Ecological Emergy Analysis of Different Paddy Ecosystems in Hunan Province
ZHOU Jiang,1, XIANG PingAn,1,2通讯作者:
第一联系人:
责任编辑: 李云霞
收稿日期:2018-04-21接受日期:2018-08-24网络出版日期:2018-12-01
基金资助: |
Received:2018-04-21Accepted:2018-08-24Online:2018-12-01
摘要
关键词:
Abstract
Keywords:
PDF (490KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
周江, 向平安. 湖南不同季别稻作系统的生态能值分析[J]. 中国农业科学, 2018, 51(23): 4496-4514 doi:10.3864/j.issn.0578-1752.2018.23.009
ZHOU Jiang, XIANG PingAn.
0 引言
【研究意义】效率评价结果是人们理性选择的前提。然而,不同的评价工具往往引致不同的评价结果。经济学假定行为人是理性自利的“经济人”,私人收益最大化是生产者行为的根本动机[1]。基于这一理念,研究人员开发和应用基于市场价值测量的成本-收益分析方法来评价人类活动效率。但是,该方法既没有考虑自然环境对农业生产的贡献,也没有顾及生产活动对自然环境的影响,认为自然环境是免费资源,不具有稀缺性。然而,这与经济已处于“满的世界”(实体经济在不增长的生态系统持续增长)而非“空的世界”(经济扩张机会微不足道)的现实不符[2]。应用这一方法评价的生产效率作为决策依据,可能是造成生态系统退化的重要诱因[3]。水稻生产是上千年以来中国最重要的农事活动,****们一般采用传统的成本-收益分析法衡量生产效率[4,5,6,7,8,9,10,11,12]。然而,近些年来,特别是农业税取消后,水稻生产经营方式正由传统农业向现代农业过渡,但粗放的管理模式使稻作生态系统的永续经营正遭受危害[13]。改变困境的前提之一,是人们需要从生态经济学观点重新认识和评价稻作的效率[14]。【前人研究进展】为了克服传统的效率评价方法的缺陷,ODUM应用热力学思想创建了有别于市场经济学思想的投入产出分析法——能值分析法[15]。该方法将自然纳入生产活动的核算体系,定量分析自然资源环境与人类经济活动的关系,客观评价人类活动与自然的和谐度[16]。这一方法逐渐被****们接受,并被广泛应用,尤其是在农业生态系统研究领域。例如,LEFROY等分析了澳大利亚3种不同种植制度的能值特点及对农业持续利用的影响[17];CUADRA等[4]采用成本收益分析法、生态足迹和能值分析法,构建相关评价指标,对尼加拉瓜的大豆、土豆、卷心菜、菠萝和咖啡等主要作物种植系统的经济效益以及生态承载能力进行了比较评价。在国内,蓝盛芳[18,19]、、李小玉[20]、张洁瑕[21]、王明全[22]、李向东[23]、吴钢[24]、黄文德[25]、胡晓辉[26]、胡小东[27]等引入ODUM的能值分析法,积极应用于农业生态系统研究。****们不仅应用成本-收益分析法对稻田生态系统的碳循环[28,29,30]、水分和养分转换[31,32,33]、生态服务价值[33,34,35,36]等方面开展了较深入研究,而且也应用能值分析法评估了稻作生态系统效益。向平安等[34]和席运官等[35]应用能值分析方法对比了稻鸭共作有机农业模式和常规生产模式的收益,认为稻鸭共作生态农业模式无论是在能值效益还是在经济效益上都具有优势。孙卫民等[36]采用能值分析理论和方法,对江西省余江县双季稻田7种复种模式系统中的经济产量折能、光合生产力、光能利用率、投入产出、运行效率和环境负荷等进行综合分析。【本研究切入点】虽然****们对稻作农业的投入产出开展了能值分析,但缺少针对不同季别的稻作生态系统的研究,这不利于人们对不同季别的稻作农业的生态经济效益的认识。【拟解决的关键问题】本文以中国最大的水稻种植区—湖南稻作生态系统作为研究对象,应用能值分析法揭示处于稻作技术调整期间的早、中和晚稻3个季别稻田生态系统年际间的生态经济效益和效率,以期为稻作农业可持续发展提供决策依据。1 研究区域
湖南省位于洞庭湖以南,属于长江中游地区,地处东经108°—114°、北纬24°—30°。全省以山地和丘陵地貌为主,合占总面积的66.62%。湖南为大陆性亚热带季风湿润气候年平均温度在15—18℃之间,太阳辐射量为90—115 kcal·cm-2,年平均降水量在1 200— 1 700 mm之间,雨量充沛,是中国雨水较多的省份之一。湖南的地理气候条件适宜发展水稻生产。湖南各季别水稻生产面积并非随时间序列呈持续减少或增加,而是表现为年际间动态变化。例如,21世纪初期,湖南早稻和晚稻的种植面积逐年下降,2003年水稻总播种面积降至3 410千公顷;受水稻生产补贴、取消农业税等惠农政策的影响,2004年起水稻总播种面积开始恢复并有所增加,至2006年达到峰值4 202千公顷,随后又有所下降;其中早、晚双季稻于2008年达到峰值,而中稻则于2010年达到峰值(表1)。Table 1
表1
表12000—2016年湖南省水稻的种植面积
Table 1
2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | |
---|---|---|---|---|---|---|---|---|---|
早稻Early rice | 1516 | 1225 | 1450 | 1587 | 1600 | 1361 | 1425 | 1453 | 1421 |
中稻Semilate rice | 632 | 813 | 856 | 917 | 856 | 1228 | 1183 | 1174 | 1206 |
晚稻Late rice | 1748 | 1504 | 1696 | 1698 | 1739 | 1442 | 1487 | 1494 | 1459 |
总面积Total | 3896 | 3542 | 4001 | 4202 | 4195 | 4031 | 4095 | 4121 | 4086 |
新窗口打开|下载CSV
2 研究方法
2.1 能值分析方法及步骤
ODUM的能值理论原理和方法可以将不同类别的能量转换为同一标准的太阳能值,单位为太阳能焦耳(solar emergy joules,缩写为sej),用于衡量不同类别、不同等级能量的真实价值,同时还可以比较一个系统中流动或储存的不同类别的能量及其对该系统的贡献[15]。太阳能值是通过能值转换率来计算的,能值转换率是指形成1 J或1 g产品或劳务所需要的太阳能值,单位为sej/J或sej/g。本文依据能值分析法,首先对湖南稻田生态系统进行能值边界情况分析,收集历年稻田生态系统中相关的自然环境、地理和社会经济数据,列出系统主要的能量输入和输出项目;通过相应的能值转换率核算各能源或物质的投入产出能值,再计算自然资源和购买能值历年投入所占总能值投入比重,以及主要购买能值内部占比,编制系统历年各种能值投入产出分析表和投入结构表,各类别资源能量流以J为单位、物质流以g为单位、经济流以$为单位;绘制系统单位种植面积投入的主要购买能值年际变化趋势图,评价它们在稻田生态系统中的地位和贡献;最后建立能值指标体系,分析评估湖南稻作系统生态效益。同时将系统能值投入产出评估结果与《全国农产品成本收益资料汇编(2001—2017)》中的利润率指标进行对比分析,用以全面分析评估湖南水稻生产系统生态和经济效益情况。
稻田生态系统能值投入(以T表示)分为两类:一类来源于自然界,称“自然资源能值”,包括可更新资源(太阳能、雨水化学能、雨水势能等,以R表示)和不可更新资源(表土层净损失等,以N表示)。几种可更新自然资源是同样气候、地球物理作用引起的不同现象,只取其中能值投入量最大的雨水化学能,以避免能值的重复计算[38]。另一类来源于人类社会经济系统,称“购买能值”,包括不可更新工业辅助能(农用机械、农药、化肥等,以F表示)和可更新有机能(人力、畜力、有机肥、种子等,以R1表示)。系统能值产出主要指稻谷、稻草等,以Y表示。
2.2 数据来源及说明
本文主要数据来源于《湖南统计年鉴》(2001— 2017)、《中国物价年鉴》(2005—2013)、《中国统计年鉴》(2014—2017)和《全国农产品成本收益资料汇编》(2001—2017)。其中,早稻、中稻(即一季稻)、晚稻播种面积、月均降雨量数据来源于《湖南统计年鉴》,单位种植面积的水稻生产成本、生产要素投入量、产出数据来源于《全国农产品成本收益资料汇编》,柴油、农药价格取自《中国物价年鉴》,农业生产资料价格分类指数、居民消费价格定基指数取自《中国统计年鉴》,能值总产出只计算稻谷,不包括作物的副产品能值。太阳能值转换率主要参考ODUM[15]、蓝盛芳[38,39],能量折算系数及其计算方法主要参照骆世明、陈阜编写的《农业生态学》[40]、《农业技术经济手册》[41],劳动力的能量折算系数参照蓝盛芳和钦佩研究成果[38]。能值计算中,太阳能、雨水化学能、雨水势能、表土层净损、投入及产出等公式均取自蓝盛芳、钦佩、陆宏芳编著《生态经济系统能值分析》[38],水稻生育期以湖南3个季别水稻全生育期为依据,早稻全生育期(4—7月),中稻全生育期(5—9月),晚稻全生育期(7—10月)。
本文选用2000年中国能值货币比率4.94×1012sej/$[35]研究成果,通过历年的居民消费价格定基指数《中国统计年鉴》(2017)和历年的人民币美元汇率(中国人民银行网)转换为历年的国家能值货币比率。
2.3 能值分析指标
能值分析指标综合反映生态经济系统的结构、功能和效率,是衡量自然环境资源的价值和人类社会经济发展及环境与经济、人与自然关系的指标,也是系统综合分析及社会经济发展决策参考的重要指标[42,43,44,45,46,47]。据以往相关研究[48,49,50,51,52],结合本研究实际,能值投入产出项目采用《全国农产品成本收益资料汇编》[46]收集的子项。能值指标体系的构建是进行系统分析、比较研究和得出结论的主要依据。通过借鉴相关的文献报道[48,49,50,51],结合长江中游丘陵地区稻田生态系统的实际,构建出能值投入占比、能值投入产出密度、能值综合评价指标(能值投入率、能值产出率、环境负荷率、可持续发展指数)等主要能值指标。能值投入占比是指系统内各能值投入比例,表明相关能值在系统中的地位和贡献度。其中环境资源能值与总投入能值的比值是评价环境资源重要性的指标,工业辅助能值与总投入能值的比值、主要工业投入能值与购买能值的比值均可衡量种植模式现代化的水平,可更新有机能值与总投入能值的比值、投入的主要有机能值与购买能值的比值用于评价种植模式的生态效益。能值投入产出密度是指单位面积土地的能值投入或产出量,表明相关能值在稻田生态系统中的投入强度或产出效益,用来分析其对系统生态效益的影响。能值投入率是购买能值与自然资源能值之比,即不可更新工业辅助能值和可更新有机能值之和所占自然资源总投入的比例,是衡量经济发展和环境负载的指标。能值产出率指产出能值与购买能值之比,该比值越高表明系统的生产效率越高,还可反映系统能值投资回报率高低及产品的价格竞争优势。环境负荷率是系统投入的不可更新资源的能值之和与可更新资源能值之和的比率,用来衡量系统中的环境影响。可持续发展指数为系统能值产出率与环境负载率之比,实质上是可更新资源与不可更新资源之比[47]。
3 结果
3.1 湖南不同季别稻作系统能值投入结构分析
3.1.1 自然资源能值、购买能值投入结构分析 2002—2016年湖南不同季别稻作生态系统能值投入中,自然资源、工业辅助能和可更新有机能的投入能值及其所占的比重详见表2。系统投入能值中自然资源能值构成的比例,能反映该稻作系统的自然环境资源对农业生产的贡献大小。2002—2016年,湖南早稻、中稻以及晚稻总自然资源能值的投入所占能值总投入比例变动区间分别为12.06%—19.15%、13.33%— 21.95%和9.89%—16.72%(表2)。从表2可以看出,自然环境对三类水稻系统的能值投入相对稳定但呈小幅波动趋势。各系统间占比大小为早稻、中稻>晚稻,自然资源能值投入所占能值总投入比重偏低,晚稻最为明显;这说明湖南稻作系统开放程度比较高,系统维持的能值主要来源于购买能值并趋向增加(包括不可更新工业能和可更新有机能),其中早、中稻系统利用自然环境资源较多,还可以加大发展空间。Table 2
表2
表22002—2016年湖南稻田系统生态能值估算
Table 2
项目 Item | 能值转换率 Transformity (sej/J或sej/g) | 太阳能值 Solar emergy | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单位 Unit | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | ||||||||||||||||||
早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | |||
可更新自然资源最大项 Renewable natural Resources maxterm (R) | ×1020sej | 11.36 | 7.94 | 9.78 | 9.7 | 5.61 | 5.32 | 10.24 | 5.81 | 6.33 | 7.44 | 4.88 | 6.56 | 9 | 9.39 | 5.57 | 9.6 | 8.52 | 5.86 | 7.03 | 6.96 | 6.77 | 11.18 | 9.27 | 7.49 | |
太阳能 Solar radiation | 1[36] | ×1019sej | 1.88 | 1.56 | 2.31 | 2.22 | 1.64 | 2.6 | 2.43 | 1.76 | 2.6 | 2.45 | 1.64 | 2.67 | 2.09 | 2.35 | 2.21 | 2.19 | 2.27 | 2.28 | 2.23 | 2.25 | 2.29 | 2.18 | 2.31 | 2.24 |
雨化学能 Rain chemical emergy | 18199[36] | ×1020sej | 11.36 | 7.94 | 9.78 | 9.7 | 5.61 | 5.32 | 10.24 | 5.81 | 6.33 | 7.44 | 4.88 | 6.56 | 9 | 9.39 | 5.57 | 9.6 | 8.52 | 5.86 | 7.03 | 6.96 | 6.77 | 11.18 | 9.27 | 7.49 |
雨势能 Rain potential emergy | 10488[36] | ×1019sej | 6.5 | 4.54 | 5.59 | 5.55 | 3.21 | 3.04 | 5.85 | 3.32 | 3.62 | 4.25 | 2.79 | 3.75 | 5.15 | 5.37 | 3.18 | 5.49 | 4.87 | 3.35 | 4.02 | 3.98 | 3.87 | 6.39 | 5.3 | 4.28 |
不可更新自然 资源 Unrenewable natural resource (N) | ×1019sej | 3.55 | 2.94 | 4.36 | 4.2 | 3.1 | 4.92 | 4.6 | 3.32 | 4.92 | 4.64 | 3.1 | 5.04 | 3.95 | 4.45 | 4.18 | 4.13 | 4.29 | 4.31 | 4.21 | 4.25 | 4.33 | 4.12 | 4.37 | 4.23 | |
表土净损失 Net loss of topsoil | 74000[36] | ×1019sej | 3.55 | 2.94 | 4.36 | 4.2 | 3.1 | 4.92 | 4.6 | 3.32 | 4.92 | 4.64 | 3.1 | 5.04 | 3.95 | 4.45 | 4.18 | 4.13 | 4.29 | 4.31 | 4.21 | 4.25 | 4.33 | 4.12 | 4.37 | 4.23 |
工业辅助能小计 Industrial auxiliary emergy subtotal (F) | ×1021sej | 1.59 | 1.01 | 1.73 | 1.45 | 1.03 | 1.82 | 2.19 | 1.39 | 2.42 | 2.86 | 1.58 | 3.04 | 2.75 | 2.11 | 2.9 | 3.42 | 2.5 | 3.56 | 3.7 | 3.11 | 3.92 | 3.49 | 3.21 | 3.64 | |
氮肥 Nitrogen fertilizer | 3.80×109[36] | ×1020sej | 9.9 | 6.29 | 9.67 | 8.15 | 5.71 | 9.28 | 7.92 | 4.66 | 8.8 | 7.58 | 4.38 | 8.11 | 5.94 | 5.61 | 5.82 | 5.19 | 5.27 | 5.63 | 5.15 | 4.9 | 5.31 | 4.75 | 4.82 | 4.85 |
磷肥 Phosphate fertilizer | 3.90×109[36] | ×1019sej | 23.19 | 1.49 | 5.37 | 19.08 | 1.35 | 5.16 | 26.47 | 1.79 | 11.03 | 15.07 | 1.12 | 12.82 | 10.59 | 1.64 | 5.06 | 6 | 6.3 | 0.44 | 2.21 | 2.2 | 1.05 | 2.74 | 1.9 | 1.11 |
钾肥 Potassic fertilizer | 1.10×109[36] | ×1019sej | 5.93 | 0.51 | 7.67 | 4.88 | 0.47 | 7.36 | 5.61 | 4.39 | 8.04 | 5.46 | 2.3 | 6.08 | 2.38 | 0 | 3.62 | 1.86 | 1.97 | 2.63 | 1.32 | 1.51 | 2.12 | 1.81 | 1.61 | 3.08 |
复合肥 Compound fertilizer | 2.80×109[36] | ×1020sej | 0.02 | 1.71 | 2.42 | 0.02 | 1.55 | 2.32 | 2.75 | 1.96 | 3.33 | 3.75 | 1.9 | 3.97 | 4.28 | 1.48 | 4.74 | 5.2 | 4.32 | 5.7 | 6.17 | 5.41 | 6.5 | 6.76 | 5.89 | 7.46 |
续表2 Continued table 2 | ||||||||||||||||||||||||||
项目 Item | 能值转换率 Transformity (sej/J或sej/g) | 太阳能值 Solar emergy | ||||||||||||||||||||||||
单位 Unit | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | ||||||||||||||||||
早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | |||
农药Pesticide | 1.60×109[36] | ×1019sej | 3.35 | 3.73 | 5.97 | 4.81 | 4.65 | 8.31 | 7.69 | 6.22 | 12.1 | 6.34 | 3.64 | 9.66 | 5.42 | 5.47 | 7.86 | 6.34 | 6.65 | 9.71 | 6.75 | 7.47 | 8.56 | 6.79 | 7.52 | 8.94 |
农膜 Plastic film | 3.80×109[36] | ×1018sej | 7.68 | 0 | 0 | 4.38 | 0.1 | 1.64 | 4.34 | 0 | 0.29 | 3.1 | 0 | 0 | 2.02 | 0 | 0 | 2.03 | 0 | 0 | 1.99 | 0 | 0 | 1.62 | 0.34 | 0 |
燃料Fuel | 6.60×104[36] | ×1019sej | 5.63 | 3.26 | 2.92 | 4.59 | 0.11 | 4.49 | 3.44 | 0.05 | 2.15 | 3.94 | 1.33 | 2.42 | 2.31 | 1.62 | 2.74 | 3.2 | 2.03 | 3.49 | 4.93 | 3.09 | 4.44 | 5.48 | 3.53 | 4.16 |
机械作业 Mechanical power | 7.50×107[45] | ×1021sej | 0.21 | 0.12 | 0.3 | 0.3 | 0.23 | 0.4 | 0.69 | 0.44 | 0.88 | 1.41 | 0.77 | 1.52 | 1.52 | 1.16 | 1.65 | 2.2 | 1.37 | 2.27 | 2.41 | 1.94 | 2.58 | 2.17 | 1.99 | 2.24 |
可更新有机能 小计 Renewable organic emergy subtotal (R1) | ×1021sej | 3.35 | 1.92 | 3.36 | 3.48 | 1.6 | 3.48 | 3.37 | 1.71 | 2.99 | 2.91 | 1.51 | 2.63 | 2.03 | 2.14 | 1.81 | 1.83 | 2.07 | 1.67 | 1.73 | 1.69 | 1.55 | 1.54 | 1.19 | 1.31 | |
人工 Labor force | 3.80×105[45] | ×1021sej | 2.73 | 1.66 | 3 | 2.75 | 1.4 | 2.96 | 2.61 | 1.48 | 2.54 | 2.1 | 1.12 | 2.15 | 1.43 | 1.57 | 1.51 | 1.33 | 1.4 | 1.42 | 1.2 | 1.22 | 1.32 | 1.09 | 9.23 | 1.12 |
畜力 Animal power | 1.46×105[45] | ×1020sej | 2.62 | 1.7 | 1.73 | 3.57 | 1.05 | 3.15 | 3.91 | 1.45 | 2.39 | 3.78 | 2.89 | 2.57 | 2.17 | 4.41 | 1.18 | 0.1 | 5.67 | 0.61 | 1.17 | 3.98 | 0.22 | 0.31 | 1.87 | 0.07 |
种子Seed | 2.00×105[45] | ×1020sej | 2.5 | 0.42 | 0.98 | 2.43 | 0.53 | 1.32 | 2.8 | 0.47 | 1.23 | 3.35 | 0.51 | 1.66 | 3.11 | 0.61 | 1.31 | 3.68 | 0.57 | 1.49 | 3.95 | 0.58 | 1.9 | 3.94 | 0.67 | 1.65 |
有机肥 Organic fertilizer | 2.70×104[45] | ×1019sej | 11.21 | 4.6 | 8.71 | 12.76 | 4.29 | 7.72 | 9.01 | 3.72 | 8.08 | 9.8 | 5.4 | 5.57 | 7.6 | 6.76 | 5.13 | 4.17 | 4.23 | 3.56 | 2.21 | 1.61 | 2.4 | 2.15 | 1.55 | 1.35 |
能值总投入 Total emergy input (T=R+N+F+R1) | ×1021sej | 6.12 | 3.75 | 6.11 | 5.94 | 3.22 | 5.88 | 6.63 | 3.71 | 6.09 | 6.56 | 3.61 | 6.37 | 5.72 | 5.23 | 5.3 | 6.25 | 5.46 | 5.86 | 6.17 | 5.54 | 6.2 | 6.19 | 5.37 | 5.74 | |
稻谷能值产出 Yield emergy | 8.30×104[36] | ×1022sej | 0.75 | 0.73 | 1.12 | 1.1 | 0.9 | 1.39 | 1.21 | 0.97 | 1.4 | 1.27 | 1.17 | 1.46 | 9.34 | 1.11 | 1.13 | 1.11 | 1.15 | 1.27 | 1.09 | 1.15 | 1.3 | 1.04 | 1.27 | 1.32 |
产出能值密度 Yield emergy density(sej/khm2) | ×1018sej | 6.13 | 9.03 | 7.43 | 7.6 | 10.56 | 8.18 | 7.6 | 8.42 | 8.24 | 7.91 | 9.37 | 8.4 | 6.86 | 9.05 | 7.81 | 7.76 | 9.69 | 8.57 | 7.53 | 9.84 | 8.68 | 7.34 | 10.43 | 8.47 | |
资源占比 (R+N)/T | % | 19.15 | 21.95 | 16.72 | 17.03 | 18.4 | 9.89 | 16.13 | 16.56 | 11.2 | 12.06 | 14.37 | 11.1 | 16.44 | 18.79 | 11.29 | 16.01 | 16.39 | 10.74 | 12.08 | 13.33 | 11.62 | 18.73 | 18.07 | 13.77 | |
工业辅助能占比F/T | % | 26.07 | 26.89 | 28.31 | 24.42 | 31.88 | 30.9 | 33 | 37.42 | 39.77 | 43.55 | 43.79 | 47.66 | 48.07 | 40.25 | 54.62 | 54.64 | 45.77 | 60.81 | 59.9 | 56.19 | 63.34 | 56.41 | 59.74 | 63.45 | |
可更新有机能占比R1/T | % | 54.78 | 51.16 | 54.97 | 58.55 | 49.72 | 59.21 | 50.87 | 46.03 | 49.03 | 44.39 | 41.83 | 41.24 | 35.49 | 40.96 | 34.09 | 29.35 | 37.84 | 28.46 | 28.02 | 30.48 | 25.04 | 24.86 | 22.19 | 22.77 |
新窗口打开|下载CSV
从购买能值投入的组成比例来看工业能值增长较快,自2012年起,三季稻作系统的工业能值投入均达到系统总投入能值的50%以上。2006—2016年间早稻、中稻以及晚稻工业能值的投入比例变动区间分别为33.00%—59.90%、37.42%—59.74%和39.77%— 63.45%,各系统间占比大小为晚稻>早、中稻。相应的早、中、晚稻的可更新有机能占能值总投入的比例均呈快速下降的趋势。2002—2016年间早稻、中稻以及晚稻可更新有机能值的投入比例变动区间(降幅)分别为24.86%—58.55%(57.54%)、22.19%—51.16%(56.63%)和22.77%—59.21%(61.54%),中稻系统降幅较小;各系统间占比大小从2002—2006年间的早、晚稻>中稻调整为2010—2014年间的中稻>早稻>晚稻(表2)。
3.1.2 主要购买能值投入结构分析 湖南早、中、晚稻系统主要购买能值投入结构如表3所示,系统在2010—2016年间,机械能值投入比重最大,分别约占各自系统购买能值投入的31.77%—44.43%、27.36%—45.28%、35.03%—47.16%;其次是人工能值投入,分别约占各自系统购买能值投入的21.71%—29.83%、20.96%—37.04%、22.65%—32.05%;再次是化肥能值投入,分别约占各自系统购买能值投入的21.29%—24.10%、20.53%—25.12%、22.14%— 25.70%;农药能值投入持续增长,分别约占各自系统购买能值投入的1.13%—1.35%、1.29%—1.71%、1.56%—1.86%;种子能值投入分别约占各自系统购买能值投入的6.51%—7.84%、1.21%—1.53%、2.78%— 3.46%;除中稻的畜力能值投入约占系统购买能值投入的4.24%—12.41%外,三季稻作系统在其他能值投入占比方面逐步减少到1%以下。湖南稻作生态系统主要投入能值占比已调整为:早、晚稻系统为机械>人工+畜力>化肥>种子>农药>燃料>有机肥,中稻系统为机械>人工+畜力>化肥>农药>种子>燃料>有机肥。
Table 3
表3
表32002—2016年湖南稻田生态系统主要购买能值投入结构表
Table 3
项目 Item | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | |
机械 Machinery | 4.32 | 4.04 | 5.94 | 6.01 | 8.92 | 7.57 | 12.32 | 14.24 | 16.19 | 24.49 | 24.89 | 26.82 | 31.77 | 27.36 | 35.03 | 41.91 | 30.02 | 43.37 | 44.43 | 40.37 | 47.16 | 43.13 | 45.28 | 45.24 |
化肥 Chemical fertilizer | 25.95 | 28.03 | 26.3 | 21.42 | 28.34 | 24.27 | 24.95 | 28.57 | 25.96 | 23.2 | 24.65 | 24.66 | 24.1 | 20.53 | 24.3 | 21.29 | 22.83 | 22.23 | 21.51 | 22.26 | 22.14 | 23.8 | 25.12 | 25.7 |
农药 Pesticide | 0.68 | 1.27 | 1.17 | 0.98 | 1.77 | 1.57 | 1.38 | 2.01 | 2.24 | 1.1 | 1.17 | 1.71 | 1.13 | 1.29 | 1.67 | 1.21 | 1.46 | 1.86 | 1.24 | 1.56 | 1.56 | 1.35 | 1.71 | 1.81 |
燃料 Fuel | 1.14 | 1.11 | 0.57 | 0.93 | 0.04 | 0.85 | 0.62 | 0.01 | 0.4 | 0.68 | 0.43 | 0.43 | 0.48 | 0.38 | 0.58 | 0.61 | 0.45 | 0.67 | 0.91 | 0.64 | 0.81 | 1.09 | 0.8 | 0.84 |
人工 Labor | 55.12 | 56.76 | 58.97 | 55.81 | 53.28 | 55.82 | 46.96 | 47.76 | 47.03 | 36.41 | 36.14 | 37.94 | 29.83 | 37.04 | 32.05 | 25.33 | 30.68 | 27.19 | 22.03 | 25.33 | 24.03 | 21.71 | 20.96 | 22.65 |
畜力 Animal power | 5.31 | 5.8 | 3.4 | 7.24 | 4 | 5.95 | 7.03 | 4.68 | 4.41 | 6.55 | 9.34 | 4.54 | 4.53 | 10.37 | 2.51 | 1.82 | 12.41 | 1.16 | 2.15 | 8.29 | 0.4 | 0.61 | 4.24 | 0.15 |
种子 Seed | 5.06 | 1.42 | 1.92 | 4.93 | 2.01 | 2.49 | 5.04 | 1.51 | 2.28 | 5.81 | 1.63 | 2.93 | 6.51 | 1.44 | 2.78 | 7 | 1.24 | 2.85 | 7.28 | 1.21 | 3.46 | 7.84 | 1.53 | 3.34 |
有机肥 Organic fertilizer | 2.27 | 1.57 | 1.71 | 2.59 | 1.63 | 1.46 | 1.62 | 1.2 | 1.49 | 1.7 | 1.74 | 0.98 | 1.59 | 1.59 | 1.09 | 0.79 | 0.93 | 0.68 | 0.41 | 0.34 | 0.44 | 0.43 | 0.35 | 0.27 |
新窗口打开|下载CSV
计算公式:投入项目能值/购买能值 Formula:Item/(F+R1)
3.2 湖南不同季别稻作系统购买能值投入密度动态分析
由于不同季别稻作系统种植面积不同,为对各季别稻作系统中人类社会主要购买能值年际间动态投入进行对比分析,本文分别计算年际间各季别稻作系统平均每千公顷种植面积投入及产出的主要经济反馈能值,构建能值密度指标并绘制三季稻作系统年际间主要购买能值密度变动趋势图(图1—10)。图1
新窗口打开|下载原图ZIP|生成PPT图12002—2016年湖南稻田系统购买能值变动趋势
Fig. 1Purchasing emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图2
新窗口打开|下载原图ZIP|生成PPT图22002—2016年湖南稻田系统工业能值变动趋势
Fig. 2Industrial emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图3
新窗口打开|下载原图ZIP|生成PPT图32002—2016年湖南稻田系统可更新有机能值变动趋势
Fig. 3Renewable organic emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图4
新窗口打开|下载原图ZIP|生成PPT图42002—2016年湖南稻田系统机械能值变动趋势
Fig. 4Machine emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图5
新窗口打开|下载原图ZIP|生成PPT图52002—2016年湖南稻田系统化肥能值变动趋势
Fig. 5Chemical fertilizer emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图6
新窗口打开|下载原图ZIP|生成PPT图62002—2016年湖南稻田系统农药能值变动趋势
Fig. 6Chemical pesticide emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图7
新窗口打开|下载原图ZIP|生成PPT图72002—2016年湖南稻田系统人工能值变动趋势
Fig. 7Labor emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图8
新窗口打开|下载原图ZIP|生成PPT图82002—2016年湖南稻田系统畜力能值变动趋势
Fig. 8Animal power emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图9
新窗口打开|下载原图ZIP|生成PPT图92002—2016年湖南稻田系统种子能值变动趋势
Fig. 9Seed emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
图10
新窗口打开|下载原图ZIP|生成PPT图102002—2016年湖南稻田系统有机肥能值变动趋势
Fig. 10Organic fertilizer emergy input change of paddy ecosystem in Hunan Province from 2002 to 2016
3.2.1 不可更新工业能值、可更新有机能值 对比三季稻田生态系统单位种植面积投入的购买能值,三季稻作系统自2004年降至最低值后均波动增长至2014年达到峰值后趋于回落,2004—2016年间每千公顷早、中、晚稻系统的购买能值投入变动区间分别为3.40×1018—3.73×1018sej、3.07×1018—4.09×1018sej、3.12×1018—3.67×1018sej(图1),且从2012年起转变为中稻>早稻>晚稻系统,年均增长率(振幅)分别达到0.77%(9.71%)、2.42%(33.22%)、1.36%(17.63%)。
自2004年起,湖南早、中、晚稻系统单位种植面积不可更新工业能值投入均呈明显增长趋势,三季系统分别于2014—2016年达到峰值后趋于平稳,2004—2016年间系统每千公顷种植面积的工业能值投入变动区间分别为1.00×1018—2.54×1018sej、1.20× 1018—2.66×1018sej、1.07×1018—2.63×1018sej(图2),年均增长率分别达到8.08%、6.86%、7.78%;其中早、晚稻生态系统工业能值投入变化趋势相近,经历了快速增长期(2004—2014年)后趋于平稳;中稻的工业能值投入在早稻和晚稻之间上下波动增长至2014年趋于平稳。2002—2016年间,湖南早、中、晚稻生态系统单位种植面积可更新有机能值投入均趋向减少(图3),期间系统每千公顷种植面积可更新有机能值投入变动区间分别为1.08×1018—2.74×1018sej、0.99×1018—2.36×1018sej、0.90×1018—2.23×1018sej,年均降幅分别为6.02%、6.02%、6.28%;期间早稻和晚稻可更新有机能值投入均呈快速下降趋势;中稻则以2012年为界,2004—2012年期间变化幅度较小,之后呈现出单边快速下降的趋势。
3.2.2 不可更新工业能值中主要能值投入密度动态分析 2002—2016年间,湖南早、中、晚稻系统单位种植面积机械作业能值投入均呈明显增长趋势,期间每千公顷机械能值投入变动区间分别为0.17×1018—1.66×1018sej、0.15×1018—1.65×1018sej、0.20×1018—1.73×1018sej(图4),年均增长率分别达到17.68%、18.68%、16.66%;其中早、晚稻系统机械能值投入密度变化趋势相近,经历了稳定期(2002—2004年)和快速增长期(2004—2014年)两个阶段后趋于平稳;中稻的机械能值投入密度在早稻和晚稻之间上下波动,特别是在2010—2014年间中稻系统明显小于早、晚稻,之后中稻投入持续增加且略有反超。表明国家从2004年起实行的农机具购置补贴政策对于推进农业机械化起到了促进作用。
湖南三季稻田生态系统单位种植面积化肥投入均呈振荡趋势,直到2012年以后趋于平稳(图5)。2002—2016年间系统每千公顷种植面积的化肥能值投入振荡区间(振幅)分别为7.29×1017—10.48× 1017sej(43.76%)、7.10×1017—10.10×1017sej(42.25%)、7.58×1017—8.90×1017sej(17.41%),除2010年外投入密度为中稻>早、晚稻。
2002—2016年间三季稻作系统每千公顷种植面积的农药能值投入振荡区间(振幅)分别为2.74× 1016—4.85×1016sej(77.01%)、4.25×1016—6.79× 1016sej(59.76%)、3.97×1016—7.13×1016sej(79.60%)(图6),中稻、晚稻系统投入密度均明显大于早稻,年均增长率分别为4.16%、3.40%、4.27%。
3.2.3 可更新有机能值中主要经济反馈能值投入密度动态分析 2002—2016年间,湖南三季稻田生态系统每千公顷种植面积人工能值投入均呈显著下降的趋势(图7),变动区间分别为7.69×1017—22.26× 1017sej、7.65×1017—20.45×1017sej、7.69×1017—19.95 ×1017sej,年均降幅分别为7.31%、6.78%、6.58%;其中湖南早稻和晚稻均呈快速下降趋势,中稻则在2008—2014年间降幅放缓且投入密度明显大于早、晚稻系统。同时,每千公顷早、中、晚稻生态系统畜力能值投入比重越来越低(图8),变动区间分别为2.18×1016—24.63×1016 sej、12.29×1016—47.90×1016 sej、0.51×1016—18.57×1016 sej;其中早、晚稻系统经历了相对稳定期(2002—2008年)和快速下降期(2008—2016年)两个阶段后已波动下降至极低投入程度,年均降幅分别为15.90%、22.65%;中稻则以2012年为界,2012年之前波动增长至峰值,之后呈现出快速下降的趋势,但尚未降至2004年最低投入值且其能值投入密度从2008年起明显大于早、晚稻系统。
2002—2016年间早稻、中稻以及晚稻系统每千公顷种植面积种子能值投入变动区间分别为1.68× 1017—2.77×1017sej、0.48×1017—0.62×1017sej、0.65× 1017—1.27×1017sej(图9),种子能值投入密度明显为早稻>晚稻>中稻系统;其中早、晚稻波动增长,年均增幅分别为3.64%、4.90%,中稻则变化不大且投入密度最小。早稻用种经济成本特别是杂交早稻相比杂交中、晚稻还要高,推广应用难度相应较大;种植杂交早稻在湘北地区要亏损,在湘南地区只能基本持平,无比较优势可言,农户增产不增收[44]。如表4所示,将种子能值投入密度换算成能值-货币价值来比较,自2008年以来早稻种子投入的能值-货币价值是晚稻的两倍多、中稻的4—5倍。
Table 4
表4
表42002—2016年湖南稻田生态系统每公顷种子能值-货币价值(美元)
Table 4
2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | |
---|---|---|---|---|---|---|---|---|
早稻Early rice | 41 | 36 | 39 | 51 | 57 | 70 | 77 | 81 |
中稻Semilate rice | 10 | 13 | 11 | 14 | 12 | 13 | 14 | 16 |
晚稻Late rice | 13 | 17 | 16 | 23 | 23 | 27 | 36 | 33 |
新窗口打开|下载CSV
图10表明2002—2016年间,每千公顷早、中、晚稻生态系统有机肥能值投入趋向不断减少,变动区间分别为1.51×1016—9.16×1016 sej、1.29×1016—6.30 ×1016 sej、0.93×1016—5.79×1016 sej,年均降幅分别为12.08%、10.71%、12.25%;其中早、晚稻波动下降,中稻则以2008年为界,2008年之前波动增长至峰值,之后呈现出快速下降的趋势。
3.3 能值产出动态分析
在国家经历连续6年的水稻种植面积和产量下降之后,2004年农业农村部在部分地区试点水稻生产直接补贴、良种补贴和农机具购置补贴,水稻面积、产量开始出现恢复性增长[43]。由表1、表2可知,受国家粮食政策支持,2004—2008年间,湖南早、晚稻生产系统的种植面积、能值投入和产出均呈现出增长的趋势,中稻系统则较为稳定;2002—2004年及2009—2010年间,湖南早、晚稻系统与中稻系统的种植面积、能值投入和产出均出现此消彼长的情况,且早、晚稻播种面积明显下降,主要受双季稻改种单季稻的影响[42,43,44];2010年以后,湖南早、晚稻系统的种植面积、能值投入和产出均出现新一轮增长,中稻系统虽种植面积略有下降,但在持续增长的购买能值投入下,其能值产出仍显著增长。由表2可知,2002— 2016年间,湖南早、中以及晚稻生产系统每千公顷的能值产出为中稻>晚稻>早稻,变动区间分别为6.13× 1018—7.91×1018 sej、8.42×1018—10.56×1018 sej、7.43×1018—8.68×1018 sej,单产年均增长率分别为1.84%、1.63%和1.12%,且呈波动趋势,因此稻作技术的改进虽然对总能值产出有一定的贡献,但湖南三季水稻总种植面积和总能值投入变化仍是影响总能值产出变化的主因。3.4 能值综合评价指标动态分析
3.4.1 能值投入率(EIR) 能值投入率越高,说明该类水稻种植系统需要投入较多的购买能值,生产方式逐渐转向现代化,而环境资源能值投入比较少,增大了自然资源的压力,从而导致更高的生产成本,降低了市场竞争力。表5表明2002—2016年间,湖南稻作系统能值投入率方面为晚稻>早、中稻,且表现出波动的趋势;早、中、晚稻自2002年最低时的4.22、3.56、4.98振荡增长至最高时的7.29、6.50、9.12,其振幅分别为72.75%、82.58%、83.13%。该数据表明湖南三季稻作系统中,晚稻系统生产方式现代化程度较高但其对本地资源及自然资源的利用率偏低,对环境的影响更大。Table 5
表5
表52002—2016年湖南稻田生态系统能值指标
Table 5
项目 Item | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 | 2014 | 2016 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | |
能值投入率EIR=(F+R1)/ (R+N) | 4.22 | 3.56 | 4.98 | 4.87 | 4.43 | 9.12 | 5.20 | 5.04 | 7.93 | 7.29 | 5.96 | 8.01 | 5.08 | 4.32 | 7.86 | 5.25 | 5.10 | 8.31 | 7.28 | 6.50 | 7.61 | 4.34 | 4.54 | 6.26 |
能值产出率EYR=Y/ (F+R1) | 1.52 | 2.51 | 2.19 | 2.23 | 3.44 | 2.62 | 2.17 | 2.49 | 2.59 | 2.19 | 2.59 | 2.58 | 1.96 | 2.62 | 2.39 | 2.10 | 2.51 | 2.43 | 2.02 | 2.41 | 2.37 | 2.07 | 2.86 | 2.50 |
环境负载率ELR=(F+N)/ ( R+ R1) | 0.36 | 0.38 | 0.41 | 0.34 | 0.49 | 0.46 | 0.51 | 0.62 | 0.68 | 0.79 | 0.81 | 0.94 | 0.95 | 0.70 | 1.24 | 1.24 | 0.87 | 1.60 | 1.54 | 1.32 | 1.78 | 1.33 | 1.54 | 1.79 |
可持续指标ESI=EYR/ ELR | 4.18 | 6.55 | 5.37 | 6.66 | 7.03 | 5.63 | 4.26 | 4.01 | 3.79 | 2.76 | 3.21 | 2.74 | 2.05 | 3.75 | 1.93 | 1.70 | 2.88 | 1.52 | 1.31 | 1.82 | 1.33 | 1.56 | 1.86 | 1.39 |
新窗口打开|下载CSV
3.4.2 能值产出率(EYR) 2002—2016年间,湖南稻作系统的能值产出率方面中稻>晚稻>早稻,但中稻呈现下降的趋势;早稻、中稻和晚稻的振荡区间(振幅)分别为1.52—2.23(46.71%)、2.41—3.44(42.74%)、2.19—2.62(19.63%)。2006年以后,中稻因单位种植面积投入的购买能值增长过快,致使其能值产出率有所降低并接近晚稻系统,晚稻较高效率的农业机械化与中稻较高的化肥、人工、畜力能值投入是能值产出率趋同的主因。湖南中稻系统的竞争优势因生产技术落后导致效率低下而日益缩小,政府及农技部门应指导农户结合地域特点充分利用本地自然资源调整能值投入结构、提高购买能值利用效率,才能确保其竞争优势地位。
3.4.3 环境负载率(ELR) 从能值分析角度来看,外界大量的能值输入以及过度开发本地非更新资源是引起区域环境系统恶化的主要原因。一般来说,当ELR<3时,表明环境压力很小;当3<ELR<10时,表明环境压力处于中等水平;当ELR>10时,表明环境压力相当大[47]。2004年到2014年,湖南早稻、中稻和晚稻生态系统的环境负载率均呈现出大幅上升的趋势,直到2014—2016年才趋于平稳;2002—2016年间早稻、中稻和晚稻ELR的上升区间(年均涨幅)分别为0.34—1.54(11.39%)、0.38—1.54(10.51%)、0.41—1.79(11.10%),2006年以后ELR值表现为晚稻>早、中稻系统。但湖南水稻生产系统近年来ELR值增长过快,若照该趋势任其发展,当系统长期处于较高的环境承载力时,系统将产生不可逆转的功能退化或丧失。湖南是中国粮食生产大省,肩负着国家粮食安全的重任,所以必须高度重视水稻种植可能造成的环境问题。
3.4.4 可持续发展指数(ESI) 能值可持续指标的数值越小,代表系统产出率越低、环境压力相对较大;也代表系统能值产出越低、应用的可更新能值越低,则可持续发展能力越弱。一般ESI值为1—10表明经济系统富有活力和发展潜力;ESI>10是经济不发达象征;ESI<1为消费型经济系统[47]。由于环境负载率大幅上升,湖南早稻、中稻和晚稻的能值可持续指标经历了快速下降期(2004—2014年)后趋于平稳,2008年以后中稻>早、晚稻系统;2002—2016年间三季水稻的下降区间(年均降幅)分别为1.31—6.66(10.97%)、1.82—7.03(9.20%)、1.33—5.63(9.79%)。近年来,三类稻作系统ESI值大幅下降至<2,不可更新资源能值投入占总能值投入的比重均超过55%,晚稻更是达到65%,表明它们均是以耗竭环境资源为代价换取农业发展,不符合经济高效的目标。
3.5 与传统成本-收益分析法比较
在成本-收益的经济分析中,通常仅考虑农户的私人投入和私人收益;已有的能值分析研究中对能值产出率的定义中的投入能值仅考虑市场购买能值,没有核算自然投入,本文将自然投入纳入能值分析,将包含自然资源能值和只计算购买能值的分析结果与传统成本收益分析结果进行对比分析。由于仅考虑私人投入产出的单位与其他方法不同,因此统一用利润率来对这3种方法进行比较(表6)。Table 6
表6
表62002—2016年湖南稻田生态系统的利润率(%)
Table 6
年份 Year | 成本-收益分析法 Cost-benefit analysis method | 能值分析法(只计算购买能值) Emergy analysis method (only calculating purchasing emergy) | 能值分析法(含自然资源能值) Emergy analysis (including natural resources emergy) | ||||||
---|---|---|---|---|---|---|---|---|---|
早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | 早稻 Early rice | 中稻 Semilate rice | 晚稻 Late rice | |
2002 | -11.38 | 31.12 | 11.97 | 51.84 | 150.70 | 119.45 | 22.76 | 95.68 | 82.76 |
2004 | 40.77 | 100.78 | 69.37 | 123.38 | 243.90 | 161.95 | 85.34 | 180.61 | 136.05 |
2006 | 22.30 | 37.53 | 45.88 | 116.74 | 149.33 | 158.85 | 81.77 | 108.05 | 129.85 |
2008 | 25.91 | 44.74 | 41.88 | 119.42 | 159.16 | 158.00 | 92.97 | 121.92 | 129.37 |
2010 | 9.37 | 40.79 | 43.70 | 95.54 | 161.71 | 139.28 | 63.39 | 112.52 | 112.26 |
2012 | 21.78 | 33.06 | 28.49 | 110.49 | 151.13 | 143.48 | 76.79 | 109.97 | 117.33 |
2014 | 7.71 | 14.82 | 19.22 | 101.64 | 140.61 | 136.75 | 77.29 | 108.53 | 109.24 |
2016 | -1.87 | 24.26 | 12.41 | 107.39 | 185.82 | 149.64 | 68.55 | 134.18 | 115.26 |
新窗口打开|下载CSV
采用成本-收益分析法,2002—2016年湖南水稻生产的利润率(年均利润率)分别为早稻11.38%— 40.77%(14.32%)、中稻14.82%—100.78%(40.89%)和晚稻11.97%—69.37%(34.12%)。采用只计算购买能值的分析法,利润率(年均利润率)分别为早稻51.84%—123.38%(103.31%)、中稻140.61%— 243.90%(167.80%)和晚稻119.45%—161.95%(145.93%)。而采用包含自然资源能值的分析法,利润率(年均利润率)分别为早稻22.76%—92.97%(71.11%)、中稻95.68%—180.61%(121.43%)和晚稻82.76%—136.05%(116.52%)。3种分析方法得出的平均利润率均为中稻>晚稻>早稻。从2004年起,三季稻作系统的利润率均呈波动下降趋势,中稻的下降幅度明显大于早、晚稻系统且利润率已与晚稻系统不相上下。
结论显示,无论哪个季别的水稻,由于机械作业和人工成本经济支出的大幅增长,拉低了农户的市场经济利润率,成本-收益法得出的利润率明显低于能值分析的结果,故包含自然资源能值投入的利润率能更全面客观地反映稻作的环境成本。对比表1可知,三季稻作系统的市场经济价值的变化直接影响农户的种植积极性,如2004年市场经济利润率出现峰值之后,拉动水稻种植面积持续增长至2006年的峰值,随后因利润率下降,水稻种植面积有所回落。
4 讨论
4.1 政策层面对稻田生态系统能值投入结构的影响
从2004年起,伴随着国家一系列农业政策的实施,传统稻作技术的生产方式、管理模式发生了较大改变,各类生产要素投入结构随之产生调整。2002—2016年湖南稻田生态系统能值投入结构中,环境总资源能值投入相对稳定,但所占能值总投入比重偏低,晚稻最为明显。系统投入能值大部分依赖外部购买能值并趋向增加,其中工业能值增长较快,湖南晚稻系统投入工业能值占系统总能值比例自2014年起高于全国62%的平均水平[47],相应的系统可更新有机能值投入呈快速下降的趋势。三季稻作系统主要的购买能值投入结构已调整为机械>人工+畜力>化肥>农药或种子>燃料>有机肥。其中系统投入的机械能值贡献较大,其占比迅速增加并超过人工、化肥成为能值投入结构中的最大部分,与此同时人工、畜力等生产要素投入逐年递减,充分说明以机械化为代表的先进生产力正在快速取代人工、畜力为主的落后生产力,生产方式日益现代化,晚稻系统最为突出,中稻系统发展相对滞后。4.2 社会经济系统对农户稻作技术选择偏好的影响
长期以来,人类社会投入稻田生态系统的购买能值中,人工能值投入占比最大,约占购买能值投入的50%以上。由于居民生活水平快速攀升导致人工成本逐年大幅提高,出现了人工能值投入与农户经济投入的年际变化产生背离现象,即单位种植面积的人工能值投入逐年减少,但人工成本支出却逐年增加。2002—2016年间每公顷早、中、晚稻生态系统人工经济成本变动区间分别为269—945$、247—1179$、241—1012$[46],年均增幅分别为9.39%、11.81%、10.79%,人工成本已成为制约农户增收的主因,因此节省人工、降低劳动强度已成为农户选择稻作技术的主要考量。由于人工投入的不足,过度依赖化肥、农药投入而有机肥利用不足,精耕细作的传统稻作技术正被粗放型经营方式所取代。造成人工能值投入变化的原因主要是因为农业劳动力逐渐向城镇和其他产业进行转移,劳动力和土地在中国已是稀缺资源,如果替代活动的收益高,稻农就会将这些资源转向替代活动,直至达到均衡状态。看来,稻作的经济效益并不能吸引农户投入更多。保护和提高稻农积极性,改变日益恶化的以耗竭环境资源为代价的高投入驱动型稻作生态系统,仍需要外部激励。
4.3 三个季别稻田生态系统年际间的生态和经济效益的比较
2002—2016年间,湖南早、中、晚稻生态系统单位种植面积的主要购买能值投入中:机械作业能值投入均呈明显增长趋势,相应地人工能值投入均逐年显著下降,其中2010—2014年间中稻系统机械投入明显少于早、晚稻、人工投入则明显高于早、晚稻;化肥投入粗放仍居高不下,且投入密度为中稻>早、晚稻;农药施用无序且呈增长趋势,中稻、晚稻系统投入密度均明显大于早稻;畜力在农业生产中的比重越来越低,早、晚稻系统尤为明显,中稻系统对畜力的依赖程度仍较高,从2008年起系统投入密度为中稻>早、晚稻;系统种子能值投入密度为早稻>晚稻>中稻;系统有机肥投入量极少且仍趋向不断减少。湖南稻田生态系统单位种植面积的能值产出、生态和经济平均利润率均为中稻>晚稻>早稻,中稻系统具有先天的竞争优势。但中稻种植区域多位于丘陵和山区,田地零散不利于整合及大型农机的运用,而使用小型农机效率较低,仍较多地依赖人工、畜力,农业生产机械化、集约化程度较低;同时系统在化肥、农药能值投入方面的粗放程度明显高于早、晚稻系统。虽然其环境负载率、可持续发展指数、平均利润率仍优于早、晚稻系统,但中稻系统的能值产出率、生态和经济利润率降幅较大导致与晚稻系统基本持平,其竞争优势日益缩小。系统单位种植面积的购买能值投入从2012年起转变为中稻>早稻>晚稻系统,晚稻能值投入产出综合效益较高;早稻因较高的用种成本和较低的能值产出密度和利润率,种植面积始终低于晚稻;中稻系统的综合效益较低。
4.4 湖南农业生态系统的发展状况
将稻田生态系统的能值综合评价指标与2008年湖南农业生态系统(EIR=5.56,EYR=0.96,ELR=1.79,ESI=0.54)[42]和2011年环洞庭湖区农业生态系统(EIR=5.51,EYR=2.54,ELR=1.81,ESI=1.39)相比[52]:能值投入率方面晚稻>早、中稻,表明晚稻系统生产方式现代化程度较高,早、中稻系统仅达到全省平均水平;能值产出率方面中稻>晚稻>早稻,数据表明湖南水稻系统产出率明显高于其他农业生态系统,且中、晚稻已达到环洞庭湖区农业生态系统的产出水平;环境负载率年均涨幅较大、指标表现为晚稻>早、中稻系统,表明早、中稻系统投入的非本地资源较少、对环境的压力较小,而晚稻系统对环境的压力已与湖南其它农业生态系统相当;可持续发展指数年均降幅较大、指标表现为中稻>早、晚稻,表明水稻系统较湖南其它农业生态系统更加富有活力但发展潜力日益下降,不符合经济高效的目标。4.5 促进稻田生态系统可持续发展的思考
笔者借鉴蓝盛芳等[36]对ODUM H T. 关于人工能值与其受教育程度相关研究成果,按照初、高中程度与普通劳动力的人工能值系数进行了人工能值调整,应该更符合当前稻作技术不断更新的现状。特别是随着土地流转政策实施后,通过科学、高效、集约化整合土地资源涌现出大批新型农场主、各类专业合作社以及结合区域生态特点发展出许多生态稻作技术,都需要具有专业知识技能的农场主、新型稻农、农机手等。可以预见,稻作分工细化、技能认证、持证上岗将成为经营稻田生态系统的趋势。为更客观的反映不同分工的稻作人工能值与文化、教育等软实力之间的联系,应加强人工能值调整系数的研究,以期更精准的评价各种稻作技术的真实价值。蓝盛芳等[36]对ODUM H T. 关于科技信息的理论进行了研究,但没有对于被赋予科研成果、发明专利等科技信息的农业生产要素、稻作技术进行评价。相应的,赋予了科技信息能值产品的产出能值也没有进行全面评价,即只进行了物质“量”的衡量,而忽略了物质“质”的计算。以种子为例,因其能值转换率未包含科技信息能值,其能值占比极低,但水稻用种经济成本占比达到农户总经济支出5%左右,特别是优质杂交早稻相比杂交中、晚稻更高,早稻用种成本已成为农户早稻种植的重要现实考量。
5 结论
湖南稻田生态系统的能值投入以外部购买能值为主,农业机械化不断提高,生产方式逐渐转向现代化,相较于湖南其他农业生态系统对环境的压力较小但环境负载率指标增长较快。系统开发程度逐年大幅增高,但伴随着工价不断上涨致使人工能值投入不断降低,系统为了维持其较高单产水平而不得不采取高工业能值投入稻作技术,过度依赖化肥、农药投入而有机肥利用不足。湖南三季稻作系统中,早、晚稻系统发展水平和生产效率较高,中稻系统发展相对滞后;早、中稻系统利用环境资源较多,农业还可以加大发展空间,晚稻系统对环境的压力较大;稻作经营方式粗放,中稻系统尤为突出,致使其竞争优势降低;中、晚稻系统的能值产出率和利润率较高,早稻较高的用种成本进一步拉低了其利润率;湖南稻作农业现代化的地域不均衡发展矛盾依然突出。如果没有外部激励,双季稻改种单季稻的趋势不会改变。无论哪个水稻季别,成本-收益法评价的利润率均低于能值分析的结果。传统的成本-收益分析法以市场价值作为评价标准,低估了稻作的真实价值。那么,以利润作为行为出发点,会影响农民从事稻作永续经营的积极性。从整体上来看,湖南稻作生态系统应结合三类水稻种植地域特点,利用当地自然资源优势,加大对于太阳能和雨水能等可更新环境资源及有机肥的利用率,减少对化肥、农药的依赖度,引导稻作技术向生态型、集约型、规模化、机械化的现代高效农业技术转变。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/S2095-3119(16)61375-8URL [本文引用: 1]
The multi-functionality of paddy farming has become a hot issue recently. Paddy farming provides numerous ecosystem services that are crucial to human wel-being. However, evaluation of the contribution of paddy farming to human wel-being usualy focus on its economic value, while its non-market services are usualy ignored. Only evaluating the market proifts or market relative beneifts cannot relfect comprehensively the contribution of paddy farming to people’s wel-being. This wil affect people’s choices for or against paddy farming activities and people’s opt for invest or not invest in it. A compre-hensive evaluation of paddy farming can provide an important reference for the government and society to conserve the multi-functionality of paddy farming and achieve sustainable development. To this end, this paper reports a case evaluation of paddy farming in Hunan, the largest rice producing as wel as rice yield province in China, and uses emergy theory to make a comprehensive evaluation for paddy farming. The emergy evaluation results of the paddy ecosystem in Hunan are as folows: in 2010, the input emergy of the paddy ecosystem in Hunan is 2.51E+22 sej and the output emergy is 6.31E+22 sej. For the input emergy, the part from natural resources is 1.96E+21 sej and the part from human society is 2.32E+22 sej; for the output emergy, the part from products is 2.22E+22 sej, the part from impositive externality is 4.16E+22 sej and the part from negative externality is –7.41E+20 sej. Taking the non-market outputs into consideration, the gains from the human economic society’s 1 $ input in paddy farming, emergy sustainability index (ESI) and emergy proift rate are re-spectively 2.73 $, 3.53 and 151.31%. If the evaluation leave out the non-market output, the three indexes are only 0.96 $, 1.24 and 30.67%. The research results show that non-market services of paddy farming contribute signiifcantly to human wel-being. Therefore, in order to protect the multi-functionality of paddy farming and achieve the sustainable management, the government should take reasonable measures and make incentive plans.
,
DOI:10.1016/j.ecolind.2005.11.003URL [本文引用: 2]
The relationships between, and usefulness of, three different analysis methods: (1) economic cost and return estimation (CAR), (2) ecological footprint (EF) and (3) emergy analysis (EA) in assessing economic viability, ecological carrying capacity and sustainability in tropical crop production was the focus for this study. The analyses were conducted on six agricultural crop production systems in Nicaragua: common bean ( Phaseolus vulgaris L.), tomato ( Lycopersicum esculentum L. Mill), cabbage ( Brassica oleraceae L. var. capitata), maize ( Zea mays L.), pineapple ( Ananas comosus L. Merr.) and coffee ( Coffea arabica L.). The economic indices studied were revenues and profitability. The ecological footprint indices were ecological footprint per hectare of crop (EF crop), ecological footprint per 1000 USD revenues (EF rev) and ecological footprint per gigacalorie of food energy produced (EF Gcal). The emergy analysis indices used were emergy-based profitability (EA prof) and emergy-based ecological footprint (EA EF). The study indicated that cabbage and tomato were the most profitable crops, both in economic and emergy terms, and that coffee was the least profitable crop to grow. On the other hand, beans, coffee and maize were most sustainable when sustainability was measured as ecological carrying capacity, assessed by EF or emergy-based EF, while cabbage and tomato were the least sustainable. Moreover, maize turned out to be the crop with the lowest area demand per production of gigacalorie. Profitability assessed in economic terms or in relation to emergy use (EA prof) or to ecological footprint showed similar patterns and gave the same rankings between the crops. However, profitability assessed by CAR was higher than when assessed by EA prof, due to the fact that no environmental appropriation is included in the CAR. Area appropriation assessed with emergy or with ordinary ecological footprint also resulted in mainly the same rankings between the crops, while the actual size of the areas was at most 10 times larger when assessed in emergy than with plain ecological footprint. Our results add to the body of knowledge on the poor coherence between economic profitability and ecological sustainability. However, we argue that these evaluations may be used as methods for quantitatively assessing different production systems, leading to indices weighting together economic and environmental aspects that may be used to make decisions.
.,
[本文引用: 1]
,
DOI:10.1007/s00003-011-0677-4URL [本文引用: 1]
Reducing pesticide use can provide growers with direct economic benefits by decreasing the cost of inputs and increasing net returns. Chemical pesticides will continue to play a role in pest management for the future. In many situations, the benefits of pesticide use are high relative to the risks or there are no practical alternatives. The number and diversity of biological sources will increase, and products that originate in chemistry laboratories will be designed for particular target sites. Innovations in pesticide delivery systems in plants promise to reduce adverse environmental impacts even further. The correct use of pesticides can deliver significant socio-economic and environmental benefits in the form of safe, healthy, affordable food; and enable sustainable farm management by improving the efficiency with which we use natural resources such as soil, water and overall land use. Some alternative methods may be more costly than conventional chemical-intensive agricultural practices, but often these comparisons fail to account for the high environmental and social costs of pesticide use. Genetically engineered organisms that reduce pest pressure constitute a ew generation of pest management tools. The use of transgenic crops will probably maintain or even increase the need for effective resistance management programmes. However, there remains a need for new chemicals that are compatible with ecologically based pest management and applicator and worker safety. Evaluation of the effectiveness of biocontrol agents should involve consideration of long-term impacts rather than only short-term yield, as is typically done for conventional practices. The justifications of government intervention in the management of pest control include the need to address the externality problems associated with the human and environmental health effects of pesticides.
,
DOI:10.3969/j.issn.1002-6819.2013.11.001URL [本文引用: 1]
The relations between China grain yield and some main factors influencing the grain yield, more present the exponential function and few exponent sign function relations. To describe with a new type of exponential production function can obtain a better result because of less error. The paper pointed out that the least absolute deviations (LAD) method, as its excellent properties, may be a best method to find the"implicit function"which is behind the data and control the data. To knead the two together, with the LAD method to fit the exponential production function, trying to find out some rules for China's grain change is a subject that is worth of exploring in theory and application. The paper introduces the LAD method and the exponential production function, establishes correlations between the China grain yield and its 5 major influencing factors (consumption of chemical fertilizer, total sown area, total area affected by natural disaster, total agricultural machinery power, and total employed persons of primary industry). The production function model was fit with the LAD method, and the data of 1983-2011 were calculated. The results with Mae (mean absolute error) not over 3.93 million tons and Mape (mean absolute percentage error) not more than 0.87% for China grain yield during the 29 years were obtained, and the conclusions were explained and analyzed; The analysis showed that, in the 29 years of 1983-2011, the growth of China nation grain yield mainly depended on the consumption of chemical fertilizer and the total agricultural machinery power, of which the consumption of chemical fertilizer is still playing a positive roll up to now, while the total agricultural machinery power is dynamically in a saturated state. Theoretically it should have a "negative" effect now, but in reality it does not. The total sown area was the most influencing "positive" factor. The national grain yield may still grow further without increasing the total sown area, but increasing the sown area can rapidly boost the China nation grain yield. The total area affected by natural disaster imposed "negative" effect on the growth; However, the trend of its influence is increasing in terms of absolute values, but is decreasing in terms of relative values. By the huge impact and lagged effects of the rapid growing of the total employed population of primary industry in China during 1983-1993 period, the reduction of the total employed population of primary industry to grain growth constituted "negative" impact. With the modernization of agriculture and urbanization development, this "negative" impact continued to reduce. These conclusions give the specific quantitative values. The paper predictes that the grain yield for year 2012 is 8 5.9133 10t, the later result indicates the absolute error is 6 1.78 10t, and the relative error is 0.3%. For year 2013, the prediction is 8 6.1148 10t. In the last the paper gives some discussion about the LAD method, the exponential production functions and so on, and is concluded that the exponential production function under the meaning of LAD criterion to describe the relationships between China's grain yield and the main effect factors, has a certain accuracy and guiding sense.
.
[本文引用: 1]
,
[本文引用: 1]
.
[本文引用: 1]
,
URL [本文引用: 1]
本文依据1998-2010年中国粮食、油料、蔬菜、苹果种植成本收益数据,运用收益比较指数、主成分回归及边际收益分析方法,对四种农产品的收益进行了比较研究。研究结果表明,尽管中国粮食生产的比较效益仍然相对较低,但是在农业内部其比较效益并非均不断下降,其相对蔬菜的比较效益呈不断上升趋势,相对油料的比较效益呈不断下降趋势,相对苹果的比较效益大体不变。从整体来看,粮食相对油料、蔬菜及苹果的比较收益差距呈不断缩小趋势。提高粮食价格及人工的用工效率与降低人工、肥料、土地及机械的投入,提高投入产出效率,分别是缩小粮食生产单位面积、单位成本比较收益差距的主要途径。
.
URL [本文引用: 1]
本文依据1998-2010年中国粮食、油料、蔬菜、苹果种植成本收益数据,运用收益比较指数、主成分回归及边际收益分析方法,对四种农产品的收益进行了比较研究。研究结果表明,尽管中国粮食生产的比较效益仍然相对较低,但是在农业内部其比较效益并非均不断下降,其相对蔬菜的比较效益呈不断上升趋势,相对油料的比较效益呈不断下降趋势,相对苹果的比较效益大体不变。从整体来看,粮食相对油料、蔬菜及苹果的比较收益差距呈不断缩小趋势。提高粮食价格及人工的用工效率与降低人工、肥料、土地及机械的投入,提高投入产出效率,分别是缩小粮食生产单位面积、单位成本比较收益差距的主要途径。
,
[本文引用: 1]
.
[本文引用: 1]
,
DOI:10.7621/cjarrp.1005-9121.20160508URL [本文引用: 1]
探讨河南省水稻节约成本途径和方法,增加水稻收益,对于调整河南省农业生产结构和稳定地区粮食安全具有重要意义。文章利用实地调研和成本分析相结合的方法,对河南省水稻生产中的收益指标,如物质与服务费、土地成本和人工成本进行了深入研究,明确了成本收益的变化规律。总生产成本结果分析表明,物质与服务费用占有比例最高,人工成本逐年增长,土地成本年波动较小,而在物质与服务费中,机械作业费和化肥费是最主要的影响因素,两者占物质与服务费的比例超过60%。而种子费、灌溉费、农药费占物质服务费的比例不高,均在12%左右。收益分析表明,近年来河南省水稻成本收益趋于稳定,但在2009年和2011年收益率出现下降现象,主要原因是单位面积产量降低和物质与服务费价格的增长。此外,该文从加强稻田水利等基础设施建设、加大种粮补贴力度、稳定农业生产资料价格等方面提出对策建议。
.
DOI:10.7621/cjarrp.1005-9121.20160508URL [本文引用: 1]
探讨河南省水稻节约成本途径和方法,增加水稻收益,对于调整河南省农业生产结构和稳定地区粮食安全具有重要意义。文章利用实地调研和成本分析相结合的方法,对河南省水稻生产中的收益指标,如物质与服务费、土地成本和人工成本进行了深入研究,明确了成本收益的变化规律。总生产成本结果分析表明,物质与服务费用占有比例最高,人工成本逐年增长,土地成本年波动较小,而在物质与服务费中,机械作业费和化肥费是最主要的影响因素,两者占物质与服务费的比例超过60%。而种子费、灌溉费、农药费占物质服务费的比例不高,均在12%左右。收益分析表明,近年来河南省水稻成本收益趋于稳定,但在2009年和2011年收益率出现下降现象,主要原因是单位面积产量降低和物质与服务费价格的增长。此外,该文从加强稻田水利等基础设施建设、加大种粮补贴力度、稳定农业生产资料价格等方面提出对策建议。
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 3]
[本文引用: 1]
,
DOI:10.1016/S0304-3800(02)00341-1URL [本文引用: 1]
Wind erosion and rising water tables are serious threats to the ecological sustainability of annual plant-based farming systems on deep, infertile sandplain soils in southwestern Australia. In this study, an annual cropping system was compared with two novel perennial plant-based systems designed to address these threats in terms of their use of renewable indigenous resource, their use of non-renewable indigenous resources, their purchased inputs of energy and materials, and profitability. The farming systems were an annual lupin/wheat ( Lupinus angustifolius L./ Triticum aestivum L.) crop rotation, a plantation of the fodder tree tagasaste ( Chamaecytisus proliferus L.) and an alley cropping system in which the lupin/wheat rotation was grown between spaced rows of tagasaste trees. Flows of energy and materials between the environment and the economy were identified for each farming system and the natural and human activity involved in generating inputs as goods or services then valued in terms of the equivalent amount of solar energy required for their production using the emergy method of Odum [Ecological and General Systems: An Introduction to Systems Ecology. University Press of Colorado, revised edition of Systems Ecology, 1983, Wiley, New York, 644 pp.; Environmental Accounting: Emergy and Environmental Decision Making. Wiley, New York, 370 pp.]. The results showed that the two largest energy flows in the conventional lupin/wheat cropping system were wind erosion and purchased inputs of phosphate. The renewable component of production was 15% of total flows in the lupin/wheat system, 30% in the alley cropping system and 53% in the tagasaste plantation. The annual net income from the plantation system was nearly four times higher, and from alley cropping 45% higher, than from the lupin/wheat rotation. This analysis suggested that once the two agroforestry systems were fully established, the tagasaste plantation was the most efficient at transforming natural resources into goods and services and the most profitable, while the lupin/wheat system was the least energy efficient and the least profitable.
[本文引用: 1]
.
[本文引用: 1]
,
URL [本文引用: 1]
以石羊河流域中游凉州区绿洲和下游民勤绿洲为例,应用能值理论和 方法分析内陆河流域绿洲农业生产的资源环境基础和经济特征.结果表明,石羊河流域中下游凉州区和民勤绿洲的能值总投入呈降低趋势,能值投资率都偏高,生产 成本较大;能值产出率低,对购买能值的利用效率不高;但能值自给率有所提高;环境载荷率高,农业环境所受压力较大,系统可持续发展指标表明,两个绿洲经济 系统极为不发达,属于消费型经济系统,并且人均可用能值和能值密度都呈降低趋势.
URL [本文引用: 1]
以石羊河流域中游凉州区绿洲和下游民勤绿洲为例,应用能值理论和 方法分析内陆河流域绿洲农业生产的资源环境基础和经济特征.结果表明,石羊河流域中下游凉州区和民勤绿洲的能值总投入呈降低趋势,能值投资率都偏高,生产 成本较大;能值产出率低,对购买能值的利用效率不高;但能值自给率有所提高;环境载荷率高,农业环境所受压力较大,系统可持续发展指标表明,两个绿洲经济 系统极为不发达,属于消费型经济系统,并且人均可用能值和能值密度都呈降低趋势.
,
DOI:10.3321/j.issn:1009-2242.2005.06.035URL [本文引用: 1]
The paper studies succession of energy on modern agro-ecosystem as a case in Quzhou county,Hehei province,and the result indicates as follow: the energy input and output annually presents the increasing trend with chemic-petrolic energy being main in energy input structure and the utilization of groundwater being main in the input of the increasing environmental resource;total energy output structure becomes gradual planting output energy being leading into the integration of farming and animal husbandry with the development of forestry andfishery,besides the variety is reducing to farming and animal husbandry;the development of agriculture is in better level and hold better potential,but the increment on efficiency of energy output decreases with systemic structure being unreasonable and the decreasing predominance degree of the system,it is main reason that the proportion of forestry and fishery energy output is lower.
DOI:10.3321/j.issn:1009-2242.2005.06.035URL [本文引用: 1]
The paper studies succession of energy on modern agro-ecosystem as a case in Quzhou county,Hehei province,and the result indicates as follow: the energy input and output annually presents the increasing trend with chemic-petrolic energy being main in energy input structure and the utilization of groundwater being main in the input of the increasing environmental resource;total energy output structure becomes gradual planting output energy being leading into the integration of farming and animal husbandry with the development of forestry andfishery,besides the variety is reducing to farming and animal husbandry;the development of agriculture is in better level and hold better potential,but the increment on efficiency of energy output decreases with systemic structure being unreasonable and the decreasing predominance degree of the system,it is main reason that the proportion of forestry and fishery energy output is lower.
,
DOI:10.3321/j.issn:1000-7601.2006.06.041URL [本文引用: 1]
利用能值分析方法对东北地区农业生态系统的投入产出状况、运行效率和环境负荷进行了系统分析,结果表明,该区农业生态系统能值投以人工辅助能源为主,净能值产出率相对较高;由于资源优势明显,环境压力相对较小,农业生态系统运行状况良好,黑、吉、辽三省可持续发展指数分别为1.31、0.94和0.70,可持续发展性强。三省中辽宁省能值投入率最高,环境负荷最大,农业集约化程度最高,可持续发展性能指数最小;黑龙江省能值投入率最低,环境负载率最低,可持续发展性能最强;为了获得高质量的农产品,促进农业生态系统的建设和可持续发展,东北地区应当加强高质量能值特别是科学技术的投入,同时注重自身资源优势的保护和高效利用。
DOI:10.3321/j.issn:1000-7601.2006.06.041URL [本文引用: 1]
利用能值分析方法对东北地区农业生态系统的投入产出状况、运行效率和环境负荷进行了系统分析,结果表明,该区农业生态系统能值投以人工辅助能源为主,净能值产出率相对较高;由于资源优势明显,环境压力相对较小,农业生态系统运行状况良好,黑、吉、辽三省可持续发展指数分别为1.31、0.94和0.70,可持续发展性强。三省中辽宁省能值投入率最高,环境负荷最大,农业集约化程度最高,可持续发展性能指数最小;黑龙江省能值投入率最低,环境负载率最低,可持续发展性能最强;为了获得高质量的农产品,促进农业生态系统的建设和可持续发展,东北地区应当加强高质量能值特别是科学技术的投入,同时注重自身资源优势的保护和高效利用。
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
运用能值分析法,研究了辽宁省朝阳与抚顺2个农业经济系统在25年的发展过程中资源利用、产品生产、环境压力以及可持续性的变迁。结果表明:2个农业系统的生产过程对购入资源的依赖性都呈增强的态势,由于较多依赖于购入的不可更新资源,生产过程对当地环境产生较大压力;25年中,系统的生态可持续性急剧下降。在这一过程中,朝阳农业系统表现出可持续性的更快下降,能值可持续指数从1.25下降到0.11;同样的工业化过程给朝阳较脆弱的环境带来更大的压力;与投入更多不可更新资源相比,环境的保护与恢复应该是减少本地不可更新资源流失的更优策略。
URL [本文引用: 1]
运用能值分析法,研究了辽宁省朝阳与抚顺2个农业经济系统在25年的发展过程中资源利用、产品生产、环境压力以及可持续性的变迁。结果表明:2个农业系统的生产过程对购入资源的依赖性都呈增强的态势,由于较多依赖于购入的不可更新资源,生产过程对当地环境产生较大压力;25年中,系统的生态可持续性急剧下降。在这一过程中,朝阳农业系统表现出可持续性的更快下降,能值可持续指数从1.25下降到0.11;同样的工业化过程给朝阳较脆弱的环境带来更大的压力;与投入更多不可更新资源相比,环境的保护与恢复应该是减少本地不可更新资源流失的更优策略。
,
URL [本文引用: 1]
以甘肃省镇原县北庄村为例,应用H.T.Odum能值分析方法,分析退耕还草前后农业生态系统的能值变化。结果表明,退耕还草后北庄农业生态系统的净能值产出率提高了35.14%;环境负荷力降低8.31%;系统可持续发展性指标提高47.38%;系统稳定性指数也由0.809提高到1.015。退耕还草对北庄农业生态系统生产力的提高和系统的可持续发展起到了积极的作用。但农牧系统耦合度降低了41.74%,应采取措施提高农牧系统耦合度,实现农业生态系统平衡发展。
URL [本文引用: 1]
以甘肃省镇原县北庄村为例,应用H.T.Odum能值分析方法,分析退耕还草前后农业生态系统的能值变化。结果表明,退耕还草后北庄农业生态系统的净能值产出率提高了35.14%;环境负荷力降低8.31%;系统可持续发展性指标提高47.38%;系统稳定性指数也由0.809提高到1.015。退耕还草对北庄农业生态系统生产力的提高和系统的可持续发展起到了积极的作用。但农牧系统耦合度降低了41.74%,应采取措施提高农牧系统耦合度,实现农业生态系统平衡发展。
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
为更深入了解中国西部12个省、市、自治区农业生态系统的网络运 行效率和发展潜力的空间差异,正确评价区域内农业生态系统对太阳能资源的利用现状与其可持续发展情况,利用能值分析方法对该区域农业生态系统的能值投入产 出情况、环境承载情况和生态系统运行情况做了定量分析,结合GIS,对区域内各省、市、自治区农业生态系统综合发展水平进行等级划分和空间差异分析.结果 表明:西藏、青海和新疆是最具发展潜力的地区,其可持续发展性能(EIS)大于3.0;四川、重庆、云南、广西和甘肃,环境负栽较高,发展潜力较 差,EIS均小于0.5;内蒙古、宁夏、陕西和贵州则处于中间地带,EIS介于0.5和3.0之间.
URL [本文引用: 1]
为更深入了解中国西部12个省、市、自治区农业生态系统的网络运 行效率和发展潜力的空间差异,正确评价区域内农业生态系统对太阳能资源的利用现状与其可持续发展情况,利用能值分析方法对该区域农业生态系统的能值投入产 出情况、环境承载情况和生态系统运行情况做了定量分析,结合GIS,对区域内各省、市、自治区农业生态系统综合发展水平进行等级划分和空间差异分析.结果 表明:西藏、青海和新疆是最具发展潜力的地区,其可持续发展性能(EIS)大于3.0;四川、重庆、云南、广西和甘肃,环境负栽较高,发展潜力较 差,EIS均小于0.5;内蒙古、宁夏、陕西和贵州则处于中间地带,EIS介于0.5和3.0之间.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3321/j.issn:1672-2043.2009.12.008URL [本文引用: 1]
耕作方式对稻田碳循环有着较大的影响。采用田间试验方法,研究了秸秆还田条件下,不同耕作措施双季稻田碳循环及其生态服务价值,为稻田生态服务价值计算及土壤固碳潜力评价提供依据。试验于湖南省宁乡县进行,通过静态箱法测定翻耕秸秆还田(CT)、旋耕秸秆还田(RT)、免耕秸秆还田(NT)稻田CH4及CO2排放,根据美国橡树岭国家生态实验室得出的碳折算系数计算各项农资投入的碳释放。结果表明:(1)机械操作造成的碳排放为CTRTNT,免耕分别比翻耕和旋耕碳减排61.69、35.70kgC.hm-2;(2)含碳农资碳减排对于稻田碳减排具有较大作用,其中减少含碳农资投入对于免耕碳减排作用最大;(3)免耕促进了稻田土壤碳固定,稻田生态系统总体碳固定为NTCTRT;(4)采用免耕、减少含碳农资投入有利于固碳及增加稻田生态系统服务价值。本研究得出免耕秸秆还田有利于减少碳排放及增加稻田生态系统生态服务价值,建议长江中下游双季稻区采用以免耕秸秆还田为主的保护性耕作。
DOI:10.3321/j.issn:1672-2043.2009.12.008URL [本文引用: 1]
耕作方式对稻田碳循环有着较大的影响。采用田间试验方法,研究了秸秆还田条件下,不同耕作措施双季稻田碳循环及其生态服务价值,为稻田生态服务价值计算及土壤固碳潜力评价提供依据。试验于湖南省宁乡县进行,通过静态箱法测定翻耕秸秆还田(CT)、旋耕秸秆还田(RT)、免耕秸秆还田(NT)稻田CH4及CO2排放,根据美国橡树岭国家生态实验室得出的碳折算系数计算各项农资投入的碳释放。结果表明:(1)机械操作造成的碳排放为CTRTNT,免耕分别比翻耕和旋耕碳减排61.69、35.70kgC.hm-2;(2)含碳农资碳减排对于稻田碳减排具有较大作用,其中减少含碳农资投入对于免耕碳减排作用最大;(3)免耕促进了稻田土壤碳固定,稻田生态系统总体碳固定为NTCTRT;(4)采用免耕、减少含碳农资投入有利于固碳及增加稻田生态系统服务价值。本研究得出免耕秸秆还田有利于减少碳排放及增加稻田生态系统生态服务价值,建议长江中下游双季稻区采用以免耕秸秆还田为主的保护性耕作。
,
URL [本文引用: 1]
以江西省红壤所长期施肥红壤水稻土双季稻农田生态系统为研究对象,利用不同施肥处理作物产量及土壤有机质含量等测定数据结合调查获得的生态系统物质和管理投入资料,估算了不同施肥处理(不施肥(CK)、单施氮肥(N)、单施磷肥(P)、单施钾肥(K)、氮磷肥配施(NP)、氮钾肥配施(NK)、氮磷钾配施(NPK)、两倍氮磷钾配施(2NPK)、有机肥与氮磷钾肥配施(NPKM))双季稻生态系统的碳汇效应和经济效益。结果表明,有机肥和化肥配施(NPKM)既提高了系统的作物固碳量又显著增加了土壤的固碳量,使得其净碳汇效应最大,为8.78tC·hm^-2·a^-1;两倍氮磷钾配施(2NPK)系统的净碳汇效应为8.11tC·hm^-2·a^-1,二者均高于氮磷钾配施(NPK)处理的7.03tC·hm^-2·a^-1,不施肥及单施一种或两种无机肥配施系统的净碳汇效应均明显减弱,其中不施肥处理(CK)最小为4.52tC·hm^-2·a^-1,单施N肥比单施P、K肥在提高系统净碳汇效应上作用明显。配施有机肥(NPKM)稻田的作物产量和经济效益也高于无机肥配施处理(NPK和2NPK),不施肥、单施一种或两种无机肥配施稻田的作物产量和经济效益明显偏低。因此,稻田施用一定量的无机肥是提高稻田生态系统碳汇效应和经济效益的保证,而配施有机肥可以明显提高稻田生态系统的碳汇效应和经济效益。
URL [本文引用: 1]
以江西省红壤所长期施肥红壤水稻土双季稻农田生态系统为研究对象,利用不同施肥处理作物产量及土壤有机质含量等测定数据结合调查获得的生态系统物质和管理投入资料,估算了不同施肥处理(不施肥(CK)、单施氮肥(N)、单施磷肥(P)、单施钾肥(K)、氮磷肥配施(NP)、氮钾肥配施(NK)、氮磷钾配施(NPK)、两倍氮磷钾配施(2NPK)、有机肥与氮磷钾肥配施(NPKM))双季稻生态系统的碳汇效应和经济效益。结果表明,有机肥和化肥配施(NPKM)既提高了系统的作物固碳量又显著增加了土壤的固碳量,使得其净碳汇效应最大,为8.78tC·hm^-2·a^-1;两倍氮磷钾配施(2NPK)系统的净碳汇效应为8.11tC·hm^-2·a^-1,二者均高于氮磷钾配施(NPK)处理的7.03tC·hm^-2·a^-1,不施肥及单施一种或两种无机肥配施系统的净碳汇效应均明显减弱,其中不施肥处理(CK)最小为4.52tC·hm^-2·a^-1,单施N肥比单施P、K肥在提高系统净碳汇效应上作用明显。配施有机肥(NPKM)稻田的作物产量和经济效益也高于无机肥配施处理(NPK和2NPK),不施肥、单施一种或两种无机肥配施稻田的作物产量和经济效益明显偏低。因此,稻田施用一定量的无机肥是提高稻田生态系统碳汇效应和经济效益的保证,而配施有机肥可以明显提高稻田生态系统的碳汇效应和经济效益。
,
DOI:10.3321/j.issn:0375-5444.2004.01.003URL [本文引用: 1]
田间模拟施肥进步和灌溉模式的定位试验在中国科学院桃源农业生态试验站进行。结果表明施肥制度和水分管理模式显著地影响水分和养分的转化过程和生产效益。单施N的产量效应为4.5 kg/kg,而NP或NPK配施养分总的产量效应分别为8.8 kg/kg和8.0 kg/kg;有机物料循环的增产率为56.8%,在有机物料循环的基础上配施NPK化肥最大的增产率可达到80.1%;化肥应用的进步可使水稻产量增长62.5%或通过施肥实现的水稻产量中由于化肥应用所占的贡献份额为38.4%,有机无机肥配合水稻产量增长80.1%,或通过施肥达到的产量中有机无机肥配合所占的份额为44.4%。本区双季稻年灌溉需水量为5838 m3/hm2,年变异C.V = 8.3%。晚稻灌溉占全年的71%,7~9月是灌溉需水高峰期,占全年灌溉量的68%。生产灌溉效率(灌溉水量与产量之比):生物量3.67 kg/m3,精谷量1.48 kg/m3。常规管理田间水分分配为:蒸散占1/2,翻耕整地占1/6,植物构成占1/21,田间渗漏占1/14,其它环境耗水(维持) 占1/5。耕灌雨养管理翻耕整地和田间渗漏比例过高。不同灌溉处理试验表明:双季稻生产的灌溉,以早稻保持水层灌溉,晚稻按需配额灌溉的模式比较适宜。
DOI:10.3321/j.issn:0375-5444.2004.01.003URL [本文引用: 1]
田间模拟施肥进步和灌溉模式的定位试验在中国科学院桃源农业生态试验站进行。结果表明施肥制度和水分管理模式显著地影响水分和养分的转化过程和生产效益。单施N的产量效应为4.5 kg/kg,而NP或NPK配施养分总的产量效应分别为8.8 kg/kg和8.0 kg/kg;有机物料循环的增产率为56.8%,在有机物料循环的基础上配施NPK化肥最大的增产率可达到80.1%;化肥应用的进步可使水稻产量增长62.5%或通过施肥实现的水稻产量中由于化肥应用所占的贡献份额为38.4%,有机无机肥配合水稻产量增长80.1%,或通过施肥达到的产量中有机无机肥配合所占的份额为44.4%。本区双季稻年灌溉需水量为5838 m3/hm2,年变异C.V = 8.3%。晚稻灌溉占全年的71%,7~9月是灌溉需水高峰期,占全年灌溉量的68%。生产灌溉效率(灌溉水量与产量之比):生物量3.67 kg/m3,精谷量1.48 kg/m3。常规管理田间水分分配为:蒸散占1/2,翻耕整地占1/6,植物构成占1/21,田间渗漏占1/14,其它环境耗水(维持) 占1/5。耕灌雨养管理翻耕整地和田间渗漏比例过高。不同灌溉处理试验表明:双季稻生产的灌溉,以早稻保持水层灌溉,晚稻按需配额灌溉的模式比较适宜。
,
URL [本文引用: 1]
稻田生态系统中水稻植株吸收土壤中氮素并转化为秸秆中的氮素以及籽粒中的蛋白质和氨基酸的过程是稻田氮素转化的主要过程。在2003年上海市郊五四农场田间试验数据的基础上,研究了稻田生态系统氮素吸收功能及其形成过程,然后运用替代价格法估算了稻田氮素吸收经济价值,同时还对不同地区、施氮水平和作物的氮素吸收物理量和价值量进行了对比。结果表明,稻田植株地上部分氮素累积吸收量在拔节期至抽穗期之间增长最快,抽穗期至成熟期增加减缓,而在收获前有所下降。稻田植株氮素吸收经济价值随生育期不断提高,到成熟期显著增加。施加氮肥对水稻氮素吸收物理量及其价值量都具有促进作用。就不同作物而言,水稻氮素吸收转化量及其经济价值高于小麦和油菜,几乎所有作物籽粒氮素吸收量及其经济价值都高于秸秆。
URL [本文引用: 1]
稻田生态系统中水稻植株吸收土壤中氮素并转化为秸秆中的氮素以及籽粒中的蛋白质和氨基酸的过程是稻田氮素转化的主要过程。在2003年上海市郊五四农场田间试验数据的基础上,研究了稻田生态系统氮素吸收功能及其形成过程,然后运用替代价格法估算了稻田氮素吸收经济价值,同时还对不同地区、施氮水平和作物的氮素吸收物理量和价值量进行了对比。结果表明,稻田植株地上部分氮素累积吸收量在拔节期至抽穗期之间增长最快,抽穗期至成熟期增加减缓,而在收获前有所下降。稻田植株氮素吸收经济价值随生育期不断提高,到成熟期显著增加。施加氮肥对水稻氮素吸收物理量及其价值量都具有促进作用。就不同作物而言,水稻氮素吸收转化量及其经济价值高于小麦和油菜,几乎所有作物籽粒氮素吸收量及其经济价值都高于秸秆。
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.3321/j.issn:1000-0933.2005.08.022URL [本文引用: 2]
采用田间试验及环境经济学方法研究免耕稻-鸭生态种养技术的生态、经济效益.试验结果表明:农户采用免耕 稻-鸭生态种养技术对稻田杂草的控制效果显著;在晚稻分蘖盛期和孕穗期,采用免耕稻-鸭生态种养技术对稻二化螟防效达100%,稻纵卷叶螟发生率分别比免 耕抛秧不养鸭的稻田低48.05%、93.55%,免耕抛秧养鸭稻田中水稻纹枯病的病株率比免耕抛秧不养鸭的稻田分别低48.15%、38.21%;在稻 田甲烷排放高峰期(晚稻分蘖始期-分蘖盛期),免耕抛秧养鸭对甲烷排放的控制效果明显,分别比翻耕抛秧不养鸭稻田、免耕抛秧不养鸭稻田的甲烷排放量减少 4.723g/m2、2.333g/m2,晚稻整个生育期间,免耕抛秧养鸭稻田甲烷排放量比免耕抛秧不养鸭稻田减少3.37g/m2,比翻耕抛秧不养鸭稻 田减少5.59g/m2;免耕可节约灌溉用水1300m3/hm2.环境经济学分析结果表明:采用免耕稻-鸭生态种养技术的农户比采用免耕抛秧不养鸭技术 或采用翻耕抛秧不养鸭技术的农户分别增加财务净收益2166yuan/hm2、4207yuan/hm2;免耕抛秧养鸭获得的经济净效益为 4062yuan/hm2,而免耕抛秧不养鸭、翻耕抛秧不养鸭的经济净效益分别为1592yuan/hm2、-997yuan/hm2.免耕稻-鸭生态种 养技术既能充分发挥稻-鸭复合生态系统的生态和经济效益,又能较好地克服免耕给生态环境带来的不利影响,是一种很有发展潜力的可持续农业生产模式,具有良 好的推广和发展前景.
DOI:10.3321/j.issn:1000-0933.2005.08.022URL [本文引用: 2]
采用田间试验及环境经济学方法研究免耕稻-鸭生态种养技术的生态、经济效益.试验结果表明:农户采用免耕 稻-鸭生态种养技术对稻田杂草的控制效果显著;在晚稻分蘖盛期和孕穗期,采用免耕稻-鸭生态种养技术对稻二化螟防效达100%,稻纵卷叶螟发生率分别比免 耕抛秧不养鸭的稻田低48.05%、93.55%,免耕抛秧养鸭稻田中水稻纹枯病的病株率比免耕抛秧不养鸭的稻田分别低48.15%、38.21%;在稻 田甲烷排放高峰期(晚稻分蘖始期-分蘖盛期),免耕抛秧养鸭对甲烷排放的控制效果明显,分别比翻耕抛秧不养鸭稻田、免耕抛秧不养鸭稻田的甲烷排放量减少 4.723g/m2、2.333g/m2,晚稻整个生育期间,免耕抛秧养鸭稻田甲烷排放量比免耕抛秧不养鸭稻田减少3.37g/m2,比翻耕抛秧不养鸭稻 田减少5.59g/m2;免耕可节约灌溉用水1300m3/hm2.环境经济学分析结果表明:采用免耕稻-鸭生态种养技术的农户比采用免耕抛秧不养鸭技术 或采用翻耕抛秧不养鸭技术的农户分别增加财务净收益2166yuan/hm2、4207yuan/hm2;免耕抛秧养鸭获得的经济净效益为 4062yuan/hm2,而免耕抛秧不养鸭、翻耕抛秧不养鸭的经济净效益分别为1592yuan/hm2、-997yuan/hm2.免耕稻-鸭生态种 养技术既能充分发挥稻-鸭复合生态系统的生态和经济效益,又能较好地克服免耕给生态环境带来的不利影响,是一种很有发展潜力的可持续农业生产模式,具有良 好的推广和发展前景.
,
DOI:10.1016/S0379-4172(06)60102-9URL [本文引用: 3]
应用能值分析方法对稻鸭共作有机农业模式(模式Ⅰ)和对应的稻麦常规生产模式(模式Ⅱ)进行比较研究,并比较了两种模式的生态经济效益.结果表明,模式Ⅰ的能值效益高,自组织能力、可持续发展能力强,产品安全性高,净能值产出率(EYR)、系统产出能值反馈率(FYE)、能值可持续指标(ESI)分别是模式Ⅱ的1.57、14.1和8.71倍;基于能值的产品安全性指标(EIPS)模式Ⅰ为0,模式Ⅱ为-0.66;模式Ⅰ对环境的压力小于模式Ⅱ,能值投资率(EIR),环境负载率(ELR)分别是模式Ⅱ的40.1%和18.3%;但模式Ⅰ的经济效益低于模式Ⅱ,其产出、毛收入和净效益分别低于模式Ⅱ15.7%、9.6%和29.6%;以能值-货币价值计算,模式Ⅰ的产投比、毛收入和净收入分别高于模式Ⅱ50%、102.6%和136.4%.随着生产系统的优化和市场对有机食品认知程度的提高,模式Ⅰ的经济效益具有提高的潜力.
DOI:10.1016/S0379-4172(06)60102-9URL [本文引用: 3]
应用能值分析方法对稻鸭共作有机农业模式(模式Ⅰ)和对应的稻麦常规生产模式(模式Ⅱ)进行比较研究,并比较了两种模式的生态经济效益.结果表明,模式Ⅰ的能值效益高,自组织能力、可持续发展能力强,产品安全性高,净能值产出率(EYR)、系统产出能值反馈率(FYE)、能值可持续指标(ESI)分别是模式Ⅱ的1.57、14.1和8.71倍;基于能值的产品安全性指标(EIPS)模式Ⅰ为0,模式Ⅱ为-0.66;模式Ⅰ对环境的压力小于模式Ⅱ,能值投资率(EIR),环境负载率(ELR)分别是模式Ⅱ的40.1%和18.3%;但模式Ⅰ的经济效益低于模式Ⅱ,其产出、毛收入和净效益分别低于模式Ⅱ15.7%、9.6%和29.6%;以能值-货币价值计算,模式Ⅰ的产投比、毛收入和净收入分别高于模式Ⅱ50%、102.6%和136.4%.随着生产系统的优化和市场对有机食品认知程度的提高,模式Ⅰ的经济效益具有提高的潜力.
,
DOI:10.3864/j.issn.0578-1752.2014.03.011URL [本文引用: 16]
【Objective】 Grain problem is always a hot issue concerned by the world. Seeking efficient cropping patterns, improving land utilization efficiency and enhancing grain production are the most urgent researches at present. From the results of related researches fields at home and abroad, multiple cropping patterns are the important approaches of utilizing natural resources and increasing crop production, so agriculture all over the world is developing toward the direction of multiple cropping patterns. In 1987, H T Odum, the famous ecologist in American, proposed the theory of emery analysis to explore the function principles and simulation technology of the complicated terrestrial ecosystems, and extended it to the ecological, environmental, social and economic systems involved in human. Since 1980’s, applying energy inputs and outputs to measure the good or bad of different ripe cycles and cropping patterns were focused and applied widely, which were beneficial for regulating the relationship between ecological environments and economic developments and had important practical values of scientific estimation and reasonable utilizations of natural resources. In the experiment, the resource utilizations, input and output benefits of multiple compound cropping systems from double-cropping paddy fields were clarified, which provided a theoretical foundation for the farming system reforms of winter compound cropping patterns in double-cropping paddy fields of south China and sustainable development of farmland ecosystems, the scientific and technological supports of moving forward roundly regional modern agriculture development and agricultural modernization constructions, reference frames of increasing grain production, farmers income and rural prosperity in the nation and regions. 【Method】 Energies of crop economic yields, photosynthetic productivities, solar energy utilization efficiencies, inputs, outputs, operating efficiencies and environmental loads of seven multiple cropping systems in Yujiang country of Jiangxi province were analyzed comprehensively with the theories and methods of emery analyses on the basis of data from field location experiments and related statistic yearbooks. 【Result】 The results showed that the energies of crops economic yields in winter multiple cropping were 217.57×106-229.7×106 kJ61hm-2 and higher than 213.5×106 kJ61hm-2 in winter fallow (T1); and energies of crops economic yields in the T4, T6 and T7 were significantly higher than those in the other treatments, the increasing percent of energy in T6 was 8.5% and the highest. Energy increasing percent of T6 was the highest in 2008-2010, which indicated that T6 had a better superiority and stability. Photosynthetic productivities (11.99-14.03 g61m-261d-1) and solar energy utilization efficiencies (1.46%-1.70%) in winter multiple cropping were markedly significantly higher than those (10.55 g61m-261d-1 and 1.28%, respectively) in T1, the average increasing ranges were 14.4%-34.8% with the highest increasing percent (34.8%) of T3, and the changes of photosynthetic productivities and solar energy utilization efficiencies were exactly alike. Energies of crops economic yields in winter multiple cropping rotations were 220.9×106-229.7×106 kJ61hm-2 and higher than 217.5×106 kJ61hm-2 in winter multiple continuous cropping (T2), and the increasing percent of energy in T6 was 6.1% and was the highest, but no significant difference was found among all treatments. Winter multiple cropping rotations reduced crop photosynthetic productivity to a certain extent, photosynthetic productivities (11.99-13.10 g61m-261d-1) in winter multiple crop rotations were lower than 13.67 g61m-261d-1 in T2 except the higher in T3, the average decreasing ranges were 4.2%-12.4% with the highest reduction of T4. The solar energy utilization efficiencies in T3 (1.70%) and T6 (1.67%) were significantly higher than those in the other treatments (1.46%-1.58%) which decreased with the highest reduction of T4 and T5 in comparison with T1. Emergy analyses indicated that the emergy inputs and outputs of all treatments existed obvious differences; the least of net loss of topsoil was 2.98×1016 sej in T1, the most was 3.83×1016 sej in T5; the least of industrial supplement emergy was 1.62×1017 sej in T1, the most was 2.98×1017 sej in T4 and nearly two times in T1; the least of organic emergy was 6.55×1015 sej in T1, the most was 1.19×1016 sej in T7 and nearly two times in T1; the least of output emergy was 1.39×1016 sej in T1, the most was 5.42×1016 sej in T6 and nearly four times in T1. Emergy input ratios (3.12-4.57) in winter multiple cropping were higher than 2.84 in T1 except the lower of 2.81 in T3, the increasing percents in T4 and T5 were 61.1% and 50.4%, respectively; but only emergy input ratio (0.13) in T4 was higher than 0.08 in T1, those (0.06-0.07) in the other treatments were lower. Emergy ratios of environmental resources to total inputs in the most treatments were 0.17-0.26 with the maximum reduction of T4 and lower than that in winter fallow, which showed that winter compound cropping patterns were favorable to protecting farmland environmental resources. Emergy ratio of unrenewalbe to total environmental resources in all winter compound cropping patterns were 0.10-0.15 and higher than that in T1, which suggested that planting winter crops mostly depended on the unrenewalbe environmental resources and could increase soil loss. Emergy ratio of industrial supplement to total inputs in all treatments exceeded 0.8, but had no obvious differences, which indicated that the productions of all cropping patterns depended on the industrial inputs and counted against agricultural sustainable development. 【Conclusion】In conclusion, planting winter crops in double-cropping paddy fields were better for increasing photosynthetic productivities and solar energy utilization efficiencies of paddy fields. Photosynthetic productivities and solar energy utilization efficiencies of planting economic crops except mixed green manure in winter multiple cropping rotations were lower than those in winter multiple continuous cropping. Planting broad bean and pea in double-cropping paddy fields in winter were more superior to fallow-double cropping rice system; but planting rape in double cropping rice system in winter was one of the high input and output patterns for sustainable developments; thus, planting rape in double cropping rice system in winter was the optimum multiple cropping.
DOI:10.3864/j.issn.0578-1752.2014.03.011URL [本文引用: 16]
【Objective】 Grain problem is always a hot issue concerned by the world. Seeking efficient cropping patterns, improving land utilization efficiency and enhancing grain production are the most urgent researches at present. From the results of related researches fields at home and abroad, multiple cropping patterns are the important approaches of utilizing natural resources and increasing crop production, so agriculture all over the world is developing toward the direction of multiple cropping patterns. In 1987, H T Odum, the famous ecologist in American, proposed the theory of emery analysis to explore the function principles and simulation technology of the complicated terrestrial ecosystems, and extended it to the ecological, environmental, social and economic systems involved in human. Since 1980’s, applying energy inputs and outputs to measure the good or bad of different ripe cycles and cropping patterns were focused and applied widely, which were beneficial for regulating the relationship between ecological environments and economic developments and had important practical values of scientific estimation and reasonable utilizations of natural resources. In the experiment, the resource utilizations, input and output benefits of multiple compound cropping systems from double-cropping paddy fields were clarified, which provided a theoretical foundation for the farming system reforms of winter compound cropping patterns in double-cropping paddy fields of south China and sustainable development of farmland ecosystems, the scientific and technological supports of moving forward roundly regional modern agriculture development and agricultural modernization constructions, reference frames of increasing grain production, farmers income and rural prosperity in the nation and regions. 【Method】 Energies of crop economic yields, photosynthetic productivities, solar energy utilization efficiencies, inputs, outputs, operating efficiencies and environmental loads of seven multiple cropping systems in Yujiang country of Jiangxi province were analyzed comprehensively with the theories and methods of emery analyses on the basis of data from field location experiments and related statistic yearbooks. 【Result】 The results showed that the energies of crops economic yields in winter multiple cropping were 217.57×106-229.7×106 kJ61hm-2 and higher than 213.5×106 kJ61hm-2 in winter fallow (T1); and energies of crops economic yields in the T4, T6 and T7 were significantly higher than those in the other treatments, the increasing percent of energy in T6 was 8.5% and the highest. Energy increasing percent of T6 was the highest in 2008-2010, which indicated that T6 had a better superiority and stability. Photosynthetic productivities (11.99-14.03 g61m-261d-1) and solar energy utilization efficiencies (1.46%-1.70%) in winter multiple cropping were markedly significantly higher than those (10.55 g61m-261d-1 and 1.28%, respectively) in T1, the average increasing ranges were 14.4%-34.8% with the highest increasing percent (34.8%) of T3, and the changes of photosynthetic productivities and solar energy utilization efficiencies were exactly alike. Energies of crops economic yields in winter multiple cropping rotations were 220.9×106-229.7×106 kJ61hm-2 and higher than 217.5×106 kJ61hm-2 in winter multiple continuous cropping (T2), and the increasing percent of energy in T6 was 6.1% and was the highest, but no significant difference was found among all treatments. Winter multiple cropping rotations reduced crop photosynthetic productivity to a certain extent, photosynthetic productivities (11.99-13.10 g61m-261d-1) in winter multiple crop rotations were lower than 13.67 g61m-261d-1 in T2 except the higher in T3, the average decreasing ranges were 4.2%-12.4% with the highest reduction of T4. The solar energy utilization efficiencies in T3 (1.70%) and T6 (1.67%) were significantly higher than those in the other treatments (1.46%-1.58%) which decreased with the highest reduction of T4 and T5 in comparison with T1. Emergy analyses indicated that the emergy inputs and outputs of all treatments existed obvious differences; the least of net loss of topsoil was 2.98×1016 sej in T1, the most was 3.83×1016 sej in T5; the least of industrial supplement emergy was 1.62×1017 sej in T1, the most was 2.98×1017 sej in T4 and nearly two times in T1; the least of organic emergy was 6.55×1015 sej in T1, the most was 1.19×1016 sej in T7 and nearly two times in T1; the least of output emergy was 1.39×1016 sej in T1, the most was 5.42×1016 sej in T6 and nearly four times in T1. Emergy input ratios (3.12-4.57) in winter multiple cropping were higher than 2.84 in T1 except the lower of 2.81 in T3, the increasing percents in T4 and T5 were 61.1% and 50.4%, respectively; but only emergy input ratio (0.13) in T4 was higher than 0.08 in T1, those (0.06-0.07) in the other treatments were lower. Emergy ratios of environmental resources to total inputs in the most treatments were 0.17-0.26 with the maximum reduction of T4 and lower than that in winter fallow, which showed that winter compound cropping patterns were favorable to protecting farmland environmental resources. Emergy ratio of unrenewalbe to total environmental resources in all winter compound cropping patterns were 0.10-0.15 and higher than that in T1, which suggested that planting winter crops mostly depended on the unrenewalbe environmental resources and could increase soil loss. Emergy ratio of industrial supplement to total inputs in all treatments exceeded 0.8, but had no obvious differences, which indicated that the productions of all cropping patterns depended on the industrial inputs and counted against agricultural sustainable development. 【Conclusion】In conclusion, planting winter crops in double-cropping paddy fields were better for increasing photosynthetic productivities and solar energy utilization efficiencies of paddy fields. Photosynthetic productivities and solar energy utilization efficiencies of planting economic crops except mixed green manure in winter multiple cropping rotations were lower than those in winter multiple continuous cropping. Planting broad bean and pea in double-cropping paddy fields in winter were more superior to fallow-double cropping rice system; but planting rape in double cropping rice system in winter was one of the high input and output patterns for sustainable developments; thus, planting rape in double cropping rice system in winter was the optimum multiple cropping.
[本文引用: 1]
[本文引用: 1]
[本文引用: 4]
[本文引用: 4]
,
URL [本文引用: 1]
The concept of emergy, its use for comparing with energy were discussed in this paper.Emergy was defined as the amount of available energy required directly, indirectly to make a product or services,and emergy analysis was based on the solar emergy units (solar emjoules).Emergy provided the methodology with a common basis for measuring the value of different kinds of energy,and for evaluating the contributions from nature, humanity.A comparison of emergy analysis with previous energy analysis was also performed.
URL [本文引用: 1]
The concept of emergy, its use for comparing with energy were discussed in this paper.Emergy was defined as the amount of available energy required directly, indirectly to make a product or services,and emergy analysis was based on the solar emergy units (solar emjoules).Emergy provided the methodology with a common basis for measuring the value of different kinds of energy,and for evaluating the contributions from nature, humanity.A comparison of emergy analysis with previous energy analysis was also performed.
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 3]
应用能值分析方法,对1999-2008年湖南省农业生态系统的能值总量、投入和产出结构以及各能值指标 的变化进行趋势分析.结果表明:研究期间,湖南省农业生态系统总能值使用投入量基本保持平稳,但能值投入结构有变化,其中,不可更新工业辅助能值投入量由 4.00E+22 sej增至5.53E+22 sej,可更新有机能值投入量由1.32E+23 sej降至1.20E+23 sej;系统能值产出总量和产出效率均有较大幅度的提高,2008年总能值产出达1.69E+23 sej,比1999年提高23.8%,净能值产出率由0.79升至0.96;由于环境负载率也呈不断上升的趋势(由1.12上升到1.79),可持续发展 指数呈缓慢下降趋势,由0.71降至0.54,说明湖南省农业总体属于高消费驱动型生态系统,具有较明显的粗放式发展特征.
URL [本文引用: 3]
应用能值分析方法,对1999-2008年湖南省农业生态系统的能值总量、投入和产出结构以及各能值指标 的变化进行趋势分析.结果表明:研究期间,湖南省农业生态系统总能值使用投入量基本保持平稳,但能值投入结构有变化,其中,不可更新工业辅助能值投入量由 4.00E+22 sej增至5.53E+22 sej,可更新有机能值投入量由1.32E+23 sej降至1.20E+23 sej;系统能值产出总量和产出效率均有较大幅度的提高,2008年总能值产出达1.69E+23 sej,比1999年提高23.8%,净能值产出率由0.79升至0.96;由于环境负载率也呈不断上升的趋势(由1.12上升到1.79),可持续发展 指数呈缓慢下降趋势,由0.71降至0.54,说明湖南省农业总体属于高消费驱动型生态系统,具有较明显的粗放式发展特征.
,
DOI:10.3969/j.issn.1672-0202.2011.02.001URL [本文引用: 3]
In order to evaluate the impact of rice subsidy policy on the rice production, this paper described the change of rice area, cropping patterns and output after the implement of rice production subsidy, and analysed the effect of the policy on the profit of rice production. The farm ers perception about rice subsidy types, standards and subsiding process show their understanding on this policy. Conclusions show that rice subsidies policy promoted the rice production of China to some degree, but most of farmers had very limited understanding on this policy, and the principles of subsiding according to rice cultivation area and subsiding to rice producers were not fully implemented in some areas.
DOI:10.3969/j.issn.1672-0202.2011.02.001URL [本文引用: 3]
In order to evaluate the impact of rice subsidy policy on the rice production, this paper described the change of rice area, cropping patterns and output after the implement of rice production subsidy, and analysed the effect of the policy on the profit of rice production. The farm ers perception about rice subsidy types, standards and subsiding process show their understanding on this policy. Conclusions show that rice subsidies policy promoted the rice production of China to some degree, but most of farmers had very limited understanding on this policy, and the principles of subsiding according to rice cultivation area and subsiding to rice producers were not fully implemented in some areas.
,
[本文引用: 3]
[本文引用: 3]
,
URL [本文引用: 6]
应用最新能值(emergy)分析理论和方法,以能值为共同尺度,定量分析中国农业生态系统的能物流,包括自然环境资源、石化补助能和可更新有机能的能值投入,以及农牧渔业的产出能值;计算得出一系列反映生态与经济的能值综合指标体系,绘制了中国农业总体生产系统能流能值模型图;评估了国家农业环境资源基础、能投结构和能值产出,并与一些发达国家比较分析,评价了中国农业的生态经济效益,分析了农业总体结构、能投结构,为农业生产的持续、稳定发展提供科学依据
[本文引用: 3]
[本文引用: 3]
,
DOI:10.3864/j.issn.0578-1752.2012.12.026URL [本文引用: 5]
【Objective】 The development state and major sustainable development obstacle of ago-ecosystem about resource-based city in vulnerable eco-regions were studied. 【Method】 The input and output state and comprehensive development level of ago-ecosystem in Yulin city, from 2000 to 2008 were analyzed by using the method of emergy analysis.【Result】The results of emergy input and output showed that the main emergy input of agro-ecosystem of Yulin city was unpaid emergy. The industrial assistant emergy of the total emergy input ratio in 2008 was only 1/4 of the national average, while the labor emergy accounted for up to 68% of renewable organic emergy; the ago-ecosystem of Yulin city was still in the stage of traditional agriculture and depended on manpower and environmental resources. The results of comprehensive evaluation showed that the development potential in Yulin City is high and it has strong sustainable ability of ago-ecosystem. The development state of the natural ago-ecosystem is relatively superior. The development state of the economic ago-ecosystem is low, but the development potential is great. The development state of the social ago-ecosystem was improved, but the production efficiency of rural labor was low. In 2008, the production superiority degree index was 0.71 and the competitive industry (livestock) was obvious; the system stability degree index was only 0.49 and the stability of itself needs to be enhanced; the emergy sustainability index was 2.76 and the ago-ecosystem was a dynamic system. 【Conclusion】Some measures should be taken to make the ago-ecosystem input and output emergy to a higher level and make the traditional extensive mode to modern scientific technology, highly intensive and high efficiency, such as improving renewable resources use efficiency, optimizing system structure, increasing the investment of agricultural science and technology assistant emergy.
DOI:10.3864/j.issn.0578-1752.2012.12.026URL [本文引用: 5]
【Objective】 The development state and major sustainable development obstacle of ago-ecosystem about resource-based city in vulnerable eco-regions were studied. 【Method】 The input and output state and comprehensive development level of ago-ecosystem in Yulin city, from 2000 to 2008 were analyzed by using the method of emergy analysis.【Result】The results of emergy input and output showed that the main emergy input of agro-ecosystem of Yulin city was unpaid emergy. The industrial assistant emergy of the total emergy input ratio in 2008 was only 1/4 of the national average, while the labor emergy accounted for up to 68% of renewable organic emergy; the ago-ecosystem of Yulin city was still in the stage of traditional agriculture and depended on manpower and environmental resources. The results of comprehensive evaluation showed that the development potential in Yulin City is high and it has strong sustainable ability of ago-ecosystem. The development state of the natural ago-ecosystem is relatively superior. The development state of the economic ago-ecosystem is low, but the development potential is great. The development state of the social ago-ecosystem was improved, but the production efficiency of rural labor was low. In 2008, the production superiority degree index was 0.71 and the competitive industry (livestock) was obvious; the system stability degree index was only 0.49 and the stability of itself needs to be enhanced; the emergy sustainability index was 2.76 and the ago-ecosystem was a dynamic system. 【Conclusion】Some measures should be taken to make the ago-ecosystem input and output emergy to a higher level and make the traditional extensive mode to modern scientific technology, highly intensive and high efficiency, such as improving renewable resources use efficiency, optimizing system structure, increasing the investment of agricultural science and technology assistant emergy.
,
URL [本文引用: 2]
Based on emergy theory and relating data in 1996 2007, we constructed agricultural complex system assessment indices from three parts: agricultural input(output, agricultural environment(social economy system and agricultural development capability, then made a case study of agricultural complex system and its sensibility of the Tikanlik Oasis in low reaches of the Tarim River. Results indicate that: (1) In the whole, the total emergy input and yield all increased but the yield increase rate was quicker than input increase rate during the study period. (2) With agriculture development, its dependence on environmental resources was less than on nonrenewable fuels; pressure on agricultural environmental intensified and agricultural complex system had low sustainability. (3) Mechanization, modernization level and agriculture production efficiency in the oasis improved, and the people living standard and economy development also presented a new improvement, however agricultural development level was low and it was still a consumption system. Sensitivity analysis showed that nonrenewable fuels had more influence on agricultural complex system than renewable environmental resources.
URL [本文引用: 2]
Based on emergy theory and relating data in 1996 2007, we constructed agricultural complex system assessment indices from three parts: agricultural input(output, agricultural environment(social economy system and agricultural development capability, then made a case study of agricultural complex system and its sensibility of the Tikanlik Oasis in low reaches of the Tarim River. Results indicate that: (1) In the whole, the total emergy input and yield all increased but the yield increase rate was quicker than input increase rate during the study period. (2) With agriculture development, its dependence on environmental resources was less than on nonrenewable fuels; pressure on agricultural environmental intensified and agricultural complex system had low sustainability. (3) Mechanization, modernization level and agriculture production efficiency in the oasis improved, and the people living standard and economy development also presented a new improvement, however agricultural development level was low and it was still a consumption system. Sensitivity analysis showed that nonrenewable fuels had more influence on agricultural complex system than renewable environmental resources.
,
DOI:10.3321/j.issn:1000-7601.2004.02.037URL [本文引用: 2]
应用Odum H. T创立的能值理论分析了安塞县粮食生产系统后认为:该县粮食生产系统能值投入率与产出率"双低",应增加系统投入以提高产出水平;系统环境负荷率不高,不可更新环境资源破坏严重,应提高可更新环境资源利用效率、加强水土保持工作;辅助能值投入中有机能值略高于无机能值,应按适当比例增加辅助能值投入以提高系统生态经济效益;粮食产出能值中玉米、豆类所占比重高,系统结构调整应遵循生态经济原则,保持或压缩口粮作物、提高粮饲两用作物播种面积,同时发展舍养畜牧业和粮食加工业.
DOI:10.3321/j.issn:1000-7601.2004.02.037URL [本文引用: 2]
应用Odum H. T创立的能值理论分析了安塞县粮食生产系统后认为:该县粮食生产系统能值投入率与产出率"双低",应增加系统投入以提高产出水平;系统环境负荷率不高,不可更新环境资源破坏严重,应提高可更新环境资源利用效率、加强水土保持工作;辅助能值投入中有机能值略高于无机能值,应按适当比例增加辅助能值投入以提高系统生态经济效益;粮食产出能值中玉米、豆类所占比重高,系统结构调整应遵循生态经济原则,保持或压缩口粮作物、提高粮饲两用作物播种面积,同时发展舍养畜牧业和粮食加工业.
,
URL [本文引用: 2]
In order to evaluate the emergy output structure and its trend of agro-ecological economic system of Jiangxi Province, and provide the basis for the formulation of the countermeasures for the sustainable development of Jiangxi agricultural system, based on the studying input emergy and output emergy of agro-ecological economic system of Jiangxi, the author constructed the structure of various emergy index and analyzed the structure, function, efficiency and development trend of agro-ecological system in Jiangxi Province. The results showed that the rate of emergy input was higher organic emergy much more, industrial auxiliary emergy was little, system in self sustaining production status with strong tradition and higher conservative; The rate of net emergy output was low, the system was in the stage of labor-intensive, low intensive degree, and low production efficiency extensive; the environmental loading ratio was in larger growth, which indicated that the system rose ceaselessly on emergy using technology and the environmental pressure were getting bigger and bigger; sustainable development index of system emergy was 0.176-0.225 which was far less than 1, the system was a typical consumption-based ecological system, output emergy obtains by consuming more resources. Agricultural system of Jiangxi should optimize the emergy input and output structure, improve energy efficiency and production efficiency, increase the devotion of technology ingredients, pay attention to the coordination and unity and system of ecological management of rationality, combining the modern high-tech with the essence of traditional agricultural technology, change the traditional extensive mode to modern scientific technology, highly intensive and high efficiency.
URL [本文引用: 2]
In order to evaluate the emergy output structure and its trend of agro-ecological economic system of Jiangxi Province, and provide the basis for the formulation of the countermeasures for the sustainable development of Jiangxi agricultural system, based on the studying input emergy and output emergy of agro-ecological economic system of Jiangxi, the author constructed the structure of various emergy index and analyzed the structure, function, efficiency and development trend of agro-ecological system in Jiangxi Province. The results showed that the rate of emergy input was higher organic emergy much more, industrial auxiliary emergy was little, system in self sustaining production status with strong tradition and higher conservative; The rate of net emergy output was low, the system was in the stage of labor-intensive, low intensive degree, and low production efficiency extensive; the environmental loading ratio was in larger growth, which indicated that the system rose ceaselessly on emergy using technology and the environmental pressure were getting bigger and bigger; sustainable development index of system emergy was 0.176-0.225 which was far less than 1, the system was a typical consumption-based ecological system, output emergy obtains by consuming more resources. Agricultural system of Jiangxi should optimize the emergy input and output structure, improve energy efficiency and production efficiency, increase the devotion of technology ingredients, pay attention to the coordination and unity and system of ecological management of rationality, combining the modern high-tech with the essence of traditional agricultural technology, change the traditional extensive mode to modern scientific technology, highly intensive and high efficiency.
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.15957/j.cnki.jjdl.2014.12.024URL [本文引用: 2]
利用能值分析理论对湖南洞庭湖 平原区2007—2011年农业生态系统的能值投入和产出状况、环境承载力和生态系统运行效果进行描述、分析,在此基础上对该区域农业生态系统的运行特征 和可持续发展状况作出评价。结果显示:该区域农业生态系统能值产出率相对较高,可持续发展能力相对较强,但工业辅助能值的增加对生态环境造成了较大压力。 因此,应调整其能值投入、产出结构,大力发展高效生态农业,加大农业科技的研究和推广力度,促进其农业可持续发展。
DOI:10.15957/j.cnki.jjdl.2014.12.024URL [本文引用: 2]
利用能值分析理论对湖南洞庭湖 平原区2007—2011年农业生态系统的能值投入和产出状况、环境承载力和生态系统运行效果进行描述、分析,在此基础上对该区域农业生态系统的运行特征 和可持续发展状况作出评价。结果显示:该区域农业生态系统能值产出率相对较高,可持续发展能力相对较强,但工业辅助能值的增加对生态环境造成了较大压力。 因此,应调整其能值投入、产出结构,大力发展高效生态农业,加大农业科技的研究和推广力度,促进其农业可持续发展。