Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat
CHEN Can,, HAN NanNan,, LIU Yang, SHI XiaoWei, SI HongQi,, MA ChuanXi,College of Agronomy, Anhui Agriculture University/Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei 230036
Abstract 【Objective】The variations in numbers of copies of a gene is a common and important gene structure variation, which often effects individual phenotype. Low-molecular-weight glutenin subunit (LMW-GS) located at the Glu-3 loci, is an essential part of storage protein in wheat. As a hetero-hexaploid, the huge and complex wheat genome makes it difficult to detect numbers of gene copies by classical methods. A limited information is available about CNV analysis of LWM-GS. To screen reliable and stable internal reference genes and systems for complex genome and explore the CNV determination technology suitable in different wheat varieties, the techniques used for detection of gene copy numbers, based on droplet digital PCR (ddPCR) which improve the detection flux of target gene and determine the particular numbers of gene copies of Glu-3 loci. 【Method】In this paper, Acc1 was used as the internal reference gene. The internal reference primers and probes were designed by using the corresponding gene sequence. In order to analyze stability of numbers of copies of Acc1 in 12 common wheat varieties, we used qualitative and quantitative PCR. The genomic DNA of variety Gaoyou2018 with five different dilutions was used as template, and qRT-PCR was used to analyze the repeatability and accuracy of Acc1 internal reference system (primers and probes).The corresponding specific primers and probes were designed according to the LMW-GS gene sequence of Glu-A3 loci. Two different methods, qRT-PCR and ddPCR, were used to detect the numbers of copies of Glu-A3 loci in eight wheat varieties, in order to determine which method is more suitable for high-throughput detection of Glu-3 loci gene. The specific primers and probes were also designed according to the sequences of LMW-GS gene at Glu-B3 and Glu-D3 loci. The numbers of copies of LMW-GS gene at Glu-A3, Glu-B3 and Glu-D3 loci of 231 varieties were determined and analyzed by ddPCR. 【Result】The results showed that the gene copy numbers of Acc1 was consistent among varieties and different DNA concentrations of the same variety. The coefficient of variation (CV) between repeats was 0.07%-0.77%. It is also indicated from results that the Acc1 internal reference system constructed in this paper has good stability and repeatability. The results of qRT-PCR and ddPCR were consistent in detecting the numbers of copies of LMW-GS gene at Glu-A3 loci in 8 wheat varieties, which were 3, 5, 3, 4, 3, 3, 3 and 3, respectively. However, the CV among repeats detected by ddPCR was 0.30%-1.67%, which much lower than that by qRT-PCR. It showed that using ddPCR method to detect the gene copy numbers of Glu-3 loci gene is more stable and reliable. The numbers of copies of LMW-GS gene were 4 at Glu-A3, Glu-B3 and Glu-D3 having a frequency of 95%, 32.03% 28.57% respectively in 231 wheat varieties. The total variation range in numbers of copies of Glu-3 was 10-21, and the CV was 16.12%.【Conclusion】With good stability and repeatability, Acc1 could be used as internal reference gene for numbers of gene copies detection in wheat. Both qRT-PCR and ddPCR could be used in gene copy numbers detection with wheat genes, but the ddPCR is more simple, stable, reliable and has high detection flux. Keywords:wheat;low-molecular-weight glutenin subunit (LMW-GS);droplet digital PCR (ddPCR);copy number variation (CNV)
PDF (779KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 陈璨, 韩南南, 刘洋, 史晓维, 司红起, 马传喜. 小麦Glu-3位点基因拷贝数的变异分析[J]. 中国农业科学, 2021, 54(6): 1092-1103 doi:10.3864/j.issn.0578-1752.2021.06.002 CHEN Can, HAN NanNan, LIU Yang, SHI XiaoWei, SI HongQi, MA ChuanXi. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat[J]. Scientia Acricultura Sinica, 2021, 54(6): 1092-1103 doi:10.3864/j.issn.0578-1752.2021.06.002
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】小麦低分子量麦谷蛋白(low molecular weight glutenin subunit,LMW-GS)约占贮藏蛋白的1/3[1],其组成和结构对小麦面粉品质具有重要影响,尤其是面团面筋强度,并决定面团的粘弹性[2,3]。研究表明,LMW-GS的编码基因大部分定位于小麦第一同源群染色体1A、1B和1D短臂近端粒处,依次被命名为Glu-A3、Glu-B3和Glu-D3位点,每个位点都包含着多个LMW-GS基因,构成了非常复杂的LMW-GS基因家族[4,5,6]。LMW-GS基因的组成、拷贝数及其表达情况都影响着小麦品质性状[7,8,9]。但由于LMW-GS基因组成复杂,目前缺少有效的分离方法,很大程度上限制了对其拷贝数的研究。因此,探索和构建高通量检测拷贝数变异的方法尤为重要。【前人研究进展】基因的拷贝数变异(copy number variation,CNV)是一种常见而又重要的基因结构变异,一般认为是由染色体重排等染色体结构变异引起的,会导致基因组遗传不稳定,对个体性状会产生一定的影响[10,11]。对于拷贝数的检测,常用的技术主要包括实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)、荧光原位杂交(fluorescence in situ hybridization,FISH)、Sothern印迹杂交(southern blot)、短片段多重定量PCR(quantitative multiplex PCR of short fragments,QMPSF)以及数字PCR(digital PCR,dPCR)技术。20世纪末,VOGELSTEIN等[12]提出了dPCR的概念,即将有限稀释法、泊松分布和PCR技术联合使用的新方法[13,14]。一种新的dPCR分析系统——微滴式数字PCR(droplet digital PCR,ddPCR),用于检测目的基因的拷贝数,可以使用荧光探针对2个靶基因同时进行检测,先使用微滴生产仪将一个样本分成几万份(>10 000),分配到不同的微滴单元,每个单元包含一个或多个拷贝数的目标分子(DNA模板),在每个反应单元中分别对目标分子进行PCR扩增,扩增结束后利用微滴分析仪对各个反应单元的荧光信号进行统计学分析,最后根据泊松分布原理及阳性微滴的个数与比例得出靶分子的起始拷贝数或浓度[15,16]。在利用ddPCR进行基因拷贝数检测时需要一个已知的单拷贝或低拷贝基因作为内参基因,乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACCase)是植物脂肪酸生物合成中的一种限速酶[17,18,19]。在禾本科作物基因组中,同时含有编码质体ACCase(Acc1)和胞质ACCase(Acc2)的基因[20,21],其中,Acc1被定位于2A、2B和2D染色体靠近端粒的短臂上,且Southern印迹杂交试验表明普通小麦中Acc1在每个染色体组都是单拷贝[22]。因此,Acc1可以作为检测小麦中其他基因拷贝数的内参基因。【本研究切入点】由于六倍体小麦为异源多倍体作物,其基因组庞大且复杂,利用传统的Sothern印迹杂交等技术检测小麦基因拷贝数费时费力,并且无法达到高通量测定要求。【拟解决的关键问题】本研究拟选择适当内参基因,通过ddPCR技术构建一种高通量、快速且稳定的小麦基因拷贝数测定方法;并通过构建的内参体系和方法测定普通小麦Glu-3位点LMW-GS基因拷贝数。
合适的内参基因应在同一物种的不同品种之间具有相同的拷贝数,为了检测不同普通小麦品种之间Acc1拷贝数的种内稳定性,选取12个品种的普通小麦提取基因组DNA,每个品种各取30 ng DNA,以Acc1F、Acc1R为引物进行定性PCR扩增,结果表明,不同品种之间获得相同大小和等效强度的PCR产物,并且没有显示出非特异性的条带(图1),表明所设计的引物能够稳定地扩增出Acc1序列,特异性较高,并且普通小麦品种间Acc1拷贝数没有明显差异。
1:黔11240-2;2:郑麦583;3:中麦14;4:德宏福麦2号;5:瑞泉麦168;6:中合-75;7:益科麦5号;8:内麦836;9:阳光838;10:安农1020;11:新麦31;12:黔090304-4 Fig. 1Agarose gel electrophoresis of the testing reference gene copy number stability
A:12个不同品种的内参基因定量PCR扩增曲线;1:黔11240-2;2:郑麦583;3:中麦14;4:德宏福麦2号;5:瑞泉麦168;6:中合-75;7:益科麦5号;8:内麦836;9:阳光838;10:安农1020;11:新麦31;12:黔090304-4。B:12个不同普通小麦品种的Ct值 Fig. 2Testing reference gene copy number stability with qRT-PCR
A: Reference gene qRT-PCR amplification curve of 12 different varieties; 1: Qian 11240-2; 2: Zhengmai 583; 3: Zhongmai 14; 4: Dehongfumai 2; 5: Ruiquanmai 168; 6: Zhonghe-75; 7: Yikemai 5; 8: Neimai 836; 9: Yangguang838; 10: Annong 1020; 11: Xinmai 31; 12: Qian 090304-4. B: Ct values obtained from 12 different varieties of common wheat
A:Glu-A3F/R引物检测。1:中国春;2:一粒小麦;3:拟斯卑尔托山羊草;4:节节麦;5:乌拉尔图小麦;6:水;7:安农0711。B:Glu-B3F/R引物检测。1:一粒小麦;2:节节麦;3:圆锥小麦;4:中国春;5:水。C:Glu-D3F/R引物检测。1:乌拉尔图小麦;2:拟斯卑尔托山羊草;3:节节麦;4:圆锥小麦;5:水 Fig. 3Agarose gel of amplification products obtained with primer
A: Detected with Glu-A3F/R primers. 1: Chinese Spring; 2: T. monococcum; 3: Ae.speltoides Tausch; 4: Aegilops tauschii Coss.; 5: T.urartu; 6: ddH2O; 7: Annong0711. B: Detected with Glu-B3F/R primers. 1: T. monococcum; 2: Aegilops tauschii Coss.; 3: T. turgidum; 4: Chinese Spring; 5: ddH2O. C: Detected with Glu-D3F/R primers. 1: T.urartu; 2: Ae.speltoides Tausch; 3: Aegilops tauschii Coss.; 4: T. turgidum; 5: ddH2O
ZHAO XL, XIA XC, LIUL, HE ZH, SUN QX. Review on low molecular weight glutenin subunits and their coding genes Scientia Agricultura Sinica, 2007,40(3):440-446. (in Chinese) URL [本文引用: 1]
XIANGL, HUANGL, GONG FY, LIUJ, WANG YF, JIN YR, HEY, HE JS, JIANG QT, ZHENG YL, LIU DC, WU BH. Enriching LMW-GS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer , 2019,9(10):355. [本文引用: 2]
HAZARDB, TRAFFORDK, LOVEGROVEA, GRIFFITHSS, UAUYC, SHEWRYP. Strategies to improve wheat for human health , 2020,1(8):475-480. [本文引用: 2]
GUPTA RB, SHEPHERD KW. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin , 1990,80(1):65-74. [本文引用: 1]
SINGH NK, SHEPHERD KW. Linkage mapping of genes controlling endosperm storage proteins in wheat , 1988,75(4):628-641. [本文引用: 1]
D'OVIDIOR, MASCIS. The low-molecular-weight glutenin subunits of wheat gluten , 2004,39(3):321-339. URL [本文引用: 1]
CHOK, JO YM, LIM SH, KIM JY, HANO, LEE JY. Overexpressing wheat low-molecular-weight glutenin subunits in rice (Oryza sativa L. japonica cv. Koami) seeds , 2019,9(2):1-8. [本文引用: 2]
RAIA, SINGH AM, GANJEWALAD, KUMAR RR, AHLAWAT AK, SINGH SK, SHARMAP, JAINN. Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India , 2019,56(4):1696-1707. [本文引用: 2]
BEOM HR, KIM JS, JANG YR, LIM SH, KIM CK, LEE CK, LEE JY. Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety , 2018,8(1):56. [本文引用: 2]
SHAW-SMITHC, REDONR, RICKMANL. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features , 2004,41(4):241-248. [本文引用: 1]
MARON LG, GUIMARAES CT, KIRSTM, ALBERT PS, BIRCHLER JA, BRADBYRY PJ, BUCKLER ES, COLUCCIO AE, DANILOVA TV, KUDRNAD, MAGALHAES JV, PINEROS MA, SCHATZ MC, WING RA, KOCHIANL. Aluminum tolerance in maize is associated with higher MATE1 gene copy number , 2013,110(13):5241-5246. URL [本文引用: 1]
VOGELSTEINB, KINZLERK W. Digital PCR , 1999,96(16):9236-9241. [本文引用: 1]
SYKES PJ, NEOH SH, BRISCO MJ. Quantitation of targets for PCR by use of limiting dilution , 1992,13(3):444-449. [本文引用: 1]
YANGQ, XIJ, CHEN XX, HU SH, CHENN, QIAO SL, WAN SG, BAO DK. The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus , 2017,104(Part A):1223-1228. [本文引用: 1]
LINQ, FU XZ, LIU LH, LIANG HR, NIU YJ, WEN YY, HUANG ZB, LI NQ. Development and application of a sensitive droplet digital PCR (ddPCR) for the detection of infectious spleen and kidney necrosis virus , 2020,529:735697. [本文引用: 1]
ANTKOWIAKM, NOWACKA-WOSZUKJ, SZCZERBALI, SWITONSKIM, SZYDLOWSKIM. AMY2B gene copy-number variation studied by droplet digital PCR (ddPCR) in three canids: Red fox, arctic fox, and Chinese raccoon dog , 2020,68(2):51-55. [本文引用: 1]
KONISHIT, SHINOHARAK, YAMADAK, SASAKIY. Acetyl-CoA carboxylase in higher plants: Most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme , 1996,37(2):117-122. [本文引用: 1]
CHENQ, SONGJ, DU WP, XU LY, JIANGY, ZHANGJ, ZHANGM, YU GR. Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes , 2018,46(2):191-200. [本文引用: 1]
LEI YX. Phylogenetic and evolution analysis of Roegneria and its related genera (Triticeae Poaceae) [D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese) [本文引用: 1]
GORNICKIP, PODKOWINSKIJ, SCAPPINO LA, DIMAIOJ, WARDE, HASELKORNR. Wheat acetyl-CoA carboxylase: cDNA and protein structure , 1994,91(15):6860-6864. [本文引用: 1]
PODKOWINSKIJ, SROGA GE, HASELKORNR, GORNICKIP. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat , 1996,93(5):1870-1874. [本文引用: 1]
GORNICKIP, FARISJ, KINGI, PODKOWINSKIJ, GILLB, HASELKORNR. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets , 1997,94(25):14179-14184. [本文引用: 1]
MIAO QM, WANG XF, CHEN XY, PENGC, XU XL, WEIW, XU JF. Studies on accurate quantification of genetically modified rice (Oryza sative) G6H1 based on duplex droplet digital PCR Journal of Agricultural Biotechnology, 2019,27(1):159-169. (in Chinese) [本文引用: 1]
CAI JY, YAO LF, WANG XY, YOU SZ, DINGQ. Quantitative analysis of genetically modified rapeseed of RF1 by duplex droplet digital polymerase chain reaction (duplex-ddPCR) Modern Food Science and Technology, 2018,34(6):282-287. (in Chinese) [本文引用: 1]
WENG HB, PAN AH, YANG LT, ZHANG CM, LIU ZL, ZHANG DB. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene , 2004,22(3):289-300. URL [本文引用: 1]
CAVIGLIA GP, ABATE ML, TANDOIF, CIANCIOA, AMOROSOA, SALIZZONIM, SARACCO GM, RIZZETTOM, ROMAGNOLIR, SMEDILEA. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection , 2018,69(2):301-307. [本文引用: 1]
DYAVAR SR, YEZ, BYRAREDDY SN, SCARSI KK, WINCHESTER LC, WEINHOLD JA, FLETCHER CV, PODANY AT. Normalization of cell associated antiretroviral drug concentrations with a novel RPP30 droplet digital PCR assay , 2018,8(1):3626. [本文引用: 1]
ELMAHALAWY ST, HALVARSSONP, SKARINM, H?GLUNDJ. Genetic variants in dyf-7 validated by droplet digital PCR are not drivers for ivermectin resistance in Haemonchus contortus , 2018,8(2):278-286. [本文引用: 1]
YU RL, XUAN WJ, ZHOUL, LUOY, LIU XY, XIONG PW, REN XY. Detection of HER2 amplification in formalin-fixed paraffin- embedded breast carcinoma tissue with digital PCR using two TFF3 sequences as internal reference , 2018,104(3):235-238. [本文引用: 1]
JU PJ, SUN DZ, NINGL, GE LH, XU CJ, SHI HW, LIANG KG, MAL, LIU TR, CHENM. Analysis of foreign gene copy number in transgenic wheat by optimized digital PCR Scientia Agricultura Sinica, 2020,53(10):1931-1939. (in Chinese) URL [本文引用: 1]
KAUTBALLYS, LEPROPRES, LERIGOLEURA, GINIONA, BEAULOYEC. Platelet acetyl-coa carboxylase phosphorylation: a risk stratification marker that reveals platelet-lipid interplay in coronary artery disease patients , 2019,11(2):185-186. [本文引用: 1]
LIDAM, YAMASHIROS, YAMAKAWAH, HAYAKAWAK, KURIBARAH, KODAMAT, FURUIS, AKIYAMAH, MAITANIT, HINOA. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat , 2005,53(16):6294-6300. [本文引用: 1]
SINGHR, DUBEY AK, SANYALI. Optimisation of adventitious shoot regeneration and agrobacterium-mediated transformation in Canna × Generalis (Canna Lily) , 2019,5(1):39-46. [本文引用: 1]
YANG LT, DING JY, ZHANG CM, JIA JW, WENG HB, LIN WX, ZHANG DB. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR , 2005,23(10/11):759-763. [本文引用: 1]
WHALE AS, HUGGETT JF, COWENS, SPEIRSV, SHAWJ, ELLISONS, FOY CA, SCOTT DJ. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation , 2012,40(11):e82. [本文引用: 1]
JIANGY, HU JY, YANG LT. Estimating the exogenous genes copy number of genetically modified organisms by droplet digital PCR Journal of Agricultural Biotechnology, 2014,22(10):1298-1305. (in Chinese) URL [本文引用: 1]
GAO FG, PFEIFERE, FARAHH, KARAMPINIE, DUAD, KAMAIN, CANEP, TOBALK, SETHIT, SPICERJ, MCCAUGHANF. Microdroplet digital PCR: Detection and quantitation of biomarkers in archived tissue and serial plasma samples in patients with lung cancer , 2015,10(1):212-217. [本文引用: 1]
HINDSON CM, CHEVILLET JR, BRIGGS HA, GALLICHOTTE EN, RUF IK, HINDSON BJ, VESSELLA RL, TEWARIM. Absolute quantification by droplet digital PCR versus analog real-time PCR , 2013,10(10):1003-1005. URL [本文引用: 1]
HARBERD NP, BARTELSD, THOMPSON RD. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines , 1985,198(2):234-242. [本文引用: 1]
CASSIDY BG, DVORAKJ, ANDERSON OD. The wheat low molecular weight glutenin genes: characterization of six new genes and progress in understanding gene family structure , 1998,96(6/7):743-750. [本文引用: 1]
KORBEL JO, KIM PM, CHEN XY, URBAN AE, WEISSMANS, SNYDERM, GERSTEIN MB. The current excitement about copy-number variation: how it relates to gene duplications and protein families , 2008,18(3):366-374. URL [本文引用: 1]
CHENC, WANGW, YUAN JX, CHENJ, MOU LM. Analysis of HMW-GS and LMW-GS in spring wheat varieties and key parental materials cultivated in Gansu dryland. Acta Agriculturae Boreali- occidentalis , 2018,27(11):1598-1605. [本文引用: 1]
LI YY, XIAO JH, WU JJ, DUAN JL, LIUY, YE XG, ZHANGX, GUO XP, GU YQ, ZHANG LC, JIA JZ, KONG XY. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation , 2012,196(1):282-291. [本文引用: 1]
SUTTONT, BAUMANNU, HAYES JE, COLLINS NC, SHI BJ, SCHNURBUSCHT, HAYA, MAYO GM, PALLOTTA MA, TESTER MA. Adelaide research and scholarship: boron toxicity tolerance in barley arising from efflux transporter amplification , 2007,318(5855):1446-1449. [本文引用: 1]
FRANCIAE, MORCIAC, PASQUARIELLOM, MAZZAMURROV, MILC JA, RIZZAF, TERZIV, PECCHIONIN. Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley , 2016,92(1/2):161-175. [本文引用: 1]
KNOX AK, DHILLONT, CHENG HM, TONDELLIA, PECCHIONIN, STOCKINGER EJ. CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals , 2010,121(1):21-35. URL [本文引用: 1]
PEARCES, ZHUJ, BOLDIZSáRá, VáGúJFALVIA, BURKEA, KIMBERLEYG C, GáBORG, DUBCOVSKYJ. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat , 2013,126(11):2683-2697. URL [本文引用: 1]
AURORAD, MELULEKIZ, ADRIAN ST, PETERL, DAVID AL. Copy number variation affecting the Photoperiod-B1 and Vernalization- A1 genes is associated with altered flowering time in wheat (Triticum aestivum) , 2012,7(3):e33234. [本文引用: 1]
ARMOUR JA, SISMANIC, PATSALIS PC, CROSSG. Measurement of locus copy number by hybridisation with amplifiable probes , 2000,28(2):605-609. [本文引用: 1]
NITCHERR, DISTELFELDA, TAN CT, YAN LL, DUBCOVSKYJ. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley , 2013,288(5):261-275. [本文引用: 1]