Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize
ZOU WenXiu,, HAN XiaoZeng, LU XinChun, CHEN Xu, HAO XiangXiang, YAN Jun,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081通讯作者:
责任编辑: 李云霞
收稿日期:2020-02-10接受日期:2020-03-12网络出版日期:2020-10-16
基金资助: |
Received:2020-02-10Accepted:2020-03-12Online:2020-10-16
作者简介 About authors
邹文秀,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (445KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
邹文秀, 韩晓增, 陆欣春, 陈旭, 郝翔翔, 严君. 秸秆还田后效对玉米氮肥利用率的影响[J]. 中国农业科学, 2020, 53(20): 4237-4247 doi:10.3864/j.issn.0578-1752.2020.20.012
ZOU WenXiu, HAN XiaoZeng, LU XinChun, CHEN Xu, HAO XiangXiang, YAN Jun.
0 引言
【研究意义】氮素是玉米生长发育必需的大量营养元素,土壤能够供给玉米生长的氮素非常有限[1],通过施肥的方式补充土壤氮素是实现玉米高产的有效措施,但是随着氮肥施用量的不断增加,导致氮肥利用率下降[2];未被利用的氮通过淋溶、氨挥发、硝化反硝化和径流等途径[3]进入环境,导致环境污染;仅有少部分能够残留在土壤中供给下一季作物吸收利用[4,5]。世界范围内玉米的氮肥利用率是25%—50%[6],平均值为33%,然而中国玉米氮肥利用率<25%,低于发达国家[7]。所以长期以来,如何提高氮肥利用率,一直是科学家们关注的热点问题。前人已经从施肥、耕作和土壤肥力等方面,持续解析了农艺措施与氮肥利用率之间的内在关系,获得了一系列的研究结果[8,9],然而目前我国农业生产方式发生了改变,玉米秸秆还田作为重要培肥方式,已经成为主要的农艺措施。据统计我国秸秆还田的面积已经达到了0.51亿hm2[9],因此研究玉米秸秆还田与氮肥利用率之间关系是非常必要的。田间试验研究结果表明秸秆还田能够改善土壤物理性质和提高土壤肥力,并且具有一定的时间效应[10],进而影响氮肥利用率。因此,探明秸秆还田后效对氮肥利用率的影响对秸秆还田方式的优化具有重大的理论意义和重要的应用价值。【前人研究进展】玉米秸秆还田方式包括直接还田和间接还田,其中直接还田有表面覆盖、与土壤混合(混合还田)和以秸秆层的形式填埋入土壤某一深度(层埋还田)[10]。秸秆覆盖包括表覆盖免耕和覆盖条耕[11,12],秸秆与土壤混合主要包括浅层混合(深度为0—15 cm)、深层混合(深度为0—35 cm)、亚耕层混合(20—35 cm)[13,14,15]和翻埋还田(秸秆还到某一土层以下)[16]。长期定位试验研究发现,秸秆还田能够增加土壤有机质含量[17],提高水稳性大团聚体含量及土壤结构的稳定性[18,19],改善了土壤物理性质,提高了玉米的产量[13,20]。秸秆还田后土壤中的总氨基糖增加了4.4%—8.4%[21],过氧化氢酶、脲酶和蔗糖酶活性显著增加[22]。辽宁省西部棕壤区秸秆翻埋还田研究结果表明试验2年后玉米产量增加了1.1%—11.6%,氮肥的农学利用率提高了40.9%[23]。在半湿润易旱区免耕覆盖通过调节土壤水热变化,提高氮肥的利用率[24]。在东北黑土区的研究发现秸秆覆盖免耕后玉米的氮肥利用率降低了16%—27%,其原因主要是秸秆覆盖降低了作物生长早期的地温和土壤中氮的有效性[25];但是秸秆深埋还田后氮肥利用率提高了13.3%[26]。利用15N标记示踪技术研究发现玉米秸秆还田后能够增加秸秆和根系吸收的氮素中来自于15N标记秸秆氮的比例,提高氮肥的利用率[27]。【本研究切入点】目前关于秸秆还田对玉米氮肥利用率影响的大部分研究关注了当季秸秆还田的影响,但是对秸秆还田后效对玉米氮肥利用率影响的研究较少;同时对不同秸秆还田方式,即秸秆覆盖还田、混合还田和层埋还田对玉米氮肥利用率的影响缺乏对比研究。【拟解决的关键问题】本文采用田间定位试验,利用15N同位素示踪技术研究秸秆覆盖、混合和层埋等还田方式对15N标记氮肥利用率的影响,明确不同秸秆还田方式后效对氮肥利用率的影响及其机制,为优化秸秆还田方式和提高氮肥利用率提供理论依据。1 材料与方法
1.1 试验区概况
试验设在中国科学院海伦农业生态实验站内,该站位于我国典型黑土区的中部,地势平坦,属于温带大陆性季风气候区,全年平均气温1.5℃,夏季极端最高温度为37℃,冬季极端最低温度为-39.5℃;近50年平均降水量为550 mm,主要集中在7—9月份;年均>10℃有效积温2 450℃,年均日照时数约为2 700 h,无霜期为125 d。土壤按发生分类属于中厚层黑土类型,质地为黏壤土,是在第四纪黄土状母质上发育起来的地带性土壤,土壤物理性黏粒含量>40%,黑土层(A)较厚,在50 cm以上,过渡层(AB)>60 cm,无碳酸盐反应,地下水埋深在20—30 m。1.2 试验设计
本试验设置于2011年5月,共包括7个处理。(1)对照,农民常规耕作(CK);(2)免耕秸秆均匀覆盖(D0);(3)粉碎后的秸秆均匀混于0—20 cm土层(D0-20);(4)粉碎后的秸秆均匀深混于0—35 cm土层(D0-35);(5)将0—20 cm土层剥开,秸秆均匀混于20—35 cm土层,然后将0—20 cm土层回填(D20-35);(6)将0—20 cm和20—35 cm土层分层剥开,在35 cm深处集中深埋,形成秸秆层,然后分层回填(D35);(7)将0—20 cm、20—35 cm和35—50 cm土层分层剥开,在50 cm处集中深埋,形成秸秆层,然后分层回填(D50),所有秸秆还田小区仅在2011年进行了一次秸秆还田操作,秸秆还田量为10 000 kg?hm-2。小区面积1.4 m2(长1.0 m,宽1.4 m),4次重复,随机区组排列。2016年在秸秆短期还田后效的试验小区内进行15N标记同位素示踪研究。2011年试验开始前土壤基本化学性质为有机质含量45.4 g?kg-1, 全氮2.1 g?kg-1,全磷0.8 g?kg-1,全钾24.5 g?kg-1,速效氮236.0 mg?kg-1,速效磷18.2 mg?kg-1,速效钾219.0 mg?kg-1,pH 6.3。玉米品种为德美亚3号,氮肥15N 标记尿素含N 46%,丰度为10.17%(上海化工研究院),磷肥为磷酸二氢钾(KH2PO5),含磷23.3%,含钾28.6%。1.3 试验方法
2016年春季播种前在试验小区中间的垄上插入一个高50 cm、半径20 cm PVC桶,PVC桶露出地面5 cm,插入地下45 cm。5月2日在每个桶内播种3株玉米,出苗后留1株壮苗。每桶施用氮肥1.88 g(15N标记的尿素),磷酸二氢钾(化学试剂纯级别)1.60 g,30%的氮肥与全部磷酸二氢钾在播种时作为基肥施用,剩下70%的氮肥在玉米9叶期作为追肥施用。9月29日收获时,按照根、茎(包括雄穗)、叶(包括包皮)、轴和籽粒分开,然后在鼓风烘箱内105℃下杀青30 min,80℃烘干至恒重,冷却至室温后分别测定各部位干物质重量,然后用样品粉碎机磨碎后过0.5 mm筛,备用。1.4 样品分析
植株各器官全氮含量采用开氏定氮仪测定(FOSS Kjeltec 8400)。15N丰度采用FLASHEA-DELTA V联用仪/Flash-2000 Delta V ADVADTAGE/S-090433型同位素质谱仪检测。土壤轻组有机碳、容重、田间持水量和饱和持水量的分析方法见参考文献[28,29]。1.5 计算方法
植株吸收肥料氮量占植株总氮量百分率Ndff=植株样品中15N原子百分超/标记肥料中15N原子百分超×100%;植株氮素来自15N肥料氮的量=玉米植株吸氮量×Ndff;
15N标记肥料氮的利用率(%)=植株氮素来自15N肥料氮的量/15N肥料氮施用总量×100;
土壤Ndff =土壤样品中15N原子百分超/肥料中15N原子百分超×100;
15N肥料氮的土壤残留量=土壤干重×土壤全N%×土壤Ndff;
0—35 cm土层15N肥料氮的残留率(%)=15N肥料氮的土壤残留量/15N肥料氮施用总量×100;
15N肥料氮的贡献率(%)=植株吸收15N肥料氮的量/玉米植株吸氮总量×100;
15N肥料氮的损失率(%)=100-15N标记肥料氮的利用率(%)-土壤中15N标记肥料氮残留率(%)(0—35 cm土层)。
1.6 数据处理与分析
所有数据采用SPSS17.0进行单因素方差分析(one-way ANOVA),分析秸秆还田后效对玉米干物质积累、氮素积累和氮肥利用率等的影响,多重比较采用Duncan法(P=0.05),平均值在P<0.05水平下的任何差异具有统计学意义。采用SPSS17.0进行玉米氮肥利用率与土壤理化性质的Pearson相关性分析。2 结果
2.1 秸秆还田后效对玉米干物质积累的影响
秸秆还田后效显著影响了成熟期玉米植株各器官干物质积累(表1)(P<0.05)。除了叶以外,D0-35和D20-35处理玉米各器官干物质量显著高于其他处理(P<0.05);D50处理各器官干物质积累量最小,与秸秆混合施用处理(D0-20、D0-35和D20-35)和CK对照各器官干物质积累量差异达到了显著水平(P<0.05);不同处理干物质总量表现为D0-35>D20-35>D0-20>CK≥D0>D35>D50,整体上表现为秸秆混合还田后效促进了玉米的干物质积累。各处理籽粒占总干物质积累量的40.5%—41.8%,是积累量最大的器官;其次是叶和茎,其占总干物质积累量的比例分别为17.3%—18.8%和16.9%—18.8%,玉米轴所占比例最小为9.9%—10.4%;根系占干物质总量的比例相对较小。秸秆还田后效显著影响了根系的干物质积累(P<0.05),秸秆深混处理(D0-35和D20-35)促进了玉米根系的发育,同时玉米植株的地上部生物量和籽粒也相对较高,说明秸秆混合还田能够协同促进玉米植株营养生长和生殖生长,达到高效的“库”“源”转换。2.2 秸秆还田后效对玉米植株各器官吸收15N化肥的影响
虽然秸秆还田后效显著影响了玉米各器官的干物质积累(表1),但是对玉米各器官氮含量没有显著的影响(P>0.05)(表2),说明了在氮肥施用量和施用方式相同的情况下,不同秸秆还田方式后效并不能改变氮在玉米各器官中的含量。秸秆还田后效对玉米各器官氮素积累总量表现为D0-35≥D20-35≥D0-20>D0≥CK≥D35>D50(表3),其中秸秆混合还田处理(D0-35、D20-35和D0-20)与CK、覆盖还田(D0)和层铺还田(D35和D50)的差异达到了显著水平(P<0.05)。与其他处理相比,D0-35提高了成熟期各器官氮素积累量(除了根以外),其中籽粒、茎和轴氮素积累量差异达到了显著水平(P<0.05),说明秸秆深混还田能够通过促进植株的生长,进而增加氮素积累量。Table 1
表1
表1秸秆还田后效对玉米各器官干物质积累量的影响
Table 1
处理 Treatment | 籽粒 Grain | 根 Root | 茎 Steam | 叶 Leaf | 轴 Cob | 总量 Total biomass |
---|---|---|---|---|---|---|
CK | 129.6±3.5 d | 39.1±2.7 d | 55.7±1.8 c | 54.5±2.9 d | 31.1±1.3 d | 310.0±4.9 d |
D0 | 127.7±5.7 d | 31.8±2.9 e | 57.7±0.7 c | 57.6±1.9 c | 31.8±0.9 d | 306.6±8.2 d |
D0-20 | 139.1±2.2 c | 41.6±1.9 c | 62.1±0.6 b | 63.8±0.9 b | 34.0±0.4 c | 340.5±4.0 c |
D0-35 | 156.9±3.7 a | 46.2±2.9 ab | 66.5±2.2 a | 66.9±1.9 a | 37.7±0.6 a | 374.1±4.3 a |
D20-35 | 147.8±1.8 b | 50.9±4.3 a | 63.4±3.7 b | 62.4±2.9 b | 35.7±0.8 b | 360.1±5.4 b |
D35 | 114.2±1.8 e | 42.7±5.4 c | 47.9±1.6 d | 48.9±1.9 e | 28.5±1.2 e | 282.3±5.5 e |
D50 | 106.2±1.7 f | 32.5±1.7 de | 45.5±0.9 d | 45.1±1.1 f | 26.1±1.3 f | 255.3±2.2 f |
新窗口打开|下载CSV
Table 2
表2
表2秸秆还田后效对玉米各器官全氮含量的影响
Table 2
处理 Treatment | 全氮含量The contents of total nitrogen (g?kg-1) | ||||
---|---|---|---|---|---|
籽粒 Grain | 根 Root | 茎 Steam | 叶 Leaf | 轴 Cob | |
CK | 12.1±0.78 a | 3.2±0.25 a | 1.7±0.04 a | 3.5±0.06 a | 3.4±0.07 a |
D0 | 12.2±1.12 a | 3.5±0.46 a | 1.8±0.05 a | 3.5±0.05 a | 3.6±0.26 a |
D0-20 | 12.4±0.28 a | 3.3±0.35 a | 1.8±0.03 a | 3.6±0.03 a | 3.6±0.02 a |
D0-35 | 12.6±0.97 a | 3.3±0.11 a | 1.8±0.05 a | 3.5±0.09 a | 3.5±0.04 a |
D20-35 | 12.4±1.33 a | 3.2±0.36 a | 1.8±0.06 a | 3.5±0.03 a | 3.5±0.06 a |
D35 | 13.0±1.93 a | 3.1±0.31 a | 1.8±0.03 a | 3.5±0.04 a | 3.5±0.06 a |
D50 | 12.6±0.23 a | 3.1±0.16 a | 1.8±0.06 a | 3.5±0.03 a | 3.5±0.01 a |
新窗口打开|下载CSV
Table 3
表3
表3秸秆还田后效对玉米各器官氮素累积量的影响
Table 3
处理 Treatment | 氮素累积量Nitrogen accumulation (mg/plant) | |||||
---|---|---|---|---|---|---|
籽粒 Grain | 根 Root | 茎 Steam | 叶 Leaf | 轴 Cob | 总量 Total | |
CK | 1568.2±139.0 cd | 125.7±17.4 bc | 96.0±4.4 b | 189.0±9.7 b | 106. 9±3.0 d | 2085.7±135.1 c |
D0 | 1558.4 ±179.1 cd | 135.1±16.2 ab | 101.0±3.3 b | 199.3±8.0 b | 114.1±9.3 cd | 2107.9 ±166.1 c |
D0-20 | 1722.2±64.7 bc | 137.0±10.9 ab | 108.8±1.5 a | 228.7 ±17.4 a | 117.8±1.5 bc | 2314.5±39.8 b |
D0-35 | 1975.8±136.1 a | 150.1±12.9 ab | 116.0±5.2 a | 234.4±12.6 a | 129.8±3.1 a | 2606.1±135.7 a |
D20-35 | 1828.0±180.4 ab | 162.1±29.2 a | 111.6±9.6 a | 218.2±11.6 a | 123. 7±3.5 ab | 2443.5±171.5 ab |
D35 | 1487.9±209.5 d | 134.3±20.9 ab | 84.3±4.0 c | 169.5±5.2 c | 98.4±5.6 e | 1974.3±199.0 c |
D50 | 1335.8±29.2 d | 99.8±6.3 c | 80.1±2.7 c | 156.1±4.3 c | 89.9±4.7 f | 1761.6±25.6 d |
新窗口打开|下载CSV
2.3 秸秆还田后效对玉米各器官15N积累量及分配率的影响
D0-35和D20-35处理下玉米各器官15N累积量显著高于其他处理(根除外)(P<0.05),与其他处理相比,分别提高5.1%—38.4%和9.3%—31.8%(表4)。从玉米各器官15N积累量占植株15N积累总量的比例可以得出,74.1%以上的15N累积在籽粒中,8.1%—9.3%的15N累积在叶中,剩余的5.9%—7.8%、2.5%—3.8%和3.8%—6.5%分别分配在轴、茎和根,不同处理间没有显著性差异,说明玉米秸秆还田对氮肥利用的影响是促进了玉米植株整体对肥料氮的吸收。Table 4
表4
表4秸秆还田后效对玉米各器官15N积累量及分配率的影响
Table 4
处理 Treatment | 累积量 Accumulation (mg/plant) | 比例 Proportion (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
籽粒 Grain | 根 Root | 茎 Steam | 叶 Leaf | 轴 Cob | 籽粒 Grain | 根 Root | 茎 Steam | 叶 Leaf | 轴 Cob | |
CK | 408.8±29.4 d | 20.6±0.9 b | 18.8±0.9 b | 45.2±1.6 d | 37.7±1.2 cd | 77.0 | 3.8 | 3.6 | 8.5 | 7.1 |
D0 | 438.8±34.1 cd | 37.3±9.9 a | 14.8±1.6 c | 47.0±1.5 cd | 39.8±3.3 c | 76.0 | 6.5 | 2.5 | 8.1 | 6.9 |
D0-20 | 491.3±22.4 bc | 33.0±2.9 a | 16.8±1.3 bc | 57.7±4.8 bc | 45.8±1.2 b | 76.2 | 5.1 | 2.6 | 9.0 | 7.1 |
D0-35 | 564.0±14.9 a | 38.1±0.9 a | 28.2±1.7 a | 70.8±7.2 a | 59.3±2.2 a | 74.2 | 5.0 | 3.7 | 9.3 | 7.8 |
D20-35 | 537.1±18.8 ab | 36.4±2.5 a | 27.4±2.4 a | 68.1±9.5 ab | 56.4±1.2 a | 74.1 | 5.0 | 3.8 | 9.3 | 7.8 |
D35 | 451.7±16.1 cd | 21.7±0.8 b | 19.5±0.8 b | 47.5±1.3 cd | 33.9±0.8 de | 78.7 | 3.8 | 3.4 | 8.1 | 5.9 |
D50 | 407.5±19.6 d | 20.4±0.9 b | 18.0±0.9 bc | 44.3±0.7 d | 318.0±0.4 e | 78.1 | 3.9 | 3.5 | 8.4 | 6.1 |
新窗口打开|下载CSV
2.4 秸秆还田后效对肥料氮利用率、贡献率、残留率和损失率的影响
不同秸秆还田方式后效均提高了玉米的氮肥利用率(表5),CK与D0-20、D0-35和D20-35的差异到达了显著水平(P<0.05);CK、D0、D35和D50处理间没有显著性差异(P>0.05)。D0-35和D20-35处理的玉米氮肥利用率显著高于D0-20处理(P<0.05),分别提高了6.2和4.3个百分点,说明秸秆深混和亚耕层混合施用是一种有效提高氮肥利用率的途径。土壤残留的化肥氮能够为下一季作物生长提供氮源,D0-35和D20-35处理显著提高了15N肥料氮的残留率,与其他处理相比分别提高了14.7—21.2个百分点和8.0—14.3个百分点。15N肥料氮损失率最高的处理是D0和D50处理,显著高于秸秆混合还田的3个处理(P<0.05);D0-20、D0-35和D20-35之间差异显著(P<0.05),其中D0-35的15N肥料氮损失率最低为10.6%;D0、D35和D50与CK之间没有显著差异(P>0.05)。与CK相比,D0-35、D20-35、D35和D50处理15N肥料氮贡献率分别显著提高了3.7、4.3、3.8和4.5个百分点(P<0.05);不同处理之间没有显著查差异(P>0.05)。Table 5
表5
表5秸秆还田后效对玉米植株15N利用率的影响
Table 5
处理 Treatment | 氮肥利用率 N use efficiency | 氮素残留率 N retention rate | 氮素损失率 N loss | 氮肥贡献率 N contribution rate |
---|---|---|---|---|
CK | 28.3±1.7 c | 34.2±4.5 bc | 37.5±5.4 ab | 25.5±1.2 b |
D0 | 30.3±2.3 c | 27.8±3.6 c | 41.9±3.9 a | 27.0±1.4 ab |
D0-20 | 34.3±1.0 b | 33.6±3.6 bc | 32.1±3.3 b | 27.8±0. 6 ab |
D0-35 | 40.5±1.2 a | 48.9±2.1 a | 10.6±1.1 d | 29.2±1.7 a |
D20-35 | 38.6±1.8 a | 42.0±4.1 a | 19.4±2.1 c | 29.8±1.6 a |
D35 | 30.5±1.0 c | 34.0±8.5 bc | 35.4±4.3 ab | 29.8±2.7 a |
D50 | 27.8±1.0 c | 31.1±5.2 c | 41.2±5.9 a | 29.6±1.0 a |
新窗口打开|下载CSV
2.5 氮肥利用率与土壤理化性质之间的关系
大量的研究已经证明秸秆还田能够影响土壤理化指标[28,29]。本研究中在测定了不同处理土壤轻组有机碳、>0.25 mm团聚体、容重、持水量后,分析了氮肥利用率与氮肥贡献率和土壤上述指标之间的相关性(表6)。氮肥利用率和氮肥贡献率与土壤轻组有机碳、>0.25 mm团聚体含量、饱和含水量和田间持水量呈极显著正相关关系(P<0.01),与土壤容重呈极显著负相关关系(P<0.01);同时根重也是影响氮肥利用率和氮肥贡献率的重要因素。Table 6
表6
表6玉米氮肥利用率与土壤理化性质的相关性分析
Table 6
项目 Items | 根重 Root biomass | 轻组有机碳 Light fraction organic carbon | >0.25 mm团聚体 >0.25 mm aggregate | 容重 Bulk density | 饱和含水量 Saturated water capacity | 田间持水量 Field water capacity |
---|---|---|---|---|---|---|
氮肥利用率 N use efficiency | 0.72** | 0.98** | 0.99** | -0.85** | 0.96** | 0.97** |
氮肥贡献率 N contribution rate | 0.41* | 0.75* | 0.77** | -0.70** | 0.74** | 0.76** |
新窗口打开|下载CSV
3 讨论
秸秆还田通过影响土壤肥力进而调控作物的生长[13,20]。定位试验研究表明秸秆深混还田对0—35 cm土层的土壤容重、轻组有机碳和氮、磷、钾含量的影响可以延续到6年[30],证明秸秆还田对土壤的物理化学性质具有明显的后效。但是不同秸秆还田方式后效对土壤性质的影响存在一定的差异[20,31]。对于黏粒含量较高的土壤,秸秆深混还田后在微生物的分解过程中显著改善了深层土体的肥力属性[29],其产生的后效能够促进作物前期生长发育,提高作物对氮肥的利用率。秸秆深混合能够使秸秆尽可能均匀地分布在土壤中,从而增加土壤微生物与秸秆的接触面积,进而促进秸秆分解释放养分进入土壤供给作物吸收利用[29],同时秸秆还田还能刺激微生物分泌参与土壤碳、氮、磷循环相关的水解酶,随着秸秆腐解,提高了土壤中养分含量,进而促进作物的生长[31]。郑金玉等研究表明秸秆深混还田能够增加玉米单株叶面积,提高干物质积累[32],免耕显著减低了成熟期玉米地上部的干物质量[33]。本研究中与农民常规耕作方式相比,秸秆混合还田后效增加了玉米的干物质积累(表1),其中秸秆深混还田和亚耕层混还田后效效果最佳,而秸秆覆盖和层施的后效则限制了玉米干物质的积累。秸秆混合还田和35 cm土层平铺秸秆处理的根系生物量显著高于其他处理(表1),其原因在于秸秆还田后在微生物的作用下能够向土壤中释放速效养分供作物根系吸收利用,进而影响作物根系的生长[34]。同时说明当秸秆还田深度≤35 cm时能够影响玉米根系的生长(无论平铺和还是深混),但是当秸秆深铺在土层50 cm处时则对玉米根系的生长没有促进作用。D0-35和D20-35的根系生物量比D20处理分别增加了11.0%和22.3%,主要是由于在秸秆深混和亚耕层混施过程中能够通过打破犁底层,减小耕作层的贯穿阻力,增加深层土壤孔隙度,促进作物根系垂直下扎生长[35,36]。隋鹏祥等研究表明与旋耕相比,翻耕能够增加土壤中的根长密度、根表面积和根干重密度,秸秆还田的根干重密度增加了20.6%[14]。免耕秸秆覆盖由于土壤自然沉降和农机具压实双重作用导致土壤压实,增加了土壤容重和紧实度,减小了土壤孔隙,从而增加了土壤机械组力,限制根系生长[37,38,39]。在相同氮肥施用量的情况下,不同秸秆还田方式的后效没有显著影响玉米各器官的全氮含量(表2),但是通过影响干物质积累进而影响了氮素积累量(表3)。DUAN等统计分析了来自于北京昌平、湖南祁阳、河南郑州和陕西杨凌4个试验点的相同氮肥施用情况下不同有机肥处理对玉米全氮含量的影响,结果表明有机肥的施用没有显著影响玉米的全氮含量,而氮素的累积量主要受干物质积累量影响[33]。秸秆施用后通过在作物生长季养分缓慢释放和供给产生后效,增加作物对氮肥的吸收,提高玉米产量和土壤肥力[40]。GENG等研究表明秸秆还田显著增加了玉米不同生育时期的物质积累,相应的增加了玉米植株中的氮的累积[41]。有机物料的投入通过改善土壤结构来影响作物根系的生长和分布[42],进而影响作物对氮肥的吸收,单施化肥玉米的氮肥吸收量是1.3 g/株,而化肥有机肥配施处理玉米的氮肥吸收量是2.4 g/株[43]。本研究得到了相似的结果,秸秆混合还田(D0-35和D20-35)后效增加了根系的生物量,促进了根系对土壤中氮的吸收,进而植株氮累积量显著高于其他处理。而免耕处理由于限制了作物根系的生长,进而限制了对氮素的吸收[38],导致对氮的累积与对照之间没有显著差异。秸秆在35 cm土层处层施,与农民常规相比显著增加了根系的生物量,但是并没有增加干物质积累,导致氮的累积量偏低;秸秆在50 cm土层处层施处理氮的累积量最小,主要是由于玉米生长前期根系主要分布在0—35 cm土层,秸秆层铺在50 cm对作物前期生长没有起到直接的调控作用,在作物生长后期还增加了氮素淋溶的风险,降低了植物对氮素的累积量[44]。前人研究已经表明有机物料的施用能够增加土壤中粘粒和团聚体含量,进而增加土壤中的阳离子交换量和NO3--N的固定,减少了NO3--N淋溶的风险,同时有机物料的施用通过促进根系的生长进而增加了根系对NO3--N的吸收[44,45]。
化肥施用以后在土壤中进行转化、迁移并被作物吸收利用,土壤肥力和障碍因子通过影响土壤蓄纳和稳定养分的能力,微生物活性和根系生长,进而影响土壤-植物系统中的化肥的高效循环利用[46]。长期的不合理耕作和大量化肥投入导致黑土土壤结构破坏、耕作层变薄[47],降低了土壤的养分库容,抑制作物根系对养分的吸收利用,降低化肥的利用率。本研究利用15N同位示踪技术研究发现常规耕作方式氮肥利用率显著低于秸秆混合还田产生后效的处理(D0-20、D0-35和D20-35)。表6显示氮肥的利用率与土壤中轻组有机碳、>0.25 mm团聚体、持水量呈显著正相关关系,与容重呈负相关关系,说明秸秆还田后通过改善土壤理化性质,维持和提高土壤的肥力[48],向作物供给更多的养分[44],同时减少氮的损失[45]来提高氮肥利用率。王振华等研究表明,秸秆还田后玉米氮肥表观利用率比单施化肥提高4.3%[49]。秸秆深混入0—35 cm和混入亚耕层20—35 cm比秸秆浅混入0—20 cm氮肥利用率显著提高了6.2和4.3个百分点,说明增加培肥的土层深度能够进一步提高氮肥利用率,证明在土壤培肥过程中构建肥沃耕层的重要性。通过构建肥沃耕层能够增加深层土壤的速效养分含量,促进养分在深层土壤的积累[29],更重要的是肥沃耕层构后能够显著改善土壤的结构,特别是增加亚耕层中土壤孔隙度和水稳性团聚体等含量,有利于根系下扎[13],使玉米后期生长能够保持较高的根系活力,从而维持较高的氮素吸收能力。本研究表明秸秆深混还田后效构建的肥沃耕层可以促进玉米对土壤中氮素的吸收利用(表2和3),进而提高氮肥利用率。值得注意的是,本研究证明了秸秆还田6年的后效对氮肥利用率具有明显的促进作用而秸秆层铺于土层35和50 cm与农民常规相比没有显著的差异,主要是因为层铺秸秆即没有增加耕作层深度,也没有改善耕作层的土壤结构,对玉米根系生长没有显著的促进作用。在东北黑土区免耕秸秆覆盖由于降低春季的土壤温度,导致玉米生育期迟缓,籽粒灌浆收到影响,进而降低产量[25];同时由于免耕秸秆覆盖增加了土壤容重,增加了土壤紧实度[37],限制了玉米根系的生长[50],而影响对土壤中氮素的吸收[51],导致氮肥利用率较低。因此,通过秸秆深混还田构建肥沃耕层的方法培育和提升耕地地力有望成为长期稳定提高化肥利用率、实现藏肥于土与耕地大面积均衡减肥的根本途径。
4 结论
秸秆还田后效能够影响玉米生长及对化肥氮的吸收与利用。不同秸秆还田方式后效对玉米生物量和各器官氮素积累总量表现为秸秆混合还田>秸秆表层覆盖>秸秆层铺,其中秸秆深混还田效果最佳。D0-35和D20-35处理促进了玉米各器官15N的积累,但是不同处理对15N在玉米各器官的分配没有影响。与常规耕作相比,秸秆深层和亚耕层混合的后效显著提高了玉米的氮素利用率和15N肥料氮的残留率,而降低了15N肥料氮的损失率。相关性分析表明秸秆还田后效通过促进作物根系生长、增加土壤的轻组有机碳和改善物理性质进而提高氮肥利用率。因此,对于质地黏重的黑土,通过增加秸秆还田混合深度,构建肥沃耕层培育和提升耕地地力,能够有效提高氮肥的利用率。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1007/s42106-019-00045-9URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.11674/zwyf.2006.0601URL [本文引用: 1]
在黄土高原南部旱地,通过田间小区试验研究了传统施肥方式下冬小麦/夏玉米轮作体系中土壤的氮素平衡。结果表明:土壤残留矿质态氮(Nmin)对作物产量和施用氮肥效果有重要影响,前季作物残留土壤Nmin可以促进后季作物生长,使氮肥增产效应不明显;冬小麦生长季节施氮240.kg/hm2可以增加产量和作物吸氮量,但其氮肥利用率只有39.7%,大部分以Nmin残留于0—200cm土壤中或以其他途径损失;由于冬小麦季节残留肥料氮的后效,使夏玉米生长季节的氮肥利用率很低,施氮120和240.kg/hm2的氮肥利用率分别只有22.4%和3.9%,而在0—200cm土层残留率则达到51.1%和87.2%;经过冬小麦、夏玉米一个轮作周期后,施氮量为240、360和480.kg/hm2时作物的氮肥利用率平均为52.2%4、2.2%和28.0%,而相应的土壤残留率平均为12.4%、25.3%和49.8%,表观损失率平均为35.4%、32.5%和22.2%。表明在土壤残留Nmin较高的条件下,夏玉米生长季节施氮量较低时盈余氮素以表观损失为主,施氮量高时大部分氮素残留于土壤剖面。
DOI:10.11674/zwyf.2006.0601URL [本文引用: 1]
在黄土高原南部旱地,通过田间小区试验研究了传统施肥方式下冬小麦/夏玉米轮作体系中土壤的氮素平衡。结果表明:土壤残留矿质态氮(Nmin)对作物产量和施用氮肥效果有重要影响,前季作物残留土壤Nmin可以促进后季作物生长,使氮肥增产效应不明显;冬小麦生长季节施氮240.kg/hm2可以增加产量和作物吸氮量,但其氮肥利用率只有39.7%,大部分以Nmin残留于0—200cm土壤中或以其他途径损失;由于冬小麦季节残留肥料氮的后效,使夏玉米生长季节的氮肥利用率很低,施氮120和240.kg/hm2的氮肥利用率分别只有22.4%和3.9%,而在0—200cm土层残留率则达到51.1%和87.2%;经过冬小麦、夏玉米一个轮作周期后,施氮量为240、360和480.kg/hm2时作物的氮肥利用率平均为52.2%4、2.2%和28.0%,而相应的土壤残留率平均为12.4%、25.3%和49.8%,表观损失率平均为35.4%、32.5%和22.2%。表明在土壤残留Nmin较高的条件下,夏玉米生长季节施氮量较低时盈余氮素以表观损失为主,施氮量高时大部分氮素残留于土壤剖面。
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2134/agronj1999.00021962009100030001xURL [本文引用: 1]
,
URL [本文引用: 1]
Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. As the greatest consumers of N fertilizer in the world, Chinese farmers have overused N and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship. To address this problem, this study evaluated the total and dynamic N requirement for different yield ranges of two major crops (maize and wheat), and suggested improvements to N management strategies. Whole-plant N aboveground uptake requirement per grain yield (N req) initially deceased with grain yield improvement and then stagnated, and yet most farmers still believed that more fertilizer and higher grain yield were synonymous. When maize yield increased from < 7.5 to > 12.0 Mg ha-1, Nreq decreased from 19.8 to 17.0 kg Mg-1 grain. For wheat, it decreased from 27.1 kg Mg-1 grain for grain yield < 4.5 Mg ha-1 to 22.7 kg Mg-1 grain for yield > 9.0 Mg ha-1. Meanwhile, the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield, which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages. We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE.
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
URL [本文引用: 4]
东北黑土区粘重的耕地土壤,经多年不合理耕作后产生了较厚的“犁底层”,成为该地区农业生产的主要限制因子.本研究利用田间试验,分析了构建肥沃耕层对作物产量、土壤物理性质、土壤含水量和微生物数量的影响.结果表明:肥沃耕层构建后,土壤形成了一个深厚的耕层,作物产量增加.与常规耕作法相比,向20~35 cm土层施用秸秆和有机肥使土壤容重分别降低了9.88%和6.20%,总孔隙度分别增加了9.58%和6.02%,饱和导水率分别增加了167.99%和73.78%,表明肥沃耕层的构建能够有效地改善土壤的通气透水性,提高大气降水的入渗能力;向“犁底层”施用秸秆和有机肥处理0~100 cm土层土壤含水量和水分利用效率均显著高于常规耕作法,该处理玉米出苗率与0~35 cm土层土壤含水量之间呈显著正相关关系.肥沃耕层的构建由于增加了土壤中的有机碳源和透气性,从而增加了土壤中的微生物数量.
URL [本文引用: 4]
东北黑土区粘重的耕地土壤,经多年不合理耕作后产生了较厚的“犁底层”,成为该地区农业生产的主要限制因子.本研究利用田间试验,分析了构建肥沃耕层对作物产量、土壤物理性质、土壤含水量和微生物数量的影响.结果表明:肥沃耕层构建后,土壤形成了一个深厚的耕层,作物产量增加.与常规耕作法相比,向20~35 cm土层施用秸秆和有机肥使土壤容重分别降低了9.88%和6.20%,总孔隙度分别增加了9.58%和6.02%,饱和导水率分别增加了167.99%和73.78%,表明肥沃耕层的构建能够有效地改善土壤的通气透水性,提高大气降水的入渗能力;向“犁底层”施用秸秆和有机肥处理0~100 cm土层土壤含水量和水分利用效率均显著高于常规耕作法,该处理玉米出苗率与0~35 cm土层土壤含水量之间呈显著正相关关系.肥沃耕层的构建由于增加了土壤中的有机碳源和透气性,从而增加了土壤中的微生物数量.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1007/s11368-013-0840-xURL [本文引用: 1]
Purpose While the influence of integrated fertility management systems on yield and N cycling in Mollisols is documented, its effect on soil C sequestration remains to be determined. We examined the response of organic C pools and crop yields to 21 years' organic amendments applied at relatively low rates in a high-C Mollisol to optimize win-win management practices that balance agronomic and environmental interests.
Materials and methods This study was based on five treatments: CK (unfertilized control), NPK (chemical fertilizer alone), NPKS1 (NPK plus crop residues), NPKS2 (NPK plus double amounts of crop residues), and NPKM (NPK plus pig manure). Crop yield was determined by harvesting a defined area. Organic C was quantified by dry combustion. A two-step acid hydrolysis technique was used to quantify hydrolysable and non-hydrolysable C fractions.
Results and discussion All organic-treated plots produced significantly higher crop yields than the NPK plots, but only the manure treatment resulted in a significant increase in SOC compared with the NPK treatment after 21 years of experiment. It seems that the effects of organic amendments on SOC depend primarily on the type of organic materials when the application rates were relatively low. This indicated that organic amendments offer relatively short-term soil benefits for plant growth. The pig manure builds SOC over the long term, which provides secondary benefits while also sequestering C.
Conclusions Overall, manure integrated with mineral fertilizer should be recommended to maintain the SOC content and increase crop yield in the Mollisols.
,
DOI:10.1016/j.soilbio.2015.02.015URL [本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2011.17.005URL [本文引用: 1]
【目的】明确氮肥和多效唑对小麦茎秆木质素含量的影响,探讨氮肥和多效唑调节茎秆抗倒伏能力的机制。【方法】以小麦品种烟农21和藁城8901为材料,通过田间试验和室内分析,研究氮肥和多效唑对小麦不同时期茎秆抗折力、抗倒伏指数、木质素含量的影响以及木质素合成相关酶的活性变化。【结果】同品种条件下,与低施氮(225 kg•hm-2)处理相比,高施氮(300 kg•hm-2)处理降低了茎秆苯丙氨酸转氨酶(PAL)、酪氨酸解氨酶(TAL)、肉桂醇脱氢酶(CAD)和4-香豆酸:CoA连接酶(4CL)的活性,茎秆木质素含量、抗折力和抗倒伏指数降低。而喷施多效唑显著提高茎秆PAL、TAL和CAD的活性,木质素含量、茎秆抗折力和抗倒伏指数提高,倒伏面积和倒伏程度降低。相关分析表明,茎秆抗倒伏指数与木质素含量呈显著正相关(r=0.61,P<0.05);木质素含量与PAL、TAL和CAD酶活性呈显著正相关,与4CL酶活性相关不显著。【结论】高施氮量处理降低了茎秆木质素合成相关酶的活性和木质素含量,茎秆抗倒伏能力降低。而施用多效唑显著提高茎秆木质素合成相关酶的活性和木质素含量,进而增强了茎秆抗倒伏能力。
DOI:10.3864/j.issn.0578-1752.2011.17.005URL [本文引用: 1]
【目的】明确氮肥和多效唑对小麦茎秆木质素含量的影响,探讨氮肥和多效唑调节茎秆抗倒伏能力的机制。【方法】以小麦品种烟农21和藁城8901为材料,通过田间试验和室内分析,研究氮肥和多效唑对小麦不同时期茎秆抗折力、抗倒伏指数、木质素含量的影响以及木质素合成相关酶的活性变化。【结果】同品种条件下,与低施氮(225 kg•hm-2)处理相比,高施氮(300 kg•hm-2)处理降低了茎秆苯丙氨酸转氨酶(PAL)、酪氨酸解氨酶(TAL)、肉桂醇脱氢酶(CAD)和4-香豆酸:CoA连接酶(4CL)的活性,茎秆木质素含量、抗折力和抗倒伏指数降低。而喷施多效唑显著提高茎秆PAL、TAL和CAD的活性,木质素含量、茎秆抗折力和抗倒伏指数提高,倒伏面积和倒伏程度降低。相关分析表明,茎秆抗倒伏指数与木质素含量呈显著正相关(r=0.61,P<0.05);木质素含量与PAL、TAL和CAD酶活性呈显著正相关,与4CL酶活性相关不显著。【结论】高施氮量处理降低了茎秆木质素合成相关酶的活性和木质素含量,茎秆抗倒伏能力降低。而施用多效唑显著提高茎秆木质素合成相关酶的活性和木质素含量,进而增强了茎秆抗倒伏能力。
,
DOI:10.1016/j.agee.2018.09.007URL [本文引用: 3]
,
DOI:10.1007/s00374-012-0768-0URL [本文引用: 1]
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4-8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P < 0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2134/agronj14.0454URL [本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2016.14.007URL [本文引用: 1]
【目的】研究氮肥用量、有机无机配合和添加秸秆腐熟剂对秸秆氮当季有效性、后效及去向的影响,为秸秆还田条件下的氮肥管理提供理论依据。【方法】运用15N同位素示踪技术,采用盆栽试验连续种植一季冬小麦和两茬玉米,研究15N标记玉米秸秆(15N-秸秆)氮的生物有效性和对土壤氮库的贡献。试验推荐施氮量210 kg N·hm-2,约0.1 g N·kg-1土,秸秆粉碎后按3.0 g·kg-1土掺入每盆中。设4个氮水平:不施氮;100%化肥氮;80%化肥氮;有机无机配施(80%化肥氮+20%腐熟猪粪氮)。各施氮水平下设添加和不添加秸秆腐熟剂2种情况,腐熟剂用量为0.1 g·kg-1土。【结果】冬小麦吸氮量来自15N-秸秆氮的比例(%Ndfs)为6.30%—14.25%,施氮比不施氮减少%Ndfs,有机无机配施比单施氮肥提高%Ndfs,添加腐熟剂不影响冬小麦的%Ndfs。第一茬和第二茬玉米吸收氮的%Ndfs分别为1.13%—3.73%和1.67%—5.97%,不施氮高于施氮处理,施氮处理间无显著差异,添加腐熟剂降低%Ndfs。冬小麦对15N-秸秆氮的当季利用率为7.14%—10.32%,第一茬玉米和第二茬玉米对残留15N-秸秆的利用率分别为3.75%—5.51%和2.28%—3.18%。三茬后作物对15N-秸秆氮的利用率为13.13%—18.60%,土壤残留率55.63%—69.16%,损失率17.26%—26.09%。三茬中施氮比不施氮提高15N-秸秆氮的利用率,不同氮肥管理不影响当季利用率和第二茬后效,氮肥减量(80%推荐氮)降低15N-秸秆氮第一茬后效和总利用率,但若配施有机肥则提高利用率。添加腐熟剂提高15N-秸秆氮当季、第一茬玉米和三茬总利用率,降残留率和损失率。冬小麦和两茬玉米收获后土壤矿质氮和微生物量氮含量变化较大,但其来源于15N-秸秆氮的比例都小于3%,施氮处理的影响不明显,而添加腐熟剂增加冬小麦和第一茬玉米收获后土壤矿质氮%Ndfs,减少土壤微生物量氮%Ndfs,不影响第二茬玉米收获后土壤矿质氮和微生物量氮%Ndfs。三茬收获后残留的15N-秸秆氮中矿质氮和微生物量氮也小于3%,说明残留在土壤中的15N-秸秆氮主要以有机态氮存在。【结论】在秸秆还田条件下,采用化肥氮与有机肥氮配施并结合施用秸秆腐熟剂是提高秸秆氮素转化和有效性的有效措施。
DOI:10.3864/j.issn.0578-1752.2016.14.007URL [本文引用: 1]
【目的】研究氮肥用量、有机无机配合和添加秸秆腐熟剂对秸秆氮当季有效性、后效及去向的影响,为秸秆还田条件下的氮肥管理提供理论依据。【方法】运用15N同位素示踪技术,采用盆栽试验连续种植一季冬小麦和两茬玉米,研究15N标记玉米秸秆(15N-秸秆)氮的生物有效性和对土壤氮库的贡献。试验推荐施氮量210 kg N·hm-2,约0.1 g N·kg-1土,秸秆粉碎后按3.0 g·kg-1土掺入每盆中。设4个氮水平:不施氮;100%化肥氮;80%化肥氮;有机无机配施(80%化肥氮+20%腐熟猪粪氮)。各施氮水平下设添加和不添加秸秆腐熟剂2种情况,腐熟剂用量为0.1 g·kg-1土。【结果】冬小麦吸氮量来自15N-秸秆氮的比例(%Ndfs)为6.30%—14.25%,施氮比不施氮减少%Ndfs,有机无机配施比单施氮肥提高%Ndfs,添加腐熟剂不影响冬小麦的%Ndfs。第一茬和第二茬玉米吸收氮的%Ndfs分别为1.13%—3.73%和1.67%—5.97%,不施氮高于施氮处理,施氮处理间无显著差异,添加腐熟剂降低%Ndfs。冬小麦对15N-秸秆氮的当季利用率为7.14%—10.32%,第一茬玉米和第二茬玉米对残留15N-秸秆的利用率分别为3.75%—5.51%和2.28%—3.18%。三茬后作物对15N-秸秆氮的利用率为13.13%—18.60%,土壤残留率55.63%—69.16%,损失率17.26%—26.09%。三茬中施氮比不施氮提高15N-秸秆氮的利用率,不同氮肥管理不影响当季利用率和第二茬后效,氮肥减量(80%推荐氮)降低15N-秸秆氮第一茬后效和总利用率,但若配施有机肥则提高利用率。添加腐熟剂提高15N-秸秆氮当季、第一茬玉米和三茬总利用率,降残留率和损失率。冬小麦和两茬玉米收获后土壤矿质氮和微生物量氮含量变化较大,但其来源于15N-秸秆氮的比例都小于3%,施氮处理的影响不明显,而添加腐熟剂增加冬小麦和第一茬玉米收获后土壤矿质氮%Ndfs,减少土壤微生物量氮%Ndfs,不影响第二茬玉米收获后土壤矿质氮和微生物量氮%Ndfs。三茬收获后残留的15N-秸秆氮中矿质氮和微生物量氮也小于3%,说明残留在土壤中的15N-秸秆氮主要以有机态氮存在。【结论】在秸秆还田条件下,采用化肥氮与有机肥氮配施并结合施用秸秆腐熟剂是提高秸秆氮素转化和有效性的有效措施。
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 5]
[本文引用: 5]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.11686/cyxb20140217URL [本文引用: 2]
秸秆还田及适宜的施氮水平,对于提高资源的利用效率及减少环境污染有着重要的意义,本研究以徐稻3号为材料,在盆栽条件下设置3种氮肥水平与2种秸秆处理,研究了秸秆与氮肥处理下水稻根际分泌特性的差异及其与养分吸收利用的关系。结果表明,在同一秸秆处理下,中氮(NN)增加结实期氮素的累积,提高氮(N)素的吸收利用率,同时,NN处理下根系分泌物中苹果酸、琥珀酸、有机酸总量、氨基酸的含量及根系活性上升。在同一氮肥处理下,秸秆还田提高N素吸收累积,增加根系分泌物中苹果酸、琥珀酸及草酸的含量,降低柠檬酸的含量,根系分泌物中有机酸总量、氨基酸含量及根系活性在秸秆还田后明显上升。相关分析表明,结实期根系分泌物中有机酸总量、苹果酸、琥珀酸、氨基酸的含量以及根系活性与氮素累积量及氮素吸收利用率呈显著或极显著的正相关。
DOI:10.11686/cyxb20140217URL [本文引用: 2]
秸秆还田及适宜的施氮水平,对于提高资源的利用效率及减少环境污染有着重要的意义,本研究以徐稻3号为材料,在盆栽条件下设置3种氮肥水平与2种秸秆处理,研究了秸秆与氮肥处理下水稻根际分泌特性的差异及其与养分吸收利用的关系。结果表明,在同一秸秆处理下,中氮(NN)增加结实期氮素的累积,提高氮(N)素的吸收利用率,同时,NN处理下根系分泌物中苹果酸、琥珀酸、有机酸总量、氨基酸的含量及根系活性上升。在同一氮肥处理下,秸秆还田提高N素吸收累积,增加根系分泌物中苹果酸、琥珀酸及草酸的含量,降低柠檬酸的含量,根系分泌物中有机酸总量、氨基酸含量及根系活性在秸秆还田后明显上升。相关分析表明,结实期根系分泌物中有机酸总量、苹果酸、琥珀酸、氨基酸的含量以及根系活性与氮素累积量及氮素吸收利用率呈显著或极显著的正相关。
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2136/sssaj2010.0315URL [本文引用: 2]
Improving N use efficiency (NUE) and reducing the negative impact of N fertilization on the environment are essential for sustaining agricultural production in many intensive farming regions around the world. The objective of this research was to investigate the effect of various fertilization regimes on yield, N uptake, and NUE by maize (Zea mays L.) in long-term (15-yr) experiments performed at four sites (Changping, Zhengzhou, Yangling, and Qiyang) in China. Eight treatments were examined: unfertilized control (CK); inorganic fertilizer (manufactured source) N, N and P, N and K, and N, P, and K; inorganic N, P, and K with manure (NPKM); 1.5' the rate of NPKM (1.5NPKM); and N, P, and K with maize stover returned (NPKS). Compared with inorganic fertilization, mixed inorganic and manure fertilization (NPKM and 1.5NPKM) resulted in more stable and significantly higher yield and NUE as well as increases in soil nutrient storage at all sites, with the most significant improvement in the acid soil (pH = 5.7) at Qiyang. Phosphorous was identified as one of the most important limiting factors in maize NUE because the NUE at all four sites increased from about 20 to 45% by increasing the available P in the soil. Higher NUEs (up to 70%) were observed mostly from the continuous manure applications. We conclude that manure and P applications are the most important and effective nutrient management strategies for both the acid and alkaline soils in this study for maize production in China.
,
DOI:10.1016/S0378-4290(03)00119-9URL [本文引用: 1]
,
[本文引用: 1]
.
[本文引用: 1]
,
DOI:10.3969/j.issn.1000-7091.2012.04.037URL [本文引用: 1]
通过对不同深松方式土壤物理性状及玉米根系分布状况的分析,结果表明,隔行深松(T1)与行行深松(T2)不仅可有效打破犁底层,10~30cm土壤容重和土壤紧实度显著降低,且T2对土壤容重和紧实度的降低作用大于T1;深松增强了土壤的透水性和蓄水能力,2种深松方式土壤水分差异并不显著;由于犁底层的存在,不深松(CK)的根系大部分集中在0~20cm土层范围,且该土层的根干质量、根长密度和根系体积均明显大于T1和T2,而单株根系伤流强度则明显小于T1和T2;深松处理的根系不仅能更好地向深层土壤下扎,而且向植株两侧扩展的范围变大,20—50cm土层根干质量、根长密度和根系体积T1与T2均明显高于CK;并且T1〉T2。深松后倒伏率降低,对增产有一定的促进作用,T1与T2间产量差异并不显著。增产的主要原因是深松显著提高了百粒质量,但对穗粒数的影响并不显著。因此,通过垄间隔行深松可以构建良好的耕层结构,有利于根系的固定和下扎,使根系更好地吸收水分和养分,倒伏率降低、产量增加的同时,较行行深松减少了机械动力消耗。
DOI:10.3969/j.issn.1000-7091.2012.04.037URL [本文引用: 1]
通过对不同深松方式土壤物理性状及玉米根系分布状况的分析,结果表明,隔行深松(T1)与行行深松(T2)不仅可有效打破犁底层,10~30cm土壤容重和土壤紧实度显著降低,且T2对土壤容重和紧实度的降低作用大于T1;深松增强了土壤的透水性和蓄水能力,2种深松方式土壤水分差异并不显著;由于犁底层的存在,不深松(CK)的根系大部分集中在0~20cm土层范围,且该土层的根干质量、根长密度和根系体积均明显大于T1和T2,而单株根系伤流强度则明显小于T1和T2;深松处理的根系不仅能更好地向深层土壤下扎,而且向植株两侧扩展的范围变大,20—50cm土层根干质量、根长密度和根系体积T1与T2均明显高于CK;并且T1〉T2。深松后倒伏率降低,对增产有一定的促进作用,T1与T2间产量差异并不显著。增产的主要原因是深松显著提高了百粒质量,但对穗粒数的影响并不显著。因此,通过垄间隔行深松可以构建良好的耕层结构,有利于根系的固定和下扎,使根系更好地吸收水分和养分,倒伏率降低、产量增加的同时,较行行深松减少了机械动力消耗。
,
[本文引用: 2]
[本文引用: 2]
,
URL [本文引用: 2]
保护性耕作措施是干旱区农田提高作物产量的新型耕作技术。为了探讨其区域适应性,在2004~2007年期间,以毛乌素沙地南缘的靖边县北部风沙区农田为研究对象,选用了免耕、秸秆覆盖、覆膜和传统翻耕(CK)4种措施,采用完全随机试验设计进行了田间定位试验研究。结果表明,秸秆覆盖和免耕地的地温在春播初期略比传统翻耕低0.1℃,但随后迅速回升,覆膜在玉米生长期都高于其他措施。耕作措施对播种前土壤容重没有显著影响,而对收获后土壤容重影响显著,与传统翻耕相比,免耕降低了表层土壤容重1.65%,但次层20~40 cm容重增加了1.8%。3种保护性耕作措施均增加了土壤含水量,顺序依次为秸秆覆盖>覆膜>免耕>翻耕,且在作物需水关键期免耕和秸秆覆盖下的土壤含水量相对稳定,保证作物需水,提高水分利用率,分别为8%、22.0%和13.3%。使作物分别增产4.44%、13.14%和19.26%。因此,保护性耕作在风沙区有利于改善农田土壤物理条件,提高作物产量,适于在风沙区推广。
URL [本文引用: 2]
保护性耕作措施是干旱区农田提高作物产量的新型耕作技术。为了探讨其区域适应性,在2004~2007年期间,以毛乌素沙地南缘的靖边县北部风沙区农田为研究对象,选用了免耕、秸秆覆盖、覆膜和传统翻耕(CK)4种措施,采用完全随机试验设计进行了田间定位试验研究。结果表明,秸秆覆盖和免耕地的地温在春播初期略比传统翻耕低0.1℃,但随后迅速回升,覆膜在玉米生长期都高于其他措施。耕作措施对播种前土壤容重没有显著影响,而对收获后土壤容重影响显著,与传统翻耕相比,免耕降低了表层土壤容重1.65%,但次层20~40 cm容重增加了1.8%。3种保护性耕作措施均增加了土壤含水量,顺序依次为秸秆覆盖>覆膜>免耕>翻耕,且在作物需水关键期免耕和秸秆覆盖下的土壤含水量相对稳定,保证作物需水,提高水分利用率,分别为8%、22.0%和13.3%。使作物分别增产4.44%、13.14%和19.26%。因此,保护性耕作在风沙区有利于改善农田土壤物理条件,提高作物产量,适于在风沙区推广。
,
DOI:10.1016/j.geoderma.2015.06.003URL [本文引用: 1]
,
[本文引用: 1]
., e0219512.
DOI:10.1371/journal.pone.0241302URLPMID:33095829 [本文引用: 1]
Mental health and wellness research continue to be a topic of importance among veterinary students in the United States of America (US). Limited peer reviewed literature focusing on South African veterinary students is available. South African veterinary medical students might benefit from approaches to improve mental health and wellness similar to those recommended in the US. However, these recommendations may not address the underlying risk factors for mental health and wellness concerns or mismatch resources available to South African veterinary medical students. The purpose of this collaborative study was to compare the mental health and wellness among veterinary students enrolled at the University of California, Davis (UCD), and the University of Pretoria (UP), the only veterinary school in South Africa. Our primary research question was; Are the measures of mental health and wellness for students at similar stages in the veterinary curriculum different between the two schools? We hypothesized that mental health and wellness as determined by assessment of anxiety, burnout, depression, and quality of life between the two schools is different. A cross-sectional study of 102 students from UCD and 74 students from UP, at similar preclinical stages (Year 2 for UCD and Year 4 for UP) of the veterinary curriculum was performed. Anxiety, burnout, depression, and quality of life were assessed using the Generalized Anxiety Disorder (GAD-7), Maslach Burnout Inventory (MBI), Patient Health Questionnaire (PHQ-9), and Short Form-8 (SF-8), respectively. Students from both schools had moderate levels of anxiety, high levels of burnout, mild to moderate levels of depression, poor mental health, and good physical health. Our results suggest that similar mental health and wellness concerns in South African veterinary students is comparable with concerns in veterinary medical students in the US. Recommendations and resources to improve mental health and wellness in US veterinary medical students might be applicable to South African veterinary medical students.
,
[本文引用: 1]
,
URL [本文引用: 1]
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.
,
DOI:10.3864/j.issn.0578-1752.2018.12.010URL [本文引用: 3]
【目的】研究长期增施有机肥/秸秆还田对作物产量及土壤氮素淋失风险的影响,旨在为华北平原冬小麦-夏玉米轮作区增强土壤肥力、提高作物产量及降低农业面源污染风险提供依据。【方法】以国家褐潮土肥力与肥料效益监测基地的长期肥料试验为平台,研究长达27年不同施肥处理对冬小麦-夏玉米产量、土壤肥力、氮素淋失风险和土壤氮素剖面分布的影响,试验共设置5个施肥处理,即:对照(CK);氮磷钾(NPK);氮磷钾+有机肥(NPKM);氮磷钾+过量有机肥(NPKM+);氮磷钾+秸秆还田(NPKS)。【结果】(1)在27年的不同施肥处理中,长期增施有机肥/秸秆还田均能使作物增产,改善土壤肥力。其中,增施有机肥处理尤为显著,与NPK相比,NPKM、NPKM+处理提高小麦和玉米产量分别为41%—50%和30%—32%;增加0—20 cm表层土壤有机碳(SOC)和全氮(TN)含量分别为62%—121%、107%—187%;但降低小麦、玉米氮肥偏生产力(PFPN)分别达22%—32%、27%—41%。而NPKS处理对作物增产及提升土壤肥力的作用低于增施有机肥处理,对小麦产量、玉米产量、SOC、TN含量的增幅分别为24%、6%、9%、97%,但提高小麦季PFPN为216%、降低玉米季PFPN为40%。(2)长期增施有机肥/秸秆还田处理中,0—20 cm表层土壤SOC、TN、硝态氮(NO3—-N)、可溶性碳氮等养分含量以及氮矿化速率、硝化潜势等微生物学过程显著高于20—200 cm,说明长期增施有机肥/秸秆还田等外源碳的添加对土壤养分及微生物学过程的影响主要发生在表层。(3)与NPK相比,NPKM处理能够显著增加100—200 cm深层土壤中NO3--N含量,NO3--N平均含量为17.8—26.1 mg·kg-1;而NPKS处理在一定程度上能够增加0—100 cm土层NO3--N含量,NO3--N平均含量为3.6—13.4 mg·kg-1,表明增施有机肥会促进土壤NO3--N的向下迁移,而秸秆还田对土壤NO3--N具有一定的固持作用。此外,由于有机肥和秸秆带入的氮素, NPKM、NPKM+、NPKS处理氮盈余比NPK处理增加312%、1 037%、953%,大大增加了土壤氮素淋失风险。【结论】在氮磷钾化肥基础上增施有机肥/秸秆还田会提高作物产量、增强土壤肥力,但会提高土壤氮盈余量,提高氮素淋失风险,尤其是增施有机肥会大大增加氮素淋失风险。
DOI:10.3864/j.issn.0578-1752.2018.12.010URL [本文引用: 3]
【目的】研究长期增施有机肥/秸秆还田对作物产量及土壤氮素淋失风险的影响,旨在为华北平原冬小麦-夏玉米轮作区增强土壤肥力、提高作物产量及降低农业面源污染风险提供依据。【方法】以国家褐潮土肥力与肥料效益监测基地的长期肥料试验为平台,研究长达27年不同施肥处理对冬小麦-夏玉米产量、土壤肥力、氮素淋失风险和土壤氮素剖面分布的影响,试验共设置5个施肥处理,即:对照(CK);氮磷钾(NPK);氮磷钾+有机肥(NPKM);氮磷钾+过量有机肥(NPKM+);氮磷钾+秸秆还田(NPKS)。【结果】(1)在27年的不同施肥处理中,长期增施有机肥/秸秆还田均能使作物增产,改善土壤肥力。其中,增施有机肥处理尤为显著,与NPK相比,NPKM、NPKM+处理提高小麦和玉米产量分别为41%—50%和30%—32%;增加0—20 cm表层土壤有机碳(SOC)和全氮(TN)含量分别为62%—121%、107%—187%;但降低小麦、玉米氮肥偏生产力(PFPN)分别达22%—32%、27%—41%。而NPKS处理对作物增产及提升土壤肥力的作用低于增施有机肥处理,对小麦产量、玉米产量、SOC、TN含量的增幅分别为24%、6%、9%、97%,但提高小麦季PFPN为216%、降低玉米季PFPN为40%。(2)长期增施有机肥/秸秆还田处理中,0—20 cm表层土壤SOC、TN、硝态氮(NO3—-N)、可溶性碳氮等养分含量以及氮矿化速率、硝化潜势等微生物学过程显著高于20—200 cm,说明长期增施有机肥/秸秆还田等外源碳的添加对土壤养分及微生物学过程的影响主要发生在表层。(3)与NPK相比,NPKM处理能够显著增加100—200 cm深层土壤中NO3--N含量,NO3--N平均含量为17.8—26.1 mg·kg-1;而NPKS处理在一定程度上能够增加0—100 cm土层NO3--N含量,NO3--N平均含量为3.6—13.4 mg·kg-1,表明增施有机肥会促进土壤NO3--N的向下迁移,而秸秆还田对土壤NO3--N具有一定的固持作用。此外,由于有机肥和秸秆带入的氮素, NPKM、NPKM+、NPKS处理氮盈余比NPK处理增加312%、1 037%、953%,大大增加了土壤氮素淋失风险。【结论】在氮磷钾化肥基础上增施有机肥/秸秆还田会提高作物产量、增强土壤肥力,但会提高土壤氮盈余量,提高氮素淋失风险,尤其是增施有机肥会大大增加氮素淋失风险。
,
DOI:10.1111/sum.1997.13.issue-3URL [本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the effect of inorganic and organic nutrient sources on yield and yield trends of both winter wheat and maize, 2) monitor the changes in soil organic matter content under continuous wheat-maize cropping with different soil fertility management schemes, and 3) identify reasons for yield trends observed in Xuzhou City, Jiangsu Province, over a 20-year period. There were eight treatments applied to both wheat and maize seasons: a control treatment (C); three inorganic fertilizers, that is, nitrogen (N), nitrogen and phosphorus (NP), and nitrogen, phosphorus and potassium (NPK); and addition of farmyard manure (FYM) to these four treatments, that is, M, MN, MNP, and MNPK. At the end of the experiment the MN, MNP, and MNPK treatments had the highest yields, about 7 t wheat ha-1 and 7.5 t maize ha-1, with each about 1 t ha-1 more than the NPK treatments. Over 20 years with FYM soil organic matter increased by 80% compared to only 10% with NPK, which explained yield increases. However, from an environmental and agronomic perspective, manure application was not a superior strategy to NPK fertilizers. If manure was to be applied, though, it would be best applied to the wheat crop, which showed a better response than maize.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.fcr.2008.07.001URL [本文引用: 1]