删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测

本站小编 Free考研考试/2021-12-26

管方念,1,2, 龙黎1,2, 姚方杰1,2, 王昱琦1,2, 江千涛1,2, 康厚扬1,2, 蒋云峰1, 李伟3, 邓梅1, 李豪1, 陈国跃,1,21四川农业大学小麦研究所,成都 611130
2西南作物基因资源发掘与利用国家重点实验室,成都 611130
3四川农业大学农学院,成都 611130

Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai

GUAN FangNian,1,2, LONG Li1,2, YAO FangJie1,2, WANG YuQi1,2, JIANG QianTao1,2, KANG HouYang1,2, JIANG YunFeng1, LI Wei3, DENG Mei1, LI Hao1, CHEN GuoYue,1,21Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130
3College of Agronomy, Sichuan Agricultural University, Chengdu 611130

通讯作者: 陈国跃,E-mail: gychen@sicau.edu.cn

责任编辑: 李莉
收稿日期:2019-10-27接受日期:2020-02-8网络出版日期:2020-09-16
基金资助:国家“十三五”重点研发计划.2016YFD0100100
四川省重大科技专项.2018NZDZX002
四川省国际科技创新合作项目.2019YFH0063


Received:2019-10-27Accepted:2020-02-8Online:2020-09-16
作者简介 About authors
管方念,E-mail: flguan@qq.com













摘要
【目的】黄淮海麦区是中国最重要的小麦生产基地和条锈病流行区,从该麦区小麦农家品种中鉴定一批对当前小麦生产上流行的条锈病生理小种具有稳定抗性的优良种质,并了解其携带当前抗病育种利用的重要条锈病抗性基因分布,为进一步在条锈病抗性育种中有效利用和发掘其抗性基因提供材料基础。【方法】应用当前中国小麦生产上毒性强、流行频率高的条锈菌生理小种条中32(CYR32)和条中34(CYR34)对152份来源于黄淮海麦区小麦农家品种进行苗期抗性鉴定,并于2016年和2018年分别在四川崇州和绵阳利用由条锈菌CYR32、CYR33、CYR34、水源11-4、水源11-5组成的混合小种进行人工接种和成株期抗性鉴定;同时利用Yr9Yr10Yr18Yr24/26Yr30Yr36Yr39Yr41Yr48Yr65Yr67Yr80Yr81共13个小麦育种和生产上应用的重要已知条锈病抗性基因的标记进行分子检测,推测其可能携带的抗性基因。【结果】9份农家品种对CYR32具有苗期抗性,9份对CYR34具有苗期抗性;其中,2份种质在苗期对CYR32和CYR34均表现抗性。35份农家品种表现为稳定的成株期抗性,占23.03%。结合苗期和成株期抗性表型分析,7份种质表现出全生育期抗性,占4.61%。利用已知条锈病抗性基因单基因系为阳性对照进行分子检测发现,131份种质携带Yr18,2份携带Yr41,13份携带Yr48,57份携带Yr81;共有66份种质同时携带2个抗性基因组合类型(Yr18+Yr41Yr18+Yr48Yr18+Yr81Yr48+Yr81);所有供试材料均未检测到Yr9Yr10Yr24/26Yr30Yr36Yr39Yr65Yr67Yr80;5份抗性种质未检测到上述Yr基因,可能携带未检测的其他已知条锈病抗性基因或未鉴定的新基因。【结论】黄淮海麦区小麦农家品种对当前流行的条锈病生理小种多表现为成株期抗性,该麦区主要携带来源于中国农家品种抗性基因Yr18Yr81;获得的苗期或成株期稳定抗性农家品种可能携带对当前小麦生产中流行小种具有抗性的其他已知或未知基因及其组合,是在小麦条锈病持久抗性育种中可进一步利用的重要抗源。
关键词: 小麦农家品种;小麦条锈病;抗病鉴定;抗病基因;分子检测;黄淮海麦区

Abstract
【Objective】Stripe rust of wheat (Triticum aestivum L.), caused by Puccinia striiformis f. sp. tritici, has been considered one of the most damaging diseases for wheat production in Huang-huai-hai. Identifying new resistance sources and understanding the distribution of wheat stripe rust-resistance genes in wheat landraces in this region may provide valuable resistance germplasms and molecular basis for predictive resistance rust-breeding program. 【Method】A total of 152 wheat landraces derived from Huang-huai-hai were evaluated at seedling stage in greenhouse with two Chinese predominant stripe rust races CYR32 and CYR34, and at adult-plant stage under field conditions with mixed races of CYR32, CYR33, CYR34, Su11-4 and Su11-5 in Chongzhou and Mianyang, Sichuan, during 2016-2017 and 2018-2019, respectively. The panel of wheat landraces was screened with the closely linked molecular markers of stripe rust resistance genes Yr9, Yr10, Yr18, Yr24/26, Yr30, Yr36, Yr39, Yr41, Yr48, Yr65, Yr67, Yr80, and Yr81. 【Result】Among the 152 accessions, two accessions were resistant to CYR32 and seven to CYR34, and two accessions were resistant to both CYR32 and CYR34 at seedling stage. Thirty-five (23.03%) were stably resistant to at adult-plant stage. Base on the seedling and adult-plant stage reactions, seven (4.61%) shown resistance at the all stage. Molecular detection indicated that 131 accessions carried Yr18, two carried Yr41, thirteen carried Yr48, fifty-seven carried Yr81, including 2 carried both Yr18 and Yr41, eight carried both Yr18 and Yr48, forty-nine carried both Yr18 and Yr81, seven carried both Yr81 and Yr48. All of the tested materials did not contain Yr9, Yr10, Yr24/26, Yr30, Yr36, Yr39, Yr65, Yr67 and Yr80. Simultaneously, no Yr genes were detected in the other five resistant wheat landraces and it indicated that these wheat landraces may carry other known or unknown stripe rust resistance genes. 【Conclusion】Most of wheat landraces from the Huang-huai-hai shown resistance for the current prevalence races of stripe rust at adult-plant stage and the accessions were mainly carried Yr18 and Yr81 which derived from Chinese landraces. These resistant wheat landraces may contain other known or unknown genes/their combinations and could be used as valuable resistance resources for stripe rust in wheat breeding program.
Keywords:Chinese wheat landrace;stripe rust;resistance evaluation;resistance gene;molecular detection;Huang-huai-hai


PDF (731KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测[J]. 中国农业科学, 2020, 53(18): 3629-3637 doi:10.3864/j.issn.0578-1752.2020.18.001
GUAN FangNian, LONG Li, YAO FangJie, WANG YuQi, JIANG QianTao, KANG HouYang, JIANG YunFeng, LI Wei, DENG Mei, LI Hao, CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai[J]. Scientia Acricultura Sinica, 2020, 53(18): 3629-3637 doi:10.3864/j.issn.0578-1752.2020.18.001


0 引言

【研究意义】由条型柄锈菌(Puccinia striiformis West. f. sp. tritici,Pst)引起的小麦条锈病是世界范围内最重要的小麦病害之一,严重影响了小麦的产量和品质,在非洲、亚洲、大洋洲、欧洲、北美洲和南美洲等60多个国家分布流行和危害小麦生产[1,2,3,4]。中国的小麦产区是世界上最大且相对独立的小麦条锈病流行区,且病害发生流行规律比其他国家更加复杂,该病害对中国西南、西北等地方的冬、春麦区危害最为严重[3, 5-9]。2008年,中国植物病理学家分别在四川省和甘肃省等地分离得到同时对Yr24/Yr26Yr10有毒性的新型毒力类型,该毒力类型对贵农22毒性稳定,简称G22-9致病类型。此后连续多年相继在云南省、陕西省、青海省、山西省、新疆维吾尔自治区、贵州省和西藏自治区等地方发现,并且频率呈现逐年上升态势,对中国的小麦生产构成了极大威胁[10,11,12]。2016年1月,经全国小麦锈病和白粉病研究协作组会商决定,将G22-9致病类型正式命名为条中34号生理小种(CYR34)[13]。CYR34的出现及流行频率的逐年增高,标志着中国小麦条锈菌群体结构继Hybrid 46和水源11类群后又一次发生重大变异,使得中国小麦再次受到条锈病大流行的威胁。针对当前小麦生产上流行条锈病菌生理小种或毒力类型,鉴定一批新的抗性种质,发掘和聚合条锈病抗性新基因并转育到当地品种(系),培育一系列抗病品种被认为是预防条锈病危害、确保小麦高产稳产最为经济环保和有效的手段[5,6]。【前人研究进展】地方品种,又称农家品种、本地品种,是经过长期的人类干预和自然选择后保存下来的作物遗传资源,具备了对当地自然生态环境的较强适应性和与之相应的生产潜力,还可能潜藏着育成品种所缺乏的具有重要经济价值的优良基因[14,15]。与世界上大多数国家的品种相比,中国小麦农家品种具有早熟性、多粒性、高度适应性、高亲和性、抗病虫及抗逆等特点,因此受到小麦遗传育种学家的高度重视。尤其在小麦条锈病抗性方面,从资源鉴定、抗性基因发掘到育种利用,对中国小麦农家品种展开了较为系统的研究。早在20世纪80年代,路端谊等[16]利用当时中国流行的条锈病优势生理小种条中1号、条中10号、条中17号、条中18号、条中19号和条中21号对757份中国小麦农家品种进行成株期抗病性鉴定,揭示了长江流域比黄河流域的农家品种抗性更好,且南方农家品种具有更强的抗锈性。近年来,随着条锈菌新小种或新毒力类型的产生和发展速度加快,严重威胁着中国小麦生产安全[17]。鉴于此,近年来,中国小麦病理和遗传学家利用表型鉴定并结合分子标记技术加快了对中国小麦农家品种较为系统的条锈病抗性评价与鉴定。孙建鲁等[18]通过利用条锈菌单小种及混合小种对100份小麦品种资源(包括13份农家品种、27份引进种质和60份育成种质)进行苗期和成株期条锈病抗性鉴定,结果发现农家品种在苗期(61.54%)和成株期(76.92%)均表现出较大比例的抗性;已知Yr特异分子标记检测表明农家品种中含未知Yr频率较高,应加强利用。黄苗苗等[19]对223份小麦农家品种进行了成株期条锈病抗性表型鉴定与评价,并利用6个已知Yr基因分子标记进行了检测,共有50份农家种表现为成株期抗性,99份具有慢条锈病特性,这些农家种中可能携带Yr26Yr9Yr5Yr10Yr15Yr18。王吐虹等[20]在40份小麦农家品种中发现有35份含有未知的抗条锈病基因,占87.5%,而且有较高的遗传异质性。说明小麦农家品种中含有丰富的抗病基因。【本研究切入点】黄淮海麦区作为中国条锈病菌的重要春季流行区,小麦条锈病也是该麦区最重要的病害,每年都有不同程度的发生[21]。新毒性生理小种CYR34的产生已引起黄淮海麦区大部分主栽抗性品种丧失抗性,为小麦条锈病防治工作带来严峻挑战。因此,明确该麦区小麦地方品种的抗性表现和可能携带的抗性基因,鉴定一批可直接用于小麦条锈病抗性育种的优异种质并将其抗性基因/位点/区段转育到小麦新品种(系)至关重要。【拟解决的关键问题】本研究利用当前中国小麦生产上毒性强、流行频率高的条锈菌生理小种和毒力类型对152份来源于黄淮海麦区小麦农家品种进行抗性鉴定,并利用13个条锈病已知抗性基因紧密连锁标记(或功能标记)进行分子检测,为条锈病抗性育种提供材料基础和理论依据。

1 材料与方法

1.1 试验材料

供试小麦农家品种:152份黄淮海麦区小麦农家品种,包括52份山东农家品种、45份河南农家品种、26份河北农家品种、15份陕西农家品种和14份江苏农家品种,均由中国国家作物种质资源库提供。已知条锈病抗性基因Yr9Yr10Yr18Yr24/26Yr30Yr39Yr48Yr65Yr67载体由美国华盛顿州立大学陈贤明教授提供。室内苗期条锈病鉴定对照铭贤169由甘肃农业科学院植物保护研究所贾秋珍研究员提供。成株期条锈病鉴定诱发材料SY95-71及感病对照Avocet S由四川农业大学小麦研究所提供。

供试条锈病菌:采用2个生理小种CYR32和CYR34进行室内苗期条锈病抗性鉴定,单小种鉴定;采用由CYR32、CYR33、CYR34、水源4号和水源5号组成的混合菌种进行田间成株期条锈病鉴定。上述菌种均由甘肃农业科学院植物保护研究所贾秋珍研究员提供。

1.2 小麦条锈病抗性表型鉴定

1.2.1 室内苗期接种鉴定 苗期鉴定在甘肃农业科学院植物保护研究所温室中完成。每份种质播种10—15粒,温室培养至一叶一心期,采用涂抹法[22]分别接种条锈病菌CYR32和CYR34生理小种,放置于接种室黑暗低温(10℃)保湿24 h后移至人工温室(14—18℃,光照16 h/黑暗8 h)中培养,待对照品种铭贤169充分发病后按0—4级标准记载侵染型[23],即0—2级为抗病,3—4级为感病。

1.2.2 田间人工诱发鉴定 2016—2017年和2018—2019年于小麦生产季分别在四川农业大学崇州试验基地(30°33′N,103°39′E。2016CZ,2018CZ)和绵阳市农业科学院试验站设置条锈病鉴定圃(31°23′N,104°49′E。2016MY)进行成株期条锈病抗性鉴定。采用人工接种法[24],3个环境均采用同样的田间播种设计:每份种植3行区、行长2.0 m,行距0.3 m,株距0.2 m,单粒点播,每间隔20行设置一行感病对照Avocet S。为确保田间菌量充分,鉴定圃四周播种2行区诱发材料SY95-71。每年1月中旬小麦分蘖中后期,通过涂抹法在诱发行小麦叶片接种混合小种,待3月下旬至4月中旬感病对照Avocet S充分发病后,调查病害的普遍率、严重度和侵染型[25],每隔7 d调查1次,共调查3次。

1.2.3 分子标记检测 采用改良的CTAB法[26]提取152份黄淮海麦区小麦农家品种和Yr基因载体DNA。利用国内外现已开发的条锈病抗性基因Yr9Yr10Yr18Yr24/26Yr30Yr36Yr39Yr41Yr48Yr65Yr67Yr80Yr81等13个标记[27,28,29,30,31,32,33,34,35,36,37,38,39]对黄淮海麦区小麦农家品种进行PCR扩增,扩增产物经2.0%的琼脂糖电泳或6%的非变性聚丙烯酰胺凝胶电泳检测后照相保存,并对Yr80Yr81抗性基因的KASP标记进行荧光定量PCR扩增检测。供检测Yr基因分子标记的引物均由擎科生物技术有限公司合成(电子附表1)。

2 结果

2.1 黄淮海麦区小麦农家品种苗期抗条锈病的鉴定

分别采用当前小麦生产上条锈病流行生理小种CYR32和CYR34对供试152份黄淮海麦区小麦农家品种进行苗期抗性鉴定。在供试种质中,9份农家品种对CYR32具有苗期抗性,约占6%,其中,2份表现为免疫或近免疫。9份农家品种对CYR34表现苗期抗性,其中1份表现为免疫或近免疫(电子附表2)。对比分析发现,仅半截芒大白麦和白穗白2份种质对CYR32和CYR34同时表现苗期抗性。结果表明,黄淮海麦区小麦农家品种对中国当前小麦条锈病流行小种整体抗性水平较低。

2.2 黄淮海麦区小麦农家品种成株期抗条锈病鉴定

利用由CYR32、CYR33、CYR34、水源4号和水源5号组成的条锈菌混合生理小种进行人工诱发,在多环境下(2016CZ、2016MY和2018CZ)对黄淮海麦区小麦农家品种进行成株期条锈病抗性鉴定。在2016MY鉴定圃中,62份种质在成株期具有抗性,占40.78%。在2016CZ鉴定圃中,57份在成株期表现抗性,占37.50%。在2018CZ鉴定圃中,60份种质具有成株期抗性,占39.47%。对比3个环境抗性鉴定结果,35份种质在3个环境均表现为稳定的成株期抗性,占23.03%。其中,13份种质在成株期表现低侵染型、低严重度反应的高抗病性(IT=0—1、FDS<20%)(电子附表2)。

2.3 黄淮海麦区抗条锈病小麦农家品种区域分布及综合评价

结合苗期和成株期抗性结果,共鉴定出7份具有全生育期抗性(all stage resistance,ASR)农家品种。152份黄淮海麦区农家品种中,来自山东省的52份种质中,10份表现出成株期抗性(adult-plant resistance,APR),占19.23%,其中1份表现出全生育期抗性;来自河北省的26份种质中,仅红秃头表现出成株期抗性;来自陕西省的15份种质中,8份在成株期表现出抗性,占53.33%;来自江苏省的14份种质中,4份表现出成株期抗性,占35.70%,其中1份表现出全生育期抗性;来自河南省的48份种质中,12份表现出成株期抗性,占35.41%,其中5份表现出全生育期抗性。

2.4 黄淮海麦区小麦农家品种条锈病抗性基因分子检测

利用国内外****开发的已知抗条锈病基因Yr9Yr10Yr18Yr24/26Yr30Yr36Yr39Yr41Yr48Yr65Yr67Yr80Yr81紧密连锁的侧翼标记或功能标记对152份黄淮海麦区小麦农家品种进行分子检测,分别以13个条锈病抗性基因载体作为阳性对照,得出在供试的黄淮海麦区小麦农家品种中,131份种质可能携带Yr18,2份可能携带Yr41,13份可能携带Yr48,57份种质可能携带Yr81;其中,2份种质可能同时携带Yr18Yr41,8份可能同时携带Yr18Yr48,49份材料同时携带Yr18Yr81图1图2),7份同时携带Yr48Yr81。供试材料中并未检测到可能携带Yr9Yr10Yr24/26Yr30Yr36Yr39Yr65Yr67Yr80的种质;另外11份种质未检测到上述检测Yr基因。在9份表现苗期抗性和42份成株期稳定抗性种质中,5份均未检测到所有供试的13个Yr基因标记的存在,推测这些抗性种质可能携带了其他已知或未知小麦条锈病抗性基因(组合)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1黄淮海麦区部分材料Yr18连锁标记csLV34检测

M:Marker Ⅰ;Yr18Yr18/6* Avocet S;AVS:Avocet S;1:蝼蛄腚Louguding;2:齐麦Qimai;3:石三麦Shisanmai;4:白蜈蚣糙Baiwugongcao;5:白葫芦头Baihulutou;6:小蚰子麦Xiaoyouzimai;7:兰麦Lanmai;8:红石麦Hongshimai
Fig. 1Detection results of agarose gel by using the marker csLV34 linked to the stripe rust resistance gene Yr18 in part of wheat landraces from Huang-huai-hai



图2

新窗口打开|下载原图ZIP|生成PPT
图2黄淮海麦区部分材料Yr81连锁标记KASP_3077荧光定量PCR检测

:携带Yr81 Carried Yr81;笨麦Benmai、大粒红Dalihong、白疙瘩头Baigedatou、小佛手Xiaofoshou、曲芒麦Qumangmai、红秃头Hongtutou、大白麦Dabaimai; :未携带Yr81 Without carrying Yr81;白麦Baimai、紫花头Zihuatou、蚰子头Youzitou、红芒小麦 Hongmangxiaomai、Avocet S; :杂合体Heterozygote;白穗白Baisuibai、大洋小麦Dayangxiaomai、小红麦Xiaohongmai、小红芒Xiaohongmang、大六棱Daliuleng、闭芒白Bimangbai、鸭子嘴Yazizui、臭麦Choumai、白秃麦Baitumai、冻麦Dongmai、五花头Wuhuatou; :空白对照 Blank control: H2O
Fig. 2Detection results of Real-Time PCR by using the marker KASP_3077 linked to the stripe rust resistance gene Yr81 in part of wheat landraces from Huang-huai-hai



3 讨论

3.1 新毒性生理小种的产生对黄淮海麦区小麦条锈病防治的挑战

近年来,在条锈病常发易变区的四川省和甘肃省麦区,随着条锈病新毒性菌系——贵农22致病类群,特别是贵农22致病类型9,简称G22-9致病类型(即CYR34)的出现及扩展,标志着中国小麦条锈菌群体结构又一次重大变化发生 [13]。目前,以G22-9致病类型(CYR34)为代表的贵农22致病类群在哺育寄主选择压力下已发展成为中国小麦生产上流行频率最高的条锈病菌优质类群,导致目前中国抗病育种中广泛用作抗源的Yr10、Yr24/26和川麦42、南农92R系、贵农系和兰天系品种丧失抗性,这预示着强毒性新小种CYR34在全国范围流行的风险越来越高[40,41]。黄淮海麦区是中国小麦主产基地,也是中国条锈病重要的春季流行区,是保障中国粮食安全的小麦条锈病流行主要防控地区[10]。因此,了解该麦区农家品种的条锈病抗性遗传背景及抗性基因分布,加快发掘抗病新基因及培育抗病新品种,是拓宽小麦抗性遗传基础及抗性育种的关键。

3.2 黄淮海麦区小麦地方品种携带Yr18Yr81的状况

利用紧密连锁分子标记进行分子检测并与抗谱分析、系谱分析在内的其他方法相结合是准确鉴定目标基因的重要手段[42]Yr18是成株期抗性基因,来源于普通小麦,定位于7DS,其载体品种有Thatcher、Jupeteco 73R和Anza等,是公认的慢锈性基因,可能提供持久抗性,目前还没有检测到其有生理专化性[43]。前人研究证实,中国小麦农家品种中携带抗病基因Yr18占比较高。杨文雄等[44]对231份小麦种质进行条锈病抗性基因鉴定,发现仅有6.1%育成品种携带Yr18,而85.1%的农家品种携带Yr18。白小军等[45]对来自宁夏的小麦农家品种的条锈病抗性基因分布进行检测发现,农家品种中携带Yr18的比例(90.9%)远远大于育成品种(7.7%)和引进品种(14.3%)。本研究利用Yr18的功能标记对黄淮海麦区小麦农家品种进行检测也发现,131份种质(86.18%)携带该成株期条锈病抗性基因,进一步证实了Yr18在中国黄淮海麦区小麦农家品种中广泛存在。已有研究表明在高病害压力下Yr18单独存在时其抗性表现不明显,但结合2—4个其他慢锈基因则可获得高抗或近免疫抗性[46,47]。本研究42份携带Yr18的小麦农家品种在成株期表现出高抗条锈病,推测这些种质可能还携带对当前小麦生产中流行小种具有抗性的其他已知或未知基因及其组合。最近,澳大利亚****通过对1份来自中国的小麦农家品种(Aus27430)条锈病抗性表型分析,发现该种质对澳大利亚条锈病流行生理小种在苗期表现为抗性,而在成株期则表现为中抗-中感反应。通过构建重组自交系遗传作图群体并结合小麦90K SNP芯片和基于常规PCR分子标记技术,将该抗性基因定位在6A短臂上,并正式命名为Yr81[39]。本研究利用Yr81的特异KASP分子标记KASP_3077对152份黄淮海麦区农家品种进行分子检测,发现其中有57份小麦农家品种可能携带该基因,证实Yr81普遍存在于中国小麦农家品种中。迄今为止,尚未有****利用中国条锈病生理小种对Yr81进行毒性研究。本研究利用CYR32和CYR34对携带Yr81的小麦农家品种进行抗性表型分析发现,供试材料中携带了Yr81的农家种在苗期多表现为感病反应(IT=3—4);利用混合小种进行成株期条锈病抗性表型鉴定发现,也多表现为感病。进一步分析发现,同时含有Yr18Yr81的49份农家种中,9份成株期表现出良好抗性(DS=0—10%),2份材料表现出全生育期抗性(电子附表2),推测Yr18Yr81的聚合可以显著提高条锈病抗性,这与前人研究结果一致[46,47]。因此,可将Yr81与包括Yr18在内的其他条锈病抗性基因进行聚合在条锈病抗性育种中加以利用。另外,本研究利用条锈病混合菌种对供试材料在多环境下进行成株期抗性鉴定,发现携带了相同抗性基因或基因组合,在不同鉴定环境下其抗感表型或抗性程度不尽相同,可能与环境条件、鉴定的时期等有关。因此,为进一步精准鉴定供试农家种对当前我国小麦生产上条锈病主要流行小种或致病类群的抗性反应,利用单一小种或致病类群在可控环境(室内)对供试农家种进行成株期条锈病抗性鉴定将是我们下一步的工作重点。

3.3 黄淮海麦区小麦地方品种携带未知基因的抗性材料

3个小麦成株期条锈病抗性基因Yr30Yr36Yr39,分别来源于墨西哥品系RL6077[31]、野生二粒小麦RSL65[32]和美国春小麦品种Alpowa[33]。通过遗传作图和分子标记,分别将它们定位小麦染色体3BS、6BS和7BL上。本研究利用其紧密连锁标记对黄淮海麦区农家品种进行分子检测发现,该麦区的所有供试小麦农家品种均未检测到这个3个抗病基因的存在。近年来,随着新的强毒性条锈病生理小种的出现并流行,从农家品种中发掘新的有效抗性基因并培育条锈病抗性新品种已成为共识,从小麦农家品种中发掘新的条锈病抗性基因已成为关注的热点。系谱分析发现,最近报道的4个正式命名的小麦条锈病新基因Yr79Yr80Yr81Yr82均来自不同国家的农家品种[38-39,48-49],证实小麦农家品种中携带丰富的可用条锈病抗性基因,是小麦条锈病抗性育种的有效基因源。黄淮海麦区是中国小麦主产基地,也是中国条锈病重要的春季流行区,是保障中国粮食安全的小麦条锈病流行主要防控地区。因此,了解该麦区的条锈病抗性遗传背景及抗性基因分布,已成为防控条锈病危害的基础性工作。本研究利用小麦生产上流行的强毒性生理小种CYR32和CYR34对152份来自黄淮海麦区小麦农家品种进行条锈病抗性鉴定,并结合Yr基因进行分子检测发现,42份具有成株期稳定抗性的小麦农家品种中,4份种质(爪子牙、蚰子头、石岛三棵和白蚰子)未检测到其携带所有供试已知抗性基因;9份具有苗期抗性的小麦农家品种中,1份种质(白芒白)未检测到其携带所有供试已知抗性基因,说明这些小麦农家品种可能携带对当前小麦生产中流行小种具有抗性的其他已知或未知基因及其组合,是在小麦条锈病持久抗性育种中可进一步利用的新抗源。

4 结论

黄淮海麦区小麦农家品种对当前中国流行的条锈病毒性小种或毒力类群主要表现为成株期抗性,其抗性受多个微效成株期抗性基因控制;该麦区小麦农家品种主要携带Yr18Yr81;在9份表现苗期抗性和42份成株期稳定抗性种质中,共有5份种质未检测到其携带所有供试已知抗性基因,推测这些抗性种质可能携带了对当前小麦生产中流行小种具有抗性的其他已知或未知小麦条锈病抗性基因(组合),是进一步发掘抗条锈病基因并转育到当前小麦新品种(系)中的重要基因源。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

RAPILLY F. Yellow rust epidemiology
Annual Reviews of Phytopathology, 1979,17:59-73.

DOI:10.1146/annurev.py.17.090179.000423URL [本文引用: 1]

JOHNSON R. The cereal rusts. Volume II. Diseases, distribution, epidemiology and control
Physiological and Molecular Plant Pathology, 1987,30(1):151-153.

DOI:10.1016/0885-5765(87)90090-7URL [本文引用: 1]

李振岐, 曾士迈. 中国小麦锈病, 北京: 中国农业出版社, 2002: 370-373.
[本文引用: 2]

LI Z Q, ZENG S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002: 370-373. (in Chinese)
[本文引用: 2]

ZENG S M, LUO Y. Long-distance spread and interregional epidemics of wheat stripe rust in China
Plant Disease, 2006,90(8):980-988.

DOI:10.1094/PD-90-0980URLPMID:30781287 [本文引用: 1]

WAN A M, CHEN X M, HE Z H. Wheat stripe rust in China
Australian Journal of Agricultural Research, 2007,58:605-619.

DOI:10.1071/AR06142URL [本文引用: 2]

XIA X C, LI Z F, LI G Q, SINGH R P. Stripe rust resistance in Chinese bread wheat cultivars and lines
//Buck H T. Wheat Production in Stressed Environments. Dordrecht: Springer Press, 2007: 77-82.

[本文引用: 1]

WELLINGS C R. Global status of stripe rust: A review of historical and current threats
Euphytica, 2011,179:129-141.

DOI:10.1007/s10681-011-0360-yURL
Stripe rust, caused by Puccinia striiformis, has been an important disease of wheat, barley, rye, triticale and certain graminaceous hosts for centuries. The significance of the disease on cultivated cereals has waxed and waned according to the vagaries of climate, inoculum levels and susceptible varieties. A progressive understanding of pathogen biology has revealed levels of specialisation between and within host groups, and these had varying impacts on the hosts concerned. The most economically important form is P. striiformis f. sp. tritici (Pst), the causal pathogen of stripe (yellow) rust of wheat, which is the major focus of this paper. The recent discovery of the perfect stage of Pst on Berberis spp. will encourage further work to uncover the potential importance of the sexual stage in pathogen biology in regions where Berberis spp. occur. A review of the evolution of pathotypes within Pst over the past 50 years reveals recurrent pandemics emanating from a combination of specific virulence in the pathogen population, wide scale cultivation of genetically similar varieties, and agronomic practices that led to high yield potential. When these factors operate in concert, regional stripe rust epidemics have proven to be dramatic, extensive and serious in terms of the magnitude of losses and the economic hardships endured. A review of these epidemics suggests that little progress has been made in containing the worst effects of epidemics. The current status of stripe rust was gauged from a survey of 25 pathologists and breeders directly associated with the disease. It was evident that Pst remains a significant threat in the majority of wheat growing regions of the world with potential to inflict regular regional crop losses ranging from 0.1 to 5%, with rare events giving losses of 5-25%. Regions with current vulnerability include the USA (particularly Pacific North West), East Asia (China north-west and southwest), South Asia (India, Pakistan, Nepal), Oceania (Australia, New Zealand), East Africa (Ethiopia, Kenya), the Arabian Peninsula (Yemen) and Western Europe (east England). The resources deployed to contain the worst effects of Pst will need to find a balance between training a new generation of breeders and pathologists in host-pathogen genetics, and an investment in infrastructure in IARCs and NARs.

颜济. 五十年四川小麦育种研究的回顾与前瞻
四川农业大学学报, 1999,17(1):108-113.

URL

YAN J. History and prospect of study on wheat breeding of fifty years in Sichuan
Journal of Sichuan Agricultural University, 1999,17(1):108-113. (in Chinese)

URL

余遥. 四川小麦. 成都: 四川科学技术出版社, 1998: 397-399.
[本文引用: 1]

YU Y. Sichuan Wheat. Chengdu: Sichuan Science and Technology Press, 1998: 397-399. (in Chinese)
[本文引用: 1]

韩德俊, 王琪琳, 张立, 魏国荣, 曾庆东, 赵杰, 王晓杰, 黄丽丽, 康振生. “西北-华北-长江中下游”条锈病流行区系当前小麦品种(系)抗条锈病性评价
中国农业科学, 2010,43(14):2889-2896.

URL [本文引用: 2]
【目的】西北-华北-长江中下游麦区是中国小麦条锈病最主要的流行区系,准确评价大区间当前小麦品种抗条锈病性水平和抗源使用特点,为整体考量各流行区小麦抗性品种分布的合理性和确定今后的育种方向提供依据。【方法】从该区系13个省(区)征集了501份小麦当前主栽品种和后备品种,在杨凌进行苗期分小种(CYR32和CYR33)和成株期混合小种(CYR23、CYR25、CYR29、CYR31、CYR32、CYR33、Su11-4、Su11-7)人工诱发接种鉴定,在天水自然发病条件下进行抗条锈病性鉴定。【结果】参鉴小麦品种(系)中,表现为全生育期抗性的品种仅有34份,占参试品种(系)的6.8%,表现成株期抗性的品种为110份,占参试品种的22.0%,表现感病的品种(系)为356份,占供试品种(系)的71.0 %;流行区系内不同地区间小麦品种抗条锈性水平存在较大差异;结合育种系谱分析,具有全生育期抗病性的品种(系)的有效抗源类型较丰富,但在品种(系)中的分布不均衡,主要集中在92R系(携带Yr26)、贵农系以及少数携带Yr24的CIMMYT抗源种质。【结论】当前中国小麦主产区小麦品种抗条锈性整体水平仍较低,必须加强病害预测预报和防治,以避免大区流行;小麦品种主要有效抗源较单一,且在不同流行区同时使用。


HAN D J, WANG Q L, ZHANG L, WEI G R, ZENG Q D, ZHAO J, WANG X J, HUANG L L, KANG Z S. Evaluation of resistance current wheat cultivars to stripe rust in Northwest China, North China and Middle and Lower Reaches of Changjiang River epidemic area
Scientia Agricultura Sinica, 2010,43(14):2889-2896. (in Chinese)

URL [本文引用: 2]
【目的】西北-华北-长江中下游麦区是中国小麦条锈病最主要的流行区系,准确评价大区间当前小麦品种抗条锈病性水平和抗源使用特点,为整体考量各流行区小麦抗性品种分布的合理性和确定今后的育种方向提供依据。【方法】从该区系13个省(区)征集了501份小麦当前主栽品种和后备品种,在杨凌进行苗期分小种(CYR32和CYR33)和成株期混合小种(CYR23、CYR25、CYR29、CYR31、CYR32、CYR33、Su11-4、Su11-7)人工诱发接种鉴定,在天水自然发病条件下进行抗条锈病性鉴定。【结果】参鉴小麦品种(系)中,表现为全生育期抗性的品种仅有34份,占参试品种(系)的6.8%,表现成株期抗性的品种为110份,占参试品种的22.0%,表现感病的品种(系)为356份,占供试品种(系)的71.0 %;流行区系内不同地区间小麦品种抗条锈性水平存在较大差异;结合育种系谱分析,具有全生育期抗病性的品种(系)的有效抗源类型较丰富,但在品种(系)中的分布不均衡,主要集中在92R系(携带Yr26)、贵农系以及少数携带Yr24的CIMMYT抗源种质。【结论】当前中国小麦主产区小麦品种抗条锈性整体水平仍较低,必须加强病害预测预报和防治,以避免大区流行;小麦品种主要有效抗源较单一,且在不同流行区同时使用。


ZENG Q D, HAN D J, WANG Q L, YUAN F P, WU J H, ZHANG L, WANG X J, HUANG L L, CHEN X M, KANG Z S. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines
Euphytica, 2014,196(2):271-284.

DOI:10.1007/s10681-013-1030-zURL [本文引用: 1]
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases on wheat in China. To assess resistance in wheat cultivars and breeding lines in China, 330 leading cultivars and 164 advanced breeding lines were evaluated with stripe rust. In the greenhouse tests, seedlings of the entries were inoculated separately with several Pst pathotypes. In the field tests, the entries were evaluated for stripe rust resistance in Yangling, Shaanxi Province artificially inoculated and in Tianshui, Gansu Province under natural infection of Pst. The oversummering/wintering and spring epidemic zones of resistance genes were postulated using molecular markers for Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26, in combination with resistance spectra. Out of the 494 wheat entries, 16 (3.24 %) entries had all-stage resistance (ASR) in all race tests, 99 (20.04 %) had adult-plant resistance (APR), 28 (5.67 %) were considered to have slow-rusting (SR), and 351 (71.05 %) were susceptible to one or more races in both seedling and adult-plant stages. Advanced breeding lines had a higher percentage (37.2 %) of resistant entries (The sum of ASR, APR and SR) than leading cultivars (24.85 %). Among the epidemic regions, southern Gansu had a higher percentage of resistant entries than any other regions. Based on stripe rust reactions and molecular markers, two cultivars were found to possibly have Yr5 while no entries have Yr10 or Yr15. Resistance genes Yr9, Yr17, Yr18, and Yr26 were found in 134 (29.4 %), 45 (9.1 %), 10 (2 %), and 15 (3 %) entries, respectively.

刘太国, 王保通, 贾秋珍, 章振羽, 李强, 曹世勤, 彭云良, 金杜林, 李明菊, 刘博, 高利, 胡小平, 陈万权. 2010-2011年度我国小麦条锈菌生理专化研究
麦类作物学报, 2012,3:574-578.

DOI:10.7606/j.issn.1009-1041.2012.03.035URL [本文引用: 1]
为给小麦条锈病预测及防控策略制定与实施提供科学依据,2010-2011年对采自全国14个省(市、自治区)的条锈菌标样进行了生理小种鉴定和分析。结果表明,在1 014份标样中,共监测到133个致病类型,其中CYR33出现频率达19.7%,与2009-2010年的23.7%相比略有下降,连续二年超过CYR32,居于首位;CYR32出现频率为18.1%(2009-2010年为21.6%),位居第二,主要分布在陕、甘、川地区。供试标样中还有44份被鉴定为贵农22致病类群,出现频率为4.3%,主要分布在四川、甘肃和云南三省,陕西、青海、山西、新疆、贵州和西藏等地亦有分布,应引起育种和推广部门的高度重视。
LIU T G, WANG B T, JIA Q Z, ZHANG Z Y, LI Q, CAO S Q, PENG Y L, JIN S L, LI M J, LIU B, GAO L, HU X P, CHEN W Q. Physiologic specialization of Puccinia striiformis f.sp. tritici in China during 2010-2011
Journal of Triticeae Crops, 2012,32(3):574-578. (in Chinese)

DOI:10.7606/j.issn.1009-1041.2012.03.035URL [本文引用: 1]
为给小麦条锈病预测及防控策略制定与实施提供科学依据,2010-2011年对采自全国14个省(市、自治区)的条锈菌标样进行了生理小种鉴定和分析。结果表明,在1 014份标样中,共监测到133个致病类型,其中CYR33出现频率达19.7%,与2009-2010年的23.7%相比略有下降,连续二年超过CYR32,居于首位;CYR32出现频率为18.1%(2009-2010年为21.6%),位居第二,主要分布在陕、甘、川地区。供试标样中还有44份被鉴定为贵农22致病类群,出现频率为4.3%,主要分布在四川、甘肃和云南三省,陕西、青海、山西、新疆、贵州和西藏等地亦有分布,应引起育种和推广部门的高度重视。

黄瑾, 贾秋珍, 杜金林, 曹世勤, 张勃, 孙振宇, 骆惠生, 王晓明. 2010-2012年甘肃省小麦条锈病菌生理小种变化动态监测
植物保护, 2014,3:101-105.

URL [本文引用: 2]
小麦条锈菌新小种的产生并成为优势小种是造成品种抗锈性丧失及历次条锈病大流行的先决因素。为了系统监测小麦条锈菌生理小种的变异,对2010-2012年采自甘肃省28个县(市)的1 008份小麦条锈菌标样进行了鉴定。结果表明:2010、2011和2012年分别监测到30、23和25个生理小种和致病类型,优势小种仍为CYR33和CYR32,其中CYR33出现频率分别为19.06%、29.88%和16.29%;CYR32出现频率分别为24.49%、16.69%和30.57%;其次为2010年首次监测到的感染‘贵农22’的新致病类型G22-9,其出现频率分别为2.81%、7.99 %和10.86%,在2012年已上升为继CYR33和CYR32之后的第三位小种类型;同时在2011年监测到新致病类型G22-14,其出现频率也较高,分别为7.40%和2.57%。感染‘贵农22’新菌系的出现及扩展,标志着我国小麦条锈菌群体结构又一次发生重大变异,应引起育种和推广部门的高度重视。
HUANG J, JIA Q Z, DU J L, CAO S Q, ZHANG B, SUN Z Y, LUO H S, WANG X M. Population changes of Puccinia striiformis f. sp. tritici in Gansu Province during 2010-2012
Plant Protection, 2014,40(3):101-105. (in Chinese)

URL [本文引用: 2]
小麦条锈菌新小种的产生并成为优势小种是造成品种抗锈性丧失及历次条锈病大流行的先决因素。为了系统监测小麦条锈菌生理小种的变异,对2010-2012年采自甘肃省28个县(市)的1 008份小麦条锈菌标样进行了鉴定。结果表明:2010、2011和2012年分别监测到30、23和25个生理小种和致病类型,优势小种仍为CYR33和CYR32,其中CYR33出现频率分别为19.06%、29.88%和16.29%;CYR32出现频率分别为24.49%、16.69%和30.57%;其次为2010年首次监测到的感染‘贵农22’的新致病类型G22-9,其出现频率分别为2.81%、7.99 %和10.86%,在2012年已上升为继CYR33和CYR32之后的第三位小种类型;同时在2011年监测到新致病类型G22-14,其出现频率也较高,分别为7.40%和2.57%。感染‘贵农22’新菌系的出现及扩展,标志着我国小麦条锈菌群体结构又一次发生重大变异,应引起育种和推广部门的高度重视。

PAYNE P I, NIGHTINGLE M A, KRATTIGER A F, HOLT L M. The relationship between HMW glutenin subunit composition and the breadmaking quality of British- grown wheat varieties
Journal of the Science of Food and Agriculture, 1987,40(1):51-65.

DOI:10.1002/(ISSN)1097-0010URL [本文引用: 1]

沈裕琥, 王海庆, 杨天育, 张怀刚, 黄相国. 甘、青两省春小麦遗传多样性演变
西北植物学报, 2002,22(4):731-740.

URL [本文引用: 1]

SHEN Y H, WANG H Q, YANG T Y, ZHANG H G, HUANG X G. Evolvement of genetic diversity of spring wheat varieties in Gansu and Qinghai Provinces
Acta Botanica Boreali-Occidentalia Sinica, 2002,22(4):731-740. (in Chinese)

URL [本文引用: 1]

路端谊, 袁文焕, 李剑雁, 李登科, 于孝如. 小麦品种资源抗条锈病的研究
中国农业科学, 1980,13(1):15-22.

URL [本文引用: 1]

LU D Y, YUAN W H, LI J Y, LI D K, YU X R. Studies on stripe rust resistance of the cultivar resources of wheat
Scientia Agricultura Sinica, 1980,13(1):15-22. (in Chinese)

URL [本文引用: 1]

黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权. 黄淮麦区34个小麦主栽品种(系)抗条锈病基因推导
植物保护, 2019,45(1):159-163.

URL [本文引用: 1]

HUANG L, LIU T G, LIU B, GAO L, LUO P G, CHEN W Q. Postulation of yellow rust resistance genes in 34 wheat cultivars from Huanghuai Wheat Growing Region
Journal of Plant Protection, 2019,45(1):159-163. (in Chinese)

URL [本文引用: 1]

孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌. 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测
植物保护学报, 2017,43(2):64-72.

URL [本文引用: 1]

SUN J L, WANG T H, FENG J, LIN R M, WANG F T, YAO Q, GUO Q Y, XU S H. Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers
Journal of Plant Protection, 2017,43(2):64-72. (in Chinese)

URL [本文引用: 1]

黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 陈万权. 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测
植物保护学报, 2018,45(1):90-100.

URL [本文引用: 1]

HUANG M M, SUN Z Y, CAO S Q, JIA Q Z, LIU T G, CHEN W Q. Evaluation of the resistance of 223 wheat landraces in Gansu Province to stripe rust and molecular detection
Journal of Plant Protection, 2018,45(1):90-100. (in Chinese)

URL [本文引用: 1]

王吐虹, 郭青云, 蔺瑞明, 姚强, 冯晶, 王凤涛, 陈万权, 徐世昌. 中国40个小麦农家品种和甘肃南部40个生产品种抗条锈病基因推导
中国农业科学, 2015,48(19):3834-3847.

DOI:10.3864/j.issn.0578-1752.2015.19.006URL [本文引用: 1]
【目的】明确中国小麦农家品种与甘肃南部生产品种抗条锈性类型及可能含有的抗性基因和遗传多样性,为抗源的选择与利用提供参考。【方法】苗期于自控温室内使用中国当前小麦条锈菌(Puccinia striiformis f. sp. tritici)流行小种CYR32,成株期于大田病圃使用当前主要流行小种和重要致病类型共12个菌系组成的混合菌种对80个供试材料进行抗病性鉴定与评价。基因推导在温室用25个毒性谱不同的小麦条锈菌系于苗期接种30个已知抗条锈病基因载体品系及对照铭贤169、17个国际鉴别寄主和供试品种,根据供试品种和标准品系对不同菌系的侵染型,对农家品种和生产品种进行抗性谱比对分析和系谱分析,解析其可能含有的抗条锈病基因或基因组合及抗性谱,并通过NTSYSpc-2.2软件计算遗传相似系数,以UPGMA法进行聚类分析,将其抗性归类。【结果】供试品种大多具有良好的成株期抗性,除清农1号、清农2号、红壳小麦(2)在成株期表现感病,兰天3号、兰天4号、兰天6号等20个品种在成株期表现慢锈性外,其他品种均表现中抗至免疫的抗性水平。品种抗性多由全生育期抗性、部分由成株抗性提供。甘肃生产品种中抗病基因以Yr9Yr24Yr26为主,有的还含有其他未知抗条锈病基因。其中,兰天1号、兰天14号、兰天17号、兰天21号、清农4号等含Yr9;兰天24号、中梁04335、天选51号可能含Yr24;兰天17号、兰天23号、兰天25号、中梁17号、中梁04260、天选43号、天选48号可能含Yr26。农家品种中有19份材料含有未知抗条锈病基因,其余21份材料不能确认含已知抗病基因Yr1Yr2Yr4Yr6Yr7Yr8Yr40,可能含有未知基因。聚类分析发现,甘肃生产品种大都抗性谱较宽,遗传相似性较高;40份材料的抗条锈性相似系数范围在0.30—1.00,在抗性相似系数为0.70水平上可分为3大类,其中兰天15号单独聚为1类,清农1号和清农2号聚为1类,其余37份材料聚为1大类。农家品种抗性谱宽窄不一,显示出遗传多样性水平较高;40份材料的抗条锈性相似系数范围在0.38—1.00,在抗性相似系数为0.70水平上可分9大类。【结论】供试品种均有良好的抗条锈性,相对于甘肃南部生产品种,供试的农家品种更具丰富的遗传多样性和有效抗条锈病基因,可作为抗源在育种中加以利用。
WANG T H, GUO Q Y, LIN R M, YAO Q, FENG J, WANG F T, CHEN W Q, XU S C. 2015. Postulation of stripe rust resistance genes in Chinese 40 wheat landraces and 40 commercial cultivars in the southern region of Gansu Province
Scientia Agricultura Sinica, 2015,48(19):3834-3847. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2015.19.006URL [本文引用: 1]
【目的】明确中国小麦农家品种与甘肃南部生产品种抗条锈性类型及可能含有的抗性基因和遗传多样性,为抗源的选择与利用提供参考。【方法】苗期于自控温室内使用中国当前小麦条锈菌(Puccinia striiformis f. sp. tritici)流行小种CYR32,成株期于大田病圃使用当前主要流行小种和重要致病类型共12个菌系组成的混合菌种对80个供试材料进行抗病性鉴定与评价。基因推导在温室用25个毒性谱不同的小麦条锈菌系于苗期接种30个已知抗条锈病基因载体品系及对照铭贤169、17个国际鉴别寄主和供试品种,根据供试品种和标准品系对不同菌系的侵染型,对农家品种和生产品种进行抗性谱比对分析和系谱分析,解析其可能含有的抗条锈病基因或基因组合及抗性谱,并通过NTSYSpc-2.2软件计算遗传相似系数,以UPGMA法进行聚类分析,将其抗性归类。【结果】供试品种大多具有良好的成株期抗性,除清农1号、清农2号、红壳小麦(2)在成株期表现感病,兰天3号、兰天4号、兰天6号等20个品种在成株期表现慢锈性外,其他品种均表现中抗至免疫的抗性水平。品种抗性多由全生育期抗性、部分由成株抗性提供。甘肃生产品种中抗病基因以Yr9Yr24Yr26为主,有的还含有其他未知抗条锈病基因。其中,兰天1号、兰天14号、兰天17号、兰天21号、清农4号等含Yr9;兰天24号、中梁04335、天选51号可能含Yr24;兰天17号、兰天23号、兰天25号、中梁17号、中梁04260、天选43号、天选48号可能含Yr26。农家品种中有19份材料含有未知抗条锈病基因,其余21份材料不能确认含已知抗病基因Yr1Yr2Yr4Yr6Yr7Yr8Yr40,可能含有未知基因。聚类分析发现,甘肃生产品种大都抗性谱较宽,遗传相似性较高;40份材料的抗条锈性相似系数范围在0.30—1.00,在抗性相似系数为0.70水平上可分为3大类,其中兰天15号单独聚为1类,清农1号和清农2号聚为1类,其余37份材料聚为1大类。农家品种抗性谱宽窄不一,显示出遗传多样性水平较高;40份材料的抗条锈性相似系数范围在0.38—1.00,在抗性相似系数为0.70水平上可分9大类。【结论】供试品种均有良好的抗条锈性,相对于甘肃南部生产品种,供试的农家品种更具丰富的遗传多样性和有效抗条锈病基因,可作为抗源在育种中加以利用。

李峰奇, 韩德俊, 魏国荣, 曾庆东, 黄丽丽, 康振生. 黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测
中国农业科学, 2008,41(10):3060-3069.

URL [本文引用: 1]
【目的】鉴定黄淮麦区近年小麦主栽品种和后备品种对当前条锈菌流行小种的抗性水平;了解抗条锈病基因在该区小麦品种中分布状况,为小麦安全生产与品种合理布局提供依据。【方法】以中国小麦条锈菌当前流行小种条中32(CYR32)和水源致病类型14对黄淮麦区126个小麦品种(系)进行苗期抗性鉴定;分别用Yr9(1B/1R)、Yr5、Yr10、Yr15和Yr26基因有效的分子标记检测其在参试品种(系)中的分布状况。【结果】在126个供试材料中,对CY32和水源致病类型14均表现免疫或近免疫的品种(系)只有11个,占8.73%;携带Yr9基因的小麦-黑麦1B/1R 易位系的频率仍高达41.6%;分子检测表明,14份抗CY32的小麦品种(系)中,6份可能含有Yr5基因,4份可能含有Yr10基因,4份可能含有Yr15基因,3份可能含有Yr26基因;周麦17、0020-332和N19等3份材料未检测到上述Yr基因(分子标记)的存在,其对CYR32的抗性可能是受其它未知基因控制。【结论】黄淮麦区小麦品种(系),特别是主栽品种对当前条锈菌流行小种的抗性水平较低,对新小种具有良好抗性的Yr5、Yr10、Yr15和Yr26基因在小麦品种(系)中的分布频率很低,亟待将这些抗条锈病基因转育至小麦品种中。
LI F Q, HAN D J, WEI G R, ZENG Q D, HUANG L L, KANG Z S. Molecular detection of stripe rust resistant genes in 126 winter wheat varieties from the Huanghuai Wheat Region
Scientia Agricultura Sinica, 2008,41(10):3060-3069. (in Chinese)

URL [本文引用: 1]
【目的】鉴定黄淮麦区近年小麦主栽品种和后备品种对当前条锈菌流行小种的抗性水平;了解抗条锈病基因在该区小麦品种中分布状况,为小麦安全生产与品种合理布局提供依据。【方法】以中国小麦条锈菌当前流行小种条中32(CYR32)和水源致病类型14对黄淮麦区126个小麦品种(系)进行苗期抗性鉴定;分别用Yr9(1B/1R)、Yr5、Yr10、Yr15和Yr26基因有效的分子标记检测其在参试品种(系)中的分布状况。【结果】在126个供试材料中,对CY32和水源致病类型14均表现免疫或近免疫的品种(系)只有11个,占8.73%;携带Yr9基因的小麦-黑麦1B/1R 易位系的频率仍高达41.6%;分子检测表明,14份抗CY32的小麦品种(系)中,6份可能含有Yr5基因,4份可能含有Yr10基因,4份可能含有Yr15基因,3份可能含有Yr26基因;周麦17、0020-332和N19等3份材料未检测到上述Yr基因(分子标记)的存在,其对CYR32的抗性可能是受其它未知基因控制。【结论】黄淮麦区小麦品种(系),特别是主栽品种对当前条锈菌流行小种的抗性水平较低,对新小种具有良好抗性的Yr5、Yr10、Yr15和Yr26基因在小麦品种(系)中的分布频率很低,亟待将这些抗条锈病基因转育至小麦品种中。

ROELFS A P. Race Specificity and Methods of Study. New York: Academic Press, 1984: 131-164.
[本文引用: 1]

MCINTOSH R A, WELLINGS C R, PARK R F. Wheat Rusts: An Atlas of Resistance Genes Berlin: Springer Netherlands Press, 1995: 9-12.
[本文引用: 1]

秦久刚, 熊政平. 小麦条锈病人工接种鉴定
湖北农业科学, 1983,8(9):17-18.

URL [本文引用: 1]

QIN J G, XIONG Z P. Identification of wheat stripe rust by artificial inoculation
Hubei Agricultural Sciences, 1983,8(9):17-18. (in Chinese)

URL [本文引用: 1]

陈万权, 刘太国, 陈巨莲, 徐世昌. 小麦抗病虫性评价技术规范
第1部分: 小麦抗条锈病评价技术规范: NT/T1443.1-2007[S]. 2007-09-14[2017-03-03].

[本文引用: 1]

CHEN W Q, LIU T G, CHEN J L, XU S C. Rules for resistance evaluation of wheat to diseases and insect pests
Part 1: Rule for resistance evaluation of wheat to yellow rust (Puccinia striiformis West. f. sp. tritici Eriks. et Henn.): NT/T1443.1-2007[S]. 2007-09-14[2017-03-03]. (in Chinese)

[本文引用: 1]

HILL-AMBROZ K L, BROWN-GUEDIRA G L, FELLERS J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat
Crop Science, 2002,42(6):2088-2091.

DOI:10.2135/cropsci2002.2088URL [本文引用: 1]

FRANCIS H A, LEITCH A R, KOEBNER R M. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat
Theoretical and Applied Genetics, 1995,90(5):636-642.

DOI:10.1007/BF00222127URLPMID:24174021 [本文引用: 1]
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.

YUAN C L, WU J Z, YAN B Q, HAO Q Q, ZHANG C Z, LYU B, NI F, CAPLAN A, WU J J, FU D L, ZHANG C. Remapping of the stripe rust resistance gene Yr10 in common wheat
Theoretical and Applied Genetics, 2018,131(6):1253-1262.

DOI:10.1007/s00122-018-3075-9URLPMID:29476226 [本文引用: 1]
KEY MESSAGE: Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued. Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat 'Bobwhite'. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor 'Moro' and the Pst-susceptible wheat 'Huixianhong', we generated two F3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.

LAGUDAH E S, KRATTINGER S G, HERRERA-FOESSEL S, SINGH R P, HUERTA-ESPINO J, SPIELMEYER W. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens
Theoretical and Applied Genetics, 2009,119(5):889-898.

DOI:10.1007/s00122-009-1097-zURL [本文引用: 1]
The locus Lr34/Yr18/Pm38 confers partial and durable resistance against the devastating fungal pathogens leaf rust, stripe rust, and powdery mildew. In previous studies, this broad-spectrum resistance was shown to be controlled by a single gene which encodes a putative ATP-binding cassette transporter. Alleles of resistant and susceptible cultivars differed by only three sequence polymorphisms and the same resistance haplotype was found in the three independent breeding lineages of Lr34/Yr18/Pm38. Hence, we used these conserved sequence polymorphisms as templates to develop diagnostic molecular markers that will assist selection for durable multi-pathogen resistance in breeding programs. Five allele-specific markers (cssfr1cssfr5) were developed based on a 3bp deletion in exon 11 of the Lr34-gene, and one marker (cssfr6) was derived from a single nucleotide polymorphism in exon 12. Validation of reference genotypes, well characterized for the presence or absence of the Lr34/Yr18/Pm38 resistance locus, demonstrated perfect diagnostic values for the newly developed markers. By testing the new markers on a larger set of wheat cultivars, a third Lr34 haplotype, not described so far, was discovered in some European winter wheat and spelt material. Some cultivars with uncertain Lr34 status were re-assessed using the newly derived markers. Unambiguous identification of the Lr34 gene aided by the new markers has revealed that some wheat cultivars incorrectly postulated as having Lr34 may possess as yet uncharacterised loci for adult plant leaf and stripe rust resistance.

WANG C M, ZHANG Y P, HAN D J, KANG Z S, LI G P, CAO A Z, CHEN P D. SSR and STS markers for wheat stripe rust resistance gene Yr26
Euphytica, 2008,159(3):359-366.

DOI:10.1007/s10681-007-9524-1URL [本文引用: 1]
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4cM and 6.7cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.

阳霞, 刘路平, 孙道杰, 张玲丽. 小麦抗病基因Lr46/Yr29/Pm39, Sr2/Yr30Lr68的遗传特性及其与主要农艺性状的关联分析
西北植物学报, 2014,34(3):454-462.

[本文引用: 2]

YANG X, LIU L P, SUN D J, ZHANG L L. Genetic characteristics of wheat resistance gene Lr46/h29/Pm39, Sr2/Yr30 and Lr68 and association analysis of main agronomic traits
Acta Botanica Boreali- Occidentalia Sinica, 2014,34(3):454-462. (in Chinese)

[本文引用: 2]

SEGOVIA V, HUBBARD A, CRZAE M, BOWDEN S, WALLINGTON E, BRYANT R, GREENLAND A, BAYLES R, UAUY C. Yr36 confers partial resistance at temperatures below 18°C to U.K. isolates of Puccinia striiformis
Phytopathology, 2014,104(8):871-878.

DOI:10.1094/PHYTO-10-13-0295-RURL [本文引用: 2]
Wheat yellow (stripe) rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici, is a continual threat to wheat fields worldwide. New isolates with increased virulence have recently emerged driving breeding efforts to incorporate disease resistance genes which confer potentially more durable, albeit partial, resistance. Yr36 is one such locus which was recently cloned (WKS1) and described as a high-temperature adult-plant gene being effective only at temperatures above 25 degrees C. We examined the potential use of Yr36 at temperatures below 25 degrees C. Field experiments in the United Kingdom across 2 years show that lines carrying Yr36 provide slow rusting resistance to the yellow rust pathogen. Juvenile and adult Yr36 isogenic lines showed partial resistance at temperatures below 18 degrees C under control environment conditions in tetraploid and hexaploid genetic backgrounds, but not at seedling stage, when inoculated with U.K. P. striiformis isolates. This partial resistance phenotype was similar to that observed previously at temperatures >= 25 degrees C. Transgenic complementation tests and ethyl methanesulfonate mutants showed that the low-temperature partial resistance was due to the WKS1 gene. This study indicates that Yr36 has the potential to be an effective source of partial resistance in temperate wheat growing regions.

LIN F, CHEN X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa
Theoretical and Applied Genetics, 2007,114:1277-1287.

DOI:10.1007/s00122-007-0518-0URL [本文引用: 2]
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar ‘Alpowa’ has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with ‘Avocet Susceptible’ (AVS). Seedlings of the parents, and F1, F2 and F3 progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F3 lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F3 lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R 2 values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.

LUO P G, HU X Y, REN Z L, ZHANG H Y, YANG Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS
Genome, 2008,51(11):922-927.

DOI:10.1139/G08-079URLPMID:18956025 [本文引用: 1]
Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat (Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.

LOWE I, JANKULOSKI L, CHAO S M, CHEN X M, SEE D, DUBCOVSKY J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat
Theoretical and Applied Genetics, 2011,123(1):143-157.

DOI:10.1007/s00122-011-1573-0URL [本文引用: 1]
A mapping population of 186 recombinant inbred lines developed from a cross between UC1110, an adapted California spring wheat, and PI610750, a synthetic derivative from CIMMYT's Wide Cross Program, was evaluated for its response to current California races of stripe rust (Puccinia striiformis f. sp. tritici) in replicated field trials over four seasons (2007-2010) in the northern Sacramento Valley. A genetic map was constructed consisting of 1,494 polymorphic probes (SSRs, DArTs, and ESTs) mapped to 558 unique loci, and QTL analysis revealed the presence of four stripe rust resistance QTL segregating in this population, two from UC1110 (on chromosomes 3BS and 2BS) and two from PI610750 (5AL and 2AS). The two QTL of largest effects (on 3BS and 5AL) were validated in independent populations and their intervals narrowed to 2.5 and 5.3 cM, respectively. The 3BS QTL was shown, by allelism test and genotype, to carry a gene different from the Yr30/Sr2 complex. Mapped position also suggests that the 3BS QTL is associated with a gene different from either Yrns-B1 or YrRub, two stripe rust resistance genes mapped to this region in other studies. The 5AL QTL carries a previously unreported partial stripe rust resistance gene, designated here as Yr48. This paper discusses the individual contributions to resistance of these four QTL, their epistatic interactions, and their potential in durable resistance breeding strategies based on combinations of partial resistance genes.

CHEN P, XU L S, WANG M N, SEE D R, CHEN X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016
Theoretical and Applied Genetics, 2014,127:2267-2277.

DOI:10.1007/s00122-014-2378-8URL [本文引用: 1]
This manuscript reports two new genes ( Yr64 and Yr65 ) for effective resistance to stripe rust and usefulness of their flanking SSR markers for marker-assisted selection.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. Durum wheat accessions PI 331260 and PI 480016 were resistant to all tested Pst races. To transfer the resistance genes to common wheat and map them to wheat chromosomes, both accessions were crossed with the stripe rust-susceptible spring wheat 'Avocet S'. Resistant F-3 plants with 42 chromosomes were selected cytologically and by rust phenotype. A single dominant gene for resistance was identified in segregating F-4 lines from each cross. F-6 populations for each cross were developed from single F-5 plants and used for genetic mapping. Different genes from PI 331260 and PI 480016 were mapped to different loci in chromosome 1BS using simple sequence repeat markers. The gene from PI 331260 was flanked by Xgwm413 and Xgdm33 in bin 1BS9-0.84-1.06 at genetic distances of 3.5 and 2.0 cM; and the gene from PI 480016 was flanked by Xgwm18 and Xgwm11 in chromosome bin C-1BS10-0.50 at 1.2 and 2.1 cM, respectively. Chromosomal locations and race and allelism tests indicated that the two genes are different from previously reported stripe rust resistance genes, and therefore are named as Yr64 from PI 331260 and Yr65 from PI 480016. These genes and their flanking markers, and selected common wheat lines with the genes should be valuable for diversifying resistance genes used in breeding wheat cultivars with stripe rust resistance.

XU H G, ZHANG J, ZHANG P, QIE Y M, NIU Y C, LI H J, MA P T, XU Y F, AN D A. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection
Euphytica, 2014,198(3):317-323.

DOI:10.1007/s10681-014-1108-2URL [本文引用: 1]
Stripe rust resistance gene YrC591, present in wheat cultivar C591, is effective against currently important Puccinia striiformis Westend. f. sp. tritici isolates in China. An F-2:3 population (127 lines) was developed by crossing C591 with susceptible cultivar Taichung 29. Thirty four simple sequence repeat (SSR) and 155 sequence tagged site (STS) markers located on chromosome 7BL were used to perform bulk segregant analysis. Eight SSR markers, cfa2040, wmc273, wmc166, gwm984, barc32 wmc276, barc182 and gwm146, and 6 STS markers, mag1714, mag1757, mag1811, BE425120, BE471173 and BG607810, were polymorphic between the parents and contrasting resistant and susceptible DNA pools. F-2:3 lines were genotyped with these polymorphic markers. Linkage analysis indicated that YrC591 was flanked by Xmag1714 and Xbarc182 with genetic distances of 1.2 and 0.4 cM, respectively. In addition, validation of the SSR markers cfa2040, wmc273 and barc32, and STS markers mag1714 and BE425120 was carried out using wheat lines with C591 as a parent, indicating that these markers should be effective in tracing this gene in marker-assisted selection.

NSABIYERA V, BARIANAN H S, QRESHI M, WONG D, HAYDEN M J, BANSAL U K. Characterization and mapping of adult plant stripe rust resistance in wheat accession Aus27284
Theoretical and Applied Genetics, 2018,131:1459-1467.

DOI:10.1007/s00122-018-3090-xURLPMID:29560515 [本文引用: 2]
KEY MESSAGE: A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.

GESSESE M, BARIANA H, WONG D, HAYDEN M, BANSAL U. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430
Plant Disease, 2019,103(6):1166-1171.

DOI:10.1094/PDIS-06-18-1055-REURLPMID:30998448 [本文引用: 3]
The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.

LIU T G, PENG Y L, CHEN W Q, ZHANG Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42
Plant Disease, 2010,94(9):1163.

DOI:10.1094/PDIS-94-9-1163AURLPMID:30743706 [本文引用: 1]
A bud rot disease, referred to as

刘太国, 章振羽, 刘博, 高利, 彭云良, 陈万权. 小麦抗条锈病基因Yr26 毒性小种的发现及其对我国小麦主栽品种苗期性分析
植物病理学报, 2015,45(1):41-47.

[本文引用: 1]

LIU T G, ZHANG Z Y, LIU B, GAO L, PENG Y L, CHEN W Q. Detection of virulence to Yr26 and pathogenicity to Chinese commercial winter wheat cultivars at seedling stage
Acta Phytopathologiga Sinica, 2015,45(1):41-47. (in Chinese)

[本文引用: 1]

韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策
植物保护, 2018,44(5):1-12.

[本文引用: 1]

HAN D J, KANG Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China
Plant Protection, 2018,44(5):1-12. (in Chinese)

[本文引用: 1]

SINGH R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat
Phytopathology, 1992,82:835-838.

DOI:10.1094/Phyto-82-835URL [本文引用: 1]

杨文雄, 杨芳萍, 梁丹, 何中虎, 尚勋武, 夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测
作物学报, 2008,34(7):1109-1113.

URL [本文引用: 1]
Lr34/Yr18是重要的慢叶锈和慢条锈基因, 携带该连锁基因的小麦品种被广泛种植于世界许多国家。利用STS标记csLV34对慢叶锈和慢条锈基因Lr34/Yr18进行分子检测的结果表明, 我国231份育成品种(系)中仅有14份材料携带Lr34/Yr18基因, 占6.1%。不同麦区分布频率不同, 其中北部冬麦区为零, 黄淮冬麦区、长江中下游冬麦区、西南冬麦区和西北春麦区分别为3.0%、21.4%、16.7%和33.3%。在422份农家种中, 359份含有Lr34/Yr18基因, 占85.1%。Lr34/Yr18基因在不同麦区的分布频率也存在差异, 北部冬麦区、黄淮冬麦区、长江中下游冬麦区、西南冬麦区、南部冬麦区和西北春麦区分别为89.6%、77.4%、93.1%、93.8%、96.6%和61.1%。csLV34标记扩增产物为150 bp和229 bp的片段, 能有效鉴别品种是否携带Lr34/Yr18基因, 是一个重复性好、准确率高的分子标记, 可用于小麦Lr34/Yr18基因的鉴定与选择。
YANG W X, YANG F P, LIANG D, HE Z H, SHANG X W, XIA X C. Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars
Acta Agronomica Sinica, 2008,34(7):1109-1113. (in Chinese)

URL [本文引用: 1]
Lr34/Yr18是重要的慢叶锈和慢条锈基因, 携带该连锁基因的小麦品种被广泛种植于世界许多国家。利用STS标记csLV34对慢叶锈和慢条锈基因Lr34/Yr18进行分子检测的结果表明, 我国231份育成品种(系)中仅有14份材料携带Lr34/Yr18基因, 占6.1%。不同麦区分布频率不同, 其中北部冬麦区为零, 黄淮冬麦区、长江中下游冬麦区、西南冬麦区和西北春麦区分别为3.0%、21.4%、16.7%和33.3%。在422份农家种中, 359份含有Lr34/Yr18基因, 占85.1%。Lr34/Yr18基因在不同麦区的分布频率也存在差异, 北部冬麦区、黄淮冬麦区、长江中下游冬麦区、西南冬麦区、南部冬麦区和西北春麦区分别为89.6%、77.4%、93.1%、93.8%、96.6%和61.1%。csLV34标记扩增产物为150 bp和229 bp的片段, 能有效鉴别品种是否携带Lr34/Yr18基因, 是一个重复性好、准确率高的分子标记, 可用于小麦Lr34/Yr18基因的鉴定与选择。

白小军, 王宪国, 陈东升. 宁夏小麦品种慢锈基因Lr34/Yr18的分子检测
麦类作物学报, 2014,34(11):1480-1484.

[本文引用: 1]

BAI X J, WANG X G, CHEN D S. Molecular detection of the slow-rusting resistance gene Lr34/Yr18 in Ningxia wheat cultivars
Journal of Triticeae Crops, 2014,34(11):1480-1484. (in Chinese)

[本文引用: 1]

SINGH R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat
Phytopathology, 1992,82:835-838.

[本文引用: 2]

SINGH R P, HUERTA-ESPINO J, RAJARAM S. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes
Acta Phytopathologica et Entomologica, 2000,35:133-139.

[本文引用: 2]

FENG J Y, WANG M A, DEVEN R S, CHAO S M, ZHENG Y L, CHEN X M. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103
Phytopathology, 2018,108(6):737-747.

DOI:10.1094/PHYTO-11-17-0375-RURLPMID:29303685 [本文引用: 1]
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

PAKEERATHAN K, BARIANA H, QURESHI N, WONG D, HAYDEN M, BANSAL U. Identification of a new source of stripe rust resistance Yr82 in wheat
Theoretical and Applied Genetics, 2019,132(11):3169-3176.

DOI:10.1007/s00122-019-03416-yURLPMID:31463519 [本文引用: 1]
KEY MESSAGE: Stripe rust resistance gene, Yr82, was mapped in chromosome 3BL using SNP markers. Yr82 interacted with Yr29 to produce lower stripe rust responses at the adult plant stage. Landrace Aus27969 produced low infection types against Australian Puccinia striiformis f. sp. tritici (Pst) pathotypes. A recombinant inbred line (RIL) F7 population from the Aus27969/Avocet S cross was developed. Monogenic segregation for seedling stripe rust response was observed among the RIL population, and the resistance locus was named Yr82. Bulk segregant analysis performed using the iSelect wheat 90 K Infinium SNP array located Yr82 in the long arm of chromosome 3B. The RIL population was screened against stripe rust under field conditions and was genotyped with targeted genotyping-by-sequencing assay. QTL analysis detected the involvement of chromosomes 1B and 3B in controlling stripe rust resistance carried by Aus27969. Incorporation of Yr82 and marker SNPLr46G22 into the linkage map showed that the QTL in 1B and 3B represented Yr29 and Yr82, respectively. Kompetitive allele-specific PCR (KASP) markers sun KASP_300 and KASP_8775 flanked Yr82 distally and proximally, respectively, each at 2 cM distance. These Yr82-linked markers were polymorphic among 84% of Australian cultivars and can be used for marker-assisted selection of Yr82.
相关话题/基因 鉴定 材料 生理 生产