删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

拔节期阶段性干旱对小麦茎蘖成穗与结实的影响

本站小编 Free考研考试/2021-12-26

李萍,1, 尚云秋1, 林祥1, 刘帅康1, 王森1, 胡鑫慧1, 王东,1,21山东农业大学/作物生物学国家重点实验室,山东泰安 271018
2淄博禾丰种业科技股份有限公司, 山东临淄 255000

Effects of Drought Stress During Jointing Stage on Spike Formation and Seed Setting of Main Stem and Tillers of Winter Wheat

LI Ping,1, SHANG YunQiu1, LIN Xiang1, LIU ShuaiKang1, WANG Sen1, HU XinHui1, WANG Dong,1,2 1Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
2Zibo HeFeng Seed Technology co., ltd., Linzi, Shandong, 255000, China

通讯作者: 王东,E-mail: wangd@sdau.edu.cn

责任编辑: 杨鑫浩
收稿日期:2020-01-2接受日期:2020-03-17网络出版日期:2020-10-16
基金资助:山东省重大科技创新工程项目.2019JZZY010716
东省泰山产业领军人才项目
家公益性行业(农业)科研专项.201503130


Received:2020-01-2Accepted:2020-03-17Online:2020-10-16
作者简介 About authors
李萍,E-mail: sdauliping@163.com









摘要
【目的】针对黄淮海地区自然降水季节分布不均、阶段性干旱频发导致小麦产量和水分利用效率低的问题,探索拔节期阶段性干旱对冬小麦主茎和分蘖成穗与结实的影响,可为该地区冬小麦节水栽培提供理论和技术支持。【方法】于2017—2019年冬小麦生长季,在室外遮雨条件下进行盆栽试验。以小麦品种山农29和衡0628为试验材料,在拔节后0—10 d期间设置5个水分处理:充分供水(CK,保持土壤相对含水量75%—80%,土壤有效含水量为42.2—46.7 mm);拔节后0—5 d轻度干旱(T1,保持土壤相对含水量为65%—70%,土壤有效含水量为33.4—37.8 mm)、重度干旱(T2,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm);拔节后0—10 d轻度干旱(T3,保持土壤相对含水量为65%—70%,土壤有效含水量为33.4—37.83 mm)、重度干旱(T4,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1mm),测定了茎蘖幼穗发育进程及茎蘖成穗和结实性状等指标。【结果】在拔节后0—10 d期间不同程度干旱对小麦主茎成穗无明显影响,但是随着干旱时间的延长和干旱程度的加大,低位蘖(Ⅲ和Ⅰp)成穗率迅速下降,而高位蘖(Ⅱp和Ⅰ1)成穗率呈先升高后下降趋势。拔节后0—5 d轻度或重度干旱,高位蘖成穗率均较高,单位面积成穗数与CK无显著差异;拔节后0—10 d轻度干旱,高位蘖成穗率虽与CK相近,但由于低位蘖(Ⅲ、Ⅰp)成穗率下降幅度较大,导致单位面积成穗数显著降低,山农29和衡0628单位面积穗数下降幅度分别为4.94%—5.06%和6.77%—8.33%;拔节后0—10 d重度干旱,Ⅱ蘖以上分蘖成穗率均下降,山农29和衡0628单位面积成穗数下降幅度分别为10.97%—11.52%和15.00%—15.55%。拔节后0—5 d轻度干旱,2个品种主茎和各蘖位分蘖的结实性、单穗产量和单位面积产量均与CK无显著差异。拔节后0—5 d重度干旱,2个品种各中位蘖的结实小穗数和穗粒数均显著减少,主茎和高位蘖受影响不明显;山农29各茎蘖单粒重不受影响而单穗产量显著降低;衡0628各茎蘖单粒重和单穗产量显著降低;山农29和衡0628单位面积籽粒产量均显著降低,分别比CK减少5.14%—5.46%和5.45%—6.24%。拔节后0—10 d轻度和重度干旱,2个品种茎蘖的总小穗数、结实小穗数、穗粒数、单粒重、单穗产量和单位面积籽粒产量均显著降低,且以中位蘖下降幅度较大;重度干旱处理各茎蘖的穗粒数和单穗产量及单位面积籽粒产量显著低于轻度干旱处理。山农29和衡0628单位面积籽粒产量在T3处理下分别比CK减少12.87%—13.30%和15.52%—16.59%;在T4处理下分别比CK减少23.18%—25.92%和26.05%—31.22%。【结论】拔节后短时间轻度干旱(拔节后0—5 d保持土壤相对含水量65%—70%,土壤有效水含量33.4—37.8 mm)对小麦成穗和结实无显著影响;干旱时间过长、程度过大则会大幅度降低低位蘖(Ⅲ和Ⅰp)成穗率、总小穗数、结实小穗数、穗粒数、单粒重和单穗产量,导致单位面积籽粒产量显著下降。在拔节后5 d干旱或拔节后10 d轻度干旱条件下,高位蘖(Ⅱp和Ⅰ1)成穗率有所提高,在一定程度上可弥补干旱造成的损失,这可能与低位分蘖受旱后成穗率降低,群体变小,动摇分蘖分配的营养增多、生存空间增大有关,为生产中通过合理措施调控,实现小麦稳产提供了理论依据。山农29对拔节期阶段性干旱的抗性高于衡0628。
关键词: 冬小麦;阶段性干旱;主茎与分蘖;成穗与结实;产量

Abstract
【Objective】To address the problem of low wheat yield and water efficiency caused by irregular distribution of natural precipitation season and the frequent rate of staged drought in the Huang-Huai-Hai Plain of China, this paper provided theoretical as well as technical provisions for water-saving cultivation of winter wheat in this area by exploring the effects of water insufficiency on the main stem and tiller spikes formation and panicles traits during jointing stage.【Method】A 2-year pot experiment under external rain conditions was carried out from 2017 to 2019 in winter wheat growth season, and the two winter wheat varieties of Shannong 29 and Heng 0628 were used as experimental materials. The total five water treatments were set up during 0-10 d after jointing, including full irrigation treatment during whole growing season as control (CK, maintaining soil relative water content of 75%-80%, the effective soil water content of 42.2-46.7 mm), 0-5 d light drought stress after jointing (T1, maintaining soil relative water content of 65%-70%, soil availability water content of 33.4-37.8 mm), 0-5 d severe drought (T2, maintaining soil relative water content of 45%-50%, available soil water capacity is 15.6-20.1 mm), 0-10 d light drought stress after jointing (T3, maintaining soil relative water content is 65%-70%, soil availability water content of 33.4-37.8 mm), and 0-10 d severe drought stress (T4, maintaining the soil relative water content 45%-50%, availability water content of 15.6-20.1mm).【Result】The results revealed that different degrees of drought stress had no significant effect on the main stem of wheat during 0-10 d after jointing, the effective spike rate of low tiller (Ⅲ, Ⅰp ) decreased rapidly with the increasing the drought level and extension of drought time, while the effective spike rate of high tiller (Ⅱp and Ⅰ1) increased first and then decreased. Light or severe drought at 0-5 d after jointing stage, Ⅱp and Ⅰ1 were higher in effective spike rate, and there was no significant difference in spike number per unit area from CK. Although the effective spike rate of Ⅰ1 and Ⅱp was similar to that of CK in 0-10 d light drought after jointing stage, the percentage of spikes per unit area decreased significantly due to the decrease of Ⅲ, Ⅰp and Ⅳ. The number of spike per unit area of Shannong 29 and Heng 0628 was decreased by 4.94%-5.06% and 6.77%-8.33%, respectively. For 0-10 d light drought after jointing, the effective rate of tiller of Ⅱ and more was decreased of severe drought. The number of spikes per unit area of Shannong 29 and Heng 0628 was decreased by 10.97%-11.52% and 15.00%-15.55%, respectively. The treatment of light drought at 0-5 d after jointing stage, the panicle characteristics, single stem grain yield and grain yield per unit area of the two cultivars were not significantly different from CK. The treatment of severe drought from 0 to 5 days after jointing, the fertile spikelets number and the grain number in the two cultivars were significantly reduced, and the main stem and later occurring tillers were not affected. The single grain weight of Shannong 29 was not affected, but the yield of single stem grain yield was significantly reduced, the single grain weight and single stem grain yield of Heng 0628 was significantly reduced, the grain yield per unit area of Shannong 29 and Heng 0628 decreased significantly, which was 5.14%-5.46% and 5.45%-6.24% lower than CK, respectively. For the light and severe drought from 0 to 10 days after jointing, the spikelets number, the fertile spikelets number, grain number, single grain weight, single stem grain yield and grain yield per unit area of the two cultivars were significantly reduced; The median tillers had substantial reduction; The number of grains per ear and the yield of single-stem grain and the grain yield per unit area of severely drought-treated stems were significantly lower than those of light drought treatment. Under the T3 condition, the grain yield per unit area of Shannong 29 and Heng 0628 was decreased by 12.87%-13.30% and15.52%-16.59%, respectively. Under the T4 condition, the grain yield per unit area of Shannong 29 and Heng 0628 decreased by 23.18%-25.92% and 26.05%-31.22%, respectively.【Conclusion】The above results indicated that short-term light drought after jointing (0-5 days after jointing, maintaining soil relative water content of 65%-70% and soil effective water content of 33.4-37.8 mm) had no significant effects on wheat earing and fruiting; The percent of tillers to panicle, the spikelets number, the fertile spikelets number, grain number, single grain weight and single stem grain yield of the low tillers (Ⅲ, Ⅰp) would be greatly reduced, and the grain yield per unit area was significantly reduced increased drought stress and time. However, the effective spike rate of high tillers (Ⅱp and Ⅰ1) in two degrees of 0-5 d after jointing and light drought training of 0-10 d after jointing was increased to some extent, which could make up for the loss caused by drought, which might be related to the decrease of the effective spike rate of low tillers, the decrease of population size, and the increase of nutrition and living space for high tillers. Shannong 29 had the stronger potential to adapt drought stress at jointing stage than Heng 0628.
Keywords:winter wheat;phased drought;main stem and tillers;spike formation and seed setting;grain yield


PDF (488KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李萍, 尚云秋, 林祥, 刘帅康, 王森, 胡鑫慧, 王东. 拔节期阶段性干旱对小麦茎蘖成穗与结实的影响[J]. 中国农业科学, 2020, 53(20): 4137-4151 doi:10.3864/j.issn.0578-1752.2020.20.004
LI Ping, SHANG YunQiu, LIN Xiang, LIU ShuaiKang, WANG Sen, HU XinHui, WANG Dong. Effects of Drought Stress During Jointing Stage on Spike Formation and Seed Setting of Main Stem and Tillers of Winter Wheat[J]. Scientia Acricultura Sinica, 2020, 53(20): 4137-4151 doi:10.3864/j.issn.0578-1752.2020.20.004


0 引言

【研究意义】黄淮海地区是中国小麦主产区,其小麦生产对保障国家粮食安全具有重要作用。然而受全球气候变化的影响,该地区干旱频繁发生,特别是近年来随着气候变暖趋势的加剧,冬春两季干旱发生频率和危害程度逐渐加强,对小麦分蘖成穗和结实产生诸多不利影响,成为该地区小麦生产的重要限制因素[1,2]。拔节期是小麦分蘖两极分化和穗花分化的重要时期。探索拔节期不同水分条件对小麦茎蘖成穗和结实的调节作用及其生理基础,对春季麦田合理灌溉技术的研发具有重要参考价值和生产指导作用。【前人研究进展】分蘖是小麦等禾本科作物的重要农艺性状。小麦在生长进程中发生无效分蘖,造成一定的“生长冗余”[3]。在资源受限的情况下,这种生长冗余会对小麦生产造成不利的影响[4]。国内外****对分蘖成穗特性做了大量研究[5,6,7]。越来越多的****认为,小麦产量的进一步增加主要依赖于控制无效分蘖的数量,增加动摇分蘖的成穗率,使茎蘖成穗率和群体质量提高[8,9,10]。小麦分蘖消亡和开花结实受多基因加性效应的控制,且易受幼穗分化过程中栽培因素和环境的影响[11,12]。小麦拔节期不同程度干旱均影响已发生分蘖的生长发育,最终影响分蘖的成穗与结实[13,14,15]。将灌溉时间由主茎基部第一节间伸长期(拔节期)推迟到第四节间伸长期(旗叶抽出期),即拔节期适度干旱虽然显著降低成穗数,但增加了穗粒数、而且延缓了开花后叶片衰老、显著提高叶片净光合速率、籽粒灌浆速率、千粒重、籽粒产量和水分利用效率[16]。然而拔节期过度干旱则会降低小麦有效穗数和穗粒数,严重干旱条件下小麦千粒重、单株和单位面积籽粒产量亦显著降低[17,18]。小麦主茎与不同蘖位分蘖间穗花分化存在明显的时间差,主茎穗花分化明显早于分蘖,低位蘖又早于高位蘖,这种时间差造成不同茎蘖的生长条件和营养条件不同,最终导致不同茎蘖经济产量存在明显的差异[19]。【本研究切入点】前人关于干旱胁迫时段或胁迫程度对小麦成穗和结实影响的研究,多采用主茎或随机采集的茎蘖,而关于主茎和不同蘖位分蘖对拔节期干旱响应差异的研究鲜有报道。【拟解决的关键问题】本试验在盆栽条件下,设置拔节后不同干旱程度及干旱持续时间处理,探索拔节期短时间干旱对主茎和不同蘖位分蘖成穗与结实特性、单茎生产力及单位面积籽粒产量的影响,以期为黄淮海地区冬小麦节水栽培提供理论依据和技术支持。

1 材料与方法

1.1 试验设计

试验于2017—2019年小麦生长季,在山东省泰安市岱岳区道朗镇试验基地遮雨棚内进行。试验点位于116°54′E,36°12′N,属于温带大陆性气候,年平均气温13.0—13.6℃。选用冬小麦品种山农29(具有10 500 kg·hm-2高产潜力)和衡0628(具有9 000 kg·hm-2高产潜力)为试验材料。采用盆栽方式,试验用土取自本地高产田0—20 cm耕层土,土壤类型为粉壤土。2017—2018年度试验土壤养分含量为有机质15.5 g·kg-1,全氮0.8 g·kg-1,碱解氮85 mg·kg-1,有效磷33.3 mg·kg-1,速效钾126 mg·kg-1;2018—2019年度试验土壤养分含量为有机质15.7 g·kg-1,全氮0.8 g·kg-1,碱解氮88 mg·kg-1,有效磷33.0 mg·kg-1,速效钾124 mg·kg-1。土壤过5 mm筛后,称取10 kg装入高26 cm、盆口直径30 cm、盆底直径20 cm的棕色聚乙烯塑料盆内,统一压实后测定土壤最大持水量,两年度分别为28.5%和27.8%。每盆施用N、P2O5和K2O含量均为15%的三元复合肥4.5 g,平铺于距盆口10 cm深处,其上覆土10 cm。播种时挑选饱满、无损、发育良好、大小一致的种子,播种深度为3 cm,每盆播9穴,每穴播2粒,三叶一心期定苗至1株/穴(180 株/m2)。拔节期追施尿素(N含量为46%)1.5 g,追肥时用水将尿素溶解后均匀浇灌于盆内。

试验采用随机区组设计,共5个处理,每个处理种植60盆。设置拔节后0—5 d轻度干旱(T1,保持土壤相对含水量为65%—70%,土壤有效含水量为33.4—37.8 mm)、拔节后0—5 d重度干旱(T2,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm)、拔节后0—10 d轻度干旱(T3,保持土壤相对含水量为65%—70%,土壤有效含水量为33.4—37.8 mm)、拔节后0—10 d重度干旱(T4,保持土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm)4个干旱处理,以全生育期充分供水处理为对照(CK,保持土壤相对含水量为75%—80%,土壤有效含水量为42.2—46.7 mm)。拔节前5 d开始控水,达到目标含水量时进行相应时间的处理,干旱处理结束后再将土壤含水量恢复至对照水平。采用称重法控制土壤水分,每2 d称重一次,以相邻2次重量的差值确定补灌水量,以保证各盆内土壤有效含水量和土壤相对含水量控制在设定的范围内。其他管理措施尽量保持一致[19,20]

2017—2018年度,试验于2017年10月16日播种,于2018年3月21日开始控水,使土壤含水量逐渐下降,T1和T2处理于3月26日至3月31日正式实施干旱处理,3月31日干旱处理结束后恢复至CK水平;T3和T4于3月26日至4月5日正式实施干旱处理,4月5日干旱处理结束后恢复至CK水平;收获时间为2018年6月12日。2018—2019年度,试验于2018年10月8日播种,于2019年3月29日开始控水,使土壤含水量逐渐下降,T1和T2处理于4月2日至4月7日正式实施干旱处理,4月7日干旱处理结束后恢复至CK水平;T3和T4于4月2日至4月12日正式实施干旱处理,4月12日干旱处理结束后恢复至CK水平。

1.2 测定项目与方法

1.2.1 标记主茎和不同蘖位分蘖 自小麦第一个分蘖出现开始,用不同颜色的回形针标记主茎和新出现的分蘖。用O代表主茎,用Ⅰ、Ⅱ、Ⅲ、Ⅳ分别代表由主茎的第1、2、3、4叶的叶腋中长出的分蘖,用Ⅰp和Ⅰ1分别代表由分蘖Ⅰ上长出的第一和第二个分蘖,用Ⅱp代表由分蘖Ⅱ上长出的第一个分蘖[20]

1.2.2 茎蘖成穗和结实性状的调查 成熟期按蘖位分样,每处理取6盆(6次重复),调查主茎及不同蘖位分蘖的成穗和结实情况,计算每盆有效穗数、每穗总小穗数、每穗结实小穗数、每穗穗粒数、单粒重、单穗产量。每处理取10盆,全部收获脱粒后晾晒至含水量达12.5%左右时称重,计算单位面积籽粒产量。

成穗率=每盆主茎或各蘖位分蘖成穗数/对应每盆主茎或各蘖位分蘖最高发生数×100%。

1.2.3 茎蘖幼穗发育进程的调查 拔节期0 d开始,每隔5 d观察一次,共观察3次。每次取有代表性的植株3—5株在体视显微镜下解剖,观察其幼穗发育状态,确定其幼穗发育阶段。小麦幼穗发育时期(表1)参照WADDINGTION的划分方法[21],发育阶段用W表示。

Table 1
表1
表1小麦幼穗发育时期
Table 1Spike developmental score of wheat
幼穗发育时期及特征
Spike developmental stage and its characteristic
发育阶段
Developmental score
生长锥伸长期 Transition apex1.5
单棱期 Early double ridge stage2
二棱期 Double ridge stage2.5
颖片原基分化期 Glume primordium present3
外稃原基分化期 Lemma primordium present3.25
小花原基分化期 Floret primordium present3.5
雄蕊原基分化期 Stamen primordium present4
雌蕊原基分化期 Pistii primordium present4.25
心皮原基分化期 Carpel primordium present4.5
三心皮包围胚珠期 Carpel extending round three sides of ovule5
花柱管闭合,子房仅顶部保持开放状态 Stylar canal closing; ovarian cavity enclosed on all sides but still open above5.5
花柱管开口,柱头突起形成 Stylar canal remaining as a narrow opening; two short round style primordia present6
花柱开始伸长 Style begin elongation6.5
柱头上分化出柱头分枝 Stigmatic branches just differentiating as swollen cell on styles7
柱头分枝和子房壁上羽毛伸长 Stigmatic branches and hairs on ovary wall elongation8
柱头分枝和子房壁上羽毛继续伸长,柱头分枝缠绕无絮
Stigmatic branches and hairs on ovary wall continue to elongate; stigmatic branches from a tangled mass
8.5
花柱和柱头分枝直立,羽状柱头分化 Styles and stigmatic branches erect; stigmatic hairs differentiating9
花柱和柱头分枝向外展开,羽状柱头发育完全 Styles and stigmatic branches spreading outwards. Stigmatic hairs well developed9.5
花柱向外弯曲,柱头分枝伸展,花粉落在羽状柱头上
Styles curved outwards and stigmatic branches spread wide; pollen grains an well-developed stigmatic hairs
10

新窗口打开|下载CSV

1.3 数据分析

采用Microsoft Excel 2013和DPS软件进行数据处理,采用LSD最小显著差异比较法进行差异显著性检验。

2 结果

2.1 主茎及不同蘖位分蘖幼穗发育进程对拔节期阶段性干旱的响应

衡0628茎蘖幼穗发育进程与山农29相近,部分分蘖稍有滞后;分蘖幼穗发育进程滞后于主茎;随蘖位的升高,主茎与分蘖幼穗发育进程差异逐渐拉大(表2)。2017—2018年度,拔节后0—5 d干旱,主茎穗分化进程处于W5—W6阶段,Ⅰ和Ⅱ多处于W4.25—W5.5阶段或W4—W4.5阶段,Ⅲ、Ⅰp和Ⅳ多处于W4—W5或W4—W4.25阶段,高位蘖(Ⅱp和Ⅰ1)多处于W3.5—W4.25或W3—W4阶段;拔节后10 d,O和Ⅰ蘖穗分化进入W7期,Ⅱ、Ⅲ和Ⅰp蘖多处于W6.5期,IV和Ⅱp多处于W6期,I1蘖多处于W5.5期。2018—2019年度,拔节后干旱处理期间,主茎和各蘖位分蘖穗分化所处的阶段与前一年度相近,趋势基本一致。与充分供水相比,轻度干旱对茎蘖穗分化发育进程无显著影响,重度干旱条件下,低位蘖(Ⅲ、Ⅰp)和高位蘖(Ⅳ)幼穗发育进程有所延缓。

Table 2
表2
表2拔节期阶段性干旱对小麦主茎及不同蘖位分蘖幼穗所处的发育进程阶段的影响
Table 2Effects of staged drought at jointing on development process of young spike of main stem and tillers at different positions of wheat
年份
Year
品种
Cultivar
处理
Treatment
拔节0 d 0 days after jointing stage拔节5 d 5 days after jointing stage拔节10 d 10 days after jointing stage
OⅠpⅡpⅠ1OⅠpⅡpⅠ1OⅠpⅡpⅠ1
2017-
2018
山农29
Shannong29
CK54.54.254443.53.565.55554.254.2547776.56.5665.5
T154.54.254443.53.565.55.5554.54.2547776.56.5665.5
T254.54.254443.53.565554.54.54.254776.566665.5
T354.54.254443.53.565.55.5554.54.2547776.56.56.566
T454.54.254443.253.2565554.54.54.2547766665.55
衡0628
Heng0628
CK54.2544443.253.255.55.54.54.54.254.2544776.56.56.56.565.5
T154.2544443.253.255.55.54.54.254.254.2544776.56.56.56.56.55.5
T25444443.253.255.554.54.254.25444776.56.56.5665.5
T354.2544443.253.255.55.54.54.254.254.2544776.56.56.56.565.5
T454.2544443.253.255.554.54.254.25444776.5665.55.55
2018-
2019
山农29
Shannong29
CK4.54.254443.53.53.2565.55554.54.254.25776.56.56.565.55
T14.54.254443.53.53.2565.55.5554.54.254.25776.56.56.565.55
T24.54.254443.53.53.2565554.54.54.254776.56665.55
T34.54.254443.53.53.2565.55.5554.54.254.25776.56.56.56.55.55
T44.54.25443.53.53.25365554.54.54.254776.5665.55.55
衡0628
Heng0628
CK4.254.2544443.253.2565.54.54.54.254.254476.56.56.56.5655
T14.254.2544443.253.2565.54.54.254.254.254476.56.56.56.565.55
T24.254.2544443.253.25654.54.254443.5776.56.56.5655
T34.254.254.254443.253.2565.54.54.254.254.2544776.56.56.56.555
T44.254.254.254443.253.25654.54.254443.577666555

新窗口打开|下载CSV

2.2 主茎及不同蘖位分蘖成穗率对拔节期阶段性干旱的响应

山农29茎蘖成穗率较衡0628高;主茎与不同蘖位分蘖间比较,其成穗率2个品种均表现为O≥Ⅰ≥Ⅱ>Ⅲ>Ⅰp>Ⅳ>Ⅱp>Ⅰ1(表3)。拔节期不同程度干旱对2个小麦品种茎蘖成穗率的影响在2个年度表现一致,拔节期阶段性干旱对主茎成穗率的影响较小,各处理主茎成穗率均为100%,但对分蘖成穗率的影响较大,随着干旱程度的加剧和干旱时间的延长,低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)成穗率迅速下降,高位蘖(Ⅱp和Ⅰ1)成穗率呈先增加后降低的趋势。与CK相比,T1和T2处理低位蘖(Ⅰ和Ⅱ)成穗率降低,高位蘖成穗率有所增加;T3处理的低位蘖成穗率显著降低,高位蘖成穗率保持不变;T4处理除O和Ⅰ蘖外,其余分蘖成穗率均显著下降。品种之间比较,低位蘖成穗率在拔节期各干旱条件下的平均降幅表现为衡0628(下降6.45个百分点)>山农29(下降5.19个百分点),高位蘖的平均增幅表现为衡0628(增加0.14个百分点)<山农29(增加3.79个百分点)。上述结果说明山农29对拔节期阶段性干旱的抗性高于衡0628,拔节后0—5 d轻度干旱处理可增加高位蘖成穗率,提高单位面积穗数。

Table 3
表3
表3拔节期阶段性干旱对小麦主茎及不同蘖位分蘖的成穗率的影响
Table 3Effects of staged drought at jointing on percentage of ear bearing main stem and tillers at different positions of wheat (%)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1
2017-2018山农29
Shannong29
CK100.00a100.00a100.00a79.37a68.89a37.78a22.22bc17.78b
T1100.00a100.00a100.00a75.56ab64.44a40.00a33.33a26.67a
T2100.00a100.00a97.78ab73.33b55.56b35.56b31.11ab24.44ab
T3100.00a100.00a95.56ab68.89c53.33b33.33b26.67abc22.22ab
T4100.00a97.78a93.33b66.67c48.89c26.67c20.00c12.70c
衡0628
Heng0628
CK100.00a100.00a100.00a75.56a75.56a40.00a20.00a17.78a
T1100.00a100.00a97.78a73.33a73.33a42.22a26.67a22.22a
T2100.00a100.00a97.78a68.89b57.78b35.56b24.44a22.22a
T3100.00a100.00a95.24ab66.67b53.33bc33.33bc22.22a20.00a
T4100.00a95.56a91.11b66.67b40.00c31.11c17.78a11.11b
2018-2019山农29
Shannong29
CK100.00a100.00a98.41a79.37a52.38a36.51a11.11b4.76b
T1100.00a100.00a96.83ab77.78a55.56a36.51a20.63a11.11a
T2100.00a98.41a95.24ab73.33b50.79b33.33b17.46a7.94ab
T3100.00a98.41a93.65ab69.84b47.62c31.75b12.70b4.76b
T4100.00a96.83a92.06b55.56c46.03c26.98c7.94c1.59c
衡0628
Heng0628
CK100.00a98.41a96.83a71.43a44.44b39.68a12.70b6.35b
T1100.00a98.41a95.24a68.25ab49.21a39.68a15.87a12.70a
T2100.00a95.24a93.65a65.08b44.44b33.33b12.70b9.52b
T3100.00a95.24a92.06ab60.32c41.27c26.98c12.70b7.94b
T4100.00a93.65a90.48b57.14d30.16d20.63d3.17c1.59c
同一年份同一品种同列数据后不同小写字母表示处理间在0.05水平差异显著。下同
Values followed different letters of the same variety and column in the same year indicate significant differences at 0.05 level. The same as below

新窗口打开|下载CSV

2.3 主茎及不同蘖位分蘖可见总小穗数对拔节期阶段性干旱的响应

衡0628茎蘖可见总小穗数高于山农29;随蘖位的升高,可见小穗数呈明显的下降趋势,相邻蘖位之间差异不显著(表4)。拔节期不同程度干旱对2个小麦品种茎蘖可见总小穗数的影响在2个年度表现一致,与CK相比,T1和T2处理茎蘖可见总小穗数和平均单茎可见总小穗数呈降低趋势,且2个处理间差异不显著;T3和T4处理各蘖位分蘖小穗数显著降低,主茎小穗数未受显著影响,单茎平均可见小穗数显著降低,2个处理间差异不显著。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1的可见总小穗数在T3和T4处理下,平均降低幅度为5.64%、6.63%、6.07%、5.79%、5.57%、6.40%、5.18%和1.93%,单茎平均小穗数降低了5.03%,衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1的可见总小穗数在T3和T4处理下,平均降低幅度为6.51%、7.27%、7.17%、7.20%、6.76%、6.46%、6.05%和1.88%,单茎平均小穗数降低了5.77%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度和重度干旱对2个小麦品种茎蘖小穗数无显著影响,拔节后0—10 d干旱显著降低各成穗分蘖的小穗数,且以低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)降低幅度较大。2个品种之间比较,山农29各干旱处理茎蘖小穗数平均降幅(3.66%)小于衡0628(4.44%)。

Table 4
表4
表4拔节期阶段性干旱对小麦主茎及不同蘖位分蘖可见小穗数的影响
Table 4Effects of staged drought at jointing on spikelet number of main stem and tillers at different positions of wheat (spikelets/spike)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1平均单茎可见小穗数
Average visible spikelet number per spike
2017-2018山农29
Shannong29
CK18.2a18.1a17.5a17.1a16.5a16.3a16.1a15.7a17.3a
T118.2a17.9a17.1a16.9a16.3a16.1a16.1a15.5a17.1a
T218.0a17.7ab17.0ab16.6ab16.0ab15.9ab15.8a15.3a16.9ab
T317.6a17.2b16.6b16.2b15.6b15.4b15.2b14.9b16.5b
T417.3a17.0b16.3b15.9b15.5b15.4b15.0b14.8b16.4b
衡0628
Heng0628
CK20.0a19.3a18.8a18.2a17.7a17.0a16.8a16.5a18.6a
T119.7a19.0a18.4a17.8a17.3ab16.5a16.6a16.4a18.2a
T219.4a18.5ab18.1ab17.5ab17.1ab16.3ab16.4a16.1a17.9ab
T319.3a18.3b17.6b17.0b16.5bc15.9b15.8b15.6b17.6b
T419.1a17.9b17.3b16.7b16.2c15.8b15.5b15.4b17.4b
2018-2019山农29
Shannong29
CK19.5a19.1a17.9a17.5a17.2a16.9a16.7a16.2a18.2a
T119.4a19.0a17.8a17.3a17.1a16.8ab16.5a16.0a18.0a
T219.2a18.8ab17.4ab17.1ab16.7ab16.4ab16.3a15.6a17.8ab
T318.9a18.2b16.8b16.6b16.4b16.1b15.7a15.4a17.3b
T418.7a17.8b16.4b16.3b16.0b15.8b15.5b15.4b17.2b
衡0628
Heng0628
CK21.2a20.6a19.7a19.5a19.2a18.5a18.1a17.4a20.0a
T120.9a20.5a19.3a19.1a18.9ab18.2a17.9a17.0ab19.5a
T220.8a20.1ab19.0ab18.9ab18.5ab17.9ab17.4ab16.8ab19.4ab
T320.6a19.4b18.5b18.4b18.1b17.4b17.1b16.5b18.9b
T420.3a19.0b18.0b17.9b17.7b17.1b16.9b16.2b18.8b

新窗口打开|下载CSV

2.4 主茎及不同蘖位分蘖结实小穗数对拔节期阶段性干旱的响应

衡0628茎蘖的结实小穗数高于山农29;随蘖位的升高,结实小穗数呈降低趋势。山农29的Ⅲ和Ⅰp之间差异显著,其余相邻蘖位之间差异不显著;衡0628的O和Ⅰ之间、Ⅰ和Ⅱ之间差异显著,其余相邻蘖位之间差异不显著。拔节期不同程度干旱对2个小麦品种各茎蘖结实小穗数的影响表现一致,其中对主茎的影响较小,对分蘖的影响较大(表5)。与CK相比,T1处理对茎蘖结实小穗数和平均单茎结实小穗数无显著影响;T2处理显著降低除Ⅰ之外的低位蘖结实小穗数,对主茎与高位蘖结实小穗数无显著影响;T3和T4处理显著降低茎蘖结实小穗数和单茎平均结实小穗数,2个处理间无显著差异。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为6.47%、7.76%、10.76%、9.36%、9.20%、8.44%、9.70%和9.32%,平均单茎结实小穗数降低7.94%;衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为6.66%、9.31%、11.21%、10.56%、11.04%、11.18%、10.82%和10.42%,平均单茎结实小穗数降低8.62%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对茎蘖的结实小穗数无显著影响,短期重度干旱显著降低中位蘖的结实小穗数;拔节后0—10 d轻度干旱和重度干旱处理均显著降低了主茎和分蘖的结实小穗数,且低位蘖(Ⅲ和Ⅰp)和高位蘖(Ⅳ)较其他分蘖大。品种之间比较,山农29各干旱处理茎蘖结实小穗数平均降幅(5.95%)小于衡0628(6.95%)。

Table 5
表5
表5拔节期阶段性干旱对小麦主茎及不同蘖位分蘖结实小穗数的影响
Table 5Effects of staged drought at jointing on fruiting spikelet number of main stem and tillers at different positions of wheat (spikelets/spike)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1平均单茎结实小穗数
Average fruiting spikelet number per spike
2017-2018山农29
Shannong29
CK17.9a17.6a16.7a15.9a14.8a14.1a13.8a13.1a16.3a
T117.7ab17.4a16.3ab15.6ab14.5ab13.9ab13.6a13.1a15.9ab
T217.5ab16.9ab15.8b15.1b14.0b13.5b13.3ab12.6a15.6ab
T317.1bc16.5bc15.5bc14.8bc13.9bc13.3bc12.7b12.3b15.3bc
T416.4c15.9c14.5c14.0c13.1c12.6c12.1c11.5c14.7c
衡0628
Heng0628
CK18.3a17.3a16.3a15.7a15.2a14.5a14.1a13.5a16.3a
T118.0ab16.8ab15.9ab15.2ab14.7ab13.9ab13.8a13.3ab15.8ab
T217.7ab16.3ab15.4b14.7b14.3b13.7b13.4ab12.9ab15.5ab
T317.4b16.2bc15.0bc14.4bc13.9bc13.3bc12.9bc12.5b15.2bc
T416.8b15.3c14.2c13.7c13.0c12.7c12.3c11.8c14.6c
2018-2019山农29
Shannong29
CK19.2a18.5a17.4a16.6a15.6a14.9a14.6a13.7a17.3a
T119.1ab18.4a17.2ab16.4ab15.4ab14.8ab14.3a13.3a17.0ab
T218.7ab17.8ab16.5b15.7b14.7b14.2b14.0a13.1a16.5ab
T318.3b17.5bc15.9bc15.4bc14.4bc13.8bc13.5bc12.6bc16.1bc
T417.6b16.7c14.8c14.7c13.8c13.4c13.0c12.2c15.6c
衡0628
Heng0628
CK19.2a18.1a17.1a16.5a16.1a15.4a15.0a14.3a17.3a
T119.0a17.9a16.7ab16.1ab15.8ab14.9ab14.8a14.0a16.8ab
T218.5ab17.2ab16.1b15.6b15.2b14.5b14.3ab13.6ab16.5ab
T318.2b16.8bc15.4bc15.1bc14.8bc14.0bc13.7b13.1bc16.0bc
T417.3b15.9c14.7c14.4c14.0c13.1c13.0b12.5c15.6c

新窗口打开|下载CSV

2.5 主茎及不同蘖位分蘖穗粒数对拔节期阶段性干旱的响应

衡0628主茎穗和分蘖穗的穗粒数多于山农29,主茎穗粒数多于分蘖。拔节期不同程度干旱对2个小麦品种茎蘖穗粒数均有明显的影响,2年结果趋势一致,均表现为随干旱程度增强和干旱时间延长,穗粒数呈逐渐降低的趋势(表6)。与CK相比,T1处理各茎蘖穗粒数无显著变化;T2处理主茎和高位蘖穗粒数无显著变化,低位蘖穗粒数显著降低;T3和T4处理主茎和各成穗分蘖的穗粒数均显著降低。T1与T2处理间无显著差异,T2与T3处理间无显著差异,但均显著大于T4处理。各茎蘖之间比较,2个品种在T2、T3和T4处理下均表现为主茎穗粒数平均降幅(7.02%)<高位蘖平均降幅(8.52%)<低位蘖平均降幅(9.77%)。上述结果表明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对各茎蘖穗粒数无显著影响,但重度干旱减少低位蘖和中位蘖穗粒数;拔节后0—10 d轻度和重度干旱均显著降低主茎和分蘖的穗粒数,且中位蘖降低幅度较大。品种之间比较,各干旱处理下山农29主茎穗和分蘖穗穗粒数平均降幅(6.73%)小于衡0628(7.93%)。

Table 6
表6
表6拔节期阶段性干旱对小麦主茎及不同蘖位分蘖穗粒数的影响
Table 6Effects of staged drought at jointing on grain number of main stem and tillers at different positions of wheat (kernels/spike)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1
2017-2018山农29
Shannong29
CK41.6a37.4a34.8a32.2a29.5a27.7a25.0a22.8a
T140.9a36.8ab33.9ab31.5ab29.2ab27.4ab25.7a23.0a
T240.6ab35.3bc32.4bc30.1bc27.8b26.1b24.0ab22.0ab
T339.4b35.0c31.9c29.6c27.6b26.0b23.6b21.5b
T437.3c31.9d29.1d27.3d25.3c23.7c22.2c20.3c
衡0628
Heng0628
CK43.5a40.8a37.1a34.8a32.4a29.0a26.5a25.6a
T142.4a39.5ab36.1ab33.8ab31.2ab27.6ab26.6a25.5a
T241.5ab38.2b34.5bc32.3bc30.4bc27.1b25.2a24.4a
T340.3bc37.7b34.0c31.7c29.6c26.4b24.8b23.5b
T438.8c34.4c31.0d28.9d26.9d24.0c23.5c22.2c
2018-2019山农29
Shannong29
CK47.7a43.6a41.9a38.9a34.0a31.9a29.2a27.2a
T147.2a43.8a41.3ab38.2ab33.8ab31.3ab28.9a26.9a
T246.6ab41.4b39.3bc36.7bc32.1bc30.1bc28.4ab26.3ab
T345.2b41.3b38.0c35.3c31.9c29.2c27.5b25.1b
T442.4c38.7c35.6d33.7d29.4d27.9d26.0c23.7c
衡0628
Heng0628
CK49.1a45.3a42.4a39.1a36.5a33.1a31.0a28.6a
T148.5a44.6ab41.3ab38.3ab36.7a32.5ab31.1a28.9a
T247.1ab42.8bc39.6bc36.6bc34.0b30.9bc29.4ab27.5a
T345.6b42.0c38.4c35.8c33.4b29.7c28.5b26.2b
T443.0c39.5d35.6d32.4d30.6c27.6d27.2c24.3c

新窗口打开|下载CSV

2.6 拔节期阶段性干旱对主茎及不同蘖位分蘖单粒重的影响

山农29主茎穗和分蘖穗平均单粒重高于衡0628;随蘖位的升高,单粒重呈逐渐降低趋势,相邻蘖位之间差异不显著。拔节期不同程度干旱对2个小麦品种茎蘖单粒重的影响在2个年度表现一致(表7)。与CK相比,T1处理主茎穗和分蘖穗的平均单粒重无显著变化;T2处理下,山农29主茎穗和分蘖穗单粒重无显著变化,而衡0628各蘖位分蘖单粒重显著降低;T3和T4处理主茎和各蘖位分蘖单粒重均显著降低。T2与T3处理间无显著差异,T3与T4处理间无显著差异,T2处理显著大于T4处理。山农29的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1结实小穗数在T3和T4处理下,较CK平均降幅为5.96、6.73%、8.05%、9.13%、8.84%、8.49%、7.78%和7.04%;衡0628的O、Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅱp和Ⅰ1单粒重在T3和T4处理下,较CK平均降幅为6.07%、7.79%、8.94%、9.99%、9.29%、8.90%、8.56%和8.26%。上述结果表明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种茎蘖单粒重无显著影响;拔节后0—10 d干旱显著降低主茎穗和各蘖位分蘖穗的单粒重,且以Ⅲ、Ⅰp和Ⅳ蘖单粒重下降幅度较大。2个品种之间比较,山农29各干旱处理茎蘖单粒重平均降幅(5.55%)小于衡0628(7.71%)。

Table 7
表7
表7拔节期阶段性干旱对小麦主茎及不同蘖位分蘖单粒重的影响
Table 7Effects of staged drought at jointing on single-kernel weight of main stem and tillers at different positions of wheat (mg/kernel)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1
2017-2018山农29
Shannong29
CK51.94a50.34a49.36a48.17a46.56a45.46a44.70a44.00a
T150.83ab49.50ab48.32a47.89a45.34a45.39a43.85a43.09ab
T249.85ab49.12ab47.89ab45.93ab44.57ab44.05ab43.17ab42.54ab
T349.28b47.91bc46.06bc44.16bc43.01bc42.35bc42.11bc41.72bc
T448.85b46.05c44.78c43.21c41.80c40.92c40.70c40.33c
衡0628
Heng0628
CK45.27ab43.70a42.37a42.33a41.57a40.67a39.90a39.30a
T146.43a45.88a43.57a43.52a42.05a41.88a41.51a39.98a
T243.07b41.38b39.82b39.30b39.52b38.59b37.85b37.06b
T343.00b41.23bc39.05bc38.75bc38.46bc37.85bc37.72b36.11b
T441.95b39.38c37.82c37.32c37.15c36.42c35.67b35.10b
2018-2019山农29
Shannong29
CK50.77a50.01a48.28a46.39a45.60a44.39a43.20a41.25a
T150.37a48.26a47.06a45.44a44.14a43.07a42.91ab40.29ab
T249.16ab47.83ab46.32ab44.48ab43.56ab42.65ab41.30ab39.33ab
T348.14bc47.59bc45.11bc43.13bc42.44bc41.49bc40.82b39.04b
T446.91c45.65c43.62c41.34c40.80c39.70c38.50c37.42c
衡0628
Heng0628
CK46.89ab46.33a45.11a43.12a41.21a39.89a39.72a38.11a
T148.17a47.81a46.88a44.50a42.94a40.74a40.22a38.23a
T245.45bc44.05b42.20b40.31b39.12b37.71b37.56b36.05b
T344.79c43.42bc41.53bc39.67bc37.79bc37.04bc36.97bc35.30bc
T443.39c42.00c40.23c38.09c36.78c35.47c35.25c34.61c

新窗口打开|下载CSV

2.7 拔节期阶段性干旱对主茎及不同蘖位分蘖单穗产量的影响

山农29主茎穗和分蘖穗的单穗产量高于衡0628;随蘖位的升高,单穗产量呈逐渐降低趋势,相邻蘖位之间差异显著。拔节期不同程度干旱对2个小麦品种主茎穗和分蘖穗的单穗产量的影响2年结果趋势一致(表8)。与CK相比,T1处理主茎穗和分蘖穗的单穗产量无显著变化;T2处理主茎穗和高位蘖穗的单穗产量无显著变化,低位蘖穗的单穗产量显著降低,平均单穗产量显著降低;T3和T4处理的主茎穗和分蘖穗单穗产量均显著降低,T3处理显著大于T4处理,但与T2处理无显著差异。T2、T3和T4处理分别与CK相比,山农29平均单穗产量下降幅度分别为5.14%—5.46%、8.53%—8.55%和13.36%—16.68%,衡0628平均单穗产量下降幅度分别为5.45%—6.24%、9.20%—9.69%和12.72%—19.25%。上述结果说明,与全生育期充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种主茎穗和分蘖穗的单穗产量无显著影响,重度干旱降低低位蘖和中位蘖穗的单穗产量;拔节后0—10 d轻度和重度干旱均显著降低主茎穗和分蘖穗单穗产量,且以Ⅲ、Ⅰp和Ⅳ蘖穗单穗产量下降幅度最大。2个品种比较,山农29各干旱处理主茎穗和分蘖穗单穗产量平均降幅(8.09%)小于衡0628(12.37%)。

Table 8
表8
表8拔节期阶段性干旱对小麦主茎及不同蘖位分蘖单穗产量的影响
Table 8Effects of staged drought at jointing on grain yield of main stem and tillers at different positions of wheat (g/stem)
年份
Year
品种
Cultivar
处理
Treatment
OⅠpⅡpⅠ1平均单穗产量
Average yield per spike
2017-2018山农29
Shannong29
CK1.75a1.54a1.49a1.21a1.14a1.03a0.91a0.86a1.38a
T11.73a1.51ab1.42ab1.16ab1.10ab1.00ab0.94a0.85a1.33ab
T21.69ab1.48bc1.39bc1.14bc1.07bc0.97bc0.86ab0.83ab1.30bc
T31.63b1.42c1.32c1.11c1.03c0.93c0.83b0.78b1.26c
T41.55c1.34d1.03d0.95d0.91d0.82d0.78c0.75c1.15d
衡0628
Heng0628
CK1.65a1.44a1.37a1.18a1.05a0.94a0.88a0.76a1.28a
T11.67a1.47a1.38a1.18a1.07a0.96a0.90a0.79a1.30a
T21.59ab1.33b1.26b1.09b0.97b0.86b0.83ab0.73ab1.21b
T31.52b1.28b1.21b1.04b0.92b0.81b0.75b0.66b1.16b
T41.38c1.16c0.92c0.91c0.83c0.74c0.70c0.59c1.03c
2018-2019山农29
Shannong29
CK1.97a1.75a1.62a1.37a1.29a1.06a0.93a0.86a1.58a
T11.98a1.72ab1.59ab1.36ab1.29ab1.05ab0.91a0.85a1.54ab
T21.92ab1.67bc1.53bc1.30bc1.22bc1.00bc0.89ab0.82ab1.50bc
T31.85b1.60c1.46c1.23c1.17c0.95c0.85b0.79b1.45c
T41.77c1.54d1.23d1.14d1.04d0.89d0.79c0.76c1.37d
衡0628
Heng0628
CK1.86a1.69a1.54a1.32a1.17a0.97a0.88a0.80a1.50a
T11.91a1.74a1.55a1.35a1.17a0.99a0.91a0.81a1.50a
T21.80ab1.60b1.41b1.20b1.08b0.90b0.84ab0.76ab1.41b
T31.73bc1.54b1.34b1.15b1.03b0.86b0.80b0.73b1.35b
T41.67c1.47c1.15c1.04c0.95c0.80c0.72c0.69c1.31c

新窗口打开|下载CSV

2.8 拔节期阶段性干旱对单位面积籽粒产量及其构成因素的影响

山农29单位面积产量较衡0628高。拔节期不同程度干旱对2个小麦品种单位面积籽粒产量及其构成因素的影响2个年度表现一致,随干旱程度加剧和干旱时间延长,穗数、穗粒数和千粒重呈逐渐降低的趋势(表9)。与CK相比,T1处理单位面积产量无显著变化,T2、T3和T4处理单位面积产量均显著降低。T2处理与CK相比,山农29穗粒数显著降低,衡0628穗粒数和千粒重均显著降低。T3和T4处理与CK相比,穗数、穗粒数和千粒重均显著降低,以T4处理降低幅度最大。上述结果表明,与充分供水相比,拔节后0—5 d轻度干旱对2个小麦品种单位面积籽粒产量及其构成因素无显著影响,重度干旱显著降低2个小麦品种单位面积籽粒产量;拔节后0—10 d轻度和重度干旱,2个小麦品种穗数、穗粒数、千粒重和单位面积籽粒产量均显著降低。2个品种间比较,山农29各干旱处理单位面积籽粒产量平均降幅(12.52%)小于衡0628(17.62%)。

Table 9
表9
表9拔节期阶段性干旱对单位面积籽粒产量及其构成因素的影响
Table 9Effects of staged drought at jointing on yield and its component factors of wheat
处理
Treatments
2017-20182018-2019
穗数
Spike per
pot
穗粒数
Kernel per spike
千粒重
1000-kernel
weight (g)
产量
Yield
(g/pot)
穗数
Spike per
pot
穗粒数
Kernel per spike
千粒重
1000-kernel
weight (g)
产量
Yield
(g/pot)
山农29
Shannong29
CK47.34a34.17a45.97a65.50a43.43ab40.91a46.69a68.48a
T148.60a33.52ab44.98a64.67a44.86a40.05ab46.22a68.87a
T246.60ab32.22b44.05ab60.79b42.89ab38.76b45.03ab64.86b
T344.80b31.87b42.97b56.78c41.29b38.17b43.70b59.67c
T442.20c29.84c42.05b48.52d38.43c36.26c42.85b52.60d
衡0628
Heng0628
CK47.60a36.52a43.77a61.61a42.29a42.09a46.51a63.22a
T148.20a35.34ab44.72a62.46a43.14a41.16ab47.01a64.63a
T245.80ab34.42b41.57b55.19b40.86ab39.72bc43.76b57.46b
T344.17b34.82b40.27b51.14c39.57b38.92c42.97bc53.41c
T440.80c31.75c39.35b42.17d37.22c37.02c41.24c46.75d
同一品种同列数据后不同小写字母表示处理间在0.05水平差异显著
Values followed different letters in the same variety and column are significantly different at 0.05 probability level among the treatments

新窗口打开|下载CSV

3 讨论

3.1 小麦产量构成三因素对拔节期干旱的响应

小麦拔节期是穗、叶、茎等器官同时并进,分蘖迅速向有效和无效两极分化的时期。有研究表明该时期任何程度的干旱均表现出减产效应,穗数和穗粒数显著降低,轻度干旱对千粒重无显著影响,重度干旱亦会导致千粒重显著降低[15]。另有研究则表明拔节期轻度干旱条件下,穗数显著降低,穗粒数和千粒显著增加,产量显著增加,重度干旱条件下,穗数、穗粒数和千粒重均显著降低,产量显著降低[22]。上述研究均说明,拔节期的水分条件不仅影响小麦的群体发育和成穗数,对穗粒数甚至粒重亦有显著影响,也反映出旺长小麦通过拔节期适度干旱可在一定程度上优化群体结构,使穗数维持在适宜的范围内,进而通过提高穗粒数和粒重增加籽粒产量。本研究结果表明,拔节后0—5 d期间轻度干旱对2个品种穗数、穗粒数、千粒重和籽粒产量均无显著影响,而拔节后0—10 d期间轻度或重度干旱均导致2个品种产量构成三因素显著降低。说明小麦拔节期短期的轻度干旱并不会对小麦产量构成带来明显的负面影响。进一步分析发现,在拔节后0—10 d内,不同程度干旱对主茎的成穗率无明显影响,但是随着干旱程度的加大和干旱时间的延长,Ⅲ和Ⅰp蘖成穗率迅速下降,而Ⅱp和Ⅰ1蘖成穗率则呈先升高后下降趋势,说明Ⅲ和Ⅰp蘖对该阶段的干旱胁迫相对敏感。Ⅱp和Ⅰ1蘖成穗率的升高在一定程度上可弥补Ⅲ和Ⅰp蘖成穗率下降对单位面积成穗数的影响,这可能是拔节后0—5 d期间轻度干旱条件下,2个品种单位面积穗数无明显变化的原因。

3.2 茎蘖幼穗发育与成穗的关系及其对拔节期干旱的响应

分蘖是否成穗与分蘖自身生长速度、叶龄及幼穗发育程度有关[23,24]。有研究认为分蘖与主茎的幼穗分化起步差距不能太大,与主茎穗分化起步差距多于两期的分蘖均为无效分蘖,在水分胁迫条件下,与主茎穗分化起步差距超过一期者大多数为无效分蘖[25]。还有研究表明小花分化期是决定分蘖是否成穗的关键时期,各成穗分蘖进入小花原基分化期的时间相差较小,而无效分蘖进入小花分化期的时间滞后,与成穗分蘖的差距较大[26]。高翔等[27]的研究也证明能成穗的Ⅰ、Ⅱ、Ⅲ、Ⅰp、Ⅳ、Ⅰ1蘖与主茎在小花分化期同步,无效分蘖的穗分化在雌雄蕊分化期或更早阶段停止。唐勇金[28]的研究则表明拔节期幼穗处于小花分化期至雌雄蕊分化期的分蘖均能成穗,主茎出现第6片可见叶时,分蘖叶龄在2.5以上且穗分化处于小花分化期者能成穗;拔节期叶龄在3.0以上且穗分化在小花分化期的二级分蘖少数能成穗。本研究结果表明,主茎O和分蘖I在拔节后0 d时处于W4.25(雌蕊原基分化期)至W5(三心皮包围胚珠期)或W4.25(雌蕊原基分化期)至W4.5(心皮原基分化期),在拔节10 d后二者仍保持一致,成穗率无显著差异;分蘖穗分化在拔节后0 d时与主茎差距大于0.5期者成穗率显著低于主茎;虽然Ⅱ蘖之后发生的相邻分蘖,穗分化差异较小,但是成穗率彼此间存在显著差异;在拔节期重度干旱条件下,分蘖Ⅲ和Ip的幼穗发育进程迟缓,成穗率迅速下降。

3.3 茎蘖幼穗发育与结实的关系及其对拔节期干旱的响应

二棱期至顶端小穗形成是小穗发育的关键时期,在该阶段,随干旱胁迫程度的增加,不孕小穗率呈升高趋势[14]。自顶端小穗形成到开花期是小花发育的关键时期,在该阶段,花粉发育早期尤其是小孢子母细胞减数分裂期易受干旱胁迫的影响,从而导致可育小花数显著降低[29,30,31]。研究表明小麦在花粉减数分裂期遭受干旱胁迫,叶片水势从-0.8 MPa下降到-2.3 MPa,小花退化数量在70%以上,穗粒数显著降低[32]。与充分灌水处理相比,水分胁迫程度每增加0.2 MPa,每穗粒数减少12.4%—58.7%,且主要集中在穗顶端和基部位置[33]。本研究在小麦拔节初期设置阶段性干旱处理,结果表明在拔节后0—10 d内,小麦主茎和不同蘖位分蘖幼穗分化正处于颖片原基分化期(W3)至柱头分支在柱头上分化为肿胀的细胞时期(W7)。在此阶段,主茎和不同蘖位分蘖幼穗发育受干旱胁迫影响的程度存在明显差异。拔节后0—5 d,主茎幼穗处于三心皮包围胚珠期(W5)至花柱作为一个狭窄的开口、两个短的圆形花柱原基期(W6),无论轻度还是重度干旱,穗粒数均无明显变化;分蘖I和II多处于雌蕊原基分化期(W4.25)至花柱管关闭、子房腔仅顶部保持开放状态期(W5.5)或处于雄蕊原基分化期(W4)至心皮原基分化期(W4.5),在轻度干旱条件下穗粒数无显著变化,重度干旱条件下穗粒数显著降低;分蘖III、Ip和IV多处于雄蕊原基分化期(W4)至三心皮包围胚珠期(W5)或处于雄蕊原基分化期(W4)至雌蕊原基分化期(W4.25),在轻度干旱条件下穗粒数无显著变化,重度干旱条件下穗粒数大幅度减少;分蘖IIp和I1蘖多处于小花原基分化期(W3.5)至雌蕊原基分化期(W4.25)或处于颖片原基分化期(W3)至雄蕊原基分化期(W4),无论轻度还是重度干旱,穗粒数均无明显变化。上述结果说明在小麦拔节初期主茎和各蘖位分蘖受干旱胁迫影响的程度与其幼穗发育所处的时期有关,在小麦幼穗分化的雄蕊原基分化期至三心皮包围胚珠期遭受严重干旱会显著降低其结实性,减少穗粒数,而在该阶段遭受轻度干旱,或在颖片原基分化期之前、三心皮包围胚珠期之后遭受短期(5 d)干旱对其结实性影响较小。

4 结论

小麦主茎和不同蘖位分蘖对拔节期干旱的响应存在明显差异,Ⅲ、Ⅰp和Ⅳ蘖成穗率对该阶段干旱相对敏感,下降幅度较大,这可能与干旱期间主茎和不同蘖位分蘖幼穗分化所处的时期不同有关,在小花原基分化期至雌雄蕊原基分化期受胁迫影响最大。在小麦幼穗分化的雄蕊原基分化期至三心皮包围胚珠期遭受阶段性重度干旱(土壤相对含水量为45%—50%,土壤有效含水量为15.6—20.1 mm)对穗粒数有显著影响,而在该阶段遭受轻度干旱(土壤相对含水量65%—70%,土壤有效水含量33.4—37.8 mm)或在颖片原基分化期之前或在三心皮包围胚珠期之后遭受短期(5 d)的重度干旱对穗粒数影响都较小。在群体层面上,拔节后短时间轻度干旱对小麦成穗数和结实特性无显著影响,这与Ⅱp和Ⅰ1蘖成穗率升高在一定程度上弥补了Ⅲ、Ⅰp和Ⅳ蘖成穗率下降对单位面积穗数的影响有关;但干旱时间过长、程度过大会大幅度降低Ⅲ、Ⅰp和Ⅳ蘖成穗率、总小穗数、结实小穗数、穗粒数、单粒重和单穗产量,导致单位面积籽粒产量显著下降。山农29对拔节期阶段性干旱的抗性高于衡0628。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

LI T Y, ZHANG X, GAO H X, LI B, WANG H, YAN Q Y, OLLENBURGER M, ZHANG W F. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions
Journal of Cleaner Production, 2019, doi: 10.1016/j.jclepro.2019.118295.

DOI:10.1016/j.jclepro.2020.124063URLPMID:32921931 [本文引用: 1]
In the era of Industry 4.0 and circular economy, small and medium enterprises (SMEs) are under huge pressure to make their manufacturing operations ethical and sustainable. Business with ethical and sustainable operations has become the need of the day in the present environment of Industry 4.0 and circular economy. It has been observed that the application of Industry 4.0 technologies may help in achieving the goal of ethical and sustainable operations. Although a lot of research has been done in context to larger enterprises, limited research is available on the application of Industry 4.0 technologies in SMEs for ethical and sustainable operations. The espousal of Industry 4.0 technologies is a challenging task for SMEs due to various operational and financial constraints. The problem is more acute, specifically in context to developing countries like India. Keeping in mind the role of technologies in ethical business and circular economy, we have identified fifteen challenges, impacting the application of Industry 4.0 technologies in SMEs. A questionnaire was designed for collecting the response from industry and academic experts. On the collected data, the DEMATEL approach has been applied to check the degree of influence and interrelationship among challenges. It has also helped in the categorization of factors as cause and effect. Sensitivity analysis is also performed to validate the results obtained from the DEMATEL approach. Authors have observed that lack of motivation from partners and customers on the application of I4.0 technologies is the leading challenge. Fear of failure of I4.0 technologies is the main effect group challenge. The findings of the study will help SMEs in formulating strategies for implementing Industry 4.0 technologies for ethical and sustainable business processes.

YUAN Z, YAN D H, YANG Z Y, YIN J, YUAN Y. Temporal and spatial variability of drought in Huang-Huai-Hai River Basin, China
Theoretical and Applied Climatology, 2015,122:755-769.

[本文引用: 1]

银敏华, 李援农, 周昌明, 谷晓博, 张天乐, 杨丹, 吴国军. 调亏灌水和分蘖干扰对冬小麦生长的补偿效应
应用生态学报, 2015,26(10):3011-3019.

[本文引用: 1]

YIN M H, LI Y N, ZHOU C M, GU X B, ZHANG T L, YANG D, WU G J. Compensation effects of regulated deficit irrigation and tiller disturbance on winter wheat growth
Journal of Applied Ecology, 2015,26(10):3011-3019. (in Chinese)

[本文引用: 1]

汪顺生, 孟鹏涛, 高传昌, 刘慧, 易嘉成. 不同灌溉方式对冬小麦/夏玉米生长发育及产量的影响
中国农村水利水电, 2015,57(6):86-90.

[本文引用: 1]

WANG S S, MENG P T, GAO C C, LIU H, YI J C. Effects of different irrigation methods on the growth and yield of winter wheat / summer corn
China Rural Water and Hydropower, 2015,57(6):86-90. (in Chinese)

[本文引用: 1]

李娜娜, 宫永超, 蒲艳艳, 张晓东, 贾文斌, 辛富刚, 裴艳婷, 丁汉凤. 不同穗型冬小麦品种分蘖成穗特性的研究进展
中国农学通报, 2014,30(2):14-18.

[本文引用: 1]

LI N N, GONG Y C, PU Y Y, ZHANG X D, JIA W B, XIN F G, PEI Y T, DING H F. Recent progress of formation of spike characteristics in different spike cultivars of wheat
Chinese Agricultural Science Bulletin, 2014,30(2):14-18. (in Chinese)

[本文引用: 1]

倪雪峰, 朱倩, 刘涛, 闫向泉, 孟自力, 朱伟. 不同农艺措施对‘商麦156’分蘖成穗及产量的影响
中国农学通报, 2019,35(16):1-5.

[本文引用: 1]

NI X F, ZHU Q, LIU T, YAN X Q, MENG Z L, ZHU W. Agronomic measures affect tillering and spike formation and yield of ‘shangmai 156’
Chinese Agricultural Science Bulletin, 2019,35(16):1-5.(in Chinese)

[本文引用: 1]

YAN J, YU J, TAO G C, VOS J, BOUMAN B A M, XIE G H, MEINKE H. Yield formation and tillering dynamics of direct-seeded rice in flooded and nonflooded soils in the Huai River Basin of China
Field Crops Research, 2010,116(3):252-259.

[本文引用: 1]

佟汉文, 彭敏, 刘易科, 黄玫挺, 邹娟, 朱展望, 陈冷, 陈宇庆, 高春保. 小麦分蘖成穗规律研究进展
湖北农业科学, 2017,56(24):4700-4702.

[本文引用: 1]

TONG H W, PENG M, LIU Y K, HUANG M T, ZOU J, ZHU Z W, CHEN L, CHEN Y Q, GAO C B. Research progress in law of spike formation from wheat tillers
Hubei Agricultural Sciences, 2017,56(24):4700-4702. (in Chinese)

[本文引用: 1]

高尔明, 赵全志, 刘华山, 杨青华, 刘万代, 梁静静, 王春丽. 砂姜黑土小麦分蘖成穗及其调控研究
土壤通报, 2001,32(3):140-142.

[本文引用: 1]

GAO E M, ZHAO Q Z, LIU H S, YANG Q H, LIU W D, LIANG J J, WANG C L. Study on tillering and earing of wheat in Shajiang black soil and its regulation
Chinese Journal of Soil Science, 2001,32(3):140-142. (in Chinese)

[本文引用: 1]

王晓宇, 冯伟, 郭天财, 康国章, 王晨阳. 两种穗型小麦品种分蘖衰亡进程中茎蘖碳氮代谢的差异
西北农业学报, 2010,19(11):38-42,57.

[本文引用: 1]

WANG X Y, FENG W, GUO T C, KANG G Z, WANG C Y. Difference of carbon and nitrogen metabolism in leaves between main cand tillers during tiller senescence of two spike-type winter wheat
Acta Agricuiturae Boreali-Occidentalis Sinica, 2010,19(11):38-42, 57. (in Chinese)

[本文引用: 1]

赵黎明, 李明, 郑殿峰, 顾春梅, 那永光, 解保胜. 灌溉方式对寒地水稻产量及籽粒灌浆的影响
中国农业科学, 2015,48(22):4493-4506.

[本文引用: 1]

ZHAO L M, LI M, ZHENG D F, GU C M, NA Y G, XIE B S. Effects of irrigation methods on rice yield and grain filling in cold regions
Scientia Agricultura Sinica, 2015,48(22):4493-4506. (in Chinese)

[本文引用: 1]

PENG C R, XIE J S, QIU C F, QIAN Y F, GUAN X J, PAN X H. Study and application of three high and one ensuring cultivation mode of double cropping rice
Agricultural Science & Technology, 2012,13(7):1425-1430.

[本文引用: 1]

崔亚坤, 王妮妮, 田中伟, 戴廷波, 陈艳萍, 袁建华, 分蘖和拔节期干旱对小麦植株氮素积累转运的影响
麦类作物学报, 2019,39(3):322-328.

[本文引用: 1]

CUI Y K, WANG N N, TIAN Z W, DAI T B, CHEN Y P, YUAN J H. Effect of water deficit during tillering and jointing stages on nitrogen accumulation and translocaton in water wheat
Journal of Triticeae Crops, 2019,39(3):323-328. (in Chinese)

[本文引用: 1]

张继波, 薛晓萍, 李楠, 李鸿怡, 张磊, 宋计平. 干旱胁迫对冬小麦水分关键时期的生理特性和物质生产的影响
沙漠与绿洲气象, 2019,13(3):124-130.

[本文引用: 2]

ZHANG J B, XUE X P, LI N, LI H Y, ZHANG L, SONG J P. Effect of drought stress on physiological characteristics and dry matter production of winter wheat during water critical period
Desert and Oasis Meteorogy, 2019,13(3):124-130. (in Chinese)

[本文引用: 2]

李彦彬, 朱亚南, 李道西, 高阳. 阶段干旱及复水对小麦生长发育、光合和产量的影响
灌溉排水学报, 2018,37(8):76-82.

[本文引用: 2]

LI Y B, ZHU Y N, LI D X, GAO Y. Different stage drought and rehydration on wheat growth and development, photosynthesis and yield
Journal of Irrigation and Drainage, 2018,38(8):76-82. (in Chinese)

[本文引用: 2]

胡洋山, 汤颖子, 李治, 晏本菊, 任正隆, 任天恒. 小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价
麦类作物学报, 2018,38(1):8-15.

[本文引用: 1]

HU Y S, TANG Y Z, LI Z, YAN B J, REN Z L, REN T H. Verification and practicability evaluation of molecular markers related to tillering number of wheat in recombinant inbred line (RIL) population
Journal of Triticeae Crops, 2018,38(1):8-15. (in Chinese)

[本文引用: 1]

金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响
作物学报, 2019,45(4):155-164.

[本文引用: 1]

JIN X X, YAO Y R, JIA X L, YAO H P, SHEN H P, CUI Y Z, LI Q. Effects of genotypes and environment on wheat yield, quality and nitrogen efficiency
Acta Agronomica Sinica, 2019,45(4):155-164. (in Chinese)

[本文引用: 1]

杨文平, 单长卷, 胡喜巧, 李杰. 土壤干旱对冬小麦拔节期叶片碳代谢的影响
河南农业科学, 2008(9):22-24, 28.

[本文引用: 1]

YANG W P, SHAN C J, HU X Q, LI J. Effect of soil drought on carbon metabolism of winter wheat during jointing stage
.Henan Agricultural Science, 2008(9):22-24, 28. (in Chinese)

[本文引用: 1]

XU H C, CAI T, WANG Z L, HE M R. Physiological basis for the differences of productive capacity among tillers in winter wheat
Journal of Intergrative Agriculture, 2015,14(10):1958-1970.

[本文引用: 2]

余松烈主编. 山东小麦. 北京: 农业出版社, 1990,80.
[本文引用: 2]

YU S L. Wheat in Shandong. Beijing: Agricultural Publishing House, 1990,80. (in Chinese)
[本文引用: 2]

ARIEL F, ROXANA S, GUSTAVO A S. Folet development and grain setting differences between modern durum wheats under contrasting nitrogen availability
Journal of Experimental Botany, 2013,64(1):169-184.

DOI:10.1093/jxb/ers320URLPMID:23162124 [本文引用: 1]
Wheat yield depends on the number of grains per square metre, which in turn is related to the number of fertile florets at anthesis. The dynamics of floret generation/degeneration were studied in contrasting conditions of nitrogen (N) and water availability of modern, well-adapted, durum wheats in order to understand further the bases for grain number determination. Experiments were carried out during the 2008-2009 and 2009-2010 growing seasons at Lleida (NE Spain). The first experiment involved four cultivars (Claudio, Donduro, Simeto, and Vitron) and two contrasting N availabilities (50 kgN ha(-1) and 250 kgN ha(-1); N50 and N250) while experiment 2 included the two cultivars most contrasting in grain setting responsiveness to N in experiment 1, and two levels of N (N50 and N250), under irrigated (IR) and rainfed (RF) conditions. In addition, a detillering treatment was imposed on both cultivars under the IR+N250 condition. The number of fertile florets at anthesis was increased by ~30% in response to N fertilization (averaging across treatments and spikelet positions). The effect of N and water availability was evident on floret developmental rates from the third floret primordium onwards, as these florets in the central spikelets of all genotypes reached the stage of a fertile floret in N250 while in N50 they did not. In this study, clear differences were found between the cultivars in their responsiveness to N by producing more fertile florets at anthesis (through accelerating developmental rates of floret primordia), by increasing the likelihood of particular grains to be set, or by both traits.

张伟杨, 钱希旸, 李银银, 徐云姬, 王志琴, 杨建昌. 土壤干旱对小麦生理性状和产量的影响
麦类作物学报, 2016,36(4):491-500.

[本文引用: 1]

ZHANG W Y, QIAN X Y, LI Y Y, XU Y J, WANG Z Q, YANG J C. Effects of soil drought on physiological characteristics and yield of wheat
Journal of Triticeae Crops, 2016,36(4):491-500. (in Chinese)

[本文引用: 1]

DAVIDSON D J, CHEVALIER P M. Preanthesis tiller mortality in spring wheat
Crop Science, 1990,30(4):832-836.

[本文引用: 1]

VAHAMIDIS P, KARAMANOS A J, ECONOMOU G. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level
Annals of Applied Biology, 2019,174(2), 190-208.

[本文引用: 1]

黄德明, 俞仲林, 路季梅, 江华山. 宁麦3号在高产栽培条件下分蘖幼穗的发育特征
南京农学院学报, 1983,28(2):9-21.

[本文引用: 1]

HUANG D M, YU Z L, LU J M, JIANG H S. Developmental characteristics of tillering young ears of Ningmai 3 under high-yield cultivation conditions
Journal of Nanjing Agriculture University, 1983,28(2):8-21. (in Chinese)

[本文引用: 1]

惠建, 袁汉民. 宁冬11号小麦茎蘖成穗规律研究
农业科学研究, 2012,33(1):31-35.

[本文引用: 1]

HUI J, YUAN H M. Study on tillers growing into spikes of Ningdong 11 in Ningxia
Journal of Agricultural Sciences, 2012,33(1):31-35. (in Chinese)

[本文引用: 1]

高翔, 宁锟, 宋哲民. 小麦高产品种幼穗分化发育特征的研究
西北农业学报, 1995,4(3):1-7.

[本文引用: 1]

GAO X, NING K, SONG Z M. Study on characteristics of yong spike differentiation of high-yield wheat
Acta Agriculturae Boreali- Occidentalis Sinica, 1995,4(3):1-7. (in Chinese)

[本文引用: 1]

唐永金. 绵阳11号小麦品种分蘖成穗规律的初步研究
耕作与栽培, 1987,7(5):43-45.

[本文引用: 1]

TANG Y J. Preliminary study on tillering and spike formation of wheat variety mianyang
Tillage and Cultivation, 1987,7(5):43-45. (in Chinese)

[本文引用: 1]

GONZáLEN F G, TERRIL I I, FALCóN M O. Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): Variation in modern Argentinean wheats
Crop Science, 2011,51(4):1693-1702.

[本文引用: 1]

PRIETO P, OCHAGAVíA H, SAVIN R, GRIFFITHS S, SLAFER G A. Physiological determinants of fertile floret survival in wheat as affected by earliness per se genes under field conditions
European Journal of Agronomy, 2018,99:206-213.

[本文引用: 1]

ZHANG W Y, CHEN Y J, WANG Z Q, YANG J C. Polyamines and ethylene in rice young panicles in response to soil-drying during panicle differentiation
Plant Growth Regulation, 2017,82:491-503.

[本文引用: 1]

SAINIH S, ASPINALLl D. Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.)
Annals of Botany, 1981,48(5):623-633.

[本文引用: 1]

VAHAMIDIS P, KARAMANOS A J, ECONOMOU G. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level
Annals of Applied Biology, 2019,174(2):190-208.

[本文引用: 1]

相关话题/土壤 作物 小穗 生产 小麦