删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国甘薯产业和种业发展现状与未来展望

本站小编 Free考研考试/2021-12-26

王欣,, 李强, 曹清河, 马代夫,江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室, 江苏徐州 221131

Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China

WANG Xin,, LI Qiang, CAO QingHe, MA DaiFu,Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology&Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou 221131, Jiangsu

通讯作者: 马代夫,E-mail: daifuma@163.com

责任编辑: 李莉
收稿日期:2020-04-21接受日期:2020-07-14网络出版日期:2021-02-01
基金资助:国家现代农业产业技术体系专项.CARS-10
江苏省“六大人才高峰”项目.NY-184


Received:2020-04-21Accepted:2020-07-14Online:2021-02-01
作者简介 About authors
王欣,E-mail: xznkywx@163.com






摘要
甘薯是世界上重要的粮食、饲料及工业原料作物,中国是世界上最大的甘薯生产国。本文总结了中国甘薯产业和种业发展的历史、现状、成效及问题,分析了国内外甘薯产业和种业的发展趋势,提出中国甘薯产业和种业未来的发展目标和任务。目前中国甘薯产业稳步发展,种植面积趋于平稳,年种植面积稳定在4×106 hm2左右;单产稳步提高,已达到世界平均水平的1.96倍;产业实现了从量到质的转型升级,鲜食市场供应比例不断提高,甘薯逐步实现餐桌化,休闲、保健和功能食品得到适度发展;鲜食消费比例逐年增加,提升了甘薯种植效益;品牌建设得到了长足发展。甘薯种业在国家甘薯产业技术体系的推动下,初步建立了甘薯分子育种平台,甘薯基因组测序基本完成,构建了高密度分子连锁图谱,开发出一批与甘薯茎线虫病抗性相关的分子标记和与甘薯淀粉含量等性状相关的主效QTL,发掘出甘薯品质、抗病、耐盐、抗旱等相关的重要功能基因;建立了甘薯主要病虫害抗性评价平台,创制出一批甘薯特异新材料;构建了优质专用甘薯品种评价平台,育成一批甘薯专用型新品种,良种自育品种覆盖率达95%以上;制定了甘薯新品种的DUS测试国家标准和行业标准,规范了种薯种苗市场;完成了脱毒种薯种苗生产关键技术研究;建立了产学研结合的种业协同创新体系,推动种薯种苗企业重组。现阶段中国甘薯产业和种业还存在许多问题,一是优异种质数量少,无法满足育种的需求;二是优质品种评价指标缺乏,专用化品种少,无法满足加工需求;三是脱毒种薯种苗的应用率低,种薯种苗繁育技术和市场不规范;四是甘薯种业尚未形成规模,政府对种薯种苗繁育企业扶持力度较弱,区域性的种薯种苗企业数量少,远不能满足生产的需要。未来5—10年,中国应注重资源收集、评价和保存平台建设;打造甘薯育种公共服务平台建设;选育和推广优质高产多抗专用品种;着力推进育繁推一体化健康种薯种苗繁育体系建设;进一步延长加工产业链,提高产业效益;在“一带一路”国家示范推广高品质淀粉、富含膳食纤维、花青素、胡萝卜素及多酚类物质等专用品种。
关键词: 甘薯;产业;种业;现状;展望

Abstract
Sweetpotato is considered as one of important crops for food, feed and industrial materials in the world. China is the largest sweetpotato producer in the world. This paper summarizes history, present situation, main achievement, problems of sweetpotato production and seed industry in China, analyzes the development trend of sweetpotato production and seed industry of the world, and puts forward the future development goal and task in China. At present, the sweetpotato production has developed steadily in China. The planting area tends to be stable, and the annual planting area is about 400 million hectares. The yield has steadily increased and reached to 1.96 times of the world average. The production has realized the transformation and upgrading from quantity to quality. The table use market is increasing continuously, and sweetpotato is well received. Snacks, healthy and functional foods are moderately developed. As the consumption increased, the benefit of sweetpotato planting is raised. The sweetpotato brand has been greatly developed. On the supports of China Agricultural Research System, Sweetpotato (CARS-SP), the molecular breeding platform of sweetpotato has been established, the genome sequencing of sweetpotato has been mainly completed, the high density molecular linkage map has been constructed, molecular markers and QTLs related to stem nematode resistance and starch content have been developed, and some important functional genes related to quality, disease resistance, salt tolerance and drought resistance have been discovered. The platform was constructed for diseases identification and varieties evaluation, and a set of new germplasm and varieties were created and released. More than 95% varieties planted in China were domestic. The national standard and industry standard of new sweetpotato varieties were established for DUS testing to standardize the seed and seedling market. The key technology research was completed for virus-free seed and seedling production. The cooperative innovation system was established to promote the reorganization of seed and seedling enterprises by combining producers, educators and researchers. There are still many problems in sweetpotato production and seed industry in China now. First is the number of excellent germplasm is small, which can’t meet the demand of breeding. Second is the lack of evaluation index of high quality varieties, and less specialized varieties to meet processing demand. The third is the less application of virus-free seed and seedlings, and the propagation technology and market of seed and seedling are not standardized. The fourth is small scale seed industry, weak support from government, and small number of regional seed and seedling enterprises to meet the needs of production. In the next 5-10 years, we should pay attention to construction platform of resource collection, evaluation and preservation, build up public service platform for sweetpotato breeding, release and demonstrate high-quality, high-yield and multi-resistance varieties, construct breeding-propagation-extension system, further extend the processing chain and improve industrial efficiency, and demonstrate varieties with high-quality starch, rich in dietary fiber, anthocyanin, carotene and polyphenols in the “One-Belt and One-Road” countries.
Keywords:sweetpotato;production;seed industry;status;future prospective


PDF (1082KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492 doi:10.3864/j.issn.0578-1752.2021.03.003
WANG Xin, LI Qiang, CAO QingHe, MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China[J]. Scientia Acricultura Sinica, 2021, 54(3): 483-492 doi:10.3864/j.issn.0578-1752.2021.03.003


开放科学(资源服务)标识码(OSID):

甘薯(Ipomoea batatas(L.)Lam.)是旋花科(Convolvulaceae)甘薯属(Ipomoea)一年或多年生双子叶草本植物,俗称红薯、山芋、红苕、番薯、地瓜、白薯、白芋等,起源于墨西哥、厄瓜多尔到秘鲁一带的热带美洲,性喜温,不耐寒,是喜光的短日照作物,北纬40°以南温带至热带的120余个国家和地区均有种植,16世纪末从福建和广东传入中国[1]。甘薯具有高产稳产、适应性强、营养丰富等特点,是世界卫生组织推荐的最佳食物[2],兼具粮食、经济作物的功能,用途广泛,可用作鲜食[3]、淀粉加工[4]、食品加工[5]、叶菜[6]和观赏[7]等,已成为世界上重要的粮食、饲料及工业、食品原料、园艺等作物。

中国一直是世界上最大的甘薯生产国,世界粮农组织(food and agriculture organization,FAO)统计数据显示,2018年中国甘薯种植总面积为237.93×104 hm2,占世界种植面积的29.0%,总产占世界57.0%[8]。甘薯具有超高产特性,薯干产量可超过22 500 kg·hm-2,高于谷物类作物所创造的高产纪录,其广泛的适应性和节水特性,在丘陵旱薄严重干旱、谷类作物颗粒无收的田块,鲜薯产量仍可达到22 500 kg·hm-2。甘薯除含有丰富的食用纤维、糖、维生素、矿物质、蛋白质等人体必需的重要营养成分[9,10],还含有多酚、多糖、花青素等活性成分,具有抗炎抗氧化等保健作用[11,12,13],有一定的药用价值[14]。近年来,甘薯优质食用型品种种植面积和集约化种植模式不断扩大,也催生了一批区域公共品牌,价格高位稳定,种植效益明显提高;茎尖叶菜用面积也在逐年上升,观赏用甘薯已成为部分城市的规模化绿化美化植物,这些变化得益于甘薯优良品种培育和健康种薯种苗繁育的同步发展,特别是品种创新与种业培育的同步推进,使得甘薯种业得到了高质量发展。甘薯已成为农业产业结构调整中高产高效作物,在甘薯产业技术体系的支持下,实现了由量到质的转型升级。在党中央全面建成小康社会,满足人民对美好生活向往的需求这样的大背景下,满足人民从饱腹到营养健康的需求已成为现代农业发展的目标导向,甘薯产业和种业也将向品种多元、质量提升的方向发展。本文旨在回顾中国甘薯产业和种业发展现状、成效、面临的问题,分析国内外甘薯产业和种业发展趋势,提出中国甘薯产业和种业发展目标任务,为农业政策的制定与调整、产业科研的深化与提升、种业经营的效益提高和产业的推动等提供参考。

1 中国甘薯产业与种业发展现状及成效

1.1 甘薯产业的发展现状及成效

1.1.1 种植面积减少放缓,单产稳步提高 甘薯生产一直在中国国民经济中占有重要的地位,其独具的高产特性和广泛的适应性曾为解决中国建国初人口激增带来的温饱问题作出了重要贡献,许多国民曾有“一年甘薯半年粮”的记忆,中国甘薯年最高种植面积曾达到1 000×104 hm2以上,甘薯产业对应急救灾和保障国家粮食安全的作用不容低估。据FAO统计,1961—1979年,中国甘薯种植面积始终占世界种植面积50%以上,产量占世界产量的80%以上[8]。改革开放以来种植面积下降较快,甘薯不再作为主粮,“粗粮、救灾粮”作用也已不明显,进入21世纪,根据FAO统计,中国种植面积和总产量仍有下降(图1[8],但是据国家甘薯产业技术体系专家调研,中国甘薯种植面积及总产近10年来相对稳定,为400×104 hm2左右,总产1 000×108 kg[15]。主要原因是甘薯统计面积受种植补贴政策的影响,明显低于实际种植[2]。随着育种、栽培技术的进步和利用,中国甘薯种植的单产水平显著提高,据FAO统计,2018年中国单产达到22 378.5 kg·hm-2,已经从20世纪60年代接近世界水平,提升至世界平均水平的1.96倍(图2[8]

图1

新窗口打开|下载原图ZIP|生成PPT
图11961—2018年中国甘薯面积、总产、单产趋势变化

Fig. 1The trend changes of sweetpotato harvested area, production and yield in China from 1961 to 2018



图2

新窗口打开|下载原图ZIP|生成PPT
图21961—2018年中国与世界单产水平比较

Fig. 2Comparison of sweetpotato yield between China and the world from 1961 to 2018



1.1.2 甘薯产业实现了从量到质的转型升级 改革开放后退出主粮的甘薯,近年来,随着人们对其营养保健价值的认识深入[16],餐桌化的理念越来越深入人心,优质专用化品种正逐步取代传统品种。据甘薯产业技术体系统计分析,淀粉型主栽品种有商薯19、济薯25、徐薯22等,食用主栽品种有烟薯25、普薯32、济薯26、龙薯9号、广薯87等。随着农村劳动力的不断转移,用工成本的增加,传统的劳动力密集型甘薯栽培模式已经不能适应土地流转带来的甘薯集约化种植,促使甘薯轻简化栽培技术及机械化研发投入的增加。在甘薯产业技术体系的推动下,以“一季薯干超吨栽培技术”支撑全国薯区大范围薯干稳步超吨,推动了商薯19、徐薯22、济薯25等为核心的淀粉型品种的推广应用。以“甘薯一年两季高产高效种植新技术”、“一水一膜”等水肥一体化节水高效栽培模式的应用,促进了鲜食品种品质提质增效及节本增收。在甘薯主产区基本上实现了从起垄、中耕、茎蔓还田、收获环节的机械化,解决了甘薯日常管理以及收获机械化,正逐步实现栽插机械化和全程机械化,生产效率显著提高。甘薯产业正向着提高鲜食市场供应比例、倡导甘薯餐桌化,保持淀粉和淀粉产品产业的相对稳定,适度发展休闲、保健和功能食品,开辟绿化观赏、阳台农场、休闲旅游等新领域的总体方向发展。

1.1.3 甘薯消费市场变化促进了种植效益提升 中国是世界上最大的甘薯消费国。20世纪50、60年代主要以鲜食饱腹为主,所占比例在50%以上,加工比例为10%左右,饲用比例在30%左右。20世纪90年代初期,鲜食、饲用和加工比例各占1/3左右,此后以饱腹为目的的鲜食消费逐渐递减,加工比例上升[17]。近年来,中国甘薯市场需求向高端化发展,以健康为目的的鲜食消费比例逐年增加,饲用比例持续下降,淀粉加工用原料基本保持稳定(图3),食品加工用甘薯略有增加,重点表现在产品多样化功能化高端化。

图3

新窗口打开|下载原图ZIP|生成PPT
图3中国甘薯消费变化趋势

Fig. 3The trend of sweetpotato consumption in China



据甘薯产业技术体系2009年以来调查资料统计分析,中国甘薯的生产投入主要包括种薯种苗、化肥、机械、人工、农药、除草剂、薄膜等费用,近年来,这些费用均有不同程度的增长,其中,人工费用上升最快,机械费用平稳增加,2017年多点数据平均,甘薯平均单产为31 275 kg·hm-2,田头销售单价平均为1.38元/kg,约折毛收入43 166元/hm2。扣除生产成本,平均甘薯净收益26 278元/hm2[18]。调查结果因样本不同而有所差异。

1.1.4 甘薯产业品牌建设得到了长足发展 国家甘薯产业技术体系先后组织十多次全国柳絮杯、天豫杯、禾下土杯、农大肥业杯、亿丰年杯、金悦杯、冠豸山杯、光友杯等高产高效竞赛和甘薯擂台赛,通过竞赛引导甘薯产业向品牌化、优质化发展,同时提高了企业品牌的知名度。积极指导红安苕、合阳红薯、唐河地瓜、汝阳红薯等利用国家地理标志保护农产品品牌优势,引进新品种、提升绿色种植和加工技术,与精准扶贫、电子商务发展、招商引资及乡村旅游等工作相结合,推进当地甘薯产业发展。体系还与福建省连城县、山东省泗水县、河南省清丰县等示范县签订战略合作协议,致力解决县域经济发展中全产业链发展技术问题,扶持打造了一批地方品牌,其中福建省“连城红心地瓜干”品牌实现了年全产业链产值近80亿元,拥有100多个注册商标和“连城红心地瓜干”集体商标,品牌价值已达35.92亿元。各地政府也相继出台相关政策支持甘薯产业发展,福建省连城县从2019年起县财政每年预算安排1 000万元建立甘薯产业发展专项资金,推进甘薯产业一二三产深度融合发展。湖北省农业农村厅筹资1 500万元支持甘薯优势产区发展,其中对红安县支持500万元。山东省泗水县现代农业产业园(甘薯)建设获得山东省财政支持3 000万元。广东省将甘薯作为扶贫作物鼓励地方政府出台相关政策扶持,贵州省出台扶持紫云县甘薯产业发展的指导意见,四川省政府出台文件将川薯列入四川农业“10+3”产业体系。浙江、河南、安徽、海南等省都出台部分扶持政策,支持甘薯产业的发展。

1.1.5 甘薯生产中的主要问题 种薯种苗繁育体系不健全的问题仍然突出,主要表现在区域性大型基地缺乏,脱毒种薯种苗市场以次充好、以劣充优,跨区域调种导致一些检疫性病虫害传播等问题,究其原因还是由于种薯种苗市场质量监督标准缺失,检疫程序缺乏,国家监管力度小等原因造成。近年来,南病北移、北病南迁现象时有发生,甘薯病毒病害的扩散,真菌性茎基部枯萎病的出现,虫害蚁象的北迁,都对甘薯产业造成严重威胁。加上农药化肥的滥用,劳动力成本增加,农机化水平不高,加工转化率较低等,都影响着甘薯的生产。

1.2 中国甘薯种业发展现状与成效

1.2.1 初步建立甘薯分子育种平台 甘薯基因组测序基本完成,为甘薯重要基因的精细定位、图位克隆以及育种应用提供了技术平台。中、日、韩6个研究机构合作,以六倍体栽培种甘薯品种徐薯18为材料,利用二代、三代和Hi-C等方法进行六倍体甘薯全基因组测序,并进行了染色体水平组装。同时,中德科学家合作绘制了六倍体甘薯的基因组图谱,并推测现今栽培甘薯为野生二倍体与四倍体杂交加倍形成六倍体[19]。美国、中国等多国合作,发表了2个甘薯二倍体野生种三浅裂野牵牛(Ipomoea trifida)和三裂叶薯(Ipomoea triloba)高质量基因组[20]。以淀粉含量中等、高产、感茎线虫病甘薯品种徐薯18和高淀粉含量、低产、抗茎线虫病甘薯品系徐781的杂交F1代分离群体,分别构建了世界上目前报道的标记密度最高的徐薯18和徐781的分子连锁图谱,开发出一批与甘薯茎线虫病抗性相关的SRAP、AFLP标记,以及与甘薯块根产量、淀粉含量等性状相关的主效QTL[21,22]。利用甘薯特异材料和突变体,发掘出影响甘薯品质、抗病、耐盐、抗旱等重要功能基因20余个,并应用于甘薯遗传改良,显著提高了甘薯的淀粉含量、胡萝卜素含量、茎线虫病抗性、蔓割病抗性、耐逆性等,获得一批甘薯新材料[23,24,25,26,27]

1.2.2 建立重要性状评价平台,创制出一批甘薯特异新材料 创制了茎线虫、根腐、黑斑、软腐、褐斑、黑痣病等10种病害16种鉴定方法,完成了主要甘薯病虫害抗性平台建设,挖掘了一批新的多抗资源,为甘薯新品种选育提供技术保障。首次创建国内甘薯抗旱性鉴定与评价平台,率先提出甘薯田间抗旱的旱胁迫时间节点(栽后30—35 d),以相对产量、抗旱指数和生化分析[28],综合评价甘薯品种的耐旱等级,使鉴定筛选出的抗旱性品种更贴合生产实际。将现代生物技术与常规育种技术相结合,创制一批特异甘薯新材料。

1.2.3 构建优质专用甘薯品种评价平台,育成一批甘薯专用型新品种 国家甘薯产业技术体系牵头组织育种、栽培、病虫害防控和加工领域多学科专家构建优质专用甘薯品种评价平台,共同评价品种,每年对20个以上的食用甘薯品种和20个以上的淀粉用甘薯品种进行联合鉴定评价,根据评价结果每年向全国推荐优良专用甘薯品种,为企业、种植大户提供良种信息,基本满足了市场对优良甘薯品种的需求。目前,中国在生产上应用的甘薯品种均由中国自主选育,良种自育品种覆盖率达95%以上。目前生产应用面积较大淀粉甘薯品种商薯19、优质食用型甘薯品种烟薯25等,对中国甘薯产业发展起到了积极的推动作用。

2001年以来,通过国家鉴定品种183个,其中,2011—2016年鉴定105个甘薯新品种,育成品种数超过前十年总和。育成品种种类丰富,包括淀粉型、兼用型、食用型、富含色素型和叶菜用品种,形成专用型新品种系列,满足了市场需求(表1)。2017年国家开始实行甘薯品种登记,截至2019年末,中国有193个甘薯品种申请品种权保护,86个品种获批授权,344个品种申请登记,147个获得登记。

Table 1
表1
表12001年以来国家鉴定品种统计表
Table 1The statistical table of nationally appraised sweetpotato varieties since 2001
年份
Year
数量
Numbers
淀粉型
Starch processing type
兼用型
Dual-purpose type
食用型
Food type
食用紫薯型
Food type of purple sweetpotato
色素用紫薯
Pigment processing type of purple sweetpotato
高胡萝卜素型
High contents
of carotene
type
菜用型
Vegetable
type
2001-2010782121245115
2011-20161052510142510417
总计Total numbers1834631383011522
占比Ratio (%)25.1416.9420.7716.396.012.7312.02

新窗口打开|下载CSV

1.2.4 制定国家及行业标准规范种薯种苗市场 制定《植物品种特异性、一致性和稳定性测试指南 甘薯》国家标准GB/T9557.32-2018,为甘薯新品种的DUS测试、登记和保护提供测试标准;构建了380余个甘薯品种的SSR指纹图谱[29],制定了农业行业标准《甘薯品种真实性鉴定SSR分子标记法》,对甘薯品种的真实性鉴定、规范种薯种苗市场具有重要参考价值,对甘薯种业的健康发展具有非常重要的意义。

1.2.5 脱毒种薯种苗生产关键技术研究进展较大 完成了脱毒种薯种苗生产关键技术研究,明确了微型薯快繁的技术参数,克服了脱毒快繁中污染问题和驯化苗快繁中死苗的问题,建立完成了北方薯区脱毒种薯种苗三位一体模式。制订的行业标准《脱毒种薯苗病毒检测技术规程》和《脱毒种薯种苗生产技术规程》分别于2017年4月和2020年4月颁布实施。

1.2.6 种薯(苗)企业重组推进种业发展进入新阶段 改革开放前甘薯种薯种苗基本上以自繁自育为主,市场调节为辅,农村土地集体经营时无固定的基地,政府无管理甘薯良种繁育部门;改革开放初期家庭式种薯种苗繁育公司较多,市场比较混乱,同种异名,侵权现象较多;20世纪90年代至21世纪初,股份公司崛起,但是规模较小,抵御市场风险能力差。2011年以来甘薯病毒病害扩展较快,有脱毒技术支持的大公司优越性逐渐彰显。特别是2018年农业农村部将甘薯列入国家特色作物良种重大攻关计划,吸收了规模型种薯种苗企业加入,在甘薯育种单位和种苗企业间架起了合作桥梁,建立了产学研结合的种业协同创新体系,为甘薯种业的发展起到了积极的推动作用。

河北省邯郸禾下土、石家庄慧谷甘薯种苗,河南省鹤壁饮马泉、清丰华薯、郸城天豫,山东省泗水利丰、金藤薯业、莱州种业,湖北省农谷巨海薯业、龙之泉,江苏省中农薯科等企业与科研院校结合,大大提升了甘薯种薯种苗的质量水平。据不完全统计,2018年全国甘薯良种繁种面积为1.5×104 hm2,种薯繁育量为1.5198×108 kg,薯苗127×108株;生产经营种薯2187×104 kg,薯苗82×108株。良种繁育制种量逐年上升。

2016年以来,济薯25、烟薯25、济薯26、渝薯17、徐紫薯8号等品种实现了品种权或使用权的转让。由于甘薯是无性繁殖作物,品种权保护较为困难,加之国家支持力度较小,甘薯种业发展仍相对落后于其他作物。

2 甘薯产业与种业发展形势分析

2.1 甘薯产业发展形势分析

2.1.1 优质专用品种选育进入瓶颈期 中国甘薯育种新技术的研究在甘薯遗传转化技术、分子标记技术、体细胞杂交技术、细胞诱变技术等技术领域处于国际优势地位。常规育种也走在世界前列,近年来主要育种目标已从侧重高产转移到优质、抗病、高产,在品质育种方面有很大进步,但适合产业化利用的品种和日本、美国相比还有些差距。为了满足不同人群、不同消费形式、不同加工产品对品种指标的要求,指标划分需要更加精细,现阶段还缺少与之适应的选育指标,加之遗传背景复杂和基础研究滞后,加大了品种选育的难度和周期,专用品种选育进入瓶颈期。现阶段实行的国家甘薯品种登记制度不设门槛,登记品种品质分析数据不规范,抗病性较差等,预计登记品种品质水平将有所下滑,突破性品种较少。

2.1.2 专用化品种和绿色生产技术保障甘薯生产可持续发展 与美国、日本等发达国家相比,中国的优势是甘薯种植面积范围广、产量大。近年来,随着国家甘薯产业技术体系新技术、新品种的推广应用,促进了甘薯单产水平和商品性提高。FAO统计,2018年中国甘薯单产22 378.5 kg·hm-2,略高于日本(22 310 kg·hm-2)和美国(21 250 kg·hm-2[8]。2019年达到了26 280 kg·hm-2(国家甘薯产业技术体系统计数据)。淀粉型甘薯种植比例稳中有降,鲜食型甘薯种植比例进一步增加,薯农更加注重产品的商品性及市场接受度。紫薯品种随着加工新产品的开发,种植面积有所增加;菜用甘薯和观赏用甘薯种植面积增加。甘薯种植中生长调节剂滥用、前茬除草剂使用不当等问题有较大缓解;甘薯病毒病(sweetpotato virus disease,SPVD)基本得到控制,卷叶病毒病危害加重,地下害虫、草害、薯块开裂、贮藏坏烂、商品薯率较低、脱毒种薯种苗生产能力不足、面源污染等依然是甘薯生产上的突出问题。劳动力短缺且价格上涨,甘薯轻简化栽培技术创新正促使甘薯生产向全程机械化迈进。

2.1.3 甘薯消费多元化凸显,甘薯新型加工品需求旺盛 中国是世界上最大的甘薯生产与消费国。据中国淀粉工业协会甘薯淀粉专业委员会不完全统计,2018年度,中国甘薯加工产品主要包括淀粉、粉条粉丝、全粉、甘薯干(条、片、脯),其总产量分别为27 070× 104、23 140×104、355×104和31 440×104 kg。美国2019年甘薯产量为14.5×108 kg,总产值为5.88×108美元,鲜食甘薯消费占76%[30],日本除47%鲜食(烤薯为主)以外,主要被用于加工业,包括加工酒精(28%)、淀粉(15%)和食品(7%)等[31],其中,甘薯淀粉主要用于制糖工业,甘薯加工产品丰富,有薯条、蛋糕、甘薯脱水粉末和薯泥等。目前,中国甘薯加工产品仍以淀粉、粉条粉丝、甘薯干等传统产品为主,市场需求不会有太大变动。适合改善中国居民营养健康的新型甘薯食品开发潜力大,甘薯全粉、速冻薯泥薯块、冷冻烤甘薯、紫薯羹、紫薯发酵酒、甘薯馒头、面条以及其他新型休闲食品种类和价格会有小幅上升。膳食纤维、甘薯蛋白等加工副产物综合利用促进甘薯产业向高效益产业发展。

2.2 甘薯种业发展形势分析

2.2.1 甘薯种质创新能力不足 由于多年来国家对甘薯基础研究支持力度太小,加之甘薯倍性高、遗传背景复杂,国际上可借鉴的理论、技术较少,致使甘薯基础研究与其他农作物相比严重滞后,种业发展需要的许多重大关键技术难以解决。中国甘薯种质库(徐州)现保存资源1 239份,保存数量略高于日、美等国,与国际马铃薯中心7 000余份资源相比仍有较大发展空间。甘薯作为无性繁殖作物不可控条件较多,精准鉴定评价难度大,极大阻碍了利用生物技术精确鉴定的进程。目前,种质鉴定评价多为表型鉴定,与表型对应的基因型知之甚少,已克隆的优异基因较少。野生资源的开发和利用、重要基因克隆、核心育种材料的创制等与国际马铃薯中心、日本等比较,还有较大差距。优异基因挖掘和利用程度低,致使目前选育的新品种数量多,但是突破性品种少,难以满足日益增长的多元化市场需求。

2.2.2 种薯种苗市场不规范 进入21世纪,国家在甘薯脱毒种薯种苗生产上资金支持不够,脱毒种薯种苗繁育体系不健全,甚至可以说严重缺失,脱毒种薯种苗的应用率不足10%;种薯种苗繁育技术不规范,不能严格按照规范化操作技术进行,脱毒种薯种苗市场以次充好现象普遍;种薯种苗繁育基地不稳定,隔离措施不严格;国家对甘薯种薯种苗的监管力度小,缺乏必要的检疫程序,种薯种苗质量监督标准缺失严重。跨区域调种导致一些检疫性病虫害传播日益严重,特别是对甘薯产业威胁最大的南方虫害蚁象,近年来在北方薯区多处发生,对甘薯产业已造成严重威胁。

2.2.3 甘薯种业尚未形成规模 近年来,甘薯种植向集约化发展,商品化的种薯种苗需求量大增,小农户模式的繁育和供种体系已不能满足当前甘薯生产的需要。由于甘薯种薯种苗商业化经营难度较大,政府对种薯种苗繁育企业扶持力度较弱,区域性的种薯种苗企业数量少且不能满足生产的需要,全国范围内生产能力超过10×108株的企业不足10家,甘薯良种基地示范县仅有1个。

2.3 科研、种业、产业加速融合发展

在国家特色作物良种重大攻关计划合作基础上,规模型种薯种苗企业与科研单位的合作将会更加紧密,随着土地集约化规模和范围的扩大,产业健康甘薯种薯种苗区域基地建设将以市场需求为导向完成布局,以科研院所为技术支撑的种薯种苗企业将会实现以质量为中心的发展态势,种薯种苗企业继续向适度规模化发展,集约化供种供苗比例大大增加,进一步保障了产业的健康发展。未来可见种业将成为产业的重要组成,健康种薯种苗的商品化率不断提高,逐步达到80%以上。

3 中国甘薯产业和种业发展策略与未来的重点任务

3.1 中国甘薯产业与种业发展的方向和目标

紧紧围绕国家重大需求、关注世界甘薯科技发展前沿,以建立国家和优势区域甘薯健康种薯种苗繁育体系为重要抓手,提高中国甘薯科研和产业的竞争力,引领世界甘薯品种创新和种业发展。完成具有世界一流水平的甘薯种质资源保存库及表型和基因型大数据采集与研究体系建设。发掘满足不同育种需求的优异种质,实现种质资源向基因资源转变。完成甘薯育种公共服务平台建设。完成甘薯优质高产多抗育种的理论基础研究和甘薯分子育种方法与程序的设计方案。核心前育种技术和精准高效育种技术取得重大突破。完善科企融合协同创新体系,提高企业种业技术创新水平,培育育繁推一体化的创新型种薯种苗企业。科企融合、种业与加工业精准对接,建设以营养健康为导向的甘薯种业创新体系。

3.2 中国甘薯产业与种业发展思路与重点任务

3.2.1 完成世界一流的资源收集、评价和保存平台建设 加大甘薯种质资源特别是近缘野生种的引进、收集力度,并做好种质资源分级分类的保护工作。通过甘薯资源深度鉴定,发掘抗病、抗逆和优质的优异资源,建成具有世界一流水平的甘薯种质资源保存库及表观性状、分子标记、生物信息与优异基因相关联的大数据平台。

甘薯资源收集、保存份数达到3 000份,引进国外资源比例提高到15%以上,近缘野生种达到20个种以上。远缘杂交育种、基因编辑等育种技术获得突破,完成1 000份绿色优质新材料精准鉴定及创新,发掘满足不同育种需求的优异种质,实现种质资源向基因资源转变。

3.2.2 建立育繁推一体化健康种薯种苗繁育体系 构建脱毒种薯和良种繁育技术体系,建立种薯标准化生产体系和质量监控体系,加大脱毒种薯生产能力,加强市场监管力度,提高种薯质量,加快脱毒种薯繁育和推广。建立种薯种苗生产者登记和可追溯制度、质量监测和认证制度,提高种薯特别是脱毒种薯质量,根据生产需要建设各级脱毒种薯生产基地,提高集约化供种水平。

创新集成甘薯脱毒技术,形成脱毒培养+病毒检测+脱毒种薯种苗生产的技术体系。研发适合企业及新型经营主体使用的病毒快速检测技术、种薯质量早期预警技术、种薯质量控制关键技术等。建立一中心多区域甘薯健康种苗繁育中心,建立国内甘薯高效脱毒培养技术研发和健康种薯种苗繁育中心,向国内种苗繁育企业提供技术支持。在4个不同甘薯优势区(北方淀粉鲜食用甘薯优势区、西南加工鲜食用甘薯优势区、长江中下游加工鲜食用甘薯优势区及南方鲜食加工用甘薯优势区)分别建立健康种苗繁育中心,培育种薯种苗龙头企业,以点带面,构建以产业为主导、企业为主体、基地为依托、产学研相结合、“育繁推一体化”的现代甘薯种业体系,全面提升中国甘薯种业发展水平。

3.2.3 完成甘薯育种公共服务平台建设 选育和推广优质高产多抗专用品种 育种理论基础研究和分子设计育种方法和程序取得重大突破,发掘甘薯品质、抗性等相关的关键基因或QTL,解析其分子调控机理,建立精准高效的甘薯全基因组选择、SNP和SSR分子标记选择和倍性育种技术。培育耐低温、抗破损、货架期长优质鲜食甘薯品种。培育营养强化和功能型品种(包括富含花青素、胡萝卜素、锌、硒、铁等)。培育适合机械化、标准化生产的品种(薯块相对集中、薯型椭圆、薯蔓较短、薯皮不易破损等)。注重以营养健康为导向的甘薯育种改良创新,加快优质高产多抗专用新品种的选育和推广速度。北方甘薯优势区重点选育和推广高产、抗根腐病、抗茎线虫病、抗黑斑病的淀粉用和鲜食用品种;西南甘薯优势区重点选育和推广高产、抗黑斑病、抗蔓割病的加工用和鲜食用品种;长江中下游甘薯优势区重点选育和推广高产、抗蔓割病、抗黑斑病的食品加工用和鲜食用品种;南方甘薯优势区重点选育和推广高产、抗蔓割病、抗薯瘟病、抗疮痂病、抗蚁象的鲜食用和食品加工用品种。

3.2.4 进一步延长加工产业链增加产业效益 甘薯加工副产物的高值化利用,缓解环境污染、减少资源浪费、实现增值提效。进一步加强甘薯高档、多元化、功能化加工产品研发力度。建立集甘薯高效生产、加工、营销一体化的产业链示范区,培育加工龙头企业及知名品牌。

3.2.5 推进中国甘薯种业“一带一路”建设,实现“一带一路”沿线各国甘薯种业的共同发展与合作共赢

随着“一带一路”倡议从理念转化为行动,从愿景转变为现实,为中国甘薯产业发展带来了新的机遇。中国甘薯品种选育、良种繁育等产业技术在全球农业“一带一路”战略发展中优势明显,尤其种植面积连续6年居世界第一的非洲,单产水平却不足中国的30%[8],甘薯产业技术输出和品种输出基本条件已经具备。针对“一带一路”沿线各国对不同甘薯品种的需求,可将高品质淀粉、富含蛋白质、膳食纤维、花青素、β-胡萝卜素和/或多酚类物质等的专用品种向“一带一路”沿线各国进行示范推广,建设优质甘薯专用品种生产基地。随着加工产品的不断丰富,甘薯出口额和产品附加值均将有所提升。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998: 19-27.
[本文引用: 1]

陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998: 19-27.
[本文引用: 1]

LU S Y, LIU Q C, LI W J. Sweetpotato Breeding. Beijing: China Agriculture Press, 1998: 19-27. (in Chinese)
[本文引用: 1]

LU S Y, LIU Q C, LI W J. Sweetpotato Breeding. Beijing: China Agriculture Press, 1998: 19-27. (in Chinese)
[本文引用: 1]

马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望
江苏农业学报, 2012(5):969-973.

[本文引用: 2]

马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望
江苏农业学报, 2012(5):969-973.

[本文引用: 2]

MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China
Jiangsu Journal of Agricultural Sciences, 2012(5):969-973. (in Chinese)

[本文引用: 2]

MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China
Jiangsu Journal of Agricultural Sciences, 2012(5):969-973. (in Chinese)

[本文引用: 2]

谢一芝, 郭小丁, 贾赵东, 马佩勇, 边小峰, 禹阳. 中国食用甘薯育种现状及展望
江苏农业学报, 2018,34(6):1419-1424.

[本文引用: 1]

谢一芝, 郭小丁, 贾赵东, 马佩勇, 边小峰, 禹阳. 中国食用甘薯育种现状及展望
江苏农业学报, 2018,34(6):1419-1424.

[本文引用: 1]

XIE Y Z, GUO X D, JIA Z D, MA P Y, BIAN X F, YU Y. Progresses and prospects on edible sweetpotato breeding in China
Jiangsu Journal of Agricultural Sciences, 2018,34(6):1419-1424. (in Chinese)

[本文引用: 1]

XIE Y Z, GUO X D, JIA Z D, MA P Y, BIAN X F, YU Y. Progresses and prospects on edible sweetpotato breeding in China
Jiangsu Journal of Agricultural Sciences, 2018,34(6):1419-1424. (in Chinese)

[本文引用: 1]

周志林, 唐君, 曹清河, 赵冬兰, 张安. 淀粉专用型甘薯品质形成规律及其与主要农艺性状的相关性
江苏农业学报, 2020,36(2):277-283.

[本文引用: 1]

周志林, 唐君, 曹清河, 赵冬兰, 张安. 淀粉专用型甘薯品质形成规律及其与主要农艺性状的相关性
江苏农业学报, 2020,36(2):277-283.

[本文引用: 1]

ZHOU Z L, TANG J, CAO Q H, ZHAO D L, ZHANG A. Formation laws of quality characters in starch sweetpotato cultivars and its correlation with main agronomic characters
Jiangsu Journal of Agricultural Sciences, 2020,36(2):277-283. (in Chinese)

[本文引用: 1]

ZHOU Z L, TANG J, CAO Q H, ZHAO D L, ZHANG A. Formation laws of quality characters in starch sweetpotato cultivars and its correlation with main agronomic characters
Jiangsu Journal of Agricultural Sciences, 2020,36(2):277-283. (in Chinese)

[本文引用: 1]

项超, 沈升法, 季志仙, 李兵, 吴列洪. 浙薯系列鲜食及食品加工型甘薯品种系谱和品质性状分析
核农学报, 2020,34(1):36-44.

[本文引用: 1]

项超, 沈升法, 季志仙, 李兵, 吴列洪. 浙薯系列鲜食及食品加工型甘薯品种系谱和品质性状分析
核农学报, 2020,34(1):36-44.

[本文引用: 1]

XIANG C, SHEN S F, JI Z X, LI B, WU L H. Pedigree and quality traits of Zheshu sweetpotato varieties for table use and food processing use
Journal of Nuclear Agricultural Sciences, 2020,34(1):36-44. (in Chinese)

[本文引用: 1]

XIANG C, SHEN S F, JI Z X, LI B, WU L H. Pedigree and quality traits of Zheshu sweetpotato varieties for table use and food processing use
Journal of Nuclear Agricultural Sciences, 2020,34(1):36-44. (in Chinese)

[本文引用: 1]

苏一钧, 董玲霞, 王娇, 戴习彬, 张安, 赵冬兰, 周志林, 唐君, 曹清河. 菜用和观赏甘薯种质资源遗传多样性分析
植物遗传资源学报, 2018,19(1):57-64.

[本文引用: 1]

苏一钧, 董玲霞, 王娇, 戴习彬, 张安, 赵冬兰, 周志林, 唐君, 曹清河. 菜用和观赏甘薯种质资源遗传多样性分析
植物遗传资源学报, 2018,19(1):57-64.

[本文引用: 1]

SU Y J, DONG L X, WANG J, DAI X B, ZHANG A, ZHAO D L, ZHOU Z L, TANG J, CAO Q H. Genetic diversity in vegetable and ornamental sweetpotato germplasm
Journal of Plant Genetic Resources, 2018,19(1):57-64. (in Chinese)

[本文引用: 1]

SU Y J, DONG L X, WANG J, DAI X B, ZHANG A, ZHAO D L, ZHOU Z L, TANG J, CAO Q H. Genetic diversity in vegetable and ornamental sweetpotato germplasm
Journal of Plant Genetic Resources, 2018,19(1):57-64. (in Chinese)

[本文引用: 1]

孟羽莎, 赖齐贤. 观赏甘薯的应用及展望
浙江农业科学, 2019,60(12):2181-2184, 2244.

[本文引用: 1]

孟羽莎, 赖齐贤. 观赏甘薯的应用及展望
浙江农业科学, 2019,60(12):2181-2184, 2244.

[本文引用: 1]

MENG Y S, LAI Q X. Application and prospects of ornamental sweetpotato
Zhejiang Agricultural Sciences, 2019,60(12):2181-2184, 2244. (in Chinese)

[本文引用: 1]

MENG Y S, LAI Q X. Application and prospects of ornamental sweetpotato
Zhejiang Agricultural Sciences, 2019,60(12):2181-2184, 2244. (in Chinese)

[本文引用: 1]

Food and Agriculture Organization. FAOSTAT agriculture data. http://www.fao.org/faostat/en.
URL [本文引用: 6]

Food and Agriculture Organization. FAOSTAT agriculture data. http://www.fao.org/faostat/en.
URL [本文引用: 6]

王庆美, 张立明, 王荫墀. 甘薯的主要营养成分和保健作用
杂粮作物, 2003,23(3):162-166.

[本文引用: 1]

王庆美, 张立明, 王荫墀. 甘薯的主要营养成分和保健作用
杂粮作物, 2003,23(3):162-166.

[本文引用: 1]

WANG Q M, ZHANG L M, WANG Y C. The main nutritional components and health benefits of sweet potato
Rain Fed Crops, 2003,23(3):162-166. (in Chinese)

[本文引用: 1]

WANG Q M, ZHANG L M, WANG Y C. The main nutritional components and health benefits of sweet potato
Rain Fed Crops, 2003,23(3):162-166. (in Chinese)

[本文引用: 1]

木泰华, 张苗. 甘薯蛋白及其酶解肽的营养代谢与生物活性. 北京: 科学出版社, 2014.
[本文引用: 1]

木泰华, 张苗. 甘薯蛋白及其酶解肽的营养代谢与生物活性. 北京: 科学出版社, 2014.
[本文引用: 1]

MU T H, ZHANG M. Nutrient Metabolism and Biological Activity of Sweetpotato Protein and Its Enzymatic Peptide. Beijing: Science Press, 2014. (in Chinese)
[本文引用: 1]

MU T H, ZHANG M. Nutrient Metabolism and Biological Activity of Sweetpotato Protein and Its Enzymatic Peptide. Beijing: Science Press, 2014. (in Chinese)
[本文引用: 1]

SUN H N, MU B N, SONG Z, MA Z M, MU T H. The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species of sweet potato leaf polyphenols
Oxidative Medicine & Cellular Longevity, 2018: 9017828.

[本文引用: 1]

SUN H N, MU B N, SONG Z, MA Z M, MU T H. The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species of sweet potato leaf polyphenols
Oxidative Medicine & Cellular Longevity, 2018: 9017828.

[本文引用: 1]

SUN J, ZHOU B, TANG C, GOU Y R, CHEN H, WANG Y, JIN C H, LIU J, NIU F X, QIAN C L, ZHANG N F. Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides
International Journal of Biological Macromolecules, 2018,115:69-76.

URLPMID:29653172 [本文引用: 1]

SUN J, ZHOU B, TANG C, GOU Y R, CHEN H, WANG Y, JIN C H, LIU J, NIU F X, QIAN C L, ZHANG N F. Characterization, antioxidant activity and hepatoprotective effect of purple sweetpotato polysaccharides
International Journal of Biological Macromolecules, 2018,115:69-76.

URLPMID:29653172 [本文引用: 1]

WANG X, ZHANG Z F, ZHENG G H, WANG A M, SUN C H, QIN S P, ZHUANG J, LU J, MA D F, ZHANG Y L. The inhibitory effects of purple sweet potato color on hepatic inflammation is associated with restoration of NAD+ levels and attenuation of NLRP3 inflammasome activation in high-fat-diet-treated mice
Molecules, 2017,22(8):1315-1330.

[本文引用: 1]

WANG X, ZHANG Z F, ZHENG G H, WANG A M, SUN C H, QIN S P, ZHUANG J, LU J, MA D F, ZHANG Y L. The inhibitory effects of purple sweet potato color on hepatic inflammation is associated with restoration of NAD+ levels and attenuation of NLRP3 inflammasome activation in high-fat-diet-treated mice
Molecules, 2017,22(8):1315-1330.

[本文引用: 1]

MOHANRAJ R, SIVASANKAR S. Sweet potato (Ipomoea batatas [L.] Lam) - A valuable medicinal food: A review
Journal of Medicinal Food, 2014,17(7):733-741.

DOI:10.1089/jmf.2013.2818URLPMID:24921903 [本文引用: 1]
Ipomoea batatas (L.) Lam, also known as sweet potato, is an extremely versatile and delicious vegetable that possesses high nutritional value. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. Sweet potato is now considered a valuable source of unique natural products, including some that can be used in the development of medicines against various diseases and in making industrial products. The overall objective of this review is to give a bird's-eye view of the nutritional value, health benefits, phytochemical composition, and medicinal properties of sweet potato. Specifically, this review outlines the biological activities of some of the sweet potato compounds that have been isolated, the pharmacological action of the sweet potato extract, clinical studies, and plausible medicinal applications of sweet potato (along with a safety evaluation), and demonstrates the potential of sweet potato as a medicinal food.
MOHANRAJ R, SIVASANKAR S. Sweet potato (Ipomoea batatas [L.] Lam) - A valuable medicinal food: A review
Journal of Medicinal Food, 2014,17(7):733-741.

DOI:10.1089/jmf.2013.2818URLPMID:24921903 [本文引用: 1]
Ipomoea batatas (L.) Lam, also known as sweet potato, is an extremely versatile and delicious vegetable that possesses high nutritional value. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. Sweet potato is now considered a valuable source of unique natural products, including some that can be used in the development of medicines against various diseases and in making industrial products. The overall objective of this review is to give a bird's-eye view of the nutritional value, health benefits, phytochemical composition, and medicinal properties of sweet potato. Specifically, this review outlines the biological activities of some of the sweet potato compounds that have been isolated, the pharmacological action of the sweet potato extract, clinical studies, and plausible medicinal applications of sweet potato (along with a safety evaluation), and demonstrates the potential of sweet potato as a medicinal food.

农业农村部科技教育司, 财政部教科司, 农业农村部科技发展中心. 中国农业产业技术发展报告2017. 北京: 中国农业科学技术出版社, 2018: 47-50.
[本文引用: 1]

农业农村部科技教育司, 财政部教科司, 农业农村部科技发展中心. 中国农业产业技术发展报告2017. 北京: 中国农业科学技术出版社, 2018: 47-50.
[本文引用: 1]

Department of Science, Technology and Education, MOA, Department of Education and Science, Ministry of Finance, Development Center for Science and Technology, MOA. Report on the Technological Development of China's Agricultural Industry 2017. Beijing: China Agriculture Science and Technology Press, 2018: 47-50. (in Chinese)
[本文引用: 1]

Department of Science, Technology and Education, MOA, Department of Education and Science, Ministry of Finance, Development Center for Science and Technology, MOA. Report on the Technological Development of China's Agricultural Industry 2017. Beijing: China Agriculture Science and Technology Press, 2018: 47-50. (in Chinese)
[本文引用: 1]

周郑坤, 郑元林. 甘薯营养价值与保健功能的再认识
江苏师范大学学报(自然科学版), 2016,34(4):16-19.

[本文引用: 1]

周郑坤, 郑元林. 甘薯营养价值与保健功能的再认识
江苏师范大学学报(自然科学版), 2016,34(4):16-19.

[本文引用: 1]

ZHOU Z K, ZHENG Y L. Nutrition value and health benefits of sweet potato
Journal of Jiangsu Normal University (Natural Science Edition), 2016,34(4):16-19. (in Chinese)

[本文引用: 1]

ZHOU Z K, ZHENG Y L. Nutrition value and health benefits of sweet potato
Journal of Jiangsu Normal University (Natural Science Edition), 2016,34(4):16-19. (in Chinese)

[本文引用: 1]

戴起伟, 钮福祥, 孙健, 曹静. 我国甘薯生产与消费结构的变化分析
中国农业科技导报, 2016,18(3):201-209.

[本文引用: 1]

戴起伟, 钮福祥, 孙健, 曹静. 我国甘薯生产与消费结构的变化分析
中国农业科技导报, 2016,18(3):201-209.

[本文引用: 1]

DAI Q W, NIU F X, SUN J, CAO J. Changes analysis of sweet potato production and consumption structure in China
Journal of Agricultural Science and Technology, 2016,18(3):201-209. (in Chinese)

[本文引用: 1]

DAI Q W, NIU F X, SUN J, CAO J. Changes analysis of sweet potato production and consumption structure in China
Journal of Agricultural Science and Technology, 2016,18(3):201-209. (in Chinese)

[本文引用: 1]

陆建珍, 汪翔, 秦建军, 戴起伟, 易中懿. 我国甘薯种植业发展状况调查报告(2017年)——基于国家甘薯产业技术体系产业经济固定观察点数据的分析
江苏农业科学, 2018,46(23):393-398.

[本文引用: 1]

陆建珍, 汪翔, 秦建军, 戴起伟, 易中懿. 我国甘薯种植业发展状况调查报告(2017年)——基于国家甘薯产业技术体系产业经济固定观察点数据的分析
江苏农业科学, 2018,46(23):393-398.

[本文引用: 1]

LU J Z, WANG X, QIN J J, DAI Q W, YI Z Y. Survey report on the development of sweetpotato planting industry in China (2017) - Analysis based on data from fixed observation points of industrial economy of national sweetpotato research system
Jiangsu Agricultural Sciences, 2018,46(23):393-398. (in Chinese)

[本文引用: 1]

LU J Z, WANG X, QIN J J, DAI Q W, YI Z Y. Survey report on the development of sweetpotato planting industry in China (2017) - Analysis based on data from fixed observation points of industrial economy of national sweetpotato research system
Jiangsu Agricultural Sciences, 2018,46(23):393-398. (in Chinese)

[本文引用: 1]

YANG J, MOEINZADEH M, KUHL H, HELMUTH J X, XIAO P, HAAS S, LIU G L, ZHENG J L, SUN Z, FAN W J, DENG G F, WANG H X, HU F H, ZHAO S S, FERMIE A, BOERNO S, TIMMERMANN B, ZHANG P, VINGRON M. Haplotype-resolved sweet potato genome traces back its hexaploidization history
Nature Plants, 2017,3(9):696-703.

URLPMID:28827752 [本文引用: 1]

YANG J, MOEINZADEH M, KUHL H, HELMUTH J X, XIAO P, HAAS S, LIU G L, ZHENG J L, SUN Z, FAN W J, DENG G F, WANG H X, HU F H, ZHAO S S, FERMIE A, BOERNO S, TIMMERMANN B, ZHANG P, VINGRON M. Haplotype-resolved sweet potato genome traces back its hexaploidization history
Nature Plants, 2017,3(9):696-703.

URLPMID:28827752 [本文引用: 1]

WU S, LAU K H, CAO Q H, HAMILTON J P, SUN H H, ZHOU C X, ESERMAN L, GEMENET D C, OLUKOLU B A, WANG H Y, CRISOVAN E, GODDEN G T, JIAO C, WANG X, KITAVI M, CARPINTERO N M, VAILLANCOURT B, RININGER K W, YANG X Y, BAO K, SCHAFF J, KREUZE J, GRUNEBERG W, KHAN A, GHISLAIN M, MA D F, JIANG J M, MWANGA R O, MACK J L, CION L J, YENCHON G G, BUELL C R, FEI Z J. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement
Nature Communications, 2018,9(1):e4580.

[本文引用: 1]

WU S, LAU K H, CAO Q H, HAMILTON J P, SUN H H, ZHOU C X, ESERMAN L, GEMENET D C, OLUKOLU B A, WANG H Y, CRISOVAN E, GODDEN G T, JIAO C, WANG X, KITAVI M, CARPINTERO N M, VAILLANCOURT B, RININGER K W, YANG X Y, BAO K, SCHAFF J, KREUZE J, GRUNEBERG W, KHAN A, GHISLAIN M, MA D F, JIANG J M, MWANGA R O, MACK J L, CION L J, YENCHON G G, BUELL C R, FEI Z J. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement
Nature Communications, 2018,9(1):e4580.

[本文引用: 1]

ZHAO N, ZHAI H, YU X X, LIU Z S, HE S Z, LI Q, MA D F, LIU Q C. Development of SRAP markers linked to a gene for stem nematode resistance in sweetpotato, Ipomoea batatas (L.)Lam
Journal of Integrative Agriculture, 2013,12(3):414-419.

[本文引用: 1]

ZHAO N, ZHAI H, YU X X, LIU Z S, HE S Z, LI Q, MA D F, LIU Q C. Development of SRAP markers linked to a gene for stem nematode resistance in sweetpotato, Ipomoea batatas (L.)Lam
Journal of Integrative Agriculture, 2013,12(3):414-419.

[本文引用: 1]

ZHAO N, YU X X, JIE Q, LI H, LI H, HU J, ZHAI H, HE S Z, LIU Q C. A genetic linkage map based on AFLP and SSR markers and mapping of QTLs for dry-matter content in sweetpotato
Molecular Breeding, 2013,32:807-820.

DOI:10.1007/s11032-013-9908-yURL [本文引用: 1]
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0-45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.
ZHAO N, YU X X, JIE Q, LI H, LI H, HU J, ZHAI H, HE S Z, LIU Q C. A genetic linkage map based on AFLP and SSR markers and mapping of QTLs for dry-matter content in sweetpotato
Molecular Breeding, 2013,32:807-820.

DOI:10.1007/s11032-013-9908-yURL [本文引用: 1]
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0-45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.

ZHOU W, YANG J, HONG Y, LIU G, ZHENG J, GU Z, ZHANG P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato
Carbohydrate Polymers, 2015,122:417-427.

[本文引用: 1]

ZHOU W, YANG J, HONG Y, LIU G, ZHENG J, GU Z, ZHANG P. Impact of amylose content on starch physicochemical properties in transgenic sweet potato
Carbohydrate Polymers, 2015,122:417-427.

[本文引用: 1]

WANG Y N, LI Y, ZHANG H, ZHAI H, LIU Q C, HE S Z. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato
Scientific Reports, 2017,7(1):e2315.

[本文引用: 1]

WANG Y N, LI Y, ZHANG H, ZHAI H, LIU Q C, HE S Z. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato
Scientific Reports, 2017,7(1):e2315.

[本文引用: 1]

KANG C, HE S, ZHAI H, LI R J, ZHAO N, LIU Q C. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis
Frontiers in Plant Science, 2018,9:e1307.

[本文引用: 1]

KANG C, HE S, ZHAI H, LI R J, ZHAO N, LIU Q C. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis
Frontiers in Plant Science, 2018,9:e1307.

[本文引用: 1]

ZHANG H, ZHANG Q, ZHAI H, GAO S P, YANG L, WANG Z, XU Y T, HUO J X, REN Z T, ZHAO N, WANG X F, LI J G, LIU Q C, HE S Z. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweetpotato
The Plant Cell, 2020,32(4):1102-1123.

URLPMID:32034034 [本文引用: 1]

ZHANG H, ZHANG Q, ZHAI H, GAO S P, YANG L, WANG Z, XU Y T, HUO J X, REN Z T, ZHAO N, WANG X F, LI J G, LIU Q C, HE S Z. IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweetpotato
The Plant Cell, 2020,32(4):1102-1123.

URLPMID:32034034 [本文引用: 1]

JIN R, KIM B H, JI C Y, KIM H S, LI H M, MA D F, KWAK S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato
Plant Physiology and Biochemistry, 2017,118:45-54.

DOI:10.1016/j.plaphy.2017.06.002URLPMID:28603083 [本文引用: 1]
Dehydration-responsive element-binding/C-repeat-binding factor (DREB/CBF) proteins regulate the transcription of genes involved in cold acclimation in several species. However, little is known about the physiological functions of CBF proteins in the low temperature-sensitive crop sweetpotato. We previously reported that the DREB1/CBF-like sweetpotato gene SwDREB1/IbCBF3 is involved in responses to diverse abiotic stresses. In this study, we confirmed that IbCBF3 is localized to the nucleus and binds to the C-repeat/dehydration-responsive elements (CRT/DRE) in the promoters of cold-regulated (COR) genes. We generated transgenic sweetpotato plants overexpressing IbCBF3 under the control of the CaMV 35S promoter (referred to as SC plants) and evaluated their responses to various abiotic stresses. IbCBF3 expression was dramatically induced by cold and drought but much less strongly induced by high salinity and ABA. We further characterized two SC lines (SC3 and SC6) with high levels of IbCBF3 transcript. The SC plants displayed enhanced tolerance to cold, drought, and oxidative stress on the whole-plant level. Under cold stress treatment (4 degrees C for 48 h), severe wilting and chilling injury were observed in the leaves of wild-type (WT) plants, whereas SC plants were not affected by cold stress. In addition, the COR genes were significantly upregulated in SC plants compared with the WT. The SC plants also showed significantly higher tolerance to drought stress than the WT, which was associated with higher photosynthesis efficiency and lower hydrogen peroxide levels. These results indicate that IbCBF3 is a functional transcription factor involved in the responses to various abiotic stresses in sweetpotato.
JIN R, KIM B H, JI C Y, KIM H S, LI H M, MA D F, KWAK S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato
Plant Physiology and Biochemistry, 2017,118:45-54.

DOI:10.1016/j.plaphy.2017.06.002URLPMID:28603083 [本文引用: 1]
Dehydration-responsive element-binding/C-repeat-binding factor (DREB/CBF) proteins regulate the transcription of genes involved in cold acclimation in several species. However, little is known about the physiological functions of CBF proteins in the low temperature-sensitive crop sweetpotato. We previously reported that the DREB1/CBF-like sweetpotato gene SwDREB1/IbCBF3 is involved in responses to diverse abiotic stresses. In this study, we confirmed that IbCBF3 is localized to the nucleus and binds to the C-repeat/dehydration-responsive elements (CRT/DRE) in the promoters of cold-regulated (COR) genes. We generated transgenic sweetpotato plants overexpressing IbCBF3 under the control of the CaMV 35S promoter (referred to as SC plants) and evaluated their responses to various abiotic stresses. IbCBF3 expression was dramatically induced by cold and drought but much less strongly induced by high salinity and ABA. We further characterized two SC lines (SC3 and SC6) with high levels of IbCBF3 transcript. The SC plants displayed enhanced tolerance to cold, drought, and oxidative stress on the whole-plant level. Under cold stress treatment (4 degrees C for 48 h), severe wilting and chilling injury were observed in the leaves of wild-type (WT) plants, whereas SC plants were not affected by cold stress. In addition, the COR genes were significantly upregulated in SC plants compared with the WT. The SC plants also showed significantly higher tolerance to drought stress than the WT, which was associated with higher photosynthesis efficiency and lower hydrogen peroxide levels. These results indicate that IbCBF3 is a functional transcription factor involved in the responses to various abiotic stresses in sweetpotato.

周志林, 唐君, 金平, 刘恩良, 曹清河, 赵冬兰, 张安. 甘薯抗旱鉴定及旱胁迫对甘薯叶片生理特性的影响
西南农业学报, 2016,29(5):1052-1056.

[本文引用: 1]

周志林, 唐君, 金平, 刘恩良, 曹清河, 赵冬兰, 张安. 甘薯抗旱鉴定及旱胁迫对甘薯叶片生理特性的影响
西南农业学报, 2016,29(5):1052-1056.

[本文引用: 1]

ZHOU Z L, TANG J, JIN P, LIU E L, CAO Q H, ZHAO D L, ZHANG A. Identification of drought resistance and effect of soil drought on physiological characteristics of sweetpotato
Southwest China Journal of Agricultural Sciences, 2016,29(5):1052-1056. (in Chinese)

[本文引用: 1]

ZHOU Z L, TANG J, JIN P, LIU E L, CAO Q H, ZHAO D L, ZHANG A. Identification of drought resistance and effect of soil drought on physiological characteristics of sweetpotato
Southwest China Journal of Agricultural Sciences, 2016,29(5):1052-1056. (in Chinese)

[本文引用: 1]

YANG X S, SU W J, WANG L J, LEI J, CHAI S S, LIU Q C. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers
Journal of Integrative Agriculture, 2015,14(4):633-641.

[本文引用: 1]

YANG X S, SU W J, WANG L J, LEI J, CHAI S S, LIU Q C. Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers
Journal of Integrative Agriculture, 2015,14(4):633-641.

[本文引用: 1]

United States Department of Agriculture (USDA). National Agricultural Statistics Service (NASS), 2019. https://www.nass.usda.gov/Data_and_Statistics/index.php.
URL [本文引用: 1]

United States Department of Agriculture (USDA). National Agricultural Statistics Service (NASS), 2019. https://www.nass.usda.gov/Data_and_Statistics/index.php.
URL [本文引用: 1]

Ministry of Agriculture, Forestry and Fisheries, Japan. Statistics of sweetpotato production, 2015. https://www.maff.go.jp/j/seisan/tokusan/imo/27siryou.html. (in Japanese)
URL [本文引用: 1]

Ministry of Agriculture, Forestry and Fisheries, Japan. Statistics of sweetpotato production, 2015. https://www.maff.go.jp/j/seisan/tokusan/imo/27siryou.html. (in Japanese)
URL [本文引用: 1]

相关话题/技术 甘薯 资源 生产 农业