Screening of Broomcorn Millet Varieties Tolerant to Low Nitrogen Stress and the Comprehensive Evaluation of Their Agronomic Traits
CHEN Ling,, WANG JunJie, WANG HaiGang, CAO XiaoNing, LIU SiChen, TIAN Xiang, QIN HuiBin, QIAO ZhiJun,Center for Agricultural Genetic Resources Research, Shanxi Agricultural University (Institute of Crop Germplasm Resources,Shanxi Academy of Agricultural Sciences)/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031通讯作者:
责任编辑: 李莉
收稿日期:2019-07-24接受日期:2019-11-20网络出版日期:2020-08-16
基金资助: |
Received:2019-07-24Accepted:2019-11-20Online:2020-08-16
作者简介 About authors
陈凌,Tel:13934660843;E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (868KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价[J]. 中国农业科学, 2020, 53(16): 3214-3224 doi:10.3864/j.issn.0578-1752.2020.16.002
CHEN Ling, WANG JunJie, WANG HaiGang, CAO XiaoNing, LIU SiChen, TIAN Xiang, QIN HuiBin, QIAO ZhiJun.
0 引言
【研究意义】氮素在植物的生命活动中具有重要作用,是影响作物生长发育和产量形成的重要因素。农业生产中为追求高产,氮肥投入量不断加大,氮素的生产效率呈下降趋势,过量施用氮肥导致氮肥利用效率下降、农业生产成本提高、水土污染等问题日益严重[1,2,3,4,5]。糜子(Panicum miliaceum L.)起源于中国,具有生育期短、耐旱、耐瘠薄等特性,是干旱半干旱地区的主要粮食作物[6],是开垦荒地、救灾、水土保持的先锋作物[7,8]。提高糜子氮肥利用效率,挖掘作物自身氮高效利用的潜力,选育耐低氮、氮效率高的品种,对减少氮肥施用量、降低生产成本、保护生态环境、促进农业可持续发展具有重要意义。【前人研究进展】耐低氮和氮高效材料的筛选鉴定,是减少氮肥用量和提高瘠薄地作物产量、氮素利用效率的有效途径,是品种选育的重要基础[9,10]。已有研究表明,水稻、玉米、小麦、油菜、黄瓜、烟草等作物,不同基因型的品种对氮素利用率存在着显著差异,低氮胁迫下,耐低氮能力强的品种能维持更强大的根系和吸收能力,以便积累更多的氮素促进植株生长,从而保持地上部更大的叶面积进行光合作用以积累更多的干物质[9,11-17]。SINGH等[18]研究表明,氮高效的水稻品种始终保持着较高的吸收利用效率,对产量造成了很大的差异,且随供氮水平的提高,氮素利用效率及其构成因素反而降低。MUCHOW[19]认为植株生物量、含氮量与产量和氮效率的相关性很大。作物的农艺性状、生物产量、产量、氮吸收量均可作为耐低氮品种筛选和氮效率评价的指标[9,20-21]。低氮胁迫对糜子、谷子、苦荞苗期地上部影响显著,株高、茎粗、叶面积、干物质量可作为早期氮效率评价的参考指标[22,23,24]。张楚等[25]研究表明,不同基因型苦荞品种对低氮胁迫的响应存在较大差异,耐低氮品种受低氮胁迫的影响较小,其地上部农艺性状较不耐低氮品种表现出明显优势,对低氮环境适应性更强。裴雪霞等[26]研究表明,小麦植株干重在正常供氮和低氮胁迫下,都具有较大的基因型变异,小麦相对植株干重可以作为小麦苗期耐低氮能力的一个重要筛选与评价指标。刘鹏等[27]认为,低氮胁迫下耐低氮型高粱有着较高的相对籽粒产量和相对氮素利用效率。顾炽明等[28]以162份油菜育种品系为材料研究不同氮水平下油菜苗期生物学性状及氮积累量,认为油菜苗期生物量可作为评价油菜苗期氮效率的主要指标,且低氮胁迫下双高效型油菜在氮吸收累积方面更有优势。在低氮和正常氮培养下,烟草茎叶氮累积量和地上部生物量作为耐低氮和氮效率的评价指标比较合适[17]。【本研究切入点】适宜的多指标综合评价方法可全面反映低氮胁迫对作物不同品种的影响和耐低氮胁迫能力[9]。目前,作物耐低氮品种的筛选鉴定及耐低氮相关生理特性的研究主要集中在小麦、玉米、水稻等大作物上,有关糜子耐低氮品种的筛选及相关生理特性则少有研究,糜子全生育期耐低氮品种筛选的指标和评价体系并不完善。【拟解决的关键问题】本研究通过大田全生育期试验,在正常施氮和低氮胁迫水平下研究100份糜子品种主要农艺性状、产量、籽粒氮含量和籽粒氮吸收量的差异,通过氮胁迫指数和综合评价指标D值,建立糜子品种氮素利用的评价指标体系,分析各糜子品种的耐低氮性状变化,筛选出氮高效利用材料,为糜子耐低氮品种的选育和低氮胁迫生理机制研究提供理论依据。1 材料与方法
1.1 试验材料
试验糜子品种共100份,其中,山西品种29份、内蒙古品种21份、黑龙江品种14份、宁夏品种9份、陕西品种8份、河北品种6份、甘肃品种5份、吉林品种1份以及外引品种7份。1.2 试验设计
试验于2017—2018年在山西省河曲县文笔镇邬家沙梁村进行,该区位于(39°22′N,111°13′E),海拔1 036 m,年降雨量400 mm左右,年均气温8.8℃,无霜期150 d左右。两年大田试验在不同地块,其前茬作物为玉米(全生育期无氮肥和其他肥料施入),播种前,试验田区域内以S型曲线取土样混匀,测量土壤氮素水平。2017年试验田土壤养分含量:全氮0.72 g·kg-1、有效磷4.41mg·kg-1、速效钾84.10 mg·kg-1、有机质9.85 g·kg-1、碱解氮67.40 mg·kg-1,pH 8.66;2018年试验田土壤养分含量:全氮0.65 g·kg-1、有效磷5.64 mg·kg-1、速效钾85.50 mg·kg-1、有机质8.12 g·kg-1、碱解氮55.95 mg·kg-1,pH 8.58。试验设正常施氮(150 kg·hm-2纯氮,N+)和低氮胁迫(不施氮,N-)2个处理,处理间用4 m宽保护行隔开。每个处理采用随机区组设计,重复3次,小区面积为6 m×2 m,每小区种6份材料,2 m行长,3行种植,行距33 cm,每行留24株,每30份材料设置一个对照(当地主栽品种:河曲红糜子)。正常氮处理,按氮肥施入量在播种前作为底肥一次性施入,其余生育期不再施入肥料,2个氮处理,除氮肥外,均不施入其他任何肥料。2017年于6月15日进行播种,10月3日开始进行收获;2018年于6月9日进行播种,9月27日开始进行收获。其他栽培措施同一般大田生产管理的方法。
1.3 测定方法
1.3.1 农艺性状 抽穗期,每小区随机选取5株植株,采用CI-203激光叶面积仪测定叶面积;成熟期,每小区随机选取5株具有代表性的植株,自然风干后,进行室内考种,直尺测定株高和穗长,游标卡尺测定植株基部第二节茎粗,用天平对草重、单株穗重、单株粒重、千粒重进行称重。1.3.2 氮含量和氮素吸收 采用全自动凯氏定氮仪测定成熟期籽粒氮含量,氮素吸收(g/plant)=植株籽粒干重×含氮量。
1.4 耐低氮能力的评价
耐低氮胁迫指数=低氮水平下性状表型值/高氮水平下性状表型值。F(Xj)=∑aijXij,式中,F(Xj)表示第j个综合指标值,aij为各单一指标的特征值所对应的特征向量,Xij为各单一指标的标准化处理值。
Wj=Pj/∑Pj,式中,Wj表示第j个综合指标在所有综合指标中的重要程度,即权重;Pj为各品种第j个综合指标的方差贡献率。
综合评价值D=∑[F(Xj)×Wj]。
1.5 数据分析
采用Microsoft Excel 2007进行数据处理,用SPSS 19.0进行方差分析、主成分分析和回归分析,用DPS 7.05软件进行聚类分析。2 结果
2.1 不同糜子农艺性状和氮素吸收的差异
对2年内不同糜子氮处理下的农艺性状和氮素吸收进行方差分析(表1),结果表明,不同糜子品种的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积、氮含量、氮素吸收均存在极显著差异(P<0.01);氮水平间除千粒重和氮含量达到显著水平外(P<0.05),其余指标达到极显著水平(P<0.01);年度间茎粗和主茎节数达显著水平(P<0.05),其余指标均达到极显著水平(P<0.01);互作效应品种与氮水平间除茎粗、主茎节数、千粒重未达显著水平外,其余指标均达到极显著水平(P<0.01);互作效应品种与年度间除茎粗、主茎节数、单株穗重和千粒重未达显著水平外,其余指标均达到极显著水平(P<0.01);互作效应氮水平和年度间除茎粗、主茎节数、单株穗重、单株粒重、叶面积未达显著水平外,其余指标均达到显著水平或极显著水平(P<0.05或P<0.01);互作效应品种、氮水平、与年度间除茎粗、主茎节数、千粒重未达到显著水平外其余指标均达到极显著水平(P<0.01),说明不同糜子品种间2年内的农艺性状和氮素吸收指标数据存在显著差异,具有代表性。Table 1
表1
表12年内不同糜子农艺性状和氮素吸收的方差分析
Table 1
变异来源 Source of variation | 自由度 DF | 株高 Plant height (cm) | 茎粗 Stem diameter (cm) | 主茎节数 Number of main-stem nodes | 穗长 Panicle length (cm) | 草重 Straw weight (g) | 单株穗重 Panicle weight per plant (g) | 单株粒重 Grain weight per plant (g) | 千粒重 1000-grain weight (g) | 叶面积 Leaf area (cm2) | 氮含量 N content (%) | 氮素吸收 N absorption (g/plant) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
品种 Variety | 99 | 66.351** | 9.306** | 5.871** | 26.045** | 20.522** | 13.967** | 32.053** | 90.525** | 8.760** | 3.526** | 53.195** |
氮水平 N level | 1 | 548.835** | 156.044** | 94.846** | 116.326** | 57.198** | 120.483** | 193.874** | 9.286* | 254.216** | 13.336** | 108.061** |
年度 Year | 1 | 604.433** | 8.235* | 7.923* | 495.393** | 113.788** | 43.833** | 68.045** | 71.738** | 13.256** | 171.373** | 322.841** |
品种×氮水平 V×N | 99 | 3.882** | 0.774 | 0.996 | 1.557** | 7.102** | 5.802** | 10.891** | 1.136 | 3.028** | 2.204** | 20.466** |
品种×年度 V×Y | 99 | 7.210** | 0.002 | 0.010 | 3.006** | 8.107** | 8.755 | 19.005** | 1.151 | 3.345** | 2.238** | 37.244** |
氮水平×年度 N×Y | 1 | 432.984** | 0.641 | 1.172 | 8.699* | 36.478** | 1.172 | 0.366 | 73.540** | 1.454 | 146.356** | 35.192** |
品种×氮水平×年度 V×N×Y | 99 | 4.572** | 0.000 | 0.000 | 2.096** | 8.208** | 6.462** | 11.925** | 1.157 | 2.862** | 2.666** | 21.435** |
新窗口打开|下载CSV
2.2 低氮胁迫对不同糜子农艺性状的影响
与正常施氮相比,低氮胁迫条件下,不同糜子品种的株高、茎粗、主茎节数等9个农艺性状平均值均降低,变化范围幅度减小。低氮胁迫下株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积的变幅分别为84.67—220.00、3.36—8.15、2.85—6.89、19.33—54.50、2.15—30.78、2.22—22.70、0.32—16.38、4.18—9.90和202.64—1127.14,平均值分别为167.83、5.30、5.00、39.18、12.82、9.56、6.58、7.29和570.37,各指标平均降低0.96%、11.22%、11.03%、5.06%、19.62%、14.34%、16.60%、3.95%和26.01%,表明低氮胁迫对糜子的生长发育有一定的影响(表2)。低氮胁迫下,不同糜子品种的各农艺性状下降幅度不同,各指标降低幅度排序依次为叶面积(26.01%)>草重(19.62%)>单株粒重(16.60%)>单株穗重(14.34%)>茎粗(11.22%)>主茎节数(11.03%)>穗长(5.06%)>千粒重(3.95%)>株高(0.96%),其中,叶面积的降低幅度最大,株高的降低幅度最小,表明低氮胁迫对叶片形成的影响最大,株高受氮胁迫的影响较小。低氮胁迫条件下,不同糜子品种的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重的变异系数大于正常施氮水平各指标的变异系数,千粒重和叶面积的变异系数则降低。Table 2
表2
表2低氮胁迫对不同糜子品种农艺性状的影响
Table 2
参数 Parameter | 处理 Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (cm) | 主茎节数 Number of main-stem nodes | 穗长 Panicle length (cm) | 草重 Straw weight (g) | 单株穗重 Panicle weight per plant (g) | 单株粒重 Grain weight per plant (g) | 千粒重 1000-grain weight (g) | 叶面积 Leaf area (cm2) | |
---|---|---|---|---|---|---|---|---|---|---|---|
年度均值 Annual mean | 2017 | N+Normal-N | 167.11±28.62 | 5.85±0.95 | 5.40±0.74 | 36.11±7.72 | 15.99±6.80 | 9.75±4.62 | 6.78±3.26 | 7.29±1.24 | 680.52±316.56 |
N-Low-N | 163.88±31.38 | 5.09±0.84 | 4.90±0.74 | 32.44±7.45 | 11.69±5.21 | 8.58±3.42 | 5.83±3.05 | 7.15±1.21 | 426.76±206.57 | ||
2018 | N+Normal-N | 171.80±33.77 | 6.09±0.99 | 5.85±0.80 | 46.43±10.64 | 15.90±10.66 | 12.58±6.81 | 8.99±4.61 | 7.90±1.34 | 861.16±469.04 | |
N-Low-N | 171.78±16.21 | 5.51±0.91 | 5.10±0.77 | 45.91±12.18 | 13.94±8.56 | 10.53±6.38 | 7.32±4.92 | 7.43±1.68 | 713.97±341.02 | ||
2年均值 Mean of 2-year | N+Normal-N | 169.46±25.13 | 5.97±0.97 | 5.62±0.77 | 41.27±7.68 | 15.95±6.73 | 11.16±4.14 | 7.89±3.30 | 7.59±1.29 | 770.84±276.36 | |
N-Low-N | 167.83±28.18 | 5.30±0.88 | 5.00±0.76 | 39.18±7.56 | 12.82±5.87 | 9.56±4.24 | 6.58±3.39 | 7.29±1.35 | 570.37±195.66 | ||
范围 Range | N+Normal-N | 85.67—220.16 | 3.43—8.20 | 3.78-8.60 | 20.67—58.00 | 3.90—41.12 | 3.50—20.45 | 0.32—14.85 | 4.01—9.64 | 223.25—2124.47 | |
N-Low-N | 84.67—220.00 | 3.36—8.15 | 2.85—6.89 | 19.33—54.50 | 2.15—30.78 | 2.22—22.70 | 0.32—16.38 | 4.18—9.90 | 202.64—1127.14 | ||
变异系数 CV (%) | N+Normal-N | 14.83 | 16.25 | 13.71 | 18.61 | 42.22 | 37.11 | 41.82 | 33.89 | 35.85 | |
N-Low-N | 16.79 | 16.57 | 15.14 | 19.30 | 45.77 | 44.45 | 51.50 | 18.54 | 34.30 |
新窗口打开|下载CSV
2.3 低氮胁迫对不同糜子籽粒氮含量、氮素吸收的影响
低氮胁迫条件下,不同糜子籽粒的氮含量与氮素吸收的平均值比正常施氮各指标降低(表3),不同糜子籽粒的氮含量2年平均值比正常施氮水平降低6.42%,氮素吸收则降低16.66%,糜子籽粒氮素吸收的平均值降幅大于氮含量的平均值,且糜子籽粒氮含量的变幅范围为0.16—0.32,而糜子籽粒氮素吸收的变幅范围为0.00—2.22,说明籽粒的氮素吸收在低氮胁迫条件下更为敏感。2个氮素水平下,不同糜子籽粒氮素吸收的变异系数高于氮含量的变异系数,氮素吸收的变异系数在低氮条件下大于正常施氮水平,说明在低氮条件下,氮素吸收在品种间的差异显著增加。Table 3
表3
表3低氮胁迫对不同糜子品种籽粒氮含量、氮素吸收的影响
Table 3
参数Parameter | 处理Treatment | 氮含量N content (%) | 氮素吸收N absorption (g/plant) | |
---|---|---|---|---|
年度均值 Annual mean | 2017 | N+Normal-N | 2.28±0.26 | 16.90±6.97 |
N-Low-N | 2.12±0.18 | 13.71±6.82 | ||
2018 | N+Normal-N | 2.10±0.27 | 17.07±7.25 | |
N-Low-N | 1.97±0.23 | 14.61±7.78 | ||
2年均值 Mean of 2-year | N+Normal-N | 2.18±0.18 | 16.99±6.71 | |
N-Low-N | 2.04±0.15 | 14.16±6.90 | ||
范围Range | N+Normal-N | 1.91—2.81 | 0.80—32.05 | |
N-Low-N | 1.75—2.49 | 0.80—34.27 | ||
变异系数CV (%) | N+Normal-N | 8.29 | 39.51 | |
N-Low-N | 7.47 | 48.74 |
新窗口打开|下载CSV
2.4 性状的主成分分析
对11个指标的耐低氮胁迫指数进行主成分分析,各个特征值的大小代表各个主成分对总遗传方差的贡献,前5个主成分的方差贡献率分别为33.22%、13.09%、11.74%、9.14%和8.63%,累积方差贡献率达到75.83%,其余主成分贡献率较小忽略不计,用这5个主成分代表原来11个指标的主要信息(表4)。在第一主成分中,草重、单株穗重、单株粒重、氮吸收量的加权系数较高,分别为0.327、0.493、0.497和0.497,这4个性状中以单株粒重和籽粒氮素吸收量的加权系数最高,此主成分为高度敏感主成分。第二主成分主要包括穗长、主茎节数和茎粗,其加权系数分别为0.435、0.452和0.503。第三主成分主要包括单株叶面积和氮含量,其加权系数分别为0.544和0.448。第二主成分和第三主成分可作为中度敏感主成分。第四主成分主要包括千粒重,其加权系数为0.428。第五主成分主要包括株高,其加权系数为0.441。第四主成分和第五主成分可作为低度敏感主成分。Table 4
表4
表411个指标的前5个主成分加权系数、主成分特征值、方差贡献率及累积贡献率
Table 4
指标 Index | 主成分Principal component | ||||
---|---|---|---|---|---|
因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 因子4 Factor 4 | 因子5 Factor5 | |
株高Plant height | 0.233 | 0.273 | -0.028 | -0.483 | 0.441 |
穗长Panicle length | 0.217 | 0.435 | -0.311 | -0.375 | 0.063 |
草重Straw weight | 0.327 | -0.079 | 0.290 | 0.226 | 0.206 |
单株穗重Panicle weight per plant | 0.493 | 0.0005 | 0.096 | 0.169 | -0.029 |
单株粒重Grain weight per plant | 0.497 | 0.010 | -0.039 | 0.154 | -0.101 |
千粒重1000-grain weight | -0.142 | 0.272 | 0.421 | 0.428 | 0.498 |
叶面积Leaf area | 0.084 | 0.218 | 0.544 | -0.292 | -0.321 |
主茎节数Number of main-stem nodes | -0.053 | 0.452 | -0.175 | 0.337 | -0.541 |
茎粗Stem diameter | -0.098 | 0.503 | -0.322 | 0.314 | 0.243 |
氮含量N content | -0.126 | 0.389 | 0.448 | -0.137 | -0.188 |
氮吸收量N absorption | 0.497 | 0.010 | -0.039 | 0.154 | -0.101 |
特征值Eigenvalues | 3.654 | 1.440 | 1.292 | 1.006 | 0.950 |
方差贡献率Variance contribution (%) | 33.219 | 13.089 | 11.742 | 9.143 | 8.632 |
累积方差贡献率Cumulative variance contribution (%) | 33.219 | 46.308 | 58.050 | 67.193 | 75.825 |
新窗口打开|下载CSV
2.5 糜子耐低氮性鉴定指标的筛选
株高、穗长、草重、单株穗重、单株粒重、单株叶面积、氮吸收量的耐低氮胁迫指数与耐低氮综合评价值(D)的相关性均达极显著水平,千粒重的耐低氮胁迫指数与综合评价值(D)的相关性达显著水平(表5),其中单株穗重、单株粒重、氮吸收量、草重的耐低氮胁迫指数与综合评价值(D)的相关性较高,其相关系数分别达到0.858、0.812、0.812和0.666。把D值作为因变量,各单项指标的耐低氮胁迫指数作为自变量进行逐步回归分析,建立糜子耐低氮评价的回归方程:Y=-0.654+0.054X1+0.322X2+0.162X3+ 0.184X4+0.064X5+0.071X6+0.029X7+0.209X8+0.079X9,其中,Y为耐低氮综合评价的预测值,X1代表单株穗重、X2代表千粒重,X3代表株高,X4代表茎粗,X5代表草重,X6代表氮吸收量,X7代表单株叶面积,X8代表氮含量,X9代表穗长,各指标的系数代表各指标对耐低氮综合评价值(D)的影响权重,回归方程的决定系数为R2=0.998(P<0.01),这9个性状对耐低氮综合评价值(D)产生了影响。Table 5
表5
表5各指标与耐低氮综合评价值(D)的相关性
Table 5
指标 Index | 相关系数 Correlation coefficient | P值 P value |
---|---|---|
株高 Plant height | 0.461 | 0.0001 |
穗长 Panicle length | 0.377 | 0.0001 |
草重 Straw weight | 0.666 | 0.0001 |
单株穗重 Panicle weight per plant | 0.858 | 0.0001 |
单株粒重 Grain weight per plant | 0.812 | 0.0001 |
千粒重 1000-grain weight | 0.197 | 0.0497 |
叶面积 Leaf area | 0.282 | 0.0045 |
主茎节数 Number of main-stem nodes | 0.037 | 0.7119 |
茎粗 Stem diameter | 0.073 | 0.4719 |
氮含量 N content | 0.044 | 0.6627 |
氮吸收量 N absorption | 0.812 | 0.0001 |
新窗口打开|下载CSV
各农艺性状、氮含量和氮吸收量的耐低氮胁迫指数与耐低氮综合评价值(D)的相关性分析和回归分析结果表明,单株穗重、草重、氮吸收量可作为糜子耐低氮能力评价的首选指标,叶面积、株高、穗长、茎粗、千粒重、氮含量作为耐低氮能力评价的次级指标。
2.6 耐低氮糜子的筛选
采用欧式距离类平均法对耐低氮综合评价D值进行系统聚类,在欧式距离0.14处可将不同糜子划分为3类(图1),耐低氮型、中间型和不耐低氮型。榆糜3号、2058、榆黍1号、雁黍7号耐低氮能力较强,为耐低氮型,其耐低氮综合评价D值的变幅范围为0.680—0.777,宁糜14、2078、333大红糜子等23个品种为中间型,其耐低氮综合评价D值的变幅范围为0.494—0.623,外引黍2号、印790040、平山黍等73个品种耐低氮性较差为不耐低氮型,其耐低氮综合评价D值的变幅范围为0.243—0.484。图1
新窗口打开|下载原图ZIP|生成PPT图1不同糜子品种耐低氮能力的系统聚类图
Fig. 1Dendrogram of different broomcorn millet varieties based on low-N tolerance
3 讨论
3.1 糜子农艺性状和氮素吸收的差异
植株的农艺性状、氮素的吸收、生物量、产量等存在基因型差异,均可作为作物耐低氮品种筛选和鉴定的指标[9,29]。谷子的干物重和氮吸收量可以作为苗期氮效率评价的首选指标[23]。低氮胁迫下,不同基因型作物的植株形态与生理变化特征差异明显加大,植株氮积累量、生物量降低,株高、茎粗、叶面积、根冠比、氮利用效率等可作为作物耐低氮特性的快速鉴定指标[10,14,22,24]。李强等[9]认为不同指标品种间的变异系数能反映品种对低氮胁迫的敏感程度,变异系数越大,品种间受低氮胁迫影响的差异越大,对不同品种耐低氮能力的贡献也越大。本研究表明,不同糜子的株高、茎粗、主茎节数、穗长、草重、单株穗重、单株粒重、千粒重、叶面积在低氮胁迫条件下均明显降低,其中,叶面积、草重、单株粒重的降幅较大,降幅的平均值分别达到26.01%、19.62%和16.6%。在低氮胁迫下糜子的株高(CV高氮14.83%和CV低氮16.79%)、茎粗(CV高氮16.25%和CV低氮16.57%)、主茎节数(CV高氮13.71%和CV低氮15.14%)、穗长(CV高氮18.16%和CV低氮19.30%)、草重(CV高氮42.22%和CV低氮45.77%)、单株穗重(CV高氮37.11%和CV低氮44.45%)、单株粒重(CV高氮41.82%和CV低氮51.5%)的变异系数增大,表明低氮胁迫加大了品种间农艺性状等的差异变异。已有研究表明,作物种质资源耐低氮能力在不同施氮水平间均有较大差异,在低氮处理下主要农艺性状、氮吸收与利用相关性状,品种间的差异要大于高氮处理,利用低氮处理下不同种质间差异,更有利于耐低氮与氮高效种质资源的判断和筛选[14,30-31]。耐低氮能力强的品种受低氮胁迫的影响较小,表型性状变化范围幅度较小,更容易调节自身生理特性,适应低氮胁迫环境。本研究中,低氮胁迫下糜子籽粒的氮含量与氮素吸收的平均值(2.04%和14.16 g/plant)低于正常施氮(2.18%和16.99 g/plant),籽粒氮素吸收的下降幅度明显高于氮含量,不同糜子品种籽粒氮素吸收的变异系数(CV高氮39.51%和CV低氮48.74%)明显增加,说明籽粒的氮素吸收在低氮条件下更为敏感,品种间的差异较大。低氮胁迫条件下,耐低氮能力强的品种具有较强的氮素吸收,以便维持较多的叶面积增加光合能力,积累更多的干物质来适应低氮环境。3.2 耐低氮指标筛选
外界环境胁迫影响作物生长发育的性状是多方面的,且影响各形态、生理性状和生化指标不尽相同,因此有关作物耐低氮评价指标体系和评价指标选用各有不同。由于苗期溶液培养法和盆栽法进行耐低氮材料的筛选,具有时间短、易于重复操作、环境影响小等优点[22,24,32],玉米[9]、小麦[12]、谷子[23]、苦荞[24]等研究都采用此类方法进行耐低氮评价指标的筛选和相关特性的研究。本研究通过连续2年的大田试验,测定其农艺性状和籽粒氮含量、氮素吸收量,与生产实际相符。通过综合隶属函数法,比较各性状的差异性,以耐低氮胁迫指数作为评价指标,进行性状的主成分分析和回归分析,建立了糜子耐低氮能力评价回归方程,进行糜子耐低氮能力的快速鉴定。很多研究表明干物重、生物产量、氮吸收量可以作为作物耐低氮能力评价的主要指标[9,16,23],同时,单株穗重对作物的产量影响较大[33]。本研究结合各性状指标的相关特性分析和对综合评价指标D值的回归分析,最终筛选了单株穗重(相关系数0.858)、草重(相关系数0.666)、氮吸收量(相关系数0.812)等指标作为耐低氮糜子品种选择的首选指标,叶面积、株高、穗长、茎粗、千粒重、氮含量作为耐低氮能力评价的次级指标。3.3 耐低氮类型划分和品种筛选
不同糜子品种间的耐低氮能力存在显著差异,通过对耐低氮综合评价D值的系统聚类,将100份糜子划分为耐低氮型、中间型和不耐低氮型3种类型。榆糜3号、2058、榆黍1号、雁黍7号为耐低氮型品种,在低氮胁迫条件下4个品种与其他品种相比具有较高的草重、单株穗重和氮吸收量,且各性状的耐低氮胁迫指数相对较高,综合评价D值排列前位。目前,其他作物研究表明,低氮能力强的品种在低氮环境中根系发达,有较强的氮素吸收能力,维持更大的叶面积以积累较多的干物质,是耐低氮的主要生理机制[9,22,34-36],根系的形态特征是由基因型与环境因素共同决定的,对作物吸收氮素起决定作用,为明确根系的耐低氮生理机制还需进一步进行研究。
4 结论
糜子在低氮胁迫下的农艺性状、生物量积累和氮素吸收受到抑制,各指标含量明显下降。单株穗重、草重、氮吸收量可作为糜子耐低氮评价的重要指标。100份糜子品种划分为3种类型,耐低氮型、中间型和不耐低氮型,其中榆糜3号、2058、榆黍1号、雁黍7号4个品种耐低氮能力最强,可作为糜子氮高效育种的参考资源。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.11674/zwyf.2001.0308URL [本文引用: 1]
采用大田与盆栽试验相结合的方法 ,对 7个氮素营养效率不同的玉米杂交种在不同氮肥水平下的子粒日产量、吸氮效率、根系形态、叶片硝酸还原酶活力 (NRA)及冠层光合生理生态特性等进行了研究。结果表明 ,DK743、DK656、豫玉 2 2、中单 2号、户单 1号等 5个品种N素营养效率较高 ;酒单 2号和石玉 90 5是低N素营养效率的品种。N素营养效率的高低与品种根重、根长、根表面积、叶片NRA、净光合速率、气孔导度等都有一定的相关性。适当供氮能提高净光合速率、气孔导度、叶片NRA含量、干物质积累量和子粒产量 ,提高幅度因品种而异。
DOI:10.11674/zwyf.2001.0308URL [本文引用: 1]
采用大田与盆栽试验相结合的方法 ,对 7个氮素营养效率不同的玉米杂交种在不同氮肥水平下的子粒日产量、吸氮效率、根系形态、叶片硝酸还原酶活力 (NRA)及冠层光合生理生态特性等进行了研究。结果表明 ,DK743、DK656、豫玉 2 2、中单 2号、户单 1号等 5个品种N素营养效率较高 ;酒单 2号和石玉 90 5是低N素营养效率的品种。N素营养效率的高低与品种根重、根长、根表面积、叶片NRA、净光合速率、气孔导度等都有一定的相关性。适当供氮能提高净光合速率、气孔导度、叶片NRA含量、干物质积累量和子粒产量 ,提高幅度因品种而异。
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 9]
[本文引用: 9]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
,
[本文引用: 2]
[本文引用: 2]
,
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1016/S0378-4290(98)00084-7URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/S0378-4290(97)00123-8URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.11674/zwyf.2014.0318URL [本文引用: 4]
采用溶液培养的方法,研究了低氮胁迫下不同糜子品种苗期生物学性状、 氮素吸收利用效率差异及与根系形态生理指标之间的相关关系。 结果表明, 低氮胁迫下,糜子地上部生长受抑程度大于根部,植株氮累积量降低但氮利用效率明显提高。晋黍7号株高、 叶面积、 茎叶干重、 根干重、 总根数、 总吸收面积和活性吸收面积下降幅度在所测试品种中均最小, 其总氮累积量分别是晋黍1号、 晋黍5号、 晋黍8号的1.35、 1.50、 1.39倍,根系氮累积量/总氮量的百分率增加的幅度和地上部氮累积量/总氮量的百分率下降的幅度均最低,分别为9.75% 和 3.47%; 植株氮利用效率比晋黍1号、 晋黍5号、 晋黍8号分别高20.92%、 12.44%、 14.83%。晋黍7号较其他品种更耐低氮胁迫。低氮胁迫下,糜子根系干重、 总根长、 总吸收面积与总氮累积量呈显著线性相关,表明低氮胁迫下,根系形态生理指标对氮素吸收效率起重要作用。
DOI:10.11674/zwyf.2014.0318URL [本文引用: 4]
采用溶液培养的方法,研究了低氮胁迫下不同糜子品种苗期生物学性状、 氮素吸收利用效率差异及与根系形态生理指标之间的相关关系。 结果表明, 低氮胁迫下,糜子地上部生长受抑程度大于根部,植株氮累积量降低但氮利用效率明显提高。晋黍7号株高、 叶面积、 茎叶干重、 根干重、 总根数、 总吸收面积和活性吸收面积下降幅度在所测试品种中均最小, 其总氮累积量分别是晋黍1号、 晋黍5号、 晋黍8号的1.35、 1.50、 1.39倍,根系氮累积量/总氮量的百分率增加的幅度和地上部氮累积量/总氮量的百分率下降的幅度均最低,分别为9.75% 和 3.47%; 植株氮利用效率比晋黍1号、 晋黍5号、 晋黍8号分别高20.92%、 12.44%、 14.83%。晋黍7号较其他品种更耐低氮胁迫。低氮胁迫下,糜子根系干重、 总根长、 总吸收面积与总氮累积量呈显著线性相关,表明低氮胁迫下,根系形态生理指标对氮素吸收效率起重要作用。
,
DOI:10.3864/j.issn.0578-1752.2016.17.004URL [本文引用: 4]
【Objective】The objective of this experiment was to probe genetic variation of nitrogen uptake efficiency (NupE) and nitrogen utilization efficiency (NutE) of foxtail millet cultivars at seedling stage and screen N efficient cultivars, which could provide a theoretical basis for the development of new N efficient varieties and N efficient mechanism study. 【Method】In this study, a sand culture pot experiment was conducted with 79 foxtail millet cultivars from three typically ecological types, shoot biomass, nitrogen concentration, nitrogen content, NutE and NupE were assessed under low nitrogen (0.2 mmol·L-1) and high nitrogen (6 mmol·L-1) supply, nitrogen use efficiency (NUE) types were also classified. 【Result】Large genetic variation was observed in shoot biomass, shoot N concentration, shoot N content, NupE, NutE and NUE at seedling stage. Among the three ecological types, northwest spring foxtail millet cultivars had the highest genetic variation of NupE, followed by north summer and northeast spring foxtail millet cultivars, while the genotypic variation of NutE in north summer type was more than that in northwest and northeast spring foxtail millet cultivars. Shoot biomass was significantly and positively correlated with NupE and NutE (P<0.01), and correlation coefficients were R2N0.2=0.1827** and R2N6=0.1027**, R2N0.2=0.8985**and R2N6=0.9442**, respectively. NUE was significantly and positively correlated with nitrogen content and negatively correlated with nitrogen concentration, and correlation coefficients were R2N0.2=0.8985**and R2N6=0.9442**, R2N0.2=0.1962** and R2N6=0.0998**, respectively. NupE was negatively correlated with nitrogen concentration, and the correlation coefficients were R2N0.2=0.9924** and R2N6=0.9910**. There was no significant correlation between NupE and nitrogen concentration, and between NupE and NutE. According to means of shoot biomass and NUE of 79 foxtail millet cultivars, foxtail millet cultivars from three ecological regions were classified into four types, respectively, both higher than the average under low nitrogen and high nitrogen level (HLHH), both lower than the average under low nitrogen and high nitrogen level (LLLH), higher than the average under low nitrogen and lower than the average under high nitrogen level (HLLH), and lower than the average under low nitrogen and higher than the average under high nitrogen level (LLHH). HLHH and LLHH types were dominant cultivar types in northeast spring foxtail millet, and the percentage of LLLH types was the lowest in northeast spring foxtail millet (PNW17.6%<PNS 32.4%<PNE36.0%). However, HLLH types were the main cultivar types in northwest spring foxtail millet (PNW 24.0%>PNS 18.9%>PNE 5.9%). 【Conclusion】There was a significant NUE genetic variation of seedlings in different foxtail millet cultivars. Genetic variation of NupE was the highest in northwest spring foxtail millet cultivars, and north summer foxtail millet cultivars had the highest genetic variation of NutE. There was no significant correlation between NupE and NutE, indicating that the evaluation and improvement of N uptake and utilization should be undertaken independently.
DOI:10.3864/j.issn.0578-1752.2016.17.004URL [本文引用: 4]
【Objective】The objective of this experiment was to probe genetic variation of nitrogen uptake efficiency (NupE) and nitrogen utilization efficiency (NutE) of foxtail millet cultivars at seedling stage and screen N efficient cultivars, which could provide a theoretical basis for the development of new N efficient varieties and N efficient mechanism study. 【Method】In this study, a sand culture pot experiment was conducted with 79 foxtail millet cultivars from three typically ecological types, shoot biomass, nitrogen concentration, nitrogen content, NutE and NupE were assessed under low nitrogen (0.2 mmol·L-1) and high nitrogen (6 mmol·L-1) supply, nitrogen use efficiency (NUE) types were also classified. 【Result】Large genetic variation was observed in shoot biomass, shoot N concentration, shoot N content, NupE, NutE and NUE at seedling stage. Among the three ecological types, northwest spring foxtail millet cultivars had the highest genetic variation of NupE, followed by north summer and northeast spring foxtail millet cultivars, while the genotypic variation of NutE in north summer type was more than that in northwest and northeast spring foxtail millet cultivars. Shoot biomass was significantly and positively correlated with NupE and NutE (P<0.01), and correlation coefficients were R2N0.2=0.1827** and R2N6=0.1027**, R2N0.2=0.8985**and R2N6=0.9442**, respectively. NUE was significantly and positively correlated with nitrogen content and negatively correlated with nitrogen concentration, and correlation coefficients were R2N0.2=0.8985**and R2N6=0.9442**, R2N0.2=0.1962** and R2N6=0.0998**, respectively. NupE was negatively correlated with nitrogen concentration, and the correlation coefficients were R2N0.2=0.9924** and R2N6=0.9910**. There was no significant correlation between NupE and nitrogen concentration, and between NupE and NutE. According to means of shoot biomass and NUE of 79 foxtail millet cultivars, foxtail millet cultivars from three ecological regions were classified into four types, respectively, both higher than the average under low nitrogen and high nitrogen level (HLHH), both lower than the average under low nitrogen and high nitrogen level (LLLH), higher than the average under low nitrogen and lower than the average under high nitrogen level (HLLH), and lower than the average under low nitrogen and higher than the average under high nitrogen level (LLHH). HLHH and LLHH types were dominant cultivar types in northeast spring foxtail millet, and the percentage of LLLH types was the lowest in northeast spring foxtail millet (PNW17.6%<PNS 32.4%<PNE36.0%). However, HLLH types were the main cultivar types in northwest spring foxtail millet (PNW 24.0%>PNS 18.9%>PNE 5.9%). 【Conclusion】There was a significant NUE genetic variation of seedlings in different foxtail millet cultivars. Genetic variation of NupE was the highest in northwest spring foxtail millet cultivars, and north summer foxtail millet cultivars had the highest genetic variation of NutE. There was no significant correlation between NupE and NutE, indicating that the evaluation and improvement of N uptake and utilization should be undertaken independently.
,
[本文引用: 4]
[本文引用: 4]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
【Objective】 The objective of this study was to identify the differences in N absorption and use efficiency in rice genotypes with different yield performances. 【Method】 A field experiment was conducted with 20 rice genotypes(10 high-yielding and 10 low-yielding performance) selected from 108 rice genotypes including early (125-135 d, growth duration), medium (136-145 d) and late-maturing (146-155 d) medium japonica and early (156-165 d) and medium-maturing (166-175 d) late japonica rice under 225 kg?hm-2 N fertilizer application in 2006 and 2007 on the farm of Yangzhou University, Jiangsu province, China. Yield, N accumulation, N uptake rate, N use efficiency and their relationship were analyzed. 【Result】 The results showed that the mean yields of high-yielding rice genotypes were 31.6%, 31.94%, 39.47%, 26.21%,and 21.82% higher than those of low-yielding rice genotypes, respectively, with the extension of the growth duration. N accumulation and use efficiency increased with the extension of the growth duration, and which of high-yielding genotypes was significantly higher than those of low-yielding genotypes. N accumulation and uptake rate of high-yielding genotypes were higher than those of low-yielding during the growth phases from transplanting to elongation and from elongation to heading, while it showed a reversed trend during the growth phase from heading to maturing for some genotypes. Correlation analysis indicated that there existed significant or highly significant positive correlations between yield and N accumulation, N use efficiency, N uptake rate during the growth phase from transplanting to elongation.【Conclusion】 Compared with the low-yielding rice genotypes, N accumulation in various growing stages, N uptake rate before heading and N use efficiency of high-yielding rice genotypes were higher. It was obvious that high yield and increasing N accumulation and use efficiency could be coordinated development on improving genotype.
URL [本文引用: 1]
【Objective】 The objective of this study was to identify the differences in N absorption and use efficiency in rice genotypes with different yield performances. 【Method】 A field experiment was conducted with 20 rice genotypes(10 high-yielding and 10 low-yielding performance) selected from 108 rice genotypes including early (125-135 d, growth duration), medium (136-145 d) and late-maturing (146-155 d) medium japonica and early (156-165 d) and medium-maturing (166-175 d) late japonica rice under 225 kg?hm-2 N fertilizer application in 2006 and 2007 on the farm of Yangzhou University, Jiangsu province, China. Yield, N accumulation, N uptake rate, N use efficiency and their relationship were analyzed. 【Result】 The results showed that the mean yields of high-yielding rice genotypes were 31.6%, 31.94%, 39.47%, 26.21%,and 21.82% higher than those of low-yielding rice genotypes, respectively, with the extension of the growth duration. N accumulation and use efficiency increased with the extension of the growth duration, and which of high-yielding genotypes was significantly higher than those of low-yielding genotypes. N accumulation and uptake rate of high-yielding genotypes were higher than those of low-yielding during the growth phases from transplanting to elongation and from elongation to heading, while it showed a reversed trend during the growth phase from heading to maturing for some genotypes. Correlation analysis indicated that there existed significant or highly significant positive correlations between yield and N accumulation, N use efficiency, N uptake rate during the growth phase from transplanting to elongation.【Conclusion】 Compared with the low-yielding rice genotypes, N accumulation in various growing stages, N uptake rate before heading and N use efficiency of high-yielding rice genotypes were higher. It was obvious that high yield and increasing N accumulation and use efficiency could be coordinated development on improving genotype.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
Nitrogen tops the list of crop macro elements essential for plant growth and development. Several studies have shown that under low nitrogen conditions, crop species/genotypes vary widely in nitrogen uptake ability and utilization efficiency. Planting wheat cultivars with high nitrogen efficiency is the fundamental way to raise nitrogen utilization efficiency; and exploiting nitrogen tolerant wheat germplasm resources is the basic of breeding wheat varieties with high nitrogen efficiency. To this end, 30 advanced distant hybridization lines of wheat and wheatgrass, one T1BL?1RS translocation line of distant hybridization of "Xiaoyan 6" and "Germany white" (rye), two recombinant inbred lines of "Xiaoyan54 × Jing411" and 13 commercial wheat varieties, were screened and evaluated for low nitrogen tolerant genotypes in hydroponic culture at seedling stage. Analysis of variance showed significant to very significant differences in 13 nitrogen efficiency related traits between two nitrogen treatments and among genotypes. Principal component analysis showed that the first three principal components had an accumulative contribution rate of at least 81.2%, implying that they contained most of the information to reflect the overall trait resources. The proportions of relative shoot/plant nitrogen uptake, root/shoot ratio, shoot dry weight, plant dry weight, shoot nitrogen utilization efficiency and root nitrogen content of the three principal components were significantly high. A comprehensive evaluation suggested that 08B41 had the highest score (1.60) for the best nitrogen tolerant wheat line in the 32 distant wheat hybridization lines. Then "Kn9204" had the highest score (2.10) for the best nitrogen tolerant wheat variety in the 13 commercial wheat varieties. Clustering analysis showed that the 46 wheat genotypes were broadly categorized into 3 groups (low nitrogen tolerant type, medium nitrogen tolerant type and low nitrogen sensitive type with 15, 22 and 9 genotypes, respectively). 9 advanced distant hybridization lines (08B41, XJ19-1, 08B8, 08B10, 08B13, 08B25, WR9603, 08B2, 08B5) and 6 commercial wheat varieties ("Kn9204", "Han7086", "Henong827", "Shimai18", "Shi4185", "Shixin733") were noted to have low nitrogen tolerance. These low nitrogen tolerant genotypes were utilizable in breeding N-efficient wheat varieties. The study also discussed the roles of wheat related species in improving the genetic makeup of N-efficient wheat varieties.
URL [本文引用: 1]
Nitrogen tops the list of crop macro elements essential for plant growth and development. Several studies have shown that under low nitrogen conditions, crop species/genotypes vary widely in nitrogen uptake ability and utilization efficiency. Planting wheat cultivars with high nitrogen efficiency is the fundamental way to raise nitrogen utilization efficiency; and exploiting nitrogen tolerant wheat germplasm resources is the basic of breeding wheat varieties with high nitrogen efficiency. To this end, 30 advanced distant hybridization lines of wheat and wheatgrass, one T1BL?1RS translocation line of distant hybridization of "Xiaoyan 6" and "Germany white" (rye), two recombinant inbred lines of "Xiaoyan54 × Jing411" and 13 commercial wheat varieties, were screened and evaluated for low nitrogen tolerant genotypes in hydroponic culture at seedling stage. Analysis of variance showed significant to very significant differences in 13 nitrogen efficiency related traits between two nitrogen treatments and among genotypes. Principal component analysis showed that the first three principal components had an accumulative contribution rate of at least 81.2%, implying that they contained most of the information to reflect the overall trait resources. The proportions of relative shoot/plant nitrogen uptake, root/shoot ratio, shoot dry weight, plant dry weight, shoot nitrogen utilization efficiency and root nitrogen content of the three principal components were significantly high. A comprehensive evaluation suggested that 08B41 had the highest score (1.60) for the best nitrogen tolerant wheat line in the 32 distant wheat hybridization lines. Then "Kn9204" had the highest score (2.10) for the best nitrogen tolerant wheat variety in the 13 commercial wheat varieties. Clustering analysis showed that the 46 wheat genotypes were broadly categorized into 3 groups (low nitrogen tolerant type, medium nitrogen tolerant type and low nitrogen sensitive type with 15, 22 and 9 genotypes, respectively). 9 advanced distant hybridization lines (08B41, XJ19-1, 08B8, 08B10, 08B13, 08B25, WR9603, 08B2, 08B5) and 6 commercial wheat varieties ("Kn9204", "Han7086", "Henong827", "Shimai18", "Shi4185", "Shixin733") were noted to have low nitrogen tolerance. These low nitrogen tolerant genotypes were utilizable in breeding N-efficient wheat varieties. The study also discussed the roles of wheat related species in improving the genetic makeup of N-efficient wheat varieties.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/0098-8472(93)90056-LURL [本文引用: 1]
,
DOI:10.3321/j.issn:1000-7091.2001.03.019URL
The variation in morphology and physiology of root systems of wheat genotypes under phosphorus deficiency are very important in practice.The objectives of this study were to determine the early indicators related to phosphorus efficiency and establish a new method of fast and effectively selecting high phosphorus efficiency wheat genotypes.The results showed that the number of root axes and the length of lateral root of P deficient plant were significantly lower(P0.05) than P sufficient plant;The partitioning of assimilates to root was greater than to shoot at low P supply.The length of root axis and root system and the number of lateral roots were sharply increased under low P stress.The differences in number and length of root axis of the given wheat genotypes between the same or different levels of phosphorus supply were significant(P0 05).This suggests that the two traits are controlled by genotype and external factors.The difference in the characteristics of lateral root of the given wheat genotypes was significant only between different levels of P supply.It shows that the traits of lateral root mainly depend on external factors.The differences in root number and root length,and axis length,root angle and activity of acid phosphatase exuded by roots among 6 wheat genotypes were significant(P0 05).The linear relationships between relative grain yield and the interaction of the morphological and physiological tr
DOI:10.3321/j.issn:1000-7091.2001.03.019URL
The variation in morphology and physiology of root systems of wheat genotypes under phosphorus deficiency are very important in practice.The objectives of this study were to determine the early indicators related to phosphorus efficiency and establish a new method of fast and effectively selecting high phosphorus efficiency wheat genotypes.The results showed that the number of root axes and the length of lateral root of P deficient plant were significantly lower(P0.05) than P sufficient plant;The partitioning of assimilates to root was greater than to shoot at low P supply.The length of root axis and root system and the number of lateral roots were sharply increased under low P stress.The differences in number and length of root axis of the given wheat genotypes between the same or different levels of phosphorus supply were significant(P0 05).This suggests that the two traits are controlled by genotype and external factors.The difference in the characteristics of lateral root of the given wheat genotypes was significant only between different levels of P supply.It shows that the traits of lateral root mainly depend on external factors.The differences in root number and root length,and axis length,root angle and activity of acid phosphatase exuded by roots among 6 wheat genotypes were significant(P0 05).The linear relationships between relative grain yield and the interaction of the morphological and physiological tr
,
DOI:10.11674/zwyf.2005.0607URL [本文引用: 1]
研究利用7个玉米自交系,采用NC-Ⅱ设计,分析了玉米苗期根系性状对氮胁迫反应的配合力及遗传参数变化。结果表明,在2个氮水平下,玉米苗期根系性状的一般配合力、特殊配合力都存在显著的基因型差异,而且不同的基因型在氮胁迫下的反应也不尽相同。高氮下,根系性状除轴根长以外均以非加性遗传为主;氮胁迫下,除轴根数以外的根系性状以加性遗传为主。2个氮水平下,根干重、总根长和侧根长的广义遗传力均较高;与高氮处理相比,在低氮胁迫下,根系性状的广义遗传力表现为下降趋势,根干重、总根长和侧根长的狭义遗传力有上升的趋势。
DOI:10.11674/zwyf.2005.0607URL [本文引用: 1]
研究利用7个玉米自交系,采用NC-Ⅱ设计,分析了玉米苗期根系性状对氮胁迫反应的配合力及遗传参数变化。结果表明,在2个氮水平下,玉米苗期根系性状的一般配合力、特殊配合力都存在显著的基因型差异,而且不同的基因型在氮胁迫下的反应也不尽相同。高氮下,根系性状除轴根长以外均以非加性遗传为主;氮胁迫下,除轴根数以外的根系性状以加性遗传为主。2个氮水平下,根干重、总根长和侧根长的广义遗传力均较高;与高氮处理相比,在低氮胁迫下,根系性状的广义遗传力表现为下降趋势,根干重、总根长和侧根长的狭义遗传力有上升的趋势。