Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome
HE Dan1,2, XIE DongBo1, ZHANG JiaoRui1, HE SongLin,1,2, LI ChaoMei1, ZHENG YunBing1, WANG Zheng1, LIU YiPing1, LI Yan1, LU JiuXing11College of Forestry, Henan Agricultural University, Zhengzhou 450002 2Colleg of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453000, Henan
Received:2019-08-12Accepted:2019-10-10Online:2020-03-16 作者简介 About authors 贺丹,E-mail:dandan990111@163.com。
摘要 【目的】远缘杂交育种是目前牡丹、芍药品种改良和育种的主要方法,而远缘杂交不亲和一直是制约其快速发展的主要因素。本研究从牡丹、芍药远缘杂交授粉后不亲和应答相关的柱头差异蛋白与转录组方面深入研究,揭示牡丹、芍药远缘杂交不亲和的分子机理,为杂交育种提供理论依据。【方法】以芍药‘粉玉奴’自交、芍药‘粉玉奴’与牡丹‘凤丹白’杂交为供试材料,在授粉后24 h采取柱头,分别进行同位素标记相对定量(iTRAQ)和转录组技术分析。对所获得的蛋白和转录组数据进行生物信息学分析,并对其中可能与远缘杂交不亲和相关的基因进行定量PCR验证。【结果】利用iTRAQ技术分析牡丹、芍药远缘杂交后柱头中蛋白质的表达差异,共鉴定到685个差异蛋白,富集到了188条通路,其中显著富集的Pathway有18条。与不亲和授粉相关代谢通路有RNA降解、钙信号途径、丝裂原活化蛋白激酶(mitogen-activated protein kinase signaling pathway,MAPK)信号途径、磷脂酰肌醇信号系统。在RNA降解代谢通路中,烯醇酶(Enolase)、热休克蛋白DnaK(HSP70)及病菌抗原(GroEL)均表达下调。在钙信号途径中,钙调蛋白(CALM)表达下调,腺苷酸转运酶(adenine nucleotide translocase,ANT)表达量增加,表达上调。MAPK信号途径中,乙二醛酶Ⅰ(GloI)表达下调。磷脂酰肌醇信号系统中的钙调蛋白(CALM)表达下调。随机选取与差异蛋白相关的6个基因进行qRT-PCR验证,结果显示,6个基因的表达与蛋白质水平趋势相一致,均表达下调。通过转录组测序,共获得了52 998个有注释信息的Unigene,占所有Unigene的40.37%。基于6组样品的RPKM(Reads Per Kilobase per Million)值,共筛选到16 224个差异基因。其中上调基因13 361,下调基因2 863个。对差异基因进行Pathway显著富集分析,杂交与自交相比,不亲和差异表达的基因主要富集在氧化磷酸化代谢、ABC转运蛋白、次级代谢产物等通路。与远缘杂交不亲和相关且发生显著变化的基因有CalS-5、CalS-12(胼胝质酶)和SPL(squamosa promoter binding protein-like)表达上调,ABCF(ABC transporter family protein)表达下调。【结论】在转录组和蛋白数据共注释到6个蛋白、4个基因与植物不亲和性密切相关,这些蛋白与基因可能在远缘杂交不亲和方面发挥着重要作用。 关键词:牡丹;芍药;iTRAQ;转录组;远缘杂交
Abstract 【Objective】Distant hybrid breeding is the main method of cultivar improvement and breeding in tree peony and herbaceous peony, while cross-incompatibility is an important restriction for breeding rapid development. Based on the previous researches, the analysis on different protein of stigma in pollen-stigma interaction and transcriptome was further explored. The mechanism of cross-incompatibility between tree peony and herbaceous peony was revealed, so as to provide the theoretical support for hybridized breeding.【Method】The stigmas of combinations Paeonia lactiflora ‘Fenyunu’ × P. lactiflora ‘Fenyunu’ and P. lactiflora ‘Fenyunu’ × P. ostii ‘Fengdanbai’ were harvested at 24 h after pollination, which were used as materials for isobaric tags and analysis for relative and absolute quantitation (iTRAQ) and transcriptome, respectively. Bioinformatics was analyzed on the data of protein and transcriptome. Quantitative Real-time PCR (qRT-PCR) technique was used to validate the expression data of selected differentially expressed genes (DEGs). 【Result】iTRAQ was used to analyze DEPs of stigma of distant hybrid between tree peony and herbaceous peony, and the result showed that 685 DEPs were belonged to 188 pathways, in which 18 pathways were significantly enriched. There were four pathways with obvious difference in protein, including RNA degradation, mitogen-activated protein kinase (MAPK) signaling pathway, calcium signaling pathway, and phosphatidylinositol signaling system. In RNA degradation pathway, enolase, DnaK (HSP70), and GroEL (HSP60) were all down-regulated. In calcium signaling pathway, calmodulin (CALM) was down-regulated, while adenine nucleotide translocase (ANT) was up-regulated. In MAPK signaling pathway, Glyoxalase (GloI) was down-regulated. In phosphatidylinositol signaling system, CALM was also down-regulated. 6 genes were selected randomly to confirmed their expression by qRT- PCR, and the result showed that the expression profiles of the selected genes was in agreement with the results from protein analysis, and they were all down-regulated. A total of 52 998 annotated Unigenes were obtained by transcriptome sequencing, accounting for 40.37% of all Unigenes. Based on the RPKM (Reads Per Kilobase per Million) of six samples, 16 224 DEGs were obtained, among which13 61 were up-regulated, and 2 863 were down-regulated. Based on pathway enrichment analysis of DEGs, it indicated that the level of enrichment of DEGs in “Oxidative phosphorylation”, “ABC transporters” and “Biosynthesis of secondary metabolites” pathways were more significant and reliable than that of selfing. The genes related with incompatibility of distant hybridization were CalS-5, CalS-12 (Callose enzyme), and SPL, which were up regulating expression, but ABCF that was down regulating expression. 【Conclusion】In the data of transcriptome and protein, 6 proteins and 4 genes were closely related to incompatibility of distant hybridization. These proteins and genes might play an important role in incompatibility of distant hybridization. Keywords:Paeonia suffruticosa; Paeonia lactiflora;iTRAQ;transcriptome;distant hybridization
PDF (20911KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 贺丹, 谢栋博, 张佼蕊, 何松林, 李朝梅, 郑云冰, 王政, 刘艺平, 栗燕, 逯久幸. 利用iTRAQ技术和转录组筛选芍药属远缘杂交不亲和基因[J]. 中国农业科学, 2020, 53(6): 1234-1246 doi:10.3864/j.issn.0578-1752.2020.06.015 HE Dan, XIE DongBo, ZHANG JiaoRui, HE SongLin, LI ChaoMei, ZHENG YunBing, WANG Zheng, LIU YiPing, LI Yan, LU JiuXing. Selected Related Genes about Incompatibility of Distant Hybridization in Paeonia by iTRAQ Analysis and Transcriptome[J]. Scientia Acricultura Sinica, 2020, 53(6): 1234-1246 doi:10.3864/j.issn.0578-1752.2020.06.015
0 引言
【研究意义】牡丹(Paeonia suffruticosa)是芍药科芍药属的落叶亚灌木,迄今已有1 600多年的栽培历史,是我国的传统名花,也是我国特有的名贵观赏兼药用植物[1]。芍药科芍药属的牡丹与芍药,被誉为“花王和花相”,具有很高的观赏和生产价值。牡丹、芍药的新品种培育工作一直是科研和生产的重要内容。杂交育种作为传统的育种方式,也是牡丹、芍药的主要育种方法。利用杂交育种能够培育出一些具有较高观赏价值、抗寒、抗病等特点的新品种,而芍药属远缘杂交在国内的研究还处于初步阶段[2,3]。通过一系列研究发现受精前障碍是牡丹、芍药远缘杂交育种过程中存在的严重问题。在杂交过程中,虽然少量花粉能在柱头上萌发并穿过柱头,但花粉管的伸长却受到阻碍,并且在柱头上产生了大量的胼胝质,从而阻碍花粉管进入子房完成受精[4,5]。通过研究牡丹、芍药远缘杂交不亲和性的机制,对克服远缘杂交受精前障碍,实现牡丹、芍药远缘杂交具有重要意义。【前人研究进展】利用转录组和蛋白质组学筛选相关基因能够提高育种效率,克服常规育种中的困难[6,7,8,9]。同位素标记相对和绝对定量(isobaric tags for relative and absolute quantitation,iTRAQ)技术是2004年美国应用生物系统公司(ABI)推出的一种新的蛋白质组学技术。其可靠的结果已经广泛应用在生命科学的多个领域,包括寻找功能蛋白,筛选生物标志物或特殊蛋白,研究抗逆机理等[10]。程云清等[11]以平欧杂交榛‘达维’的正常发育与败育子房为材料,进行蛋白样品技术分析,初步筛选获得可能参与调控榛子子房败育的候选蛋白37个。目前,有关iTRAQ技术应用于植物杂交不亲和性的研究鲜少报道。CHALIVENDRA等[12]采用iTRAQ技术研究番茄的种间生殖障碍,通过对蛋白质组变化的分析发现花粉-柱头互作中的蛋白包括S-RNases、HT-A蛋白、细胞壁疏松以及抗性响应相关蛋白。LI等[13]使用iTRAQ技术揭示了大米花粉-柱头互作的蛋白机制,发现泛素化在授粉的信号转导过程中具有重要作用。利用转录组技术可以挖掘重要的功能基因,揭示优良性状的分子机制,还可以研究不同器官、不同环境胁迫下基因表达的差异。转录组测序技术已被广泛应用于蜡梅、油松、油桐等的研究中[14,15,16]。ZHOU等[17]对羊草成熟花柱、子房、叶片高通量测序,发现多达1 025个转录本在花柱中特异性表达,这些转录本集中在细胞间交流与信号传导。【本研究切入点】目前,中外****探讨了一些植物育种中的不亲和机理,但关于牡丹、芍药远缘杂交不亲和机理的研究还很欠缺。本研究在前期芍药属远缘杂交的基础上,发现芍药自交与芍药属远缘杂交亲和性存在显著差异。【拟解决的关键问题】以芍药‘粉玉奴’自交、芍药‘粉玉奴’与牡丹‘凤丹白’杂交授粉后24 h的柱头为供试材料,分别进行转录组和iTRAQ分析及后续分析,以期从中筛选出与杂交不亲和性相关的基因及蛋白,揭示芍药属远缘杂交不亲和性分子机制,为芍药远缘杂交育种提供理论基础。
GO:0006075/1,3-β-D-葡聚糖生物合成过程 Biosynthesis of 1,3-β-D-glucan GO:0003843/1,3-β-D-葡聚糖合成酶活性 1,3-β-D-glucan synthetase activity GO:0016021/膜的整体组成部分 Integral part of membrane GO:0000148/1,3-β-D-葡聚糖合成酶复合物 1,3-β-D-glucan synthetase complex
胼胝质合酶5 Callose synthase 5
CalS-5
上调 Up
Unigene36776_All
胼胝质合酶12 Callose synthase 12
CalS-12
CL8637_All
ko6158/ATP结合盒 ATP-binding cassette
GO:0046686/对镉离子的反应 Reaction to cadmium ion GO:0005524/ATP结合 ATP binding GO:0005829/细胞质 Cytoplasm GO:0042742/防御对细菌的反应 Defense against bacterial reactions GO:0016887/ATP酶活性 ATP enzyme activity
ABC transporter F family member 3
ABCF
下调 Down
CL7449_All
ko04075/植物激素信号转导 Phytohormone signal transduction ko01001/蛋白激酶 Protein kinase
GO:0046872/结合重金属离子 Binding heavy metal ions GO:0003677/DNA结合核 DNA binding nucleus
WEN SS, HE RR, ZHENG JK, TIAN RN . Research advances in tissue culture of tree peony Scientia Silvae Sinicae, 2018,54(10):143-155. (in Chinese) [本文引用: 1]
HED, XIE MJ, LV BY, WANGZ, LIU YP, HE SL . Analysis of pollination affinity performance and its physiological mechanism inPaeonia suffruticosa and Paeonia lactiflora Journal of Northwest A & F University (Natural Science Edition), 2017,46(10):129-136. (in Chinese) [本文引用: 1]
HE GM, CHENG FY . Crossbreeding of Paeonia suffruticosa and its latest progress //Advances in Ornamental Horticulture in China. Beijing: China Forestry Press, 2004: 149-155. (in Chinese) [本文引用: 1]
HED, WANG XL, GAO XF, LV BY, LIU YP, HE SL . Intergeneric cross-compatibility between peonies Journal of Northeast Forestry University, 2014,42(7):65-68. (in Chinese) [本文引用: 1]
ZHANG ZQ, XIAOG, CHUNY, WU XM, XIONG XH, LI YC, HUQ, CHEN SY . The study of high oleic acid rapeseed disease resistance related genes by transcriptome and iTRAQ analysis Acta Agriculturae Boreali-Sinica, 2015,30(5):16-24. (in Chinese) URL [本文引用: 1]
WANG BQ, XIE BT, ZHANG HY, DONG SX, DUAN WX, WANG QM, ZHANG LM . Analysis of differential proteome in roots during seedling stage of sweetpotato with different drought tolerance based on iTRAQ method Acta Agriculturae Nucleatae Sinica, 2017,31(10):1904-1912. (in Chinese) [本文引用: 1]
ZHAO ZL, TONG LL, DENG MJ, DONG YP, FAN GQ . Proteomic study on the occurrence of Paulownia witches broom disease Journal of Southwest Forestry College, 2018,38(4):23-28. (in Chinese) [本文引用: 1]
XIE XZ, WANGX, LIU LH, DONG SL, PI XE, LIUW . iTRAQ technology and its application in proteomics Chinese Journal of Biochemistry and Molecular Biology, 2011,20(7):616-621. (in Chinese) [本文引用: 1]
CHENG YQ, QIM, ZHAO YB, XING JY, LIU JF . Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut Journal of Beijing Forestry University, 2018,40(3):13-25. (in Chinese) [本文引用: 1]
CHALIVENDRA SC, LOPEZ-CASADOG, KUMARA, KASSENBROCK AR, ROYERSTOVAR-MèNDEZA, COVEYP A, DEMPSEYL A, RANDLEA M, STACKS M, ROSEJ K C, MCCLUREB, BEDINGERP A . Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii , 2013,64(1):265-279. [本文引用: 1]
LIM, WANGK, LI SQ, YANG PF . Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis , 2016,131:214-226. [本文引用: 1]
NIU SH, YUAN HW, CHEN XY, LIW . Microarray analysis of large scale gene expression profiles between male and female cones of Pinus tabulaeformis Scientia Silvae Sinicae, 2013,49(9):46-51. (in Chinese) URL [本文引用: 1]
SUNY, TAN XF, LUOM, LI JA . The sequencing analysis of transcriptome of Vernicia fordii flower buds at two development stages Scientia Silvae Sinicae, 2014,50(5):70-74. (in Chinese) URL [本文引用: 1]
ZHOU QY, JIA JT, HUANGX, YAN XQ, CHENG LQ, CHENY, LI XX, NG AJ, LIU GS . The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility , 2014,15(1):399. [本文引用: 1]
HED, LIR, JI SY, WUJ, WANGZ, LIU YP, HE SL . Cloning and expression analysis of adventitious rooting related gene PsARRO-1 of tree peony Plant Physiology Communications, 2014,50(8):1151-1158. (in Chinese) [本文引用: 1]
CUI HF, ZHANGF, YIN JL, GUO YQ, YUE YL . Callose deposition and pollen development Journal of Yunnan Agricultural University (Natural Science), 2017,32(3):551-557. (in Chinese) [本文引用: 2]
LIM, LI CS, ZHAO CZ, LI AQ, WANG XJ . Research advances in plant SPL transcription factors Chinese Bulletin of Botany, 2013,48(1):107-116. (in Chinese) URL [本文引用: 2]
SHEORAN IS, PEDERSEN EJ, ROSS AR S, SAWHNEY VK, . Dynamics of protein expression during pollen germination in canola ( Brassica napus) , 2009,230(4):779-793. [本文引用: 1]
TAOL, YUEX . Ethanol metabolism coupling model between Arabidopsis pollen tube and stigma Chinese Journal of Bioinformatics, 2015,13(1):47-53. (in Chinese) [本文引用: 1]
CHEN KM . The mechanism of phosphoinositide signaling pathway involved in pollen germination and pollen tube growth of Picea wilsonii and the ecophysiology of cell wall in the reed leaves [D]. Beijing: Chinese Academy of Sciences, 2006. (in Chinese) [本文引用: 1]
SALEMT, MAZZELLAA, BARBERINI ML, WENGIERD, MOTILLOV, PARISIG, MUSCHIETTIJ . Mutations in two putative phosphorylation motifs in the tomato pollen receptor kinase LEPRK2 show antagonistic effects on pollen tube length , 2011,286(6):4882-4891. [本文引用: 1]
LIS, SAMAJJ, FRANKLIN-TONGV E . A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen , 2007,145(1):236-245. [本文引用: 1]
YE XY, QIU XM, WANGY, LI ZG . Glyoxalase system and its role in response and adaptation of plants to environmental stress Plant Physiology Journal, 2019,55(4):401-410. (in Chinese) [本文引用: 2]
SINGLA-PAREEK SL, REDDY MK, SOPORY SK . Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance , 2003,100(25):14672-14677. [本文引用: 1]
HAFERKAMPI, HACKSTEINJ H P, VONCKENF G J, SCHMITG, TJADENJ . Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids , 2010,269(13):3172-3181. [本文引用: 1]
DU YH, ZHANG SL . Effects of temperature on recognition specificity of stylar S-RNase in vitro in Prunus mume Scientia Agricultura Sinica, 2008,41(9):2734-2740. (in Chinese) [本文引用: 1]
WU JY, LI QM, WANGP, ZHANG SL . Actin cytoskeleton is a new target of S-RNase in self-incompatibility of pear Journal of Nanjing Agricultural University, 2018,41(5):7-9. (in Chinese) [本文引用: 1]
MENGD . Apple MdABCF transport S-RNase into pollen tube effecting self-incompatibility [D]. Beijing: China Agriculture University, 2014. (in Chinese) [本文引用: 1]