和WFPS是影响N2O和NO的重要因素[36]。如表4图5所示,本研究WFPS与N2O和NO呈极显著正相关(P<0.01),这与陈慧等研究基本一致[37]。前人研究表明,在土壤由干变湿过程中,WFPS低于一定阈值时,土壤N2O通量随土壤WFPS的增加呈指数增长,当WFPS大于60%时达到最大,而后随土壤WFPS的减少而下降[38]。LIU等[39]研究发现土壤WFPS在35%—55%时有利于NO和N2O同时产生。本研究开始水分控制后,W1和W2处理的WFPS多处于50%—75%,W3和W4处理的WFPS多处于30%—50%。W3和W4处理较W1和W2处理土壤具有充足的氧气,土壤处于有氧条件,微生物活动旺盛,且土壤WFPS<60%,N2O和NO随土壤WFPS的增加而升高。铵态氮和硝态氮作为硝化和反硝化作用的底物,直接影响N2O和NO的产生,本研究W4处理表层土壤平均NO3--N含量高于其余3个处理,表现为W3和W4处理的N2O排放量高于W1和W2处理。同时,W1和W2分别是W3和W4两个处理平均总灌水量的1.35和1.16倍,这可能与灌水量越多引起土壤氮素向下淋溶损失增多[40],而以气态形式损失减少有关。此外,W4和W3的高累积排放量还可能和N2O和NO产生的途径有关。WOLF等[41]研究发现土壤硝化和反硝化作用可以同时发生,这两个过程的贡献主要受含水量的影响。颜青等[42]表明N2O的产生途径除生物学硝化和反硝化过程外,还可能通过高氮还原和羟胺分解的化学反硝化过程产生。相关分析表明,铵态氮、亚硝态氮含量均与N2O和NO排放存在极显著正相关(P<0.01),而硝态氮与N2O和NO排放无相关性。冗余分析也表明,亚硝态氮和铵态氮是解释N2O和NO变异的主要因子,这均表明土壤N2O和NO排放以硝化作用为主。土壤亚硝态氮含量较低,这与亚硝态氮作为硝化作用中氨氧化过程的中间产物,在有氧的条件下易转化为NO3--N[43],而在厌氧条件下转化为NO进一步产生N2O有关[44],因此其不易在土壤中积累[45]

4 结论

4.1 番茄生长季土壤N2O和NO排放高峰同步,且集中出现在施肥和灌溉后,表现为N2O高于NO排放量,其累积排放量分别为灌水下限35 kPa和25 kPa处理最低,NO+N2O累积排放量以35 kPa处理最低。

4.2 NO2--N、NH4+-N和WFPS对不同灌水下限处理土壤N2O和NO排放差异的影响效应依次递减,三者均与 N2O和NO排放呈极显著正相关。

4.3 番茄生长季灌水下限35 kPa处理比其他灌水下限处理增产12%—84%,且单位产量N2O+NO排放量最低。综合考虑N2O、NO减排及番茄增产效果,灌水下限35 kPa为最适宜的水分管理措施。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

ZHANG Y J, WANG H, MAUCIERI C, LIU S W, ZOU J W. Annual nitric and nitrous oxide emissions response to biochar amendment from an intensive greenhouse vegetable system in southeast China
Scientia Horticulturae, 2019,246:879-886.

[本文引用: 1]

IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[本文引用: 1]

ANENBERG S C, SCHWARTZ J, AMANN M, FALUVEGI G, KLIMONT Z, JANSSENS-MAENHOUT G, POZZOLI L, VAN D R, VIGNATI E, EMBERSON L, MULLER N Z, WEST J J, WILLIAMS M, DEMKINE V, HICKS W K, KUYLENSTIERNA J, RAES F, RAMANATHAN V. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls
Environmental Health Perspectives, 2012,120(6):831-839.

URLPMID:22418651 [本文引用: 1]

STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions
Nutrient Cycling in Agroecosystems, 2006,74(3):207-228.

URL [本文引用: 1]

LIU Q H, QIN Y M, ZOU J W, GUO Y Q, GAO Z L. Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China
Plant and Soil, 2013,370(1/2):223-233.

[本文引用: 1]

WU Z, ZHANG Q Q, ZHANG X, DUAN P P, YAN X Y, XIONG Z Q. Biochar-enriched soil mitigated N2O and NO emissions similarly as fresh biochar for wheat production
Science of the Total Environment, 2020, 701. https://doi.org/10.1016/j.scitotenv.2019.134943.

URL [本文引用: 1]

FAN C H, DUAN P P, ZHANG X, SHEN H J, CHEN M, XIONG Z Q. Mechanisms underlying the mitigation of both N2O and NO emissions with field-aged biochar in an Anthrosol
Geoderma, 2020,364:114178.

[本文引用: 1]

ZHANG X, DUAN P P, WU Z, XIONG Z Q. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil
Science of the Total Environment, 2019,687:433-440.

[本文引用: 1]

ZHOU J, LI B, XIA L L, FAN C H, XIONG Z Q. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production
Journal of Cleaner Production, 2019,225:984-994.

[本文引用: 1]

FAN C H, LI B, XIONG Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China
Science of the Total Environment, 2018,612:480-489.

[本文引用: 1]

FAN C H, CHEN H, LI B, XIONG Z Q. Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China
Biogeosciences, 2017,14(11):2851-2863.

[本文引用: 1]

ZHAO H, LI X Y, JIANG Y. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production
Sustainability, 2019,11(6):1513.

[本文引用: 1]

ZHOU Y Z, ZHANG Y Y, TIAN D, MU Y J. The influence of straw returning on N2O emissions from a maize-wheat field in the North China Plain
Science of the Total Environment, 2017,584-585:935-941.

[本文引用: 1]

郑欠, 丁军军, 李玉中, 林伟, 徐春英, 李巧珍, 毛丽丽. 土壤含水量对硝化和反硝化过程N2O排放及同位素特征值的影响
中国农业科学, 2017,50(24):4747-4758.

URL [本文引用: 1]

ZHENG Q, DING J J, LI Y Z, LIN W, XU C Y, LI Q Z, MAO L L. The effects of soil water content on N2O emissions and isotopic signature of nitrification and denitrification
Scientia Agricultura Sinica, 2017,50(24):4747-4758. (in Chinese)

URL [本文引用: 1]

雷宏军, 刘欢, 刘鑫, 潘红卫, 陈德立. 水肥气一体化灌溉对温室辣椒地土壤N2O排放的影响
农业机械学报, 2019,50(3):262-270.

[本文引用: 1]

LEI H J, LIU H, LIU X, PAN H W, CHEN D L. Effects of oxyfertigation on Soil N2O emission under greenhouse pepper cropping system
Journal of Agricultural Machinery, 2019,50(3):262-270. (in Chinese)

[本文引用: 1]

谢海宽, 江雨倩, 李虎, 徐驰, 丁武汉, 王立刚, 张婧. 北京设施菜地N2O和NO排放特征及滴灌优化施肥的减排效果
植物营养与肥料学报, 2019,25(4):591-600.

[本文引用: 1]

XIE H K, JIANG Y Q, LI H, XU C, DING W H, WANG L G, ZHANG J. N2O and NO emissions from greenhouse vegetable fields and the mitigation efficacy of the optimized fertigation in Beijing
Journal of Plant Nutrition and Fertilizers, 2019,25(4):591-600. (in Chinese)

[本文引用: 1]

奚雅静, 汪俊玉, 李银坤, 武雪萍, 李晓秀, 王碧胜, 李生平, 宋霄君, 刘彩彩. 滴灌水肥一体化配施有机肥对土壤N2O排放与酶活性的影响
中国农业科学, 2019,52(20):3611-3624.

URL [本文引用: 1]

XI Y J, WANG J Y, LI Y K, WU X P, LI X X, WANG B S, LI S P, SONG X J, LIU C C. Effects of drip irrigation water and fertilizer integration combined with organic fertilizers on soil N2O emission and enzyme activity
Scientia Agricultura Sinica, 2019,52(20):3611-3624. (in Chinese)

URL [本文引用: 1]

DU Y D, GU X B, WANG J W, NIU W Q. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation
Science of the Total Environment, 2019,668:1156-1164.

[本文引用: 1]

陈慧, 商子惠, 王云霏, 朱艳, 蔡焕杰. 灌水量对温室番茄土壤CO2、N2O和CH4排放的影响
应用生态学报, 2019,30(9):3126-3136.

[本文引用: 1]

CHEN H, SHANG Z H, WANG Y F, ZHU Y, CAI H J. Effects of irrigation amounts on soil CO2, N2O and CH4 emissions in greenhouse tomato field
Chinese Jounal of Applied Ecology, 2019,30(9):3126-3136. (in Chinese)

[本文引用: 1]

杨岩, 孙钦平, 邹国元, 许俊香, 李吉进, 刘春生, 江丽华. 水肥减量对设施芹菜地N2O排放的影响
中国农业气象, 2016,37(3):281-288.

[本文引用: 1]

YANG Y, SUN Q P, ZOU G Y, XU J X, LI J J, LIU C S, JIANG L H. Effects of reducing irrigation and organic fertilization on N2O emissions from celery field in facilities
Chinese Journal of Agrometeorology, 2016,37(3):281-288. (in Chinese)

[本文引用: 1]

YE X H, HAN B, LI W, ZHANG X C, ZHANG Y L, LIN X G, ZOU H T. Effects of different irrigation methods on nitrous oxide emissions and ammonia oxidizers microorganisms in greenhouse tomato fields
Agricultural Water Management, 2018,203:115-123.

[本文引用: 1]

ZHANG Y Y, MU Y J, ZHOU Y Z, TIAN D, LIU J F, ZHANG C L. NO and N2O emissions from agricultural fields in the North China Plain: Origination and mitigation
Science of the Total Environment, 2016,551/552:197-204.

[本文引用: 1]

YAO Z S, LIU C Y, DONG H B, WANG R, ZHENG X H. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations
Environmental Pollution, 2015,196:89-97.

URLPMID:25313901 [本文引用: 1]

DAVIDSON E A, KELLER M, ERICKSON H E, VERCHOT L V, VELDKAMP E. Testing a conceptual model of soil emissions of nitrous and nitric oxides
Bioscience, 2000,50(8):667-680.

[本文引用: 1]

HAN B, YE X H, LI W, ZHANG X C, ZHANG Y L, LIN X G, ZOU H T. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields
Journal of Soils and Sediments, 2017,17(10):2457-2468.

[本文引用: 1]

丁军军, 张薇, 李玉中, 林伟, 徐春英, 李巧珍. 不同灌溉量对华北平原菜地N2O排放及其来源的影响
应用生态学报, 2017,28(7):2269-2276.

[本文引用: 1]

DING J J, ZHANG W, LI Y Z, LIN W, XU C Y, LI Q Z. Effects of soil water condition on N2O emission and its sources in vegetable farmland of North China Plain
Chinese Journal of Applied Ecology, 2017,28(7):2269-2276. (in Chinese)

[本文引用: 1]

陈吉吉, 宋贺, 曹文超, 王乙然, 王敬国. 设施菜田土壤N2O产生对O2的响应
环境科学, 2018,39(8):3826-3834.

[本文引用: 1]

CHEN J J, SONG H, CAO W C, WANG Y R, WANG J G. Nitrous oxide production in response to oxygen in a solar greenhouse vegetable soil
Environmental Science, 2018,39(8):3826-3834. (in Chinese)

[本文引用: 1]

TIAN D, ZHANG Y Y, MU Y J, ZHOU Y Z, ZHANG C L, LIU J F. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain
Science of the Total Environment, 2017,575:1034-1040.

[本文引用: 1]

ZHANG Y J, LIN F, JIN Y G, WANG X F, LIU S W, ZOU J W. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China
Scientific Reports, 2016,6(1):20700.

[本文引用: 1]

邓焕广, 张智博, 张菊, 殷山红, 王东启, 陈振楼. 多重干湿交替对城市河岸带土壤氮转化及N2O排放的影响研究
土壤通报, 2018,49(3):640-645.

[本文引用: 1]

DENG H G, ZHANG Z B, ZHANG J, YIN S H, WANG D Q, CHEN Z L. Effect of repetitive alternation of drying and wetting on nitrogen transformation and N2O emission in surface soil of urban riparian zones
Chinese Journal of Soil Science, 2018,49(3):640-645. (in Chinese)

[本文引用: 1]

ZHOU S, SUN H F, BI J G, ZHANG J N, RIYA S, HOSOMI M. Effect of water-saving irrigation on the N2O dynamics and the contribution of exogenous and endogenous nitrogen to N2O production in paddy soil using 15N tracing
Soil and Tillage Research, 2020,200:104610.

[本文引用: 1]

CUI F, YAN G X, ZHOU Z X, ZHENG X H, DENG J. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain
Soil Biology and Biochemistry, 2012,48:10-19.

[本文引用: 1]

ABALOS D, SANCHEZ-MARTIN L, GARCIA-TORRES L, GROENIGEN J W, VALLEJO A. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops
Science of the Total Environment, 2014,490:880-888.

URL [本文引用: 1]

JI C, LI S Q, GENG Y J, YUAN Y M, ZHI J Z, YU K, HAN Z Q, WU S, LIU S W, ZOU J W. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations
Geoderma, 2020,365:114223.

[本文引用: 1]

NIU Y H, CAI Y J, CHEN Z M, LUO J F, DI H J, YU H Y, ZHU A N, DING W X. No-tillage did not increase organic carbon storage but stimulated N2O emissions in an intensively cultivated sandy loam soil: A negative climate effect
Soil and Tillage Research, 2019,195:104419.

[本文引用: 1]

YAO Z S, YAN G X, WANG R, ZHENG X H, LIU C Y, BUTTERBACH-BAHL K. Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems
Atmospheric Environment, 2019,212:183-193.

[本文引用: 1]

陈慧, 侯会静, 蔡焕杰, 朱艳. 加气灌溉温室番茄地土壤N2O排放特征
农业工程学报, 2016,32(3):111-117.

URL [本文引用: 1]

CHEN H, HOU H J, CAI H J, ZHU Y. Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation
Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):111-117. (in Chinese)

URL [本文引用: 1]

CAO W C, LIU S, QU Z, SONG H, QIN W, GUO J H, CHEN Q, LIN S, WANG J G. Contribution and driving mechanism of N2O emission bursts in a chinese vegetable greenhouse after manure application and irrigation
Sustainability, 2019,11(6):1624.

[本文引用: 1]

LIU C Y, ZHENG X H, ZHOU Z X, HAN S H, WANG Y H, WANG K, LIANG W G, LI M, CHEN D L, YANG Z P. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China
Plant and Soil, 2010,332(1/2):123-134.

[本文引用: 1]

万文亮, 郭鹏飞, 胡语妍, 张筱茜, 张坤, 刁明. 调亏灌溉对新疆滴灌春小麦土壤水分、硝态氮分布及产量的影响
水土保持学报, 2018,32(6):166-174.

[本文引用: 1]

WAN W L, GUO P F, HU Y Y, ZHANG X Q, ZHANG K, DIAO M. Distribution and yield of spring wheat under drip irrigation in Xinjiang
Journal of Soil and Water Conservation, 2018,32(6):166-174. (in Chinese)

[本文引用: 1]

WOLF I. Different pathways of formation of N2O, N2 and NO in black earth soil
Soil Biology and Biochemistry, 2000,32(2):229-239.

[本文引用: 1]

颜青, 赖睿特, 张克强, 杨涵博, 王风. 土壤化学反硝化及N2O产生机理研究进展
环境科学研究, 2020,33(3):736-743.

[本文引用: 1]

YAN Q, LAI R T, ZHANG K Q, YANG H B, WANG F. Research progress on soil chemical denitrification and N2O production mechanism
Research of Environmental Sciences, 2020,33(3):736-743. (in Chinese)

[本文引用: 1]

PILEGAARD K. Processes regulating nitric oxide emissions from soils
Philosophical Transactions of the Royal Society B: Biological Sciences, 2013,368(1621):20130126.

[本文引用: 1]

LEITNER S, HOMYAK P M, BLANKINSHIP J C, EBERWEIN J, JENERETTE G D, ZECHMEISTER-BOLTENSTERN S, SCHIMEL J P. Linking NO and N2O emission pulses with the mobilization of mineral and organic N upon rewetting dry soils
Soil Biology and Biochemistry, 2017,115:461-466.

[本文引用: 1]

GIGUERE A T, TAYLOR A E, SUWA Y C, MYROLD D D, BOTTOMLEY P J. Uncoupling of ammonia oxidation from nitrite oxidation: impact upon nitrous oxide production in non-cropped Oregon soils
Soil Biology and Biochemistry, 2017,104:30-38.

[本文引用: 1]

相关话题/土壤 过程 观测 科学 计算