Salt-Alkalinze Stress Induced Rhizosphere Effects and Photosynthetic Physiological Response of Two Ecotypes of Leymus chinensis in Songnen Meadow Steppe
YAO Yuan1, XU YueQiao1, WANG Gui1,2, SUN Wei,11 Institute of Grassland Science, Northeast Normal University/Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024 2College of Life Sciences, Changchun Normal University, Changchun 130032
Abstract 【Objective】 This study was designed to explore differences in rhizosphere effects and photosynthetic physiological activities between the grey green (GG) and yellow green (YG) ecotypes of Leymus chinensis (L. chinensis) in Songnen plains in response to saline-alkali stress, and to provide a theoretical basis for selecting the ecotype of L. chinensis suitable for the restoration of degraded saline-alkali grasslands. 【Method】 Using a pot experiment, the changes of soil and plant under the control, moderate salt-alkaline stress and severe salt-alkaline stress treatments for 30 days were studied, including pH, electrical conductivity, total organic carbon content, total nitrogen content, NH4+-N content, NO3--N content, microbial biomass carbon content and microbial biomass nitrogen content of rhizosphere soil and bulk soil, as well as leaf net photosynthetic rate, leaf proline content, leaf soluble sugar content and plant height, aboveground biomass and belowground biomass of the two ecotypes of L. chinensis. The moderate saline-alkali stress was achieved by mixing 40 mmol·L -1 NaCl solution, 40 mmol·L-1 Na2CO3 solution, 360 mmol·L-1 Na2SO4 solution and 360 mmol·L-1 NaHCO3 solution at 1﹕1﹕1﹕1. The severe saline-alkali stress treatment was reached by mixing 200 mmol·L-1 NaCl solution, Na2SO4 solution, NaHCO3 solution and Na2CO3 solution at 1﹕1﹕1﹕1. 【Result】 The NH4+-N content, NO3--N content, available nitrogen content, microbial biomass carbon content and microbial biomass nitrogen content of rhizosphere and bulk soil under the moderate salt-alkaline stress treatment were significantly higher than those under the severe salt-alkaline stress treatment. For both ecotypes, the rhizosphere soil had a significantly lower pH value than that of the bulk soil. Moreover, the rhizosphere soil had greater available nitrogen content, microbial biomass carbon content and microbial biomass nitrogen content relative to the bulk soil. The rhizosphere effects of pH in the GG ecotype of L. chinensis were significantly higher than that of the YG ecotype under the control and moderate salt-alkaline stress treatment. The rhizosphere effects of available nitrogen content and microbial biomass carbon content in the GG ecotype of L. chinensis were significantly higher than those of the YG ecotype. For both ecotypes, the net photosynthetic rate, leaf soluble sugar content and leaf proline content under the moderate salt-alkaline stress treatment were significantly higher than those under the severe salt-alkaline stress treatment. The aboveground biomass, belowground biomass and total biomass under the salt-alkaline stress treatments were significantly lower than those under the control treatment. The loss rate of plant height and belowground biomass, and harm percentage of net photosynthetic rate in the YG ecotype of L. chinensis were significantly higher than them in the GG ecotype. Compared to the YG ecotype, the GG ecotype had significantly higher sensitive indexes of leaf proline content, leaf soluble sugar content and osmotic pressure. 【Conclusion】 The GG ecotype of L. chinensis could more effectively alleviate the adverse effects of saline-alkali stress on soil physical and chemical properties and showed stronger saline-alkali resistance than the YG ecotype. Keywords:salt-alkaline stress;grey green ecotype of L. chinensis;yellow green ecotype of L. chinensis;rhizosphere effect;photosynthetic physiology
PDF (548KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 姚远, 徐月乔, 王贵, 孙伟. 盐碱胁迫下松嫩草地2种生态型羊草根际效应及光合生理响应[J]. 中国农业科学, 2020, 53(13): 2584-2594 doi:10.3864/j.issn.0578-1752.2020.13.007 YAO Yuan, XU YueQiao, WANG Gui, SUN Wei. Salt-Alkalinze Stress Induced Rhizosphere Effects and Photosynthetic Physiological Response of Two Ecotypes of Leymus chinensis in Songnen Meadow Steppe[J]. Scientia Acricultura Sinica, 2020, 53(13): 2584-2594 doi:10.3864/j.issn.0578-1752.2020.13.007
Table 1 表1 表1灰绿型羊草(GG)与黄绿型羊草(YG)非根际土壤及根际土壤理化性质对盐碱胁迫的响应 Table 1The response of soil physicochemical properties of bulk soil and rhizosphere soil of grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress
土壤理化性质 Soil physicochemical property
处理 Treatment
灰绿型羊草 (GG)
黄绿型羊草 (YG)
非根际土 Bulk soil
根际土 Rhizosphere soil
非根际土 Bulk soil
根际土 Rhizosphere soil
pH
对照组CK
8.46±0.01Ca
8.27±0.02Cb
8.53±0.03Ca
8.44±0.02Cb
中度盐碱MS
9.22±0.05Ba
8.98±0.05Bb
9.20±0.04Ba
8.99±0.04Bb
重度盐碱SS
9.87±0.04Aa
9.66±0.02Ab
9.77±0.04Aa
9.62±0.04Ab
电导率 Electrical conductivity (μs·cm-1)
对照组CK
174.25±27.92Ca
135.5±9.37Ba
133.25±9.11Cb
213.50±12.14Ba
中度盐碱MS
1191.25±11.27Bb
1248.0±16.7Aa
1229.75±7.55Ba
1259.50±25.65Aa
重度盐碱SS
1270.25±10.96Aa
1181.5±64.85Aa
1318.50±14.75Aa
1198.25±68.38Aa
总有机碳含量 Total organic carbon content (g·kg-1)
对照组CK
6.08±0.07Aa
6.19±0.07Aa
6.15±0.05Aa
6.30±0.05Aa
中度盐碱MS
6.06±0.05Aa
6.15±0.08Aa
5.82±0.23Ba
6.03±0.05Aa
重度盐碱SS
6.06±0.03Aa
6.1±0.06Aa
5.71±0.16Ba
5.88±0.06Aa
总氮含量 Total nitrogen content (g·kg-1)
对照组CK
1.40±0.1Aa
1.53±0.13Aa
1.08±0.1Aa
1.17±0.06Aa
中度盐碱MS
1.16±0.07ABb
1.4±0.03Aa
0.84±0.05Aa
0.92±0.02Ba
重度盐碱SS
0.85±0.16Bb
1.28±0.02Aa
0.83±0.09Aa
0.87±0.03Ba
铵态氮含量 NH4+-N content (mg·kg-1)
对照组CK
0.96±0.04Ab
3.33±0.24Aa
1.86±0.12Ab
6.51±0.42Aa
中度盐碱MS
0.79±0.05Bb
3.06±0.4Aa
1.37±0.06Bb
6.02±0.35Aa
重度盐碱SS
0.44±0.03Cb
1.37±0.19Ba
0.89±0.04Cb
3.31±0.22Ba
硝态氮含量 NO3--N content (mg·kg-1)
对照组CK
3.76±0.32Aa
4.03±0.12Aa
4.02±0.09Aa
4.43±0.26Aa
中度盐碱MS
2.46±0.33Ba
3.17±0.1Ba
2.78±0.3Ba
2.84±0.31Ba
重度盐碱SS
0.59±0.02Cb
0.82±0.02Ca
0.35±0.02Ca
0.44±0.05Ca
有效氮含量 Available nitrogen content (mg·kg-1)
对照组CK
4.37±0.19Ab
7.28±0.5Aa
6.1±0.28Ab
10.70±0.21Aa
中度盐碱MS
3.36±0.16Bb
6.02±0.22Ba
3.56±0.2Bb
8.32±0.42Ba
重度盐碱SS
1.09±0.04Cb
1.97±0.14Ca
1.23±0.08Cb
3.39±0.14Ca
MS:中度盐碱胁迫;SS:重度盐碱胁迫。不同大写字母表示根际土壤或非根际土壤在盐碱胁迫处理之间差异具有显著性(P<0.05);不同小写字母表示在某一特定盐碱胁迫处理条件下非根际土壤与根际土壤之间差异具有显著性(P<0.05) MS: Moderate salt-alkaline stress; SS: Severe salt-alkaline stress. Different uppercase letters indicate significant differences between the salt-alkaline treatments for either bulk soil or rhizosphere soil at P<0.05; Different lowercase letters indicate significant differences between the bulk soil and rhizosphere soil at P<0.05
灰绿型羊草土壤微生物碳含量(A);黄绿型羊草土壤微生物碳含量(B);灰绿型羊草土壤微生物氮含量(C);黄绿型羊草土壤微生物氮含量(D);不同大写字母表示根际土壤或非根际土壤在盐碱处理间差异显著;不同小写字母表示在某一特定盐碱处理条件下非根际土壤和根际土壤之间差异显著 Fig. 1Response of microbial biomass carbon and microbial biomass nitrogen content of bulk soil and rhizosphere soil of the grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress
The microbial biomass carbon content (MBC) in grey green ecotype of L. chinensis (A); The microbial biomass carbon content (MBC) in yellow green ecotype of L. chinensis (B); The microbial biomass nitrogen content (MBN) in grey green ecotype of L. chinensis (C); The microbial biomass nitrogen content (MBC) in yellow green ecotype of L. chinensis (D); Different uppercase letters indicate significant differences between the salt-alkaline treatments for either bulk soil or rhizosphere soil; Different lowercase letters indicate significant differences between the bulk soil and rhizosphere soil
Fig. 3Harm percentage of net photosynthetic rate, sensitive index of leaf proline content and leaf soluble sugar content of the grey green (GG) and yellow green (YG) ecotypes of L. chinensis under different salt- alkaline stresses
Table 2 表2 表2灰绿型羊草(GG)与黄绿型羊草(YG)在两种盐碱胁迫处理下生长及生理指标变化 Table 2The response of physiology and growth indicators of grey green (GG) and yellow green (YG) ecotypes of L. chinensis to the salt-alkaline stress
生长及生理指标 Physiology and growth indicator
羊草类型 L. chinensis ecotypy
处理Treatment
对照组CK
中度盐碱MS
重度盐碱SS
株高Plant height (cm/plant)
灰绿型 (GG)
44.9±0.91a
40.65±0.82b
36.19±0.81c
黄绿型 (YG)
46.44±0.78a
38.17±0.54b
34.74±0.34c
地上生物量 Aboveground biomass (g/pot)
灰绿型 (GG)
9.89±0.22a
7.32±0.31b
7.02±0.23b
黄绿型 (YG)
10.02±0.25a
8.22±0.35b
7.6±0.51b
地下生物量 Belowground biomass (g/pot)
灰绿型 (GG)
6.05±0.29a
4.43±0.14b
4.12±0.25b
黄绿型 (YG)
5.5±0.2a
4.05±0.2b
3.66±0.3b
总生物量 Total biomass (g/pot)
灰绿型 (GG)
15.94±0.37a
11.75±0.4b
11.14±0.42b
黄绿型 (YG)
15.52±0.36a
12.27±0.5b
11.26±0.79b
根冠比 Root/shoot ratio
灰绿型 (GG)
0.61±0.03a
0.61±0.02a
0.59±0.03a
黄绿型 (YG)
0.55±0.02a
0.49±0.02ab
0.48±0.02b
净光合速率 Net photosynthetic rate (μmol CO2·m-2·s-1)
灰绿型 (GG)
21.13±0.4a
16.62±0.19b
12.2±0.56c
黄绿型 (YG)
21.85±0.36a
14.93±0.5b
11.1±0.23c
叶片可溶性糖含量 Leaf soluble sugar content (mg·g-1 DW)
灰绿型 (GG)
81.09±4.6b
97.15±4.22ab
109.21±6.8a
黄绿型 (YG)
73.96±1.49c
83.17±1.1b
89.8±1.32a
叶片脯氨酸含量 Leaf proline content (μmol·g-1 DW)
灰绿型 (GG)
0.57±0.07c
1.41±0.14b
1.89±0.2a
黄绿型 (YG)
0.61±0.10c
1.33±0.12b
1.59±0.15a
不同小写字母表示灰绿型羊草或黄绿型羊草盐碱处理间差异具有显著性 Different lowercase letters indicate significant differences between the salt-alkaline treatments for either grey green (GG) or yellow green (YG) ecotype of L. chinensis
pH根际效应(A);有效氮根际效应(B);微生物碳根际效应(C);微生物氮根际效应(D)。不同小写字母表示灰绿型羊草或黄绿型羊草盐碱处理间差异显著。下同 Fig. 2Rhizosphere effect of pH, available nitrogen, microbial biomass carbon and microbial biomass nitrogen in the grey green (GG) and yellow green (YG) ecotypes of L. chinensis under different salt-alkaline stresses
The rhizosphere effects of pH (A), available nitrogen content (B), microbial biomass carbon content (C), microbial biomass nitrogen content (D). Different lowercase letters indicate significant differences between the salt-alkaline treatments for either grey green (GG) or yellow green (YG) ecotypes of L. chinensis. The same as below
LI XJ, LI QS, WANG ZC, LIU XT. A research on characteristics and rational exploitation of soda saline land in the western Songnen plain Research of Agricultural Modernization, 2002,23(5):361-364. (in Chinese) [本文引用: 1]
SHI DC, SHENG YM. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors , 2005,54(1):8-21. [本文引用: 1]
SHAO HB, CHU LY, LU HY, QI WC, CHENX, LIUJ, KUANG SP, TANG BP, WONGV. Towards sustainable agriculture for the salt-affected soil , 2019,30(5):574-579. [本文引用: 2]
LI JD, ZHENG HY. Biological-Ecological Mechanism and Its Control of Saline-alkali Grass Land in the Songnen Plain of China. Beijing: Science Press, 1997:1-5. (in Chinese) [本文引用: 1]
ZHOUC, YANG YF. Physiological response to salt-alkali stress in experimental populations in two ecotypes of Leymus chinensis in the Songnen plains of China Chinese Journal of Applied Ecology, 2003,14(11):1842-1846. (in Chinese) [本文引用: 2]
CHENG TL, CHEN JH, ZHANG JB, SHI SQ, ZHOU YW, LUL, WANG PK, JIANG ZP, YANG JC, ZHANG SG, SHI JS. Physiological and proteomic analyses of leaves from the halophyte , 2015,6(30):1-13. [本文引用: 1]
GRIEVE CM, LESCH SM, MASS EV, FRANCOIS LE. Leaf and spikelet primordia initiation in salt-stressed wheat , 1993,33(6):1286-1294. [本文引用: 1]
ACOSTA-MOTOS JR, HERNáNDEZ JA, áLVAREZS, BARBA- ESPíNG, SáNCHEZ-BLANCO MJ. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by , 2016,111:244-256. [本文引用: 1]
LI JK, CUI GW, HU GF, WANG MJ, ZHANGP, QIN LG, SHANGC, ZHANG HL, ZHU XC, QU MN. Proteome dynamics and physiological responses to short-term salt stress in , 2017,12(8):e0183615. [本文引用: 2]
PARIHARP, SINGHS, SINGHR, SINGH VP, PRASAD SM. Effect of salinity stress on plants and its tolerance strategies: A review , 2015,22(6):4056-4075. [本文引用: 1]
MA HY, LIANG ZW, KONG XJ, YANC, HUANG LH. Growth characteristics and adaptive mechanisms of Leymus chinensis inresponse to sodic saline stress varying in degree Acta Pedologica Sinica, 2008,45(6):1203-1207. (in Chinese) [本文引用: 1]
KORANDAM, SCHNECKERJ, KAISERC, FUCHSLUEGERL, KITZLERB, STANGE CF, SESSITSCHA, ZECHMEISTER- BOLTENSTERNS, RICHTERA. Microbial processes and community composition in the rhizosphere of European beech-The influence of plant C exudates , 2011,43(3):551-558. [本文引用: 2]
COLLIGNONC, CALVARUSOC, TURPAULT MP. Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands. , 2011,349(1/2):355-366. [本文引用: 1]
COSTAR, GOTZM, MROTZEKN, LOTTMANNJ, BERGG, SMALLA1K. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds , 2006,56(2):236-249. [本文引用: 1]
CHAUDHARY DR, GAUTAM RK, YOUSUFB, MISHRAA, JHAB. Nutrients, microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes , 2015,91:16-26. [本文引用: 1]
YANG CW, SHI DC, WANG DL. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali- resistant halophyte Suaeda glauca (Bge.) , 2008,56(2):179-190. [本文引用: 1]
QADIRM, NOBLE AD, OSTER JD, SCHUBERTS, GHAFOORA. Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review , 2005,21(2):173-180. [本文引用: 2]
WANG SX, LIUW, LI PJ, WU HY. Advances of researches in plant-improvement of saline-alkaline soil Chinese Agricultural Science Bulletin, 2011,27(24):1-7. (in Chinese) [本文引用: 1]
ZHANG BT, WANG DL. A technique of rapidly restoring alkali-steppe with directly cultivating Leymus chinensis on the Songnen plains Journal of Northeast Normal University (Natural Science Edition), 2009,41(3):97-100. (in Chinese) [本文引用: 3]
ZHOUC. Study on divergent adaptative characteristics and evolutional mechanism of two ecotypes of Leymus chinensis in northeastern plain in China [D]. Changchun: Northeast Normal University, 2004. (in Chinese) [本文引用: 2]
ZHOUC, YANG YF. Water characteristics on salt-alkali resistance of two divergent types in experimental Leymus chinensis populations in the Songnen plain of China Acta Prataculturae Sinica, , 2003,12(1):65-68. (in Chinese) [本文引用: 1]
AUBREY DP, TESKEY RO. Stored root carbohydrates can maintain root respiration for extended periods , 2018,218:142-152. [本文引用: 1]
LIN QM, WU YG, LIU HL. Modification of fumigation extraction method for measuring soil microbial biomass carbon Chinese Journal of Ecology, 1999,18(2):63-66. (in Chinese) [本文引用: 1]
HOU JH, YUN JF, ZHANG DH. Studies on physiological indices of salt resistance among Leymus chinensis and Leymus cinereus with their hybrid Acta Prataculturae Sinica, 2005,14(1):73-77. (in Chinese) [本文引用: 2]
LOIK ME, NOBEL PS. Water relations and mucopolysaccharide increases for a winter hardy cactus during acclimation to subzero temperatures , 1991,88(3):340-346. [本文引用: 1]
HUJ, HOU XY, WANGZ, DINGY, LI XL, LIP, JIL. Effects of mowing and grazing on soil nutrients and soil microbes in rhizosphere and bulk soil of Stipa grandis in a typical steppe Chinese Journal of Applied Ecology, 2015,26(11):3482-3488. (in Chinese) [本文引用: 1]
MUNNSR. Comparative physiology of salt and water stress , 2002,25(2):239-250. [本文引用: 1]
BAUDOINE, BENIZRIE, GUCKERTA. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere , 2003,35(9):1183-1192. [本文引用: 1]
ZHANG XZ, LI TX, WANG YD. Relationship between growth environment and root exudates of plants: A review Chinese Journal of Soil Science, 2007,38(4):785-789. (in Chinese) [本文引用: 1]
MOMMERL, KIRKEGAARDJ, RUIJVEN JV. Root-root interactions: towards a rhizosphere framework , 2016,21(3):209-217. [本文引用: 2]
XU WL, LIUH, ZHANG YS. Characteristics of nitrogen mineralization and nitrificationin salinized soils of Xinjiang Journal of Northwest A & F University(Natural Science Edition), 2007,35(11):141-145. (in Chinese) [本文引用: 1]
XU YQ. The response of rhizosphere effect and photosynthetic physiology of gray green and yellow green ecotypes of Leymus chinensis to salt-alkaline stress [D]. Changchun: Northeast Normal University, 2019. (in Chinese) [本文引用: 2]
ZHU JW, ZHAOY, LI XL, CHEN WH. Effects of chlorimuron- ethyl on soil microorganisms and enzyme activities under moderate salt stress , 2018,27(4):2358-2365. [本文引用: 1]
LIN JX, WANG YN, SUN SN, MU CS, YAN XF. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of , 2017,576:234-241. [本文引用: 1]
HUANG LH, LIANG ZW, MA HY. Effects of saline-sodic stress on the photosynthesis rate, transpiration rate and water use efficiency of Leymus chinensis Acta Prataculturae Sinica, 2009,18(5):25-30. (in Chinese) [本文引用: 1]
ANJUM SA, NIU JH, WANGR, LI JH, LIU MR, SONG JX, LVJ, ZOHAIBA, WANG SG, ZONG XF. Regulation mechanism of exogenous 5-aminolevulinic acid on growth and physiological characters of Leymus chinensis (Trin.) under high temperature stress , 2016,99(3):253-259. [本文引用: 1]
YANG CW, CHONG JN, LI CY, KIM CM, SHI DC, WANG DL. Osmotic adjustment and ion balance traits of an alkali resistant halophyte , 2007,294(1/2):263-276. [本文引用: 1]
MUNNSR, GILLIHAMM. Salinity tolerance of crops - What is the cost , 2015,208(3):668-673. [本文引用: 1]
QURESHI MI, ABDIN MZ, AHMADJ, IQBALM. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.) , 2013,95(6):215-223. [本文引用: 1]