删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

喷嘴类型对植保无人飞机喷雾性能的影响

本站小编 Free考研考试/2021-12-26

贡常委1, 马钰1, 杨锐1, 阮彦伟1, 王学贵,1, 刘越21 四川农业大学农学院/无公害农药研究实验室/国家级作物学教学实验示范中心,成都 611130;
2 安阳全丰生物科技有限公司/农业农村部 航空植保重点实验室,河南安阳 455000

Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV)

GONG ChangWei1, MA Yu1, YANG Rui1, RUAN YanWei1, WANG XueGui,1, LIU Yue21 College of Agriculture, Sichuan Agricultural University/Biorational Pesticide Research Laboratory/National Demonstration Center for Experimental Crop Science Education, Chengdu 611130;
2 Anyang Quanfeng Biotechnology Co. Ltd./Key Laboratory of Aviation Plant Protection, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan

通讯作者: 王学贵,Tel:028-86290977;E-mail:wangxuegui@sicau.edu.cn

责任编辑: 岳梅
收稿日期:2019-11-22网络出版日期:2020-06-16
基金资助:国家重点研发计划.2018YFD0200300


Received:2019-11-22Online:2020-06-16
作者简介 About authors
贡常委,Tel:028-86290977;E-mail:youguqiu@163.com。








摘要
【目的】植保无人飞机具有喷雾效率高、适用性好、作物损伤小和操控人员安全系数高等特点,但飘移严重制约着其推广应用,喷嘴作为核心组件,是影响雾滴飘移的关键因素。本文旨在明确不同类型喷嘴对植保无人飞机喷雾的雾化性能及雾滴飘移的影响,为选择合适喷嘴提供理论依据。【方法】筛选20种常见的扇形、气吸型和圆锥形喷嘴,采用激光粒度仪系统测定并计算喷嘴的分布跨度、体积中径(D50)及尺寸<150 μm的雾滴占全部雾粒体积的百分比(ΦVol<150 μm)等表征雾化性能的参数,在开放式风洞中首先测定不同喷嘴在0.3 MPa下的流量,然后采用相片纸法和麦拉片法评价喷嘴型号对喷雾飘移和飘移沉积雾滴粒径特征的影响。【结果】在0.3 MPa喷雾压力下测定不同喷嘴雾化性能表明,在常规扇形喷嘴中,F110-01、F110-015、F110-02和F110-03随着型号的增加,分布跨度和D50显著增加,而ΦVol<150 μm显著减低,气吸型扇形喷嘴AFC-01—AFC-05和圆锥形喷嘴HCC80-0075—HCC80-025具有相同的规律,但相同型号的气吸型扇形喷嘴,ΦVol<150 μm均显著小于扇形喷嘴和圆锥形喷嘴,而分布跨度和D50均大于扇形喷嘴和圆锥形喷嘴;在气吸型扇形喷嘴中,AFC-01及IDK120-015分布跨度和D50显著小于其他类型;IDK120-015 ΦVol<150 μm极显著低于HCC80-02、F110-015和F110-03,分布跨度和D50显著高于HCC80-02和F110-015,HCC80-02的流量分别与IDK120-015、F110-015之间差异不显著,均显著低于F110-03。进一步采用麦拉片和相片纸法评价地面飘移沉积雾滴粒径特征和飘移量,喷嘴类型和飘移距离对飘移沉积雾滴D50和分布跨度的影响均达到极显著,飘移距离3 m的D50和分布跨度均显著低于1 m和2 m的,Depositscan软件计算预估飘移量的趋势和实测飘移量一致,均为HCC80-02>F110-015>F110-03>IDK120-015。计算不同喷嘴防飘移效果可知,IDK120-015的防飘移效果最好,达72.02%,F110-03次之,HCC80-02最差。【结论】麦拉片和相片纸均可收集地面飘移量作为评估雾滴飘移的方法;合理选择喷嘴可降低小雾滴的百分比和扩大相对雾滴粒径,显著减少植保无人飞机施药作业过程中的雾滴飘移。
关键词: 植保无人飞机;雾化性能;分布跨度;体积中径;喷嘴;地面飘移沉积量

Abstract
【Objective】 Plant protection unmanned aerial vehicle (UAV) has the characteristics of high spray efficiency, good applicability, small crop damage and high safety to the operator. However, drift seriously restricts its popularization and application. As the core component, the nozzle is a key factor affecting droplet drift. The objective of this study is to clarify the atomization performance of different types of nozzles and their effect on spray drift, and to provide theoretical basis for selecting suitable nozzles. 【Method】 In this paper, 20 kinds of common fan-shaped, air suction and conical nozzles were selected, and the distribution span, volume diameter (D50) and percentage of the total volume of fog particles smaller than 150 μm (ΦVol<150 μm) of different types of nozzles were detected by laser particle size analyzer. In an open wind tunnel, the flow rate of different nozzles at 0.3 MPa was firstly measured, then the influence of different types of nozzles on spray drift and particle size characteristics of deposition droplet was evaluated by photo paper and mylar card method. 【Result】 The atomization performance of different nozzles was measured under 0.3 MPa spray pressure. It showed that in common fan-shaped nozzle such as F110-01, F110-015, F110-02 and F110-03, the distribution span and D50 increased significantly with the increase of the model, while ΦVol<150 μm decreased significantly. The air fan nozzle from AFC-01 to AFC-05 and the conical nozzle from HCC80-0075 to HCC80-025 had the same rule. The ΦVol<150 μm of air fan nozzle with the same aperture was smaller than that of fan-shaped nozzle and conical nozzle, while the distribution span and D50 were larger than those of fan-shaped nozzle and conical nozzle. The distribution span and D50 of AFC-01 and IDK120-015 were significantly smaller than those of other types of air fan nozzle. The ΦVol<150 μm of IDK120-015 was significantly lower than that of HCC80-02, F110-015 and F110-03, while the distribution span and D50 were significantly higher than those of HCC80-02 and F110-015. There was no significant difference between the flow of HCC80-02 and IDK120-015, F110-015, which were all significantly lower than that of F110-03. Furthermore, the particle size characteristics and drift amount of drift deposition droplets on the ground were evaluated by using mylar card and photo paper. The effects of nozzle type and drift distance on the D50 and distribution span of drift deposition droplets were extremely significant. The D50 and distribution span of drift distance 3 m were significantly lower than those of 1 m and 2 m. The trend of predicted drift amount calculated by Depositscan software was consistent with the measured drift amount, both of which were HCC80-02>F110-015>F110-03>IDK120-015. After the calculation of anti-drift effect of different nozzles, IDK120-015 had the best anti-drift effect (72.02%), F110-03 was the second, and HCC80-02 was the worst. 【Conclusion】 It is a feasible method to evaluate the drift of droplets through mylar card and photo paper to collect the ground drift. The reasonable selection of nozzle can significantly reduce the percentage of small droplets and expand the relative droplet size, and result in the decreased droplets drift during the operation of UAV.
Keywords:plant protection unmanned aerial vehicle (UAV);atomization performance;distribution span;volume diameter (D50);nozzle;surface drift deposition


PDF (1803KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
贡常委, 马钰, 杨锐, 阮彦伟, 王学贵, 刘越. 喷嘴类型对植保无人飞机喷雾性能的影响[J]. 中国农业科学, 2020, 53(12): 2385-2398 doi:10.3864/j.issn.0578-1752.2020.12.007
GONG ChangWei, MA Yu, YANG Rui, RUAN YanWei, WANG XueGui, LIU Yue. Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV)[J]. Scientia Acricultura Sinica, 2020, 53(12): 2385-2398 doi:10.3864/j.issn.0578-1752.2020.12.007


0 引言

【研究意义】在农业生产过程中,相比于传统以手工及半机械化操作为主的植保作业手段,植保无人飞机具有喷洒效果好、喷雾效率高、适用性好、作物损伤小和操控人员安全系数高等特点[1],因此在作物病虫害防治中得到越来越多的应用;在美国,65%化学农药采用植保无人飞机完成喷施[2];日本植保无人飞机工作面积已达到96.3万公顷/年,占耕地面积的50%—60%[3];据农业农村部统计,全国在用的适用于不同施药条件的植保无人飞机已达178种,喷雾作业效率高达6 hm2·h-1,能满足防治各种作物病虫草害的需求[4],2017年我国植保无人飞机统防统治面积已经超过1亿亩次,航空植保服务飞速发展,但是配套植保无人飞机技术研发相对滞后[5,6]。由于植保无人飞机采用低空低量喷洒系统,雾滴在靶标区域的沉积量是评价其施药质量的重要指标,然而植保无人飞机在施药过程中的雾滴飘移严重影响了雾滴的有效沉积[7,8,9]。受空中作业条件与气流的影响,植保无人飞机相对于担架式喷雾机等地面植保机,作业过程中更易产生农药飘移[10],农药飘移不但会减少农药的有效利用率,同时飘移的农药对人员、临近作物和环境安全也造成威胁。随着民众环保意识的增强,控制农药飘移必然成为喷雾技术研发的热点[11]。通过评价适配植保无人飞机不同类型喷嘴喷雾的雾化性能及其对飘移沉积量的影响,筛选雾化性能和防飘移效果好的喷嘴,指导植保无人飞机配套喷嘴的田间选择与推广应用,对农药减施增效具有重要意义。【前人研究进展】根据雾化方式,喷嘴可分为扇形液力雾化喷嘴、锥形液力雾化喷嘴和旋转离心雾化喷嘴。锥形喷嘴喷雾粒径较小,不易堵塞,依据牛顿流体特性使液体沿切向进入喷嘴腔体并且再喷出圆环状雾滴,在压力较低情况也能产生良好的雾化效果[9];在植保无人飞机领域应用最为广泛的是扇形喷嘴,喷雾时能够产生冲击力较大扇面喷雾,横向沉积呈正态分布[12];根据喷雾原理,扇形喷嘴可以分常规扇形喷嘴、气吸型扇形喷嘴或防飘移喷嘴;气吸型扇形喷嘴基于文丘里效应,在喷嘴的侧向具有2个对称的入风口,使药液与空气充分混合,增大雾滴粒径,降低喷施过程中雾滴飘移的可能性,并且喷雾雾滴到达靶区后还能破裂成更小的雾滴,提升药液对靶标叶片的附着率[13,14];杨希娃等[15]评价了Lechler公司平面扇形喷嘴LU120-02、防飘移扇形喷嘴AD120-02和气吸型扇形喷嘴IDK120-02 3种扇形喷嘴喷雾性能,发现三者在0.3 MPa压力下,流量基本接近,而IDK120-02体积中径(D50)显著高于LU120-02和AD120-02;王潇楠等[16]研究发现ID、IDK等气吸式喷嘴飘移潜势显著小于常规喷嘴;谢晨等[17]利用雾滴粒径分析仪对标准扇形喷嘴(ST)与防飘移喷嘴(IDK)的雾化过程进行试验研究与可视化图形分析,结果表明IDK喷嘴液膜区面积相较于ST喷嘴小,无波纹区,但是具有气泡状结构;FLACK等[18]研究发现,相比于常规扇形喷嘴,使用气吸型喷嘴,当下风倾斜时,减小了39.0%的飘移;当上风倾斜时,减小了18.6%的飘移;无论风向如何,采用气吸型喷嘴(jap)能减小飘移。GARCERá等[19]比较了标准扇形喷嘴与防飘移喷嘴喷雾雾滴飘移沉积分布情况,发现标准扇形喷嘴的雾滴飘移量多于防飘移喷嘴,不同种类喷嘴在结构上微小的差异对雾滴雾化性能和飘移均有极大的影响,因此选择合适的喷嘴是提升喷施效果的关键因素之一。飘移雾滴收集法可分为地面飘移收集法和空中飘移收集法,地面飘移雾滴收集法主要使用培养皿、麦拉片、滤纸等接收雾滴[20],SMITH等[21]和HEIDARY等[22]采用麦拉片分别在田间和风洞中收集2、4、8、16和27.5 m处地面飘移沉积量,评价了D50、ΦVol<150 μm、风速、下风距离、喷嘴高度等参数对喷雾飘移的影响;张宋超等[23]使用聚酯卡和纸卡评价了N-3型无人直升机施药作业中地面雾滴飘移量,并根据流体力学对药液的雾滴飘移进行了模拟,结果表明计算流体力学能够定性地模拟实际飘移情况。【本研究切入点】喷嘴作为植保无人飞机的核心组件,是影响雾滴飘移的关键因素,良好的喷嘴性能提升雾滴雾化性能,提升药液的喷洒质量和防治效果。【拟解决的关键问题】对适配于植保无人飞机不同型号喷嘴喷雾雾滴性能参数进行比较,筛选出ΦVol<150 μm、分布跨度小及粒径大小适中的喷嘴,然后在风洞中采用麦拉片收集法和相片纸法评价不同性能参数喷嘴地面飘移沉积量,明确喷嘴雾化性能和飘移沉积之间的关系,为田间植保无人飞机防控病虫草害选择配套喷嘴,并为植保无人飞机选择合适配套植保技术提供理论依据。

1 材料与方法

试验于2019年在河南省安阳市安阳全丰生物科技有限公司农业农村部航空植保重点实验室完成。

1.1 试验材料和测试平台

本研究测试的喷嘴包括:LICHENG公司生产的气吸型扇形喷嘴KZ80-12、KZ80-16、KZ80-08;LECHLER公司生产的气吸型扇形喷嘴IDK120-015、IDK120-03;HYPPO公司生产的空心扇形喷嘴F110-01、F110-015、F110-02、F110-03、ULD120-02、GAT110-03;ARAG公司生产的陶瓷空心锥形喷嘴HCC80-0075、HCC80-01、HCC80-015、HCC80-02、HCC80-025,气吸型扇形喷嘴AFC-05、AFC-02、AFC-01、AFC-015。

采用安阳全丰航空植保科技股份有限公司雾滴测试平台分析供试喷嘴雾化性能。该测试平台包括喷雾系统、粒径测试系统,喷雾系统实现药液在不同工作压力下的供给和喷洒;粒径测试系统由激光粒度仪采集系统(DP-2,珠海欧美克仪器有限公司)和计算机组成。

试验试剂:诱惑红(上海源叶生物科技有限公司)。配制质量体积比为5 g·L-1的诱惑红示踪剂水溶液[24]

1.2 方法

1.2.1 不同喷嘴雾化性能比较 喷嘴应垂直安装在测试区激光束上方,喷嘴距测试区激光束的距离为 2 m,喷雾压力为0.3 MPa;选用的试液为去离子水,测量不同喷嘴的雾滴粒径分布。用表格或曲线图表示雾滴粒径分布状况,并记录与累计体积10%、50%和90%相对应的雾滴粒径数值。

1.2.2 不同喷嘴对飘移的影响 飘移试验在安阳全丰生物科技有限公司农业农村部航空植保重点实验室构建风洞中进行,喷雾测试环境温度为28—30℃,相对湿度为70%—80%。喷雾高度为0.9 m,风向垂直于扇形雾面。在离喷嘴下风向1、2和3 m处,垂直于气流方向的平面内布置雾滴收集器,收集飘移雾滴,雾滴收集采用麦拉片(5 cm×8 cm)和相片纸,水平间距0.3 m。测试前首先按照ISO22369-2-2010测试规程及依据调节喷雾参数,试验装置如图1所示。

图1

新窗口打开|下载原图ZIP|生成PPT
图1开放式风洞示意图

长7.5 m,宽、高各1 m的方形风洞,进风一头由梳风栅引导风向,另一头有一个直径为0.9 m的轴流式风扇,该风扇可在工作空间内形成稳定的单向0—8 m·s-1无级调节的风
风速由风速仪测定后,在微机的屏幕上显示风速值
Fig. 1Schematic diagram of open wind tunnel

A square wind tunnel with a length of 7.5 m, a width of 1 m and a height of 1 m. One end of the air inlet is guided by the comb grid, and the other end has an axial-flow fan with a diameter of 0.9 m. The fan can form a stable one-way 0-8 m·s-1 stepless adjustable wind speed in the working space
After the wind speed is measured by anemometer, the wind speed value will be displayed on the screen of microcomputer


选用不同雾化性能的喷嘴在风洞中测量2 m·s-1风速和0.3 Mpa压力下的地面飘移沉积量和雾化性能,每个处理设置3次重复。每个重复喷雾试验后,待麦拉片和相片纸上的雾滴晾干后,戴一次性手套,收取,并做好标记,放入黑色自封袋,置于阴凉避光处。

1.2.3 地面沉积雾滴雾化性能测定 用扫描仪(EPSON,V600)扫描每个处理的相片纸,并做好标记;然后用雾滴分析软件Depositscan分析飘移沉积雾滴粒径和密度[25]

1.2.4 地面飘移沉积量测定 准确称取诱惑红0.200 g于100 mL容量瓶,去离子水定容,即得200 mg·L-1诱惑红母液,逐步梯度稀释为133.33、88.88、59.26、39.51、26.34、17.56 mg·L-1诱惑红标准溶液,而后用酶标仪(美谷分子仪器(上海)有限公司,型号CMax Plus)于514 nm检测其吸光值,获取诱惑红标准曲线(y=39.906x-2.7352,R2=0.9996)。

用5 mL去离子水经超声波洗脱器洗脱麦拉片上的诱惑红,用酶标仪于514 nm检测其吸光值,根据诱惑红标样的“浓度-吸光值”标准曲线可计算出洗脱液中诱惑红的沉积量,实现精确测定药液在单位面积上的沉积[21,22]

1.3 数据处理

1.3.1 喷嘴雾化性能参数 雾滴累计分布为10%的雾滴直径D10,即小于此雾滴直径的雾粒体积占全部雾粒体积的10%;雾滴累计分布为50%的雾滴直径D50,即小于此雾滴直径的雾粒体积占全部雾粒体积50%,也称为体积中径。雾滴累计分布为90%的雾滴直径D90;分布跨度S是雾滴粒径分布宽度的一种度量,S=(D90-D10)/D50;尺寸<150 μm的雾滴占全部雾粒体积的百分比ΦVol<150 μm[26]

1.3.2 飘移量百分比和防飘移效果 参考行业标准《MH_T1050-2012飞机喷雾飘移现场测量方法》和卢佳节[27]论文中关于飘移率的公式,试验飘移沉积量百分比pv和防飘移效果RT的计算公式:

飘移沉积量百分比pv(%)=(ρ1×V1)/(t×V2×ρ2)×100

$防飘移效果RT(\%)=\frac{\sum(pvC×漂移距离)- \sum(pvT×漂移距离)}{\sum(pvC×漂移距离)} ×100$

ρ1:飘移沉积后的诱惑红浓度(酶标仪测得);V1:溶解卡片的纯净水体积;t:喷雾时间;V2:喷嘴流量;ρ2:药液诱惑红浓度(酶标仪测得);pvC:喷嘴F110-015在不同飘移距离飘移量百分比;pvT:待试喷嘴在不同飘移距离的飘移量百分比。

2 结果

2.1 不同喷嘴雾滴粒径分布

在常规扇形喷嘴中,F110-01、F110-015和F110-02之间分布跨度差异不显著,在1.012—1.063,但极显著小于F110-03(2.946)的;双向3D扇形喷嘴GAT110-03分布跨度(2.692)也显著小于F110-03的。在气吸型扇形喷嘴中,AFC-01—AFC-05随着型号的增大,分布跨度显著增加,在1.556—2.923,而国产KZ80-08—KZ80-16随着喷嘴型号增加,分布跨度增加,在1.860—2.290;在圆锥形喷嘴中,HCC80-0075—HCC80-025随着型号的增加,分布跨度逐渐增加,在0.760—1.383,HCC80-0075显著低于其他类型喷嘴(表1)。综合来看,不同类型喷嘴之间喷雾雾滴的分布跨度差异较大,相同型号气吸型扇形喷嘴的分布跨度均大于扇形喷嘴和圆锥形喷嘴。

Table 1
表1
表1不同类型喷嘴在0.3 MPa喷雾雾滴分布跨度
Table 1The spray droplet distribution span of different types of nozzles at 0.3 MPa
喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE
95%置信区间95% Confidence interval差异显著性Significance
下限Lower上限Upper0.050.01
常规扇形喷嘴
Fan-shaped
F110-01110°






1.012±0.0080.9781.046lL
F110-0151.046±0.0071.0151.076klL
F110-021.063±0.0011.0581.069klKL
F110-032.946±0.0162.8783.014aA
双向3D扇形喷嘴3D-fan-shapedGAT110-032.692±0.0352.5392.844bB
气吸型扇形喷嘴
Air fan nozzle
AFC-011.556±0.0051.5341.578gG
AFC-0151.878±0.0091.8401.916fEF
AFC-022.522±0.0172.4482.597cC
AFC-052.923±0.0442.7353.111aA
KZ80-082.290±0.0212.0212.560dD
KZ80-121.905±0.0101.8621.948efEF
KZ80-161.860±0.0161.7911.928fF
气吸型扇形喷嘴
Air fan nozzle
IDK120-015120°1.425±0.0031.4101.440hH
IDK120-031.958±0.0071.9291.987eE
常规扇形喷嘴Fan-shapedULD120-021.142±0.0041.1251.159jJK
圆锥形喷嘴
Conical nozzle
HCC80-007580°0.760±0.0450.5680.953mN
HCC80-011.079±0.0091.0391.119kKL
HCC80-0151.170±0.0291.0471.293jJ
HCC80-021.297±0.0241.1941.400iI
HCC80-0251.383±0.0091.3441.422hH

新窗口打开|下载CSV

在常规扇形喷嘴中,F110-01、F110-015、F110-02和F110-03之间ΦVol<150 μm差异显著,随着型号的增加,ΦVol<150 μm显著减低,在25.910%—65.357%;双向3D扇形喷嘴GAT110-03 ΦVol<150 μm(14.633%)显著小于F110-03的。在气吸型扇形喷嘴中,AFC-01—AFC-05随着型号的增大,ΦVol<150 μm减低,在8.010%—15.720%,而国产KZ80-08—KZ80-16随着喷嘴增加,ΦVol<150 μm变化规律不明显,在10.317%—15.203%,IDK120-015、AFC-02、IDK120-03和AFC-05极显著低于其他类型喷嘴,ΦVol<150 μm在10%以下;在圆锥形喷嘴中,HCC80-0075—HCC80-025随着型号的增加,ΦVol<150 μm逐渐减低,在30.740%—63.570%(表2)。综合来看,不同类型喷嘴之间喷雾雾滴的ΦVol<150 μm差异较大,相同型号的气吸型扇形喷嘴均小于扇形喷嘴和圆锥形喷嘴,而相同类型的喷嘴,型号大的喷嘴小于型号小的喷嘴。

Table 2
表2
表2不同类型喷嘴在0.3 MPa喷雾雾滴ΦVol<150μm
Table 2The spray droplet ΦVol<150 μm of different types of nozzles at 0.3 MPa
喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE (%)
95%置信区间95% Confidence interval差异显著性Significance
下限Lower上限Upper0.050.01
常规扇形喷嘴
Fan-shaped
F110-01110°65.357±0.47663.30867.405aA
F110-01548.993±0.29247.73850.248dC
F110-0241.633±0.03541.48241.785eD
F110-0325.910±0.28924.66827.152gF
双向3D扇形喷嘴
3D-fan-shaped
GAT110-0314.633±0.09814.21315.054hG
气吸型扇形喷嘴
Air fan nozzle
AFC-0115.720±0.11015.24716.193hG
AFC-01515.107±0.10514.65415.560hG
AFC-028.010±0.0957.6008.420klI
AFC-057.740±0.0067.7157.765lI
KZ80-0811.337±0.06811.04211.631iH
KZ80-1215.203±0.08414.84315.564hG
KZ80-1610.317±0.1039.87510.758ijH
气吸型扇形喷嘴
Air fan nozzle
IDK120-015120°9.447±0.0739.1329.761jkHI
IDK120-037.527±0.1246.9918.062lI
常规扇形喷嘴
Fan-shaped
ULD120-0247.973±0.17847.20648.741dC
圆锥形喷嘴
Conical nozzle
HCC80-007580°63.570±0.55761.17265.968bA
HCC80-0151.773±1.92743.48360.064cB
HCC80-01548.647±0.67345.75151.543dC
HCC80-0242.327±0.49140.21544.438eD
HCC80-02530.740±1.02726.32335.157fE

新窗口打开|下载CSV

在常规扇形喷嘴中,F110-01、F110-015、F110-02和F110-03之间D50差异显著,随着型号的增加,D50显著增加,在125.807—214.587 μm;双向3D扇形喷嘴GAT110-03 D50(301.163 μm)显著大于F110-03;在气吸型扇形喷嘴中,AFC-01—AFC-05随着型号的增大,D50显著增加,在271.560—414.727 μm,国产KZ80-08—KZ80-16随着喷嘴型号增加,D50先减小后增大,在272.733—354.593 μm,IDK120-015 D50为346.990 μm,显著低于IDK120-03;在圆锥形喷嘴中,HCC80-0075—HCC80-025随着型号的增加,D50显著增加,在128.590—169.953 μm(表3)。综合来看,不同类型喷嘴之间喷雾雾滴的D50差异较大,相同型号的气吸型扇形喷嘴均大于扇形喷嘴和圆锥形喷嘴,而相同类型的喷嘴,型号大的喷嘴大于型号小的喷嘴。

Table 3
表3
表3不同类型喷嘴在0.3 MPa喷雾雾滴体积中径
Table 3The spray droplet D50 of different types of nozzles at 0.3 MPa
喷嘴类型
Nozzle type
喷射角
Spray angle
均值±标准误
Mean±SE (μm)
95%置信区间95% Confidence interval差异显著性Significance
下限Lower上限Upper0.050.01
常规扇形喷嘴
Fan-shaped
F110-01110°125.807±0.833122.223129.390nN
F110-015149.363±0.538147.049151.678lLM
F110-02162.290±0.050162.073162.507kK
F110-03214.587±1.217209.350219.823iI
双向3D扇形喷嘴
3D-fan-shaped
GAT110-03301.163±0.810297.679304.648gG
气吸型扇形喷嘴
Air fan nozzle
AFC-01271.560±1.020267.171275.949hH
AFC-015274.507±0.870270.762278.252hH
AFC-02379.917±1.010375.572384.262cC
AFC-05414.727±0.807411.256418.198aA
KZ80-08326.770±1.329321.052332.488fF
KZ80-12272.733±0.602270.145275.322hH
KZ80-16354.593±1.356348.758360.429dD
气吸型扇形喷嘴
Air fan nozzle
IDK120-015120°346.990±1.080342.343351.637eE
IDK120-03386.517±3.247372.545400.488bB
常规扇形喷嘴
Fan-shaped
ULD120-02151.433±0.342149.963152.903lL
圆锥形喷嘴
Conical nozzle
HCC80-007580°128.590±0.944124.526132.654nN
HCC80-01144.563±3.278130.460158.666mM
HCC80-015150.233±1.303144.627155.840lL
HCC80-02163.640±1.223158.380168.900kK
HCC80-025169.953±0.235168.944170.963jJ

新窗口打开|下载CSV

2.2 不同类型喷嘴流量的比较

在2 m·s-1的风速和0.3 MPa的压力下,圆锥形喷嘴HCC80-02分别与气吸型扇形喷嘴IDK120-015、常规扇形喷嘴F110-015之间差异不显著,流量在36.60—43.76 mL·s-1,三者均显著低于F110-03(55.10 mL·s-1)(图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同类型喷嘴在0.3 MPa的流量统计

柱上标有相同字母表示差异不显著(P>0.05,ANOVA)。图4同
Fig. 2Flow statistics of different types of nozzles at 0.3 MPa

The same letters on the bars indicate no significant difference (P>0.05, ANOVA). The same as Fig. 4


2.3 不同喷嘴在不同距离飘移沉积规律

扫描相片纸(图3)后对不同喷嘴在不同距离飘移沉积的雾滴粒径进行了测试,方差分析结果见表4表5。结果表明,单因素之间:不同类型喷嘴(处理A)的体积中径D50之间差异极显著(F=14.578,df=3,P<0.01),其中IDK120-015(298.67 μm)处理D50显著低于F110-015(408.22 μm)和HCC80-02(715.44 μm)的,但IDK120-015与F110-03之间差异不显著;不同飘移距离(处理B)之间差异极显著(F=27.723,df=2,P<0.01),其中3 m(243.67 μm)的D50极显著低于1 m(651.33 μm)及2 m(542.00 μm)处理,而1 m与2 m间差异不显著。多因素之间,A因素与B因素互作,差异极显著(A×B×,F=4.000,df=6,P<0.01)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3不同喷嘴类型在不同飘移距离的沉积雾滴性能参数

A: IDK120-015; B: F110-03; C: F110-015; D: HCC80-02
1和4、2和5、3和6分别为采样点1 m、2 m、3 m的雾滴飘移粒径分布1 and 4, 2 and 5, 3 and 6 stand for the droplet drift particle size distribution at sampling points of 1 m, 2 m and 3 m, respectively
Fig. 3Performance parameters of deposition droplets of different nozzle types at different drift distances



Table 4
表4
表4雾滴粒径体积中径多重比较
Table 4Multiple comparison of D50 of droplet granule
处理
Treatment (A)
体积中径
D50 (μm)
标准差
Standard deviation
差异显著性
Significance
处理
Treatment (B)
体积中径
D50 (μm)
标准差
Standard deviation
差异显著性
Significance
IDK120-015298.67121.14cC1 m651.33229.80aA
F110-015408.22243.36bB2 m542.00323.19aA
F110-03493.67247.85bcBC3 m243.6758.83bB
HCC80-02715.44337.47aA

新窗口打开|下载CSV

Table 5
表5
表5雾滴粒径体积中径方差分析
Table 5Variance analysis of D50 of droplet granule
变异来源Source of variation平方和Sum of squares自由度Freedom均方Mean squareF值F valuePP value
区组Area group2373967.3311215815.2111.1980
842856.223280952.0714.5780
1068594.672534297.3327.7230
A×B×462516.44677086.074.0000.006
误差Error462548.672419272.86
总和Sum of error11096392.0036

新窗口打开|下载CSV

扫描相片纸(图3)后对不同喷嘴在不同距离飘移沉积的雾滴粒径分布跨度进行了测试,方差分析结果见表6表7。结果表明,单因素之间:不同类型喷嘴(处理A)的分布跨度(S)之间差异极显著(F=7.414,df=3,P<0.01),其中IDK120-015处理的S(0.74)显著低于F110-015(1.10)、F110-03(1.01)和HCC80-02(1.13),但F110-015、F110-03与HCC80-02之间差异不显著;不同飘移距离(处理B)之间差异极显著(F=6.494,df=2,P<0.01),其中3 m(0.83)的S极显著低于1 m(1.12)及2 m(1.04)处理,而1 m与2 m间差异不显著。多因素之间,A因素与B因素互作,差异显著(A×B×,F=3.377,df=6,P<0.05)。

Table 6
表6
表6雾滴粒径分布跨度多重比较
Table 6Multiple comparison of span distribution of droplet granule
处理
Treatment (A)
分布跨度
Span distribution
标准差
Standard deviation
差异显著性
Significance
处理
Treatment (B)
分布跨度
Span distribution
标准差
Standard deviation
差异显著性
Significance
IDK120-0150.740.39bB1 m1.120.24aA
F110-0151.100.17aA2 m1.040.36aA
F110-031.010.21aA3 m0.830.22bB
HCC80-021.130.23aA

新窗口打开|下载CSV

Table 7
表7
表7雾滴粒径分布跨度方差分析
Table 7Variance analysis of span distribution of droplet granule
变异来源Source of variation平方和Sum of squares自由度Freedom均方Mean squareF值F valuePP value
区组Area group2.16110.205.0440
0.8730.297.4140.001
0.5120.256.4940.006
A×B×0.7960.133.3770.015
误差Error38.82360.04
总和Sum of error38.8236

新窗口打开|下载CSV

扫描相片纸(图3)后使用Depositscan软件对不同喷嘴在不同距离的飘移沉积量进行了估测,方差分析结果见表8表9。结果表明,单因素之间:不同类型喷嘴(处理A)的预估飘移沉积量之间差异极显著(F=17.673,df=3,P<0.01),其中IDK120-015(0.56 μL·cm-2)处理预估飘移沉积量显著低于F110-015(2.27 μL·cm-2)、HCC80-02(3.60 μL·cm-2)和F110-03(1.94 μL·cm-2)的,但F110-03与F110-015之间差异不显著;不同飘移距离(处理B)之间差异极显著(F=20.445,df=2,P<0.01),其中3 m(0.75 μL·cm-2)的预估飘移沉积量显著低于1 m(2.79 μL·cm-2)及2 m(2.73 μL·cm-2)处理,差异极显著,而1 m与2 m间差异不显著。多因素之间,A因素与B因素互作,差异极显著(A×B×,F=5.255,df=6,P<0.01)。

Table 8
表8
表8预估飘移沉积量多重比较
Table 8Multiple comparison of estimated drift deposition
处理
Treatment (A)
飘移量
Drift deposition (μL·cm-2)
标准差
Standard
deviation
差异显著性
Significance
处理
Treatment (B)
飘移量
Drift deposition (μL·cm-2)
标准差
Standard
deviation
差异显著性
Significance
IDK120-0150.560.49cC1 m2.791.60aA
F110-0152.271.60bB2 m2.732.25aA
F110-031.941.60bB3 m0.750.49bB
HCC80-023.602.06aA

新窗口打开|下载CSV

Table 9
表9
表9预估飘移沉积量方差分析
Table 9Variance analysis of estimated drift deposition
变异来源Source of variation平方和Sum of squares自由度Freedom均方Mean squareF值F valuePP value
区组Area group99.70119.0611.4040
42.14314.0517.6730
32.50216.2520.4450
A×B×25.0664.185.2550.001
误差Error19.07240.79
总和Sum of error276.2636

新窗口打开|下载CSV

2.4 不同喷嘴飘移沉积量百分比的测定

洗脱麦拉片后,测定了不同喷嘴在不同距离飘移沉积量,并根据1.3.2公式计算各处理的飘移沉积量百分比,方差分析结果见表10表11。结果表明,单因素之间:不同类型喷嘴(处理A)飘移沉积量百分比之间差异极显著(F=272.477,df=3,P<0.01),其中IDK120-015(0.030%)处理飘移沉积量百分比显著低于F110-015(0.124%)和HCC80-02(0.174%)及F110-03(0.063%)的;不同飘移距离(处理B)之间差异极显著(F=247.818,df=2,P<0.01),其中3 m(0.047%)的飘移沉积量百分比显著低于1 m(0.153%)及2 m(0.094%)处理。多因素之间,A因素与B因素互作,差异极显著(A×B×,F=23.153,df=6,P<0.01)。

Table 10
表10
表10飘移沉积量百分比多重比较
Table 10Multiple comparison of drift deposition percentage
处理
Treatment (A)
飘移沉积量百分比
Percentage of drift deposition (%)
标准差
Standard
deviation
差异显著性
Significance
处理
Treatment (B)
飘移沉积量百分比
Percentage of drift deposition (%)
标准差
Standard
deviation
差异显著性
Significance
IDK120-0150.0300.019dD1 m0.1530.090aA
F110-0150.1240.053bB2 m0.0940.055bB
F110-030.0630.033cC3 m0.0470.032cC
HCC80-020.1740.083aA

新窗口打开|下载CSV

Table 11
表11
表11飘移沉积量百分比方差分析
Table 11Variance analysis of drift deposition percentage
变异来源Source of variation平方和Sum of squares自由度Freedom均方Mean squareF值F valuePP value
区组Area group0.197110.018131.9990
0.11130.037272.4770
0.06720.034247.8180
A×B×0.01960.00323.1530
误差Error0.003240.000
总和Sum of Error0.54436

新窗口打开|下载CSV

2.5 不同喷嘴防飘移效果

洗脱麦拉片后,测定了不同喷嘴在不同距离飘移沉积量,并计算出各处理的防飘移效果。气吸型扇形喷嘴IDK120-015的防飘移效果最好,常规扇形喷嘴F110-03次之,圆锥形喷嘴HCC80-02最差,RT值在-37.313%(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同喷嘴防飘移效果比较

Fig. 4Comparison of anti-drift effect of different nozzles



3 讨论

3.1 不同类型喷嘴雾化性能的比较

不同类型喷嘴雾化性能参数差异较大,而雾化性能的选择是影响施药效果的重要因素[26,28]。唐青等[29]采用马尔文Spraytec喷雾粒度仪,比较在高速气流下标准扇形喷嘴LU120-03和气吸型喷嘴IDK120-03雾化性能时发现,随风速增大LU120-03 D50从210 μm逐渐减至130 μm,其雾滴粒径分布跨度逐渐从1.3增至1.5,而IDK120-03气吸型喷嘴D50变化较小;FRITZ等[30]基于美国农业部农业航空研究中心的航空施药风洞USDA-ARS high speed wind tunnel开展了CP系列喷嘴的雾滴粒径分布规律研究,更新了USDA-ARS aerial spray nozzle模型,探究了喷嘴孔径与喷雾雾滴粒径D10、D50及D90之间的关系,发现模型与实测数据具有较高的拟合度;MARTIN等[31]也利用该风洞对静电喷雾雾滴分布规律进行了研究,发现不同类型喷嘴的D10和D50等雾化性能指标之间的差异存在一定的规律;本研究发现不同类型喷嘴之间雾滴的分布跨度、ΦVol<150 μm和D50差异较大,气吸型喷嘴AFC-02、IDK120-015、IDK120-03和AFC-05 ΦVol<150 μm在10%以下,显著小于其他类型喷嘴,但AFC-02、IDK120-03和AFC-05的D50在240 μm以上,喷嘴AFC-01及IDK120-015分布跨度显著小于其他类型气吸型扇形喷嘴,与杨希娃等[15]和王潇楠等[16]结果一致。

3.2 喷雾性能参数对飘移的影响

在一定雾滴粒径范围内,小雾滴所占总量的体积百分比和雾滴粒径显著影响雾滴的飘移量,雾滴粒径D50增大,ΦVol<150 μm减小,喷嘴飘移潜势(DIX)越小,防飘移作用越明显[26];这是因为雾滴飘移与雾滴大小和运动速度等因素的关系密不可分。LAD等[32]测试了3种扇形雾喷嘴的雾滴谱和雾滴运动速度,并根据能量平衡原理建立了雾滴大小-速度关系式,试验结果和预测值拟合度很高;曾爱军等[33]在风洞中测试了5种典型液力式喷嘴的雾滴飘移特性,结果表明雾滴大小是影响雾滴飘移最主要因素之一,在不同风洞环境条件下,小型号喷嘴Lechler110-015的飘移性都要远大于喷嘴Lechler110-03。本研究同样发现无论哪种喷嘴飘移距离3 m的雾滴D10、D50、D90均显著小于1 m,F110-03的飘移量显著小于F110-015,与吴罗罗等[34]结果一致,但本文也发现粒径相近的圆锥形喷嘴HCC80-02飘移量和抗飘移能力远远小于F110-015等,该结果与王潇楠等[35]测定的结果DIX不一致,可能与本试验收集的为地面飘移量,而王潇楠等[35]收集的为空中飘移量有关。

3.3 气吸型喷嘴对飘移的影响

减少飘移的主要途径是消除一些喷雾产生的小水滴,因为这些小水滴会在风中偏离目标,通常使用如气吸型喷嘴或添加防飘移助剂等减少飘移[36]。气吸型喷嘴主要利用射流技术将空气和水在喷嘴内部混合形成二相流,然后通过喷嘴喷射出带有气泡的大雾滴,从而降低了易飘移小雾滴的量,达到了减少雾滴飘移的目的。近年来美国Lurmark、德国Lechler等公司设计并制造了ID/IDK/IDKT等气吸型喷嘴,雾滴覆盖较为均匀并且雾滴飘移量低,在3—4级风下防飘移效果可达到95%以上,5级风防飘移效果仍可达到70%以上[25]。施药过程中,合理使用助剂亦有助于减少药剂的飘移,如JúNIOR等[37]报道了一种利用气吸型喷嘴和助剂LI-700相结合可减少2,4-D在提高番茄坐果率过程中的飘移;FRANCA等[38]利用开方式风洞评价了气吸型喷嘴和常规喷嘴在加入或不加入矿物油条件下的雾滴粒径、速度和飘移潜在指数等指标,发现气吸型喷嘴产生较大粒径的雾滴(D50,198.26 μm),但不影响速度,从而降低了飘移潜在指数。本研究发现气吸型喷嘴具有较大的D50和较小的ΦVol<150 μm,从而减少了飘移量,增加了喷嘴的防飘移效果。

虽然粗雾滴可以显著减少飘移,但与粒径较细雾滴相比,它们会减少靶标作物单位面积上的沉积雾滴数量,理论上会降低防治效果,而在施药量一定的情况下,雾滴粒径与雾滴密度、农药防治效果均显著相关[39]。对于杀虫剂,AKESSON等[40]首先确定了最适雾滴粒径范围是200—400 μm,高浓度低雾滴密度的啶虫脒,仍能达到较高的防治效果[41],FORNASIERO等[42]比较了常规喷嘴(D50,150 μm)、防飘移喷嘴(D50,400 μm)和常规喷嘴添加防飘移助剂菜籽油(D50,450 μm)喷施毒死蜱、甲基毒死蜱、甲氧虫酰肼和乙基多杀菌素防控苹果蠹蛾及葡萄花翅小卷蛾的效果和飘移潜势,发现相比于常规喷嘴,防飘移喷嘴或添加防飘移助剂可以有效控制害虫并减小飘移潜势;对于除草剂,DOUGLAS[43]探究了不同雾滴粒径百草枯和敌草快的除草效果,发现除草剂的雾滴粒径在250 μm以上时,除草效果随着雾滴粒径的增加而增加,而当雾滴粒径>1 000 μm时,效果则会明显降低,最适雾滴粒径为400—500 μm;FENG等[44]发现粗粒径的草甘膦雾滴在玉米中的滞留量略有减少,但吸收增加,导致草甘膦向生长中的作物组织的转运能力增加。因此,在相同的操作参数下,与常规喷嘴相比,气吸型喷嘴或添加防飘移助剂产生D50 300—500 μm的粗雾滴,能够显著减低飘移潜势而不降低农药的防治效果[42]。笔者课题组将在植保无人飞机实际操作中,进一步筛选防飘移助剂,设计不同操作压力和施药量对不同喷嘴的防飘移性能等研究,协同气吸型喷嘴IDK120-015提升植保无人飞机在防控病虫草害中的防飘移能力、有效沉积率及防控效果,最终达到农药减量增效。

4 结论

综合麦拉片地面收集和相片纸收集结果,可知相片纸可作为评估雾滴飘移的方法,尤其适用于评价雾滴大小和飘移之间的关系;而气吸型喷嘴IDK120-015可显著减少植保无人飞机施药作业过程中的雾滴飘移,通过降低小雾滴的百分比和扩大相对雾滴粒径对降低雾滴飘移率有明显作用。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

娄尚易, 薛新宇, 顾伟, 崔龙飞, 周晴晴, 王昕. 农用植保无人机的研究现状及趋势
农机化研究, 2017,39(12):1-6, 31.

[本文引用: 1]

LOU S Y, XUE X Y, GU W, CUI L F, ZHOU Q Q, WANG X. Current status and trends of agricultural plant protection unmanned aerial vehicle
Journal of Agricultural Mechanization Research, 2017,39(12):1-6, 31. (in Chinese)

[本文引用: 1]

王玲, 兰玉彬, HOFFMANN W, KFRITZ B, 陈度, 王书茂. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究
农业机械学报, 2016,47(1):15-22.

[本文引用: 1]

WANG L, LAN Y B, HOFFMANN W, KFRITZ B, CHEN D, WANG S M. Design of variable spraying system and influencing factors on droplets deposition of small UAV
Transactions of the Chinese Society for Agricultural Machinery, 2016,47(1):15-22. (in Chinese)

[本文引用: 1]

亓文哲, 王菲菲, 孟臻, 张典利, 王红艳, 王开运, 乔康. 我国植保无人机应用现状
农药, 2018,57(4):247-254.

[本文引用: 1]

QI W Z, WANG F F, MENG Z, ZHANG D L, WANG H Y, WANG K Y, QIAO K. Application status of unmanned aerial vehicle for plant protection in China
Agrochemicals, 2018,57(4):247-254. (in Chinese)

[本文引用: 1]

王昌陵, 何雄奎, 王潇楠, 王志翀, 王士林, 李龙龙, BONDS J, HERBST A, 王志国, 梅水发. 基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试
农业工程学报, 2016,32(24):89-97.

[本文引用: 1]

WANG C L, HE X K, WANG X N, WANG Z C, WANG S L, LI L L, BONDS J, HERBST A, WANG Z G, MEI S F. Distribution characteristics of pesticide application droplets deposition of unmanned aerial vehicle based on testing method of spatial quality balance
Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):89-97. (in Chinese)

[本文引用: 1]

航空植保年作业面积超1.4亿亩次
农药, 2018,57(8):616.

[本文引用: 1]

The annual operating area of aviation plant protection exceeds 140 million mu
Agrochemicals, 2018,57(8):616. (in Chinese)

[本文引用: 1]

刘鹤. 农用植保无人机的研究现状及趋势
农业与技术, 2019,39(5):54-55.

[本文引用: 1]

LIU H. Current status and trends of agricultural plant protection unmanned aerial vehicle
Agriculture and Technology, 2019,39(5):54-55. (in Chinese)

[本文引用: 1]

范庆妮. 小型无人直升机农药雾化系统的研究
[D]. 南京: 南京林业大学, 2011.

[本文引用: 1]

FAN Q N. The research on the pesticide spray system using for the mini unmanned helicopter
[D]. Nanjing: Nanjing Forestry University, 2011. (in Chinese)

[本文引用: 1]

文晟, 兰玉彬, 张建桃, 李晟华, 张海艳, 邢航. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验
农业工程学报, 2016,32(20):85-93.

[本文引用: 1]

WEN S, LAN Y B, ZHANG J T, LI S H, ZHANG H Y, XING H. Analysis and experiment on atomization characteristics of ultra-low- volume swirl nozzle for agricultural unmanned aviation vehicle
Transactions of the Chinese Society of Agricultural Engineering, 2016,32(20):85-93. (in Chinese)

[本文引用: 1]

何勇, 肖舒裴, 方慧, 董涛, 唐宇, 聂鹏程, 吴剑坚, 骆少明. 植保无人机施药喷嘴的发展现状及其施药决策
农业工程学报, 2018,34(13):113-124.

[本文引用: 2]

HE Y, XIAO S P, FANG H, DONG T, TANG Y, NIE P C, WU J J, LUO S M. Development situation and spraying decision of spray nozzle for plant protection UAV
Transactions of the Chinese Society of Agricultural Engineering, 2018,34(13):113-124. (in Chinese)

[本文引用: 2]

ANTUNIASSI U R, CARBONARI C A, VELINI E D, OLIVEIRA R B, OLIVEIRA M A, MOTA A A. Spray drift from aerial application on sugarcane in Brazil
Phytopathology, 2011,101(6):8.

[本文引用: 1]

周晴晴, 薛新宇, 钱生越, 秦维彩. 航空喷嘴的使用现状及研究方向
中国农机化学报, 2016,37(10):234-237.

[本文引用: 1]

ZHOU Q Q, XUE X Y, QIAN S Y, QIN W C. Application status and research direction of nozzles in aviation spray
Journal of Chinese Agricultural Mechanization, 2016,37(10):234-237. (in Chinese)

[本文引用: 1]

张慧春, GARY D, 郑加强, 周宏平. 扇形喷头雾滴粒径分布风洞试验
农业机械学报, 2012,43(6):53-57.

[本文引用: 1]

ZHANG H C, GARY D, ZHENG J Q, ZHOU H P. Wind tunnel experiment of influence on droplet size distribution of fat fan nozzles
Transactions of the Chinese Society for Agricultural Machinery, 2012,43(6):53-57. (in Chinese)

[本文引用: 1]

VALLET A, TINET C. Characteristics of droplets from single and twin jet air induction nozzles: A preliminary investigation
Crop Protection, 2013,48:63-68.

[本文引用: 1]

BUTLER ELLIS M C, SWAN T, MILLER P C H, WADDELOW S, BRADLEY A, TUCK C R. Design factors affecting spray characteristics and drift performance of air induction nozzles
Biosystems Engineering, 2002,82(3):289-296.

[本文引用: 1]

杨希娃, 周继中, 何雄奎, HERBST A. 喷头类型对药液沉积和麦蚜防效的影响
农业工程学报, 2012,28(7):46-50.

[本文引用: 2]

YANG X W, ZHOU J Z, HE X K, HERBST A. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids
Transactions of the Chinese Society of Agricultural Engineering, 2012,28(7):46-50. (in Chinese)

[本文引用: 2]

王潇楠, 何雄奎, HERBST A, LANGENAKENS J, 郑建秋, 李云龙. 喷杆式喷雾机雾滴飘移测试系统研制及性能试验
农业工程学报, 2014,30(18):55-62.

[本文引用: 2]

WANG X N, HE X K, HERBST A, LANGENAKENS J, ZHENG J Q, LI Y L. Development and performance test of spray drift test system for sprayer with bar
Transactions of the Chinese Society of Agricultural Engineering, 2014,30(18):55-62. (in Chinese)

[本文引用: 2]

谢晨, 何雄奎, 宋坚利, HERBST A. 两类扇形雾喷头雾化过程比较研究
农业工程学报, 2013,29(5):25-30.

[本文引用: 1]

XIE C, HE X K, SONG J L, HERBST A. Comparative research of two kinds of flat fan nozzle atomization process
Transactions of the Chinese Society of Agricultural Engineering, 2013,29(5):25-30. (in Chinese)

[本文引用: 1]

FLACK S L, LEDSON T M, RAMANARAYANAN T S. Particle size characterization of agricultural sprays collected on personal air monitoring samplers
Journal of Agricultural Safety and Health, 2019,25(2):91-103.

DOI:10.13031/jash.13065URLPMID:32429610 [本文引用: 1]
Potential inhalation exposure of agricultural workers and bystanders to aerosolized particles emitted by typical agricultural spray nozzles is influenced by the particle size distribution (PSD) of the spray. However, inhalation risk assessments do not currently factor in the human-relevant PSD that may be inhaled during pesticide handling activities. This study was conducted to characterize the PSD of aerosols collected with OSHA Versatile Sampler (OVS) tubes, which are monitoring devices commonly used for inhalation risk assessment in worker exposure studies. An Oxford Lasers N60V particle size analyzer was used for characterizing the spray PSD emitted from various agricultural nozzles. Side-by-side air sampling with OVS tubes and Respicon TM particle samplers was conducted to characterize the size distribution of aerosols collected on the OVS tubes during spraying of a diluted chlorothalonil formulation. Based on this comparison, OVS tubes captured the inhalable fraction (mass median diameter (D50) = 100 mum), with approximately 40% of the total inhalation concentration contributing to systemic exposure (D50 = 10 mum) regardless of nozzle spray quality. In addition, nozzles with fine and medium spray produced higher airborne concentrations compared to nozzles with coarse spray. Thus, the use of modern low-drift nozzles (e.g., air-induction nozzles) that emit larger spray droplets can substantially reduce the airborne concentration levels within inhalable particle size fractions. While the concentrations within these airway fractions (e.g., respirable, thoracic, inhalable) increased from extremely coarse to very fine spray nozzles, the relative proportion of each fraction within the total inhalable concentration remained constant regardless of spray quality or nozzle type. Such information on the PSD of pesticide applications can be used to refine inhalation risk assessments for agricultural workers and bystanders.

GARCERá C, MOLTó E, CHUECA P. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses
Science of the Total Environment, 2017,599/600:1344-1362.

[本文引用: 1]

王潇楠, 何雄奎, 王昌陵, 王志翀, 李龙龙, 王士林, BONDS J, HERBST A, 王志国. 油动单旋翼植保无人机雾滴飘移分布特性
农业工程学报, 2017,33(1):117-123.

[本文引用: 1]

WANG X N, HE X K, WANG C L, WANG Z C, LI L L, WANG S L, BONDS J, HERBST A, WANG Z G. Spray drift characteristics of fuel powered single-rotor UAV for plant protection
Transactions of the Chinese Society of Agricultural Engineering, 2017,33(1):117-123. (in Chinese)

[本文引用: 1]

SMITH D B, BODE L E, GERARD P D. Predicting ground boom spray drift
Transactions of the ASAE, 2000,43(3):547-553.

[本文引用: 2]

AL HEIDARY M, DOUZALS J P, SINFORT C, VALLET A. Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review
Crop Protection, 2014,63:120-130.

[本文引用: 2]

张宋超, 薛新宇, 秦维彩, 孙竹, 丁素明, 周立新. N-3型农用无人直升机航空施药飘移模拟与试验
农业工程学报, 2015,3l(3):87-93.

[本文引用: 1]

ZHANG S C, XUE X Y, QIN W C, SUN Z, DING S M, ZHOU L X. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter
Transactions of the Chinese Society of Agricultural Engineering, 2015,3l(3):87-93. (in Chinese)

[本文引用: 1]

邱占奎, 袁会珠, 楼少巍, 纪明山, 于娟娟, 宋晓宇. 水溶性染色剂诱惑红和丽春红-G作为农药沉积分布的示踪剂研究
农药, 2007,46(5):323-325.

[本文引用: 1]

QIU Z K, YUAN H Z, LOU S W, JI M S, YU J J, SONG X Y. The research of water soluble dyes of allura red and ponceau-G as tracers for determing pesticide spray distribution
Agrochemicals, 2007,46(5):323-325. (in Chinese)

[本文引用: 1]

王娟, 兰玉彬, 姚伟祥, 陈鹏超, 林晋立, 燕颖斌. 单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响
农业机械学报, 2019,50(7):109-119.

[本文引用: 2]

WANG J, LAN Y B, YAO W X, CHEN P C, LIN J L, YAN Y B. Effects of working height of single-rotor unmanned aerial vehicle on drift and droplets deposition distribution of areca tree
Transactions of the Chinese Society for Agricultural Machinery, 2019,50(7):109-119. (in Chinese)

[本文引用: 2]

王潇楠. 农药雾滴飘移及减飘方法研究
[D]. 北京: 中国农业大学, 2017.

[本文引用: 3]

WANG X N. Study on spray drift and anti-drift method
[D]. Beijing: China Agricultural University, 2017. (in Chinese)

[本文引用: 3]

卢佳节. 植保无人机静电喷雾系统关键技术研究
[D]. 贵阳: 贵州大学, 2019.

[本文引用: 1]

LU J J. Research on key technologies of electrostatic spraying system for plant protection UAV
[D]. Guiyang: Guizhou University, 2019. (in Chinese)

[本文引用: 1]

FERGUSON J C, O’DONNELL C C, CHAUHAN B S, ADKINS S W, KRUGER G R, WANG R B, FERREIRA P H U, HEWITT A J. Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel
Crop Protection, 2015,76:1-6.

[本文引用: 1]

唐青, 陈立平, 张瑞瑞, 徐旻, 徐刚, 张斌. IEA-Ⅰ型航空植保高速风洞的设计与校测
农业工程学报, 2016,32(6):73-81.

[本文引用: 1]

TANG Q, CHEN L P, ZHANG R R, XU M, XU G, ZHANG B. Design and test of IEA-Ⅰ high speed wind tunnel for aerial plant protection
Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):73-81. (in Chinese)

[本文引用: 1]

FRITZ B K, HOFFMANN W C. Update to the USDA-ARS fixed-wing spray nozzle models
Transactions of the ASABE, 2015,58(2):281-295.

[本文引用: 1]

MARTIN D E, CARLTON J B. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications
Applied Engineering in Agriculture, 2013,29(1):5-10.

[本文引用: 1]

LAD N, AROUSSI A, MUHAMAD S M F. Droplet size measurement for liquid spray using digital image analysis technique
Journal of Applied Sciences, 2011,11(11):1966-1972.

[本文引用: 1]

曾爱军, 何雄奎, 陈青云, HERBST A, 刘亚佳. 典型液力喷头在风洞环境中的飘移特性试验与评价
农业工程学报, 2005,21(10):78-81.

[本文引用: 1]

ZENG A J, HE X K, CHEN Q Y, HERBST A, LIU Y J. Spray drift potential evaluation of typical nozzles under wind tunnel conditions
Transactions of the Chinese Society of Agricultural Engineering, 2005,21(10):78-81. (in Chinese)

[本文引用: 1]

吴罗罗, 李秉礼, 何雄奎, KIENZLE J. 雾滴飘移试验与几种喷头抗飘失能力的比较
农业机械学报, 1996,27(增刊):120-124.

[本文引用: 1]

WU L L, LI B L, HE X K, KIENZLE J. The nature of drift loss and the anti-drifting ability of different nozzles
Transactions of the Chinese Society of Agricultural Machinery, 1996,27(Suppl.):120-124. (in Chinese)

[本文引用: 1]

王潇楠, 何雄奎, 宋坚利, HERBST A. 助剂类型及浓度对不同喷头雾滴飘移的影响
农业工程学报, 2015,31(22):49-55.

[本文引用: 2]

WANG X N, HE X K, SONG J L, HERBST A. Effect of adjuvant types and concentration on spray drift potential of different nozzles
Transactions of the Chinese Society of Agricultural Engineering, 2015,31(22):49-55. (in Chinese)

[本文引用: 2]

CREECH C F, HENRY R S, HEWITT A J, KRUGER G R. Herbicide spray penetration into corn and soybean canopies using air-induction nozzles and a drift control adjuvant
Weed Technology, 2018,32(1):72-79.

[本文引用: 1]

JúNIOR J D G, RUAS R A A, REIS M R, FILHO A C, FARIA V R. Reduction in the spray drift of 2,4-D in tomato using hydraulic nozzles with air induction and LI-700 adjuvant
Pesquisa Agropecuária Tropical, 2018,48(2):134-139.

[本文引用: 1]

FRANCA J A L, CUNHA J P A R, ANTUNIASSI U R. Spectrum, velocity and drift of droplets sprayed by nozzles with and without air induction and mineral oil
Engenharia Agricola, 2017,37(3):502-509.

[本文引用: 1]

袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系
植物保护, 2015,41(6):9-16.

[本文引用: 1]

YUAN H Z, WANG G B. Effects of droplet size and deposition density on field efficacy of pesticides
Plant Protection, 2015,41(6):9-16. (in Chinese)

[本文引用: 1]

AKESSON N B, YATES W E. Development of drop size-frequency analysis of sprays used for pesticide application//SPICER L, KANEKO T. Pesticide Formulations and Application Systems: Fifth Volume
West Conshohocken, PA: ASTM International, 1986: 83-93.

[本文引用: 1]

朱玉坤, 郑岩明, 王杰, 夏晓明, 王开运. 喷雾方式及喷液量对吡蚜酮和啶虫脒在棉田的沉积分布及棉蚜防治效果的影响
昆虫学报, 2013,56(5):530-536.

[本文引用: 1]

ZHU Y K, ZHENG Y M, WANG J, XIAO X M, WANG K Y. Influences of spray method and volume on the deposition of acetamiprid and pymetrozine and their efficacy against cotton aphids in cotton fields
Acta Entomologica Sinica, 2013,56(5):530-536. (in Chinese)

[本文引用: 1]

FORNASIERO D, MORI N, TIRELLO P, POZZEBON A, DUSO C, TESCARI E, BRADASCIO R, OTTO S. Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards
Crop Protection, 2017,98:283-292.

[本文引用: 2]

DOUGLAS G. The influence of size of spray droplets on the herbicidal activity of diquat and paraquat
Weed Research, 1968,8(3):205-212.

[本文引用: 1]

FENG P C, CHIU T, SAMMONS R D, RYERSE J S. Droplet size affects glyphosate retention, absorption, and translocation in corn
Weed Science, 2003,51(3):443-448.

[本文引用: 1]

相关话题/喷嘴 测试 雾滴 航空 系统