删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

陆地棉亲本间遗传距离与杂种优势的相关性研究

本站小编 Free考研考试/2021-12-26

曲玉杰, 孙君灵, 耿晓丽, 王骁, ZareenSarfraz, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明,中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000

Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton

QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing,Cotton Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan

通讯作者: 杜雄明,Tel:0372-2562252;E-mail:dxm630723@163.com

收稿日期:2018-12-18接受日期:2019-03-12网络出版日期:2019-05-01
基金资助:国家自然科学基金项目.31571716
国家重点研发项目.2016YFD0101401
国家重点研发项目.2016YFD0100203


Received:2018-12-18Accepted:2019-03-12Online:2019-05-01
作者简介 About authors
曲玉杰,Tel:15737227096;E-mail: quyujie305@163.com














摘要
【目的】通过1 500个陆地棉杂交组合分析杂种优势与其亲本间数量性状遗传距离的相关性,探讨能否利用大规模杂交组合亲本间遗传距离提高陆地棉杂种优势预测效果,以期为棉花杂交育种和杂种优势利用提供理论指导。【方法】选择来自15个国家和中国23个省(市)的305份陆地棉核心种质为亲本,采用L×T(Line×Tester)杂交设计配制1 500个杂交组合。2012—2013年,在中国南北方13个生态环境下考察其株高、单铃重、衣分、纤维长度等10个产量和纤维品质相关性状,分析F1杂种优势、亲本间遗传距离和群体结构,并采用4种方式(Cor1—Cor4)计算遗传距离与杂种优势的相关性。【结果】10个性状中亲优势(MPH)均值的变幅为1.70%—7.40%,平均为4.36%,按父本不同将F1分成5组(A,E),其MPH均值A>E>B>C>D;超亲优势(HB)均值的变幅为-4.17%—1.87%,平均为-0.17%,A、B和E组的HB均值皆为正。10个性状在5组中除D、E组的马克隆值之外,其他性状普遍具有明显的中亲优势,其中,单铃重和纤维长度的中亲优势在5组中均以正优势为主(达80%以上),最大值分别为34.01%和9.83%,对应的超亲优势分别为24.25%和5.80%。F1和亲本差异显著性分析表明单铃重、株高、纤维长度、伸长率和整齐度指数整体表现出一定的超亲优势。父本(测试种)与300个母本之间的遗传距离介于2.280—61.430,平均为21.550,5个测试种与母本间的平均遗传距离D>C>E>A>B,其中,最近值为11.721,最远值为33.271。按最小方差聚类,将305个陆地棉亲本划分为2个主群,包括5个亚群。4种遗传距离与杂种优势的相关性分析结果显示,因样本量、遗传距离变幅和父本不同其结果有所差异,相关性随样本量的增大而有所增强。其中,Cor1是Cor2结果的整体体现;Cor3与Cor1和Cor2相比,部分性状的中亲优势与遗传距离的相关性有所不同;Cor4的相关性最弱。综合来看,遗传距离与衣分、断裂比强度、整齐度指数和纺纱均匀性指数的中亲优势呈显著正相关,遗传距离与其他性状的中亲优势的相关性因采用的分析方案不同,结果有所不同;在4种方案中,除整齐度指数外,遗传距离与超亲优势的相关性整体表现负相关。其中,遗传距离与马克隆值、纤维长度和衣分的超亲优势相关性较强。【结论】陆地棉亲本间数量性状遗传距离与杂种优势有一定的线性关系,不同性状的杂种优势与遗传距离的相关性存在正负和强弱差异,且样本量越大相关性越强。说明基于大规模杂交组合研究陆地棉亲本间遗传距离与杂种优势的关系效果显著。
关键词: 陆地棉;核心种质;数量性状;L×T;遗传距离;聚类分析;杂种优势预测

Abstract
【Objective】The correlation between heterosis and genetic distance (GD) of quantitative traits between parents was analyzed by 1500 hybrid combinations in upland cotton, and the possibility of using GD between parents of large-scale combinations to improve the efficiency of hybrid vigour prediction of upland cotton was discussed in order to provide theoretical guidance for cotton hybrid breeding and utilization of heterosis.【Method】305 upland cotton core collections from 15 countries and 23 provinces (municipalities) of China were selected as parents, and 1500 cross combinations were produced by L×T (Line×Tester) cross design. From 2012 to 2013, ten yield and fiber quality related traits, including plant height (PH), boll weight (BW), boll number per plant (BN), lint percentage (LP), fiber length (FL), fiber strength (FS), fiber elongation (FE), fiber length uniformity (FU), micronaire (MIC) and spinning consistent index (SCI), were investigated in 13 ecological conditions in north and south China. F1 hybrids mid-parent heterosis (MPH), heterobeltiosis (HB), GD between parents and population structure were analyzed. The correlation between GD and hybrid vigour was calculated by four schemes (Cor1-Cor4). 【Result】The mean values of MPH of the ten traits ranged from 1.70% to 7.40%, with an average of 4.36%, and F1 hybrids were divided into 5 groups (A-E) according to different male parents, the mean values of MPH: A>E>B>C>D. The mean values of HB ranged from -4.17% to 1.87%, with an average of -0.17%, and the average values of group A, B, and E were positive. In 5 groups, except for MIC of group D and E, other 9 traits had obvious MPH, among them, MPH of BW and FL were mainly positive (more than 80%) in the 5 groups, the maximum MPH values were 34.01% and 9.83% respectively, and the corresponding HB values were 24.25% and 5.80% respectively. The significant difference analysis between F1 hybrids and their parents indicated that BW, PH, FL, FE, and FU showed some HB. The GDs between male parents (testers) and 300 female parents ranged from 2.280 to 61.430, with an average of 21.550. The mean GDs between 5 testers and female parents: D>C>E>A>B, in which the nearest value was 11.721, and the farthest value was 33.271. According to “Ward” clustering method, 305 upland cotton parents were divided into two groups, including five subgroups. The results of four correlation analysis methods between GD and heterosis showed that the consequences varied with the sample size, the range of GD, and the male parent, the correlation increased with the sample size. Cor1 was the overall embodiment of Cor2 results; compared with Cor1 and Cor2, Cor3 had different correlations between MPH and GD in some traits; Cor4 had the weakest correlations. To sum up, the genetic distance was positively correlated with the MPH of LP, FS, FU, and SCI, the correlation between GD and MPH of other traits was different due to the different analysis schemes. In the four schemes, except for FU, the relationship between GD and HB was negatively correlated on the whole, and there was a strong correlation between genetic distance and HB of MIC, FL and LP. 【Conclusion】There is a linear relationship between GD of quantitative traits and hybrid vigour in upland cotton. The correlations are positive or negative, strong or weak due to different traits, and the larger the sample size, the stronger the correlation. Thus, the large-scale hybrid combinations are used to well study the relationship between GD and heterosis in upland cotton.
Keywords:upland cotton;core collection;quantitative trait;L×T;genetic distance;cluster analysis;heterosis prediction


PDF (1470KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
曲玉杰, 孙君灵, 耿晓丽, 王骁, ZareenSarfraz, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究[J]. 中国农业科学, 2019, 52(9): 1488-1501 doi:10.3864/j.issn.0578-1752.2019.09.002
QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton[J]. Scientia Acricultura Sinica, 2019, 52(9): 1488-1501 doi:10.3864/j.issn.0578-1752.2019.09.002


0 引言

【研究意义】棉花是世界上最重要的经济作物之一,其棉纤维是重要的天然纺织原料,陆地棉(Gossypium hirsutum L.)是应用最广泛的棉种,其种植面积可达全球棉花种植面积的95%[1,2,3]。杂种优势利用是改良作物产量和品质的重要途径[4],在水稻[5]、玉米[6]、油菜[7]等作物育种中得到广泛应用。杂种优势利用在棉花育种中也具有十分重要的地位,杂交棉已在中国、印度和巴基斯坦等国家得到广泛应用[8,9]。陆地棉为异源四倍体作物,其杂种优势相比于二倍体的玉米和水稻较弱。有研究指出品种间杂交其产量性状具有一定的超亲优势,纤维品质性状具有中亲优势[10,11]。杂交种选育的目的是获得综合性状表现较好的强优势杂种后代,其关键所在是亲本选配。研究陆地棉亲本间遗传距离与杂种优势的关系对合理选配亲本和配制强优势杂交组合具有重要意义,可为杂种优势的准确预测和育种效率的提高提供一定的理论指导。【前人研究进展】在杂交育种亲本选配时,一般要求亲本间具有一定的遗传差异。遗传距离是对物种之间、种群之间遗传差异的度量[12]。徐静裴等[13]认为遗传距离(数量性状)可以用于预测杂种优势。MOLL等[14]最早利用玉米研究遗传差异与杂种优势的关系,发现二者呈曲线关系。GHADERI等[15]、ALI等[16]和TEKLEWOLD等[17]认为大豆、油菜和埃塞俄比亚芥数量性状遗传距离与杂种优势呈正相关。在研究陆地棉数量性状遗传距离与杂种优势关系中,王学德等[18]认为亲本遗传距离与产量杂种优势有显著或极显著的抛物线回归关系。赵玉昌等[19]认为遗传距离与断裂比强度、马克隆值的中亲优势和超亲优势存在显著或极显著的相关性,与单铃重的超亲优势和衣分的中亲优势存在显著的相关性。郝德荣等[20]认为遗传距离与杂种优势的关系较为复杂,并非遗传距离越大杂种优势越明显。陈强等[21]认为遗传距离与产量和纤维品质性状杂种优势的相关性均不显著,与纤维品质性状的相关性均高于产量性状的相关性。显然,前人对陆地棉数量性状遗传距离与杂种优势的关系研究尚未得到一致性的结果。【本研究切入点】前人研究陆地棉亲本间数量性状遗传距离与杂种优势关系所用的材料数目仅有几个到十几个,对应组合数目也仅有十几到几十个,很难充分体现陆地棉及陆地棉杂交后代的特点,相关性结果也不一定适用于所有陆地棉组合。赵仁渠等[22]研究发现小麦遗传距离与杂种优势的相关性随样本量的增加而由不相关到相关,认为较大的样本容量才能真实反映遗传距离与杂种优势的关系。陆地棉核心种质可以代表陆地棉的遗传多样性[23,24],用其来配制大规模的杂交组合,研究亲本间遗传距离及其杂种优势的关系,能得到更准确的结果,有利于陆地棉杂种优势预测。【拟解决的关键问题】本研究利用305份陆地棉核心种质材料为亲本,通过L×T杂交设计[25],配制1 500个组合,分析10个产量和纤维品质性状的杂种优势及其与亲本间遗传距离的相关性,探究利用大规模杂交组合亲本间数量性状遗传距离预测陆地棉杂种优势的效果,以提高杂种优势预测的精确度,减少杂交育种的盲目性,提高育种效率。

1 材料与方法

1.1 试验材料

选取305份陆地棉核心种质作为亲本,它们分别来自中国、美国、澳大利亚、俄罗斯等15个国家,其中,中国材料257份,占84.26%,美国材料25份,占8.20%,其他国家材料23份,占7.54%。中国材料来自23个省(市),按棉区划分,黄河流域棉区175份,占亲本材料(下同)的57.38%;长江流域棉区54份,占17.70%;西北内陆棉区17份,占5.57%;北部特早熟棉区9份,占2.95%;华南棉区2份,占0.66%。5份测试种(父本材料MA—ME):中7886、中1421、A971Bt、4133Bt和SGK9708均来自黄河流域棉区,为丰产型、综合性状优良的材料。所有种质均由国家棉花种质资源中期库提供,其详细信息见电子附表1

Table 1
表1
表1数量性状遗传距离与杂种优势的相关性分析方案
Table 1Correlation analysis schemes between genetic distance of quantitative traits with heterosis
编号 Serial No.相关性分析方案 Correlation analysis schemes
Cor1Dtijvs Fijk
Cor2Dtij-m vs Fijk-m
Cor3DtAjvs FAjk,DtBjvs FBjk,DtCjvs FCjk,DtDjvs FDjk,DtEj vs FEjk
Cor4DtAj-m vs FAjk-m,DtBj-m vs FBjk-m,DtCj-m vs FCjk-m,DtDj-m vs FDjk-m,DtEj-m vs FEjk-m
Dt: Genetic distance between parents; i: The group A-E of male; F: F1; j: The No. 1-300 of F1; vs: “with”; m: The cluster Ⅰ-Ⅴ; k: MPH or HB
Dt:亲本间遗传距离;i:父本对应组编号A—E;F:F1;j:F1对应编号1—300;vs:“与”;m:群体分亚群Ⅰ—Ⅴ;k:中亲优势或超亲优势

新窗口打开|下载CSV

1.2 田间试验设计

305份陆地棉亲本,前期采用双行种植,每行约种30株,进行3年自交,使其性状稳定,并利用L×T杂交设计配制1 500个组合,收获F1种子。其中,L×T杂交设计是所有类型作物育种中评价优良亲本和有利杂交组合最简单有效的方法[25]。2012—2013年,将1 500份F1按父本不同分成5组(A—E),每组及305个亲本、4个对照(鲁棉研28、7886、瑞杂816和鄂杂棉10号)采用两年多点的种植方式,种植于中国南北方13个不同的生态环境,且5组同一年份的南北方地点均在同一棉区(长江流域棉区或黄河流域棉区),利用4个对照共同校正同一年份相同棉区不同地点间的误差。试验采用随机区组设计,行距1 m,行长8 m,3次重复,每小区约30株,试验地肥力中等,田间管理方式按当地大田生产常规操作进行,由中国农业科学院棉花研究所和11家合作单位共同完成。

1.3 性状调查与统计

棉花打顶后一周,每小区随机选取10株调查株高(plant height,PH,单位:cm),计算小区平均数。成熟后,每小区随机选取10株调查单株铃数(boll number per plant,BN,单位:个),计算小区平均数。每个小区收取30铃,统计皮棉和籽棉重,计算单玲重(boll weight,BW,单位:g)和衣分(lint percentage,LP,单位:%)。称取30铃皮棉15 g以上用于纤维长度(fiber length,FL,单位:mm)、断裂比强度(fiber strength,FS,单位:cN/tex)、整齐度指数(fiber length uniformity,FU,单位:%)、伸长率(fiber elongation,FE,单位:%)、纺纱均匀性指数(spinning consistency index,SCI,单位:%)和马克隆值(Micronaire,MIC,单位:μg/inch)的测定,品质测定由农业农村部棉花品质监督检验测试中心完成。利用Excel计算每个环境各组合F1的中亲优势(mid-parent heterosis,MPH)和超亲优势(heterobeltiosis,HB)。计算公式如下:

$MPH=\frac{F_{1}-(P_{1}+P_{2})/2}{(P_{1}+P_{2})/2}\times 100$%,$HB=\frac{F_{1}-HP}{HP}\times 100$%

式中,F1为某杂种一代表型均值,HP为高值亲本表型均值。

1.4 数据分析

为了减少环境误差对结果的影响,利用Excel计算F1各性状4个环境的中亲优势和超亲优势的平均数,统计其杂种优势表现,并利用Graphpad prism 7.0对F1和亲本的10个性状进行差异显著性分析。利用305份亲本10个农艺性状所有环境的平均数,运用R语言进行亲本间数量性状遗传距离计算和群体结构分析,遗传距离采用欧式距离(D2[12],为了使聚类树比例看起来更协调,利用遗传距离的平方根(即最小方差聚类,Ward,距离为D)进行聚类,此种方法不影响聚类树的拓扑结构[26]。利用R语言进行数量性状遗传距离与杂种优势的相关性分析,采用4种分析方案(表1)。其中,Cor1:利用1 500个组合共同计算遗传距离与杂种优势的相关性;Cor2:将1 500个组合按分群结果分5个亚群(Ⅰ—Ⅴ),分别计算遗传距离与杂种优势的相关性;Cor3:按不同父本分5个组(A—E),分别计算遗传距离与杂种优势的相关性;Cor4:按不同父本分5组,再按分群结果分5个亚群(即5×5),分别计算遗传距离与杂种优势的相关性。

2 结果

2.1 F1与亲本性状的差异

F1和亲本10个数量性状的差异显著性分析结果(图1)表明,纤维长度、伸长率、整齐度指数、单玲重和株高的F1表现显著高于双亲,整体表现出一定的超亲优势;马克隆值、衣分和单株铃数的F1表现显著高于母本,父本也显著高于母本,F1与父本间差异不显著,整体表现为中亲优势或趋于高亲(父本)的优势;断裂比强度和纺纱均匀性指数的F1表现显著高于父本,与母本差异不显著,整体表现为中亲优势或趋向于高亲(母本)的优势。从整体来看,F1与亲本(双亲或其中一个亲本)的10个数量性状均存在显著差异,表现出一定的中亲和超亲优势。

图1

新窗口打开|下载原图ZIP|生成PPT
图1F1与亲本10个性状的差异显著性分析

FL:纤维长度;FE:伸长率;FU:整齐度指数;BW:单玲重;PH:株高;MIC:马克隆值;LP:衣分;BN:单株铃数;FS:断裂比强度;SCI:纺纱均匀性指数。*:P<0.05水平差异显著;**:P<0.01水平差异显著;***:P<0.001水平差异显著
Fig. 1Significant difference analysis of 10 traits between F1 hybrids and parents

FL: Fiber length; FE: Fiber elongation; FU: Fiber length uniformity; BW: Boll weight; PH: Plant height; MIC: Micronaire; LP: Lint percentage; BN: Boll number per plant; FS: Fiber strength; SCI: Spinning consistency index. *: Significance at P<0.05; **: Significance at P<0.01; ***: Significance at P<0.001


2.2 各性状杂种优势表现

通过对1 500个组合杂种优势分析,结果(表2)显示,10个性状在5组中除C、D和E组的马克隆值之外,其他性状50%以上的F1具有明显的中亲优势。其中,5组中80%以上F1均表现正向中亲优势的性状为单铃重和纤维长度,其中亲优势最大分别为34.01%和9.83%,对应超亲优势分别为24.25%和5.80%。有4组中80%以上F1均表现正向中亲优势的性状为株高和衣分,其中亲优势最大分别为24.29%和13.33%,对应超亲优势分别为19.98%和7.80%。为了观察每组的杂种优势的整体表现,对每组10个性状的中亲优势和超亲优势取平均值,其中,平均中亲优势A>E>B>C>D,最大为6.21%,平均超亲优势A>B>E>C>D,最大为1.13%。5组10个性状中亲优势总平均的变幅为1.70%—7.40%,平均为4.36%,超亲优势总平均的变幅为-4.17%—1.87%,平均为-0.64%。所以,10个产量和纤维品质性状中,大部分性状表现正向中亲优势,少数性状表现正向超亲优势,杂种优势表现最明显的为单铃重,其次为单株铃数和株高,表现最好的组为A组,其次为B、E组,C、D组最差。

Table 2
表2
表2陆地棉10个数量性状杂种优势
Table 2Heterosis of 10 quantitative traits in upland cotton
性状
Trait
分组
Group
中亲优势MPH超亲优势HB
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
PHA-5.69—24.299.67286(14)-8.67—19.985.08243(57)
B-7.07—16.795.08267(33)-15.81—14.161.29183(117)
C-1.93—22.0510.16298(2)-8.26—15.363.87242(58)
D-7.77—13.023.45254(46)-22.39—4.34-6.0317(283)
E-6.25—11.992.57227(72)-16.40—6.74-2.2876(223)
BWA-12.48—34.0115.55298(2)-21.65—24.258.58284(16)
B-19.71—26.008.29291(9)-22.75—19.282.51220(80)
C-13.87—17.575.82276(24)-19.93—12.21-0.15149(151)
D-13.81—24.957.16285(15)-20.97—18.792.69224(76)
E-12.72—30.829.68289(10)-20.78—20.242.08195(104)
LPA-4.72—9.302.62260(40)-8.80—5.04-1.4596(204)
B-3.06—11.963.38275(25)-17.14—6.68-1.06107(193)
C-16.00—13.333.35268(32)-25.18—3.97-5.3222(278)
D-0.38—13.145.07297(3)-13.54—7.800.30186(114)
E-14.04—7.540.87195(104)-20.33—4.20-4.4251(248)
BNA2.10—50.4123.35300(0)-13.52—22.497.03265(35)
B-3.72—67.8920.77295(5)-16.86—34.807.45243(57)
C-13.03—34.734.81215(85)-27.49—10.85-9.9118(282)
D-18.18—39.52.36169(131)-31.41—5.50-13.385(295)
E-11.18—75.9226.20290(9)-22.14—47.6510.61245(54)
FLA-1.59—7.332.93291(9)-5.69—6.080.88219(81)
B-3.79—5.031.45255(45)-8.61—4.09-0.44122(178)
C-5.62—6.791.88264(36)-12.08—4.68-0.17147(153)
D-3.69—6.651.93269(31)-7.61—4.26-1.3578(222)
E-4.13—9.832.75283(16)-10.79—5.800.79205(94)
表2 Continued table 2
性状
Trait
分组
Group
中亲优势MPH超亲优势HB
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
变幅
Range
(%)
均值
Mean
(%)
正(负)优势组合数
No. of F1s with positive
(negative) heterosis
FSA-6.68—8.600.53163(137)-12.11—4.40-2.9832(268)
B-5.91—10.751.02201(99)-11.47—5.43-1.9776(224)
C-4.99—12.193.08272(28)-11.44—9.620.38177(123)
D-7.54—12.552.03228(72)-16.52—6.33-2.4666(234)
E-9.01—12.781.96212(87)-15.61—10.40-1.04124(175)
MICA-6.75—11.803.95262(38)-13.06—7.12-1.54108(192)
B-8.70—10.912.13243(57)-16.29—5.22-1.6690(210)
C-10.38—8.330.03154(146)-15.67—5.78-5.0023(277)
D-11.10—6.40-3.1923(277)-18.40—2.27-7.641(299)
E-14.4—19.63-0.42128(171)-22.09—4.52-5.2220(279)
FUA-0.87—2.760.78277(23)-1.31—1.640.18185(115)
B-1.22—2.600.30223(77)-2.01—1.47-0.3176(224)
C-1.02—2.140.44241(59)-2.38—1.70-0.12118(182)
D-0.55—2.220.81289(11)-1.60—1.690.15184(116)
E-1.81—1.970.39224(75)-2.13—1.41-0.13120(179)
FEA-3.64—3.820.36181(119)-7.25—1.36-2.0412(288)
B-1.83—3.950.63211(89)-4.57—2.90-0.5099(201)
C-3.17—4.130.93246(54)-4.42—3.57-0.11142(158)
D-3.75—3.190.23178(122)-5.82—1.63-1.3936(264)
E-4.38—10.463.28261(38))-7.21—8.960.47164(135)
SCIA-6.77—15.102.42226(74)-13.31—9.08-2.4278(222)
B-11.15—11.870.85180(120)-17.11—7.75-2.9450(250)
C-8.74—17.674.59275(25)-21.08—10.570.08151(149)
D-6.42—18.166.09288(12)-14.11—11.77-0.78133(167)
E-10.00—16.343.88258(41)-16.43—12.82-0.25152(147)
均值MeanA1.59—11.716.21300(0)-3.54—4.731.13236(64)
B-0.07—10.374.39299(1)-3.87—4.940.24172(128)
C-0.71—8.113.51298(2)-6.88—2.33-1.6439(261)
D-1.31—6.552.59188(12)-7.41—0.55-2.993(297)
E0.11—11.525.12299(0)-4.93—5.530.06150(149)
总均值Total mean1.70—7.404.36-4.17—1.87-0.64
PH: Plant height; BW: Boll weight; LP: Lint percentage; BN: Boll number per plant; FL: Fiber length; FS: Fiber strength; MIC: Micronaire; FU: Fiber length uniformity; FE: Fiber elongation; SCI: Spinning consistency index. The same as below
PH:株高;BW:单玲重;LP:衣分;BN:单株铃数;FL:纤维长度;FS:断裂比强度;MIC:马克隆值;FU:整齐度指数;FE:伸长率;SCI:纺纱均匀性指数。下同

新窗口打开|下载CSV

马克隆值是衡量纤维细度和成熟度的综合指标,纤维越粗成熟度越高,但是适合机纺的棉纤维需要尽可能的细和成熟,所以并不是马克隆值越大越好。对亲本和F1的马克隆值进行统计分析,其在95%的置信区间内均服从正态分布,亲本马克隆值(单位:μg/inch)介于2.54—6.64,平均值为4.82;F1马克隆值介于3.24—6.47,平均值为5.01。根据中华人民共和国国家标准——棉花细绒棉[27],马克隆值在A级和B级(3.5—4.9)的亲本占62.86%,F1占36.89%。进一步对表2中马克隆值的中亲优势和超亲优势的均值均为负的D、E组两组进行分析,发现D组马克隆值在A级和B级的亲本占27.91%,F1占11.33%;E组马克隆值在A级和B级的亲本占79.40%,F1占75.59%。综上,F1的马克隆值整体劣于其亲本。

2.3 亲本间遗传距离和群体结构

2.3.1 亲本间遗传距离 利用10个产量和品质性状计算305份陆地棉亲本间的遗传距离(电子附表2)结果显示,5个测试种与300个母本间的遗传距离(欧式距离)的变幅为2.28—61.43,平均为21.55。其中,测试种A(中7886)与300份母本的遗传距离变异幅度为3.44—44.09,平均为16.47;测试种B(中1421)与300份母本的遗传距离变异幅度为2.28—50.94,平均为11.72;测试种C(A971Bt)与300份母本的遗传距离变异幅度为9.77—54.57,平均为28.59;测试种D(4133Bt)与300份母本的遗传距离变异幅度为7.27—59.45,平均为33.27;测试种E(SGK9708)与300份母本的遗传距离变异幅度为3.74—61.43,平均为17.70。5个测试种与母本的平均遗传距离D>C>E>A>B,根据2.2可知5组中亲优势均值A>E>B>C>D,并不是组间平均遗传距离越大,优势越强。2.3.2 群体结构分析 群体结构分析结果(图2,电子附表3)表明,305份材料整体被分为2个主群(图2-a),在D=7.5(D为欧氏距离的平方根)处进行再次划分,可进一步分成5个亚群(Ⅰ—Ⅴ),其中Ⅰ和Ⅱ为一个主群,Ⅲ、Ⅳ和Ⅴ为另一个主群。通过比较其遗传距离大小,发现群间遗传距离大于群内,符合群体聚类原则,同时根据图2-b的主成分分析,5个亚群的材料聚集在坐标系的不同位置,进一步证明聚类结果的可靠性。其中,5个测试种MA和MD被划分到第Ⅴ亚群,MB被划分到第Ⅲ亚群,MC被划分到第Ⅳ亚群,ME被划分到第Ⅰ亚群。

图2

新窗口打开|下载原图ZIP|生成PPT
图2305份亲本的群体结构分析

Fig. 2Population structure analysis of 305 parents



Table 3
表3
表3Cor1遗传距离与杂种优势的相关关系
Table 3Correlation between heterosis and genetic distance by Cor1
性状
Trait
与遗传距离的相关性系数
Correlation coefficient with genetic distance
中亲优势MPH超亲优势HB
PH0.0115-0.2798***
BW-0.1618***-0.1250***
LP0.2459***-0.1234***
BN-0.3870***-0.5277***
FL0.0109-0.3482***
FS0.1890***-0.1055***
MIC-0.3627***-0.5161***
FU0.1764***0.0921***
FE-0.0495-0.0315
SCI0.3530***-0.0634*
*: Significance at P<0.05; ***: Significance at P<0.001. The same as below
*:P<0.05水平相关性差异显著;***:P<0.001水平相关性差异显著。下同

新窗口打开|下载CSV

2.4 遗传距离与杂种优势的相关性

2.4.1 Cor1遗传距离与杂种优势的相关性 亲本间遗传距离与杂种优势的相关性分析Cor1结果显示(表3),遗传距离与杂种优势存在显著的线性相关关系,与不同性状或优势的相关性存在差异,与超亲优势以负相关为主。其中,纺纱均匀性指数、衣分、断裂比强度和纤维长度的中亲优势与遗传距离呈极显著正相关,相关性系数分别为0.3530、0.2459、0.1890和0.1764,单株铃数、马克隆值和单铃重的中亲优势与遗传距离呈极显著负相关,相关性系数分别为-0.3870、-0.3627和-0.1618;10个性状的超亲优势除整齐度指数和伸长率之外,其余均与遗传距离呈显著负相关,其中,纺纱均匀性指数与遗传距离呈显著负相关,显著性系数为-0.0634,其他均为极显著负相关,相关性系数介于-0.5277—-0.1055,相关性程度为单株铃数>马克隆值>纤维长度>株高>单铃重>衣分>断裂比强度;遗传距离与整齐度指数的超亲优势呈极显著正相关,相关性系数为0.0921。

2.4.2 Cor2遗传距离与杂种优势的相关性 亲本间遗传距离与杂种优势的相关性分析Cor2结果显示(表4),遗传距离与杂种优势的相关性总体与Cor1的结果相似,Cor1反映了Cor2中各亚群的整体水平。遗传距离与衣分和纺纱均匀性指数的中亲优势在5个亚群中均达到极显著正相关,相关性系数分别介于0.1346—0.3801和0.1834—0.4058,与断裂比强度和整齐度指数的中亲优势在4个亚群中均达到显著正相关,相关性系数分别介于0.2144—0.2813和0.1173—0.2487,与单株铃数、马克隆值和单铃重的中亲优势在4个亚群中达到极显著负相关,其他性状在各亚群中相关性不稳定;遗传距离马克隆值的超亲优势在5个亚群中均达到显著负相关,相关性系数介于-0.5275—-0.1980,与单株铃数和纤维长度的超亲优势在4个亚群中均达到极显著负相关,相关性系数分别介于-0.6861—-0.4586和-0.5788—-0.2698,与株高和单铃重的超亲优势在3个亚群中均达到极显著负相关,其他性状在各亚群中相关性不稳定。

Table 4
表4
表4Cor2遗传距离与杂种优势的相关关系
Table 4Correlation between heterosis and genetic distance by Cor2
性状
Trait
与遗传距离的相关性系数 Correlation coefficient with genetic distance
中亲优势MPH超亲优势HB
PH0.2433***-0.01730.0870-0.1815***0.0196-0.0037-0.3721***-0.1579**-0.5368***-0.1613
BW-0.1003-0.1486**-0.2628***-0.2738***-0.2346**-0.0008-0.0864-0.1819***-0.2451***-0.4287***
LP0.3801***0.2978***0.2879***0.1346**0.2462**-0.0562-0.0356-0.0852-0.0949-0.4010***
BN-0.5678***-0.4537***-0.5135***-0.3352***0.0049-0.6861***-0.6001***-0.6672***-0.4586***-0.0976
FL-0.09510.0630-0.09640.0163-0.2031*-0.4566***-0.3952***-0.2698***-0.0866-0.5788***
FS-0.02390.1614***0.2813***0.1780***0.2144*-0.2216**-0.1698***0.1662**0.0818-0.0685
MIC-0.2862***-0.3924***-0.4440***-0.4387***-0.1036-0.4695***-0.5275***-0.4915***-0.5194***-0.1980*
FU0.11410.2487***0.1173*0.1518**0.1791*-0.01890.2020***0.06130.1870***-0.2032*
FE-0.3579***-0.1354**-0.10530.09990.1257-0.2300**-0.1320**0.03700.1207*-0.0573
SCI0.1834**0.4003***0.4058***0.3726***0.2354**-0.2461***-0.05770.2116***0.2357***-0.2630**
**:P<0.01水平相关性差异显著。下同 **: Significance at P<0.01. The same as below

新窗口打开|下载CSV

2.4.3 Cor3遗传距离与杂种优势的相关性 亲本间遗传距离与杂种优势的相关性分析Cor3结果显示(表5),遗传距离与各性状中亲优势的相关性在不同组表现不同,与部分性状(尤其是纤维品质性状)的超亲优势呈显著负相关。其中,遗传距离与单株铃数的中亲优势在A、B、C和E组均为显著正相关,与纤维长度和伸长率的中亲优势在A、C和D组均呈极显著正相关,与衣分的中亲优势在A、B和D组均呈显著正相关,与马克隆值的中亲优势相关性不显著;遗传距离与断裂比强度、纺纱均匀性指数和马克隆值的超亲优势在5组中均呈显著负相关,与纤维长度的超亲优势在A、B、D和E组均呈极显著负相关,与衣分的超亲优势在B、D和E组均呈极显著负相关,与整齐度指数和伸长率(P≥0.0416)的超亲优势相关性基本不显著。

Table 5
表5
表5Cor3遗传距离与杂种优势的相关关系
Table 5Correlation between heterosis and genetic distance by Cor3
性状
Trait
与遗传距离的相关性系数 Correlation coefficient with genetic distance
中亲优势MPH超亲优势HB
ABCDEABCDE
PH-0.110670.03120.00170.00520.1615**-0.1641**-0.08330.0051-0.3327***0.0227
BW0.1073-0.02820.1353*0.2430***0.0554-0.0087-0.06690.10340.1466*0.0074
LP0.1419*0.1554**0.03500.1358*-0.1145*-0.0849-0.3894***-0.1031-0.2701***-0.3032***
BN0.1857**0.1712**0.1544**0.03460.1311*0.06080.02680.0603-0.2319***0.1402*
FL0.1765**0.00010.1664**0.2205***-0.1417*-0.1908***-0.3943***-0.0480-0.3636***-0.3814***
FS0.1470*0.1501**0.08810.0730-0.1812**-0.2267***-0.3329***-0.2339***-0.3668***-0.2409***
MIC0.01000.0416-0.0033-0.0042-0.0834-0.2506***-0.3376***-0.2372***-0.4879***-0.1338*
FU0.01300.1898***0.02810.1364*0.0113-0.0461-0.0260-0.04010.0644-0.0909
FE0.2138***0.09410.2281***0.1783**0.01390.1112-0.1177*0.0892-0.0334-0.0138
SCI0.01930.1416*0.08040.1335*-0.0742-0.3766***-0.3699***-0.2454***-0.4021***-0.2531***

新窗口打开|下载CSV

2.4.4 Cor4遗传距离与杂种优势的相关性 亲本间遗传距离与杂种优势的相关性分析Cor4结果显示(表6,电子附表4),遗传距离与杂种优势的相关性整体比Cor3弱,但其整体结果与Cor3相似。相关性较弱是由于分5个亚群之后样本量减少所致,所以遗传距离与杂种优势的相关性分析要达到一定的样本量。除E组外,遗传距离与中亲优势相关性显著的相关性系数均为正,其相关性水平并不高,P值介于0.00025—0.04720;遗传距离与超亲优势整体呈负相关,其相关性水平高于中亲优势。其中,在亚群Ⅰ、Ⅱ、Ⅲ和Ⅴ中,遗传距离与衣分的超亲优势均呈较稳定的显著负相关。在亚群Ⅰ、Ⅱ和Ⅴ中,遗传距离与纤维长度、断裂比强度和纺纱均匀性指数的超亲优势均呈较稳定的显著负相关。在亚群Ⅰ和Ⅱ中,遗传距离与马克隆值的超亲优势呈稳定的显著负相关。

Table 6
表6
表6Cor4遗传距离与杂种优势的相关关系
Table 6Correlation between heterosis and genetic distance by Cor4
优势
Heterosis
性状
Trait
与遗传距离的相关性 Correlation with genetic distance
ABCDEABCDEABCDEABCDEABCDE
中亲优势
MPH
PHPPP
BWPP
LPNPPPP
BNPPPPPP
FLPP
FSNP
MICPPPPP
FUNPPPP
FENPPP
SCIPN
超亲优势
HB
PHPNNPNNPNN
BWNPNN
LPNNNNNNNNNNNNNNN
BNPPNP
FLNNNNNNNNNNN
FSNNNNNNNNN
MICNNNNNNNNNNNPPN
FUNN
FENNPPNNN
SCINNNNNNNNNNNN
P: Significant positive correlation; N: Significant negative correlation
P:显著正相关;N:显著负相关

新窗口打开|下载CSV

综合4种遗传距离与杂种优势的相关性分析结果,可知,遗传距离与衣分、断裂比强度、整齐度指数和纺纱均匀性指数的中亲优势整体呈显著正相关,与单铃重、单株铃数、纤维长度、马克隆值和伸长率的中亲优势采用不同的分析方案结果不同,与株高的中亲优势相关性较弱。遗传距离与衣分、纤维长度和马克隆值的超亲优势在4种分析方案中整体均表现显著的负相关,与整齐度指数的超亲优势在Cor1中表现显著正相关,与其他性状的超亲优势因方案、亚群和组的不同相关性结果不同。其中,5组中E组比较特殊,遗传距离与部分性状中亲优势的相关性与其他组存在正负差异。4种分析方案在样本量、遗传距离变幅和父本材料上存在差异,得到的结果有所不同。Cor2与Cor1相比样本量和遗传距离变幅减小,相关性减弱;Cor3和Cor4与Cor1相比样本量和遗传距离变幅减小,相关性减弱,Cor4的相关性最弱,且按父本不同分成5组,不同组结果有所不同;Cor4与Cor2和Cor3相比样本量和遗传距离变幅减小,相关性减弱。Cor2和Cor3因分组(或分亚群)方式不同,结果有所不同。所以,遗传距离与杂种优势的相关性分析要具有一定的样本量,样本量越大相关性越强,相关性也因父本不同而有所差异。

3 讨论

3.1 基于数量性状研究陆地棉遗传距离与杂种优势关系的效果

杂交亲本间的遗传距离影响杂种优势,关系十分复杂,机制尚不明确[28]。数量性状遗传距离在一定程度上可以反映材料间的遗传关系,是材料间表型性状异同程度的综合反映[29],其在陆地棉亲本选配和杂种优势利用上有一定的利用价值。本研究以能代表陆地棉遗传多样性的305份陆地棉核心种质材料为亲本,利用10个数量性状对其群体结构进行分析,将其有效的分成2个主群,5个亚群。对1 500个组合通过4种方案研究遗传距离与杂种优势的相关性,各方案在样本量、遗传距离变幅和父本材料上存在差异,得到的结果有所不同。在样本量较多的情况下,遗传距离与大部分性状的中亲优势和超亲优势之间具有显著或极显著的线性关系,且样本量越大显著性越强,这与赵玉昌等[19]、赵仁渠等[22]等研究结果较一致。与前人对陆地棉亲本间数量性状遗传距离与杂种优势的关系研究[18,19,20,21]相比,本试验利用大规模的陆地棉杂交组合来研究两者的关系,此规模在棉花甚至其他作物中都十分罕见,将这些组合按父本分组和群体结构分群进行划分,采用4种方案进行分析,能够更系统、全面和准确的分析遗传距离与杂种优势的关系,对陆地棉亲本选配、强优势组合筛选,以及杂种优势的高效预测有一定的指导作用,但本研究仍未得出十分明确的结果,有待进行更广泛深入的探究。

3.2 遗传距离与杂种优势关系的研究热点与趋势

随着分子标记技术的发展与普及,已有****广泛利用其来研究遗传距离与杂种优势的关系。武耀廷等[30]利用RAPD、ISSR与SSR标记研究陆地棉遗传距离与杂种F1、F2产量性状杂种优势的关系,发现其相关性程度偏低。杨代刚等[31]利用SSR标记研究陆地棉亲本配合力与杂种优势、遗传距离的相关性,发现配合力与遗传距离相关性不显著,产量性状杂种优势与遗传距离显著正向相关。宿俊吉等[32]利用SSR标记研究遗传距离与纤维品质性状的相关性,发现遗传距离与中亲优势有一定的相关性,但不同性状表现不同。ZHANG等[33]利用RAPD和AFLP标记研究海岛棉遗传距离与配合力和中亲优势的关系,发现与GCA和SCA存在显著相关。在玉米和油菜中还有利用全基因组SNP芯片来预测遗传距离与杂种优势的关系,其中,CHRISTIAN等[34]利用285份玉米自交系的56 110个SNP位点预测玉米7个生物量和生物能相关性状的杂种优势,其预测精度可达0.72—0.81。桑世飞等[35]利用油菜波里马细胞质雄性不育系的6个保持系和8个恢复系的52 157个SNP位点研究油菜遗传距离与杂种优势的关系,发现遗传距离与株高、分枝部位高度和单株产量均呈极显著相关。YANG等[36]利用高通量测序技术获得的SNP位点研究遗传距离与拟南芥生物量超亲优势的关系,发现二者之间相关性不显著。表型与基因型都是材料间遗传差异的组成部分,利用其计算的遗传距离都可以用于杂种优势预测。目前,成百上千份陆地棉已具有AFLP、RAPD、ISSR、SSR、SNP芯片[37]和高通量测序[1,38-39] 等基因型数据,各大作物(包括棉花)的基因型数据库和表型数据库不断建立,利用各种基因型和表型数据相结合研究遗传距离与杂种优势的关系,将在杂种优势预测上取得更好效果,更有利于揭示杂种优势机理。

4 结论

陆地棉亲本间数量性状遗传距离与杂种优势有一定的线性关系,遗传距离与衣分、断裂比强度、整齐度指数和纺纱均匀性指数的中亲优势呈显著正相关,与整齐度指数的超亲优势呈一定的正相关,与衣分、纤维长度和马克隆值的超亲优势呈显著负相关,且相关性随样本量的增加而增强,利用大规模杂交组合可以提高陆地棉产量和纤维品质性状杂种优势预测效果。

致谢:河南科技学院王清连和张新、湖北省农业科学院经济作物研究所秦鸿德和易先达、中棉种业刘金海和蔡忠民、荆州市晶华种业科技有限公司刘辉、江西省棉花研究所杨军、河北农业大学马峙英和李志坤、国欣农村技术服务总会徐东勇、中棉长江公司杨金龙和周关印、山东众力公司张金彪和李林、湖南省棉花科学研究所张雪林、湖南常德三益种业有限公司黄爱芬以及中国农业科学院朱海勇等人对本试验组合配置和表型性状的生态鉴定做出重要贡献,特表感激。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

CHEN Z J, SCHEFFLER B E, ELIZABETH D, TRIPLETT B A, TIANZHEN Z, WANGZHEN G, XIAOYA C, STELLY D M, RABINOWICZ P D, TOWN C D . Toward sequencing cotton (Gossypium) genomes
Plant Physiology, 2007,145(4):1303-1310.

[本文引用: 2]

ZHANG J, FANG H, ZHOU H P, SANOGO S, MA Z . Genetics, breeding, and marker-assisted selection for verticillium wilt resistance in cotton
Crop Science, 2014,54(4):1289-1303.

DOI:10.2135/cropsci2013.08.0550URL [本文引用: 1]
Abstract Verticillium wilt (VW), caused by the soil-borne fungus Verticillium dahliae Kleb., is one of the most destructive diseases in Upland cotton (Gossypium hirsutum L.) production in the U. S. and worldwide. Development of VW-resistant cultivars remains the only economic option for controlling the disease. The objective of this review was to summarize the progress in screening methods, resistance sources, and genetics, quantitative trait locus (QTL) mapping, marker-assisted selection (MAS) and breeding for VW resistance in cotton. Even though Gossypium barbadense L. carries high levels of resistance, its resistance has not been transferred into commercial Upland cultivars. Many Acala cotton cultivars developed in New Mexico and California between the 1940s and the 1990s, and some commercial transgenic cultivars are tolerant or moderately resistant to VW. However, due to difficulties in achieving consistent and uniform inoculation and infection with V. dahliae, both qualitative and quantitative inheritance of VW resistance have been reported in numerous studies for resistant G. barbadense and Upland genotypes. Several QTL analyses have shown the existence of VW resistance QTLs on almost all the tetraploid cotton chromosomes; however, QTLs have most frequently been detected on c5, c7, c8, c11, c16, c17, c19, c21, c23, c24, and c26. This has led to MAS for progeny with favorable QTL alleles for VW resistance in several experiments. Phenotypic selection for VW resistance has been inefficient, while the effectiveness and efficiency of MAS remain to be validated. There is an urgent need for the development of better plant inoculation and screening methods, and for more molecular mapping studies to discern the genetic basis of VW resistance in cotton.

FANG L, WANG Q, HU Y, JIA Y, CHEN J, LIU B, ZHANG Z, GUAN X, CHEN S, ZHOU B . Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits
Nature Genetics, 2017,49(7):1089-1098.

DOI:10.1038/ng.3887URLPMID:28581501 [本文引用: 1]
Tianzhen Zhang, Xiongming Du and colleagues report whole-genome resequencing of 318 upland cotton (Gossypium hirsutum) accessions. They carried out genome-wide association analyses to identify loci associated with fiber quality, lint yield and resistance to Verticillium wilt, and identify two ethylene-pathway genes associated with the increased lint yield observed in improved cultivars.

彭倩, 薛亚东, 张向歌, 李慧敏, 孙高阳, 李卫华, 谢慧玲, 汤继华 . 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点
作物学报, 2016,42(4):482-491.

DOI:10.3724/SP.J.1006.2016.00482URLMagsci [本文引用: 1]
<p>杂种优势利用是提高农作物产量与品质的一种重要途径, 而明确杂种优势的遗传机制将促进优良玉米新品种的选育, 但是截至目前其遗传机制仍然不清楚。本研究以玉米自交系lx9801背景的昌7-2的单片段代换系为基础材料, 利用与自交系T7296的测交群体, 对昌7-2和lx9801对应染色体片段与T7296之间存在差异的杂种优势位点进行了分析, 共检测出64个不同穗部性状和产量的杂种优势位点(HL), 其中23个在2个环境中同时被检测到, 包括4个穗长的HL, 4个穗粗的HL, 4个穗行数的HL, 7个行粒数的HL和4个产量的HL, 并在多个染色体片段上鉴定出同时包含产量及其构成因子的杂种优势位点, 该研究为进一步解析玉米产量杂种优势形成的遗传机制奠定了材料基础。</p>
PENG Q, XUE Y D, ZHANG X G, LI H M, SUN G Y, LI W H, XIE H L, TANG J H . Identification of heterotic loci for yield and ear traits using CSSL test population in maize
Acta Agronomica Sinica, 2016,42(4):482-491. (in Chinese)

DOI:10.3724/SP.J.1006.2016.00482URLMagsci [本文引用: 1]
<p>杂种优势利用是提高农作物产量与品质的一种重要途径, 而明确杂种优势的遗传机制将促进优良玉米新品种的选育, 但是截至目前其遗传机制仍然不清楚。本研究以玉米自交系lx9801背景的昌7-2的单片段代换系为基础材料, 利用与自交系T7296的测交群体, 对昌7-2和lx9801对应染色体片段与T7296之间存在差异的杂种优势位点进行了分析, 共检测出64个不同穗部性状和产量的杂种优势位点(HL), 其中23个在2个环境中同时被检测到, 包括4个穗长的HL, 4个穗粗的HL, 4个穗行数的HL, 7个行粒数的HL和4个产量的HL, 并在多个染色体片段上鉴定出同时包含产量及其构成因子的杂种优势位点, 该研究为进一步解析玉米产量杂种优势形成的遗传机制奠定了材料基础。</p>

LI D Y, HUANG Z Y, SONG S H, XIN Y Y, MAO D H, LV Q M, ZHOU M, TIAN D M, TANG M F, ZHUNL H . Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase
Proceedings of the National Academy of Sciences of the United States of America, 2016,113(41):E6026-E6035.

DOI:10.1073/pnas.1610115113URLPMID:27663737 [本文引用: 1]
Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world’s food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics...

DUVICK D N . The contribution of breeding to yield advances in maize (Zea mays L.)
Advances in Agronomy, 2005,86(5):83-145.

DOI:10.1016/S0065-2113(05)86002-XURL [本文引用: 1]
Maize ( Zea mays L.) yields have risen continually wherever hybrid maize has been adopted, starting in the U.S. corn belt in the early 1930s. Plant breeding and improved management practices have produced this gain jointly. On average, about 50% of the increase is due to management and 50% to breeding. The two tools interact so closely that neither of them could have produced such progress alone. However, genetic gains may have to bear a larger share of the load in future years. Hybrid traits have changed over the years. Trait changes that increase resistance to a wide variety of biotic and abiotic stresses (e.g., drought tolerance) are the most numerous, but morphological and physiological changes that promote efficiency in growth, development, and partitioning (e.g., smaller tassels) are also recorded. Some traits have not changed over the years because breeders have intended to hold them constant (e.g., grain maturity date in U.S. corn belt). In other instances, they have not changed, despite breeders' intention to change them (e.g., harvest index). Although breeders have always selected for high yield, the need to select simultaneously for overall dependability has been a driving force in the selection of hybrids with increasingly greater stress tolerance over the years. Newer hybrids yield more than their predecessors in unfavorable as well as favorable growing conditions. Improvement in the ability of the maize plant to overcome both large and small stress bottlenecks, rather than improvement in primary productivity, has been the primary driving force of higher yielding ability of newer hybrid.

傅廷栋 . 油菜杂种优势研究利用的现状与思考
中国油料作物学报, 2008: 1-5.

URL [本文引用: 1]
我国植物食用油供需矛盾十分突出,要解决这一矛盾的重点是发展油菜生产。我国是继杂交水稻之后第一个大面积应用杂交油菜的国家,目前我国杂交油菜面积已达油菜总面积的60%。杂交油菜面积迅速发展;“杂优+双低”产量与品质同步提高;油菜杂种优势的多途径利用都是油菜杂种优势研究与利用的重要特色。本文还论及当前杂交油菜育种的重点目标。作者根据个人研究油菜杂种优势的实践,提出自己的观点进行讨论。
FU T D . On research and application of heterosis in rapessed
Chinese Journal of Oil Crop Sciences, 2008: 1-5. (in Chinese)

URL [本文引用: 1]
我国植物食用油供需矛盾十分突出,要解决这一矛盾的重点是发展油菜生产。我国是继杂交水稻之后第一个大面积应用杂交油菜的国家,目前我国杂交油菜面积已达油菜总面积的60%。杂交油菜面积迅速发展;“杂优+双低”产量与品质同步提高;油菜杂种优势的多途径利用都是油菜杂种优势研究与利用的重要特色。本文还论及当前杂交油菜育种的重点目标。作者根据个人研究油菜杂种优势的实践,提出自己的观点进行讨论。

邢朝柱, 靖深蓉, 邢以华 . 中国棉花杂种优势利用研究回顾和展望
棉花学报, 2007,19(5):337-345.

DOI:10.3969/j.issn.1002-7807.2007.05.003URL [本文引用: 1]
分析了当前我国杂交棉应用状况及其作用地位;从杂种优势的遗传特性、生化和分子基础等方面综述了杂种优势机理研究进展;回顾了我国了棉花杂交种选育及制种方法研究所取得的成就;同时指出我国当前杂交棉应用中存在的问题,并根据已有的工作基础提出了我国棉花杂种优势利用今后发展方向。
XING C Z, JING S R, XING Y H . Review and prospect on cotton heterosis utilization and study in China
Cotton Science, 2007,19(5):337-345. (in Chinese)

DOI:10.3969/j.issn.1002-7807.2007.05.003URL [本文引用: 1]
分析了当前我国杂交棉应用状况及其作用地位;从杂种优势的遗传特性、生化和分子基础等方面综述了杂种优势机理研究进展;回顾了我国了棉花杂交种选育及制种方法研究所取得的成就;同时指出我国当前杂交棉应用中存在的问题,并根据已有的工作基础提出了我国棉花杂种优势利用今后发展方向。

袁有禄, 靖深蓉 . 世界棉花杂种优势利用研究进展, 问题与前景
中国棉花, 2000,27(8):2-5.

DOI:10.3969/j.issn.1000-632X.2000.08.001URL [本文引用: 1]
概述了国内外棉花杂种优势利用研究现状。肯定了利用各种有特色的棉花新材料(抗病、抗虫、耐逆等)与适应性好的优良推广品种配制组合,其F1和F2在逆境条件下(病、虫、旱等)增产潜力大。目前的杂交制种仍以人工去雄及核雄性不育系的利用为主,应加强化学杀雄剂筛选及通过抗虫不育系的培育,实现昆虫传粉,真正达到简化制种的目的。
YUAN Y L, JING S R . Advances, problems and prospects of heterosis utilization of cotton in the world
China Cotton, 2000,27(8):2-5. (in Chinese)

DOI:10.3969/j.issn.1000-632X.2000.08.001URL [本文引用: 1]
概述了国内外棉花杂种优势利用研究现状。肯定了利用各种有特色的棉花新材料(抗病、抗虫、耐逆等)与适应性好的优良推广品种配制组合,其F1和F2在逆境条件下(病、虫、旱等)增产潜力大。目前的杂交制种仍以人工去雄及核雄性不育系的利用为主,应加强化学杀雄剂筛选及通过抗虫不育系的培育,实现昆虫传粉,真正达到简化制种的目的。

WU Y T, YIN J M, GUO W Z, ZHU X F, ZHANG T Z . Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton
Plant Breeding, 2010,123(3):285-289.

DOI:10.1111/j.1439-0523.2004.00990.xURL [本文引用: 1]
Because of the difficulty of producing F 1 hybrid seeds by hand emasculation and pollination, wide use of heterosis in cotton production has been limited in China. The objective of this study was to evaluate the potential of F 2 hybrids for yield and fibre quality. A half diallel involving eight parents and their F 1 and F 2 hybrids was grown in replicated studies at Linqing and Nanjing in 1999 and Nanjing in 2000. Yield and fibre quality was determined for all 64 entries. Fibre quality was also determined for parents and F 1 s, but only for Zhongmiansuo 28 (ZMS28), Xiangzamian 2 (XZM2) and Wanmian 13 (WM13) F 2 s. These three F 2 hybrids are extensively planted in China and provide experimental controls with which to compare the performance of new hybrids. Average yield heterosis for F 1 s and F 2 s was 15.9 and 9.2%, respectively. Inbreeding depression for yield varied but some F 2 s greatly out-yielded the best variety. Average F 1 heterosis was 6.7, 6.2 and 2.9%, respectively for number of bolls per unit area, boll weight, and lint percentage. The average F 2 heterosis for the same traits was 4.4, 3.3 and 1.6%, respectively. F 1 heterosis for fibre traits was low. In general, parental average was a good indicator of the yield and fibre quality of F 1 hybrids. These encouraging results suggest there is sufficient heterosis for yield to use F 2 s in China.

邢朝柱, 喻树迅 . 棉花杂种优势表达机理研究进展
棉花学报, 2004,16(6):379-382.

DOI:10.3969/j.issn.1002-7807.2004.06.012URL [本文引用: 1]
从棉花杂种优势性状表现、配合力分析、生理生化研究、遗传距离与杂种优势关系等方面分析了棉花杂种优势机理研究进展,并提出了从基因水平研究棉花杂种优势,更能确切地反映杂种优势表达机理.
XING C Z, YU S X . Progress of cotton heterosis expression mechanisms
Cotton Science, 2004,16(6):379-382. (in Chinese)

DOI:10.3969/j.issn.1002-7807.2004.06.012URL [本文引用: 1]
从棉花杂种优势性状表现、配合力分析、生理生化研究、遗传距离与杂种优势关系等方面分析了棉花杂种优势机理研究进展,并提出了从基因水平研究棉花杂种优势,更能确切地反映杂种优势表达机理.

NEI M. Genetic Distance and Molecular Phylogeny. University of Washington Press, Seattle, Washington, 1987, 193-223.
[本文引用: 2]

徐静斐, 汪路应 . 水稻杂种优势和配合力的初步研究
遗传, 1980,2(2):17-19.

URLMagsci [本文引用: 1]
近年来,我国水稻杂种优势利用的研究对粮食增产起了重要作用。但目前推广的釉稻组合还存在着生育期偏长、结实率不稳、父母本生育差期过大、不利于制种等问题。怎样选育早、丰、抗、优的新组合,无论在理论上还是实践上都还没有很好解决。为选育杂交水稻新组合提供理论依据,我们进行了本项试验。
XU J P, WANG L Y . Preliminary study on heterosis and combining ability of rice
Hereditas, 1980,2(2):17-19. (in Chinese)

URLMagsci [本文引用: 1]
近年来,我国水稻杂种优势利用的研究对粮食增产起了重要作用。但目前推广的釉稻组合还存在着生育期偏长、结实率不稳、父母本生育差期过大、不利于制种等问题。怎样选育早、丰、抗、优的新组合,无论在理论上还是实践上都还没有很好解决。为选育杂交水稻新组合提供理论依据,我们进行了本项试验。

MOLL R H, LONNQUIST J H, FORTUNO J V, JOHNSON E C . The relationship of heterosis and genetic divergence in maize
Genetics, 1965,52(1):139-144.

DOI:10.0000/PMID17248265URLPMID:17248265 [本文引用: 1]
HETEROSIS in maize appears to increase with increased genetic divergence of the parent populations over a rather wide range of diversity (MOLL, SAL- HUANA and ROBINSON 1962). It does not necessarily follow, however, that this relationship will hold throughout the entire ran.ge of diversity in the species. It is widely accepted that cumulative differences between isolated populations may eventually become great enough to cause genic unbalance in population hybrids, which may be manifest by poor F, viability. This is considered to be one of the possible steps toward speciation; and inferiority of interspecific hybrids is not uncommon. In the case of an organism which shows heterosis in crosses between divergent populations, it seems logical to expect that in crosses of extremely di- vergent populations, the expression of heterosis may be limited by unharmonious gene combinations in the F, hybrid. At higher levels of genetic divergence, then, an increase in divergence might be associated with a decrease in heterotic expres- sion. The issue in this report is whether or not heterosis in maize continues to in- crease at higher levels of diversity.

GHADERI A, ADAMS M W, NASSIB A M . Relationship between genetic distance and heterosis for yield and morphological traits in dry edible bean and faba bean1
Crop Science, 1984,24(1):37-42.

DOI:10.2135/cropsci1984.0011183X002400010009xURL [本文引用: 1]
The association of genetic distance and heterosis was investigated in dry edible bean (Phaseolus vulgaris L.) and faba bean (Viciafaba L.). Dry bean materials consisted of 28 F2 populations of an 8 x 8 diallel, and their respective parents, grown in eight replications in the field at East Lansing, Mich. in 1981. Faba bean materials comprised the 64 F1's and parents of an 8 x 8 diallel grown in 1975, and 120 populations grown in 1976 como prised of F1's, F2's, and parents of the same diallel, grown in four replications at the Agricultural Research Center at Giza, Egypt. Mahalanobis' D2 was used to estimate genetic distance between parents. Heterosis was measured as deviation from midparent. Correlations in dry beans between heterotic effects and parental distances were positive and highly significant for yield at harvest and for two of the three yield components, namely, number pods/plant and number seeds/pod. No relationship was found for 100-seed weight. A highly significant positive correlation was obtained for leaf weight. Both significantly positive and negative correlations were found in faba beans for an array of "number" traits related to yield, but heterosis for yield of seed per se in faba beans was not associated with the Mahalanobis D2's

ALI M, COPELAND L O, ELIAS S G, KELLY J D . Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.)
Theoretical & Applied Genetics, 1995,91(1):118-121.

DOI:10.1007/BF00220867URLPMID:24169676 [本文引用: 1]
Genetic distance among canola cultivars was estimated through multivariate analysis. Thirty cultivars from various sources were analyzed and clustered based upon five morphological characteristics and yield components-crown diameter, number of branches plant -1 , number of pods plant -1 , number of seeds pod -1 and yield plant -1 -and placed in three distinct clusters. Two cultivars from each cluster were selected as parents and 15 partial-diallel inter- and intra-cluster crosses were made between the six selected parents and evaluated at two locations in Michigan in 1990/1991. The association between genetic distance and mid-parent heterosis was investigated. The correlation between genetic distance and heterosis was positive and highly significant for seed yield, number of pods plant -1 , and number of seeds pod -1 . Clustering, based on yield and yield-component traits, demonstrated that inter-cluster heterosis was greater than intra-cluster heterosis in the majority of cases.

TEKLEWOLD A, BECKER H C . Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun)
Theoretical & Applied Genetics, 2006,112(4):752-759.

DOI:10.1007/s00122-005-0180-3URLPMID:16365759 [本文引用: 1]
Predicting heterosis and F 1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F 1 performance and general combining ability (GCA) in Ethiopian mustard ( Brassica carinata ). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F 1 s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA ( RAPD ) markers (Jaccard’s distances, JD), and correlated with heterosis, F 1 performance and GCA sum of parents (GCA sum ). The correlation between phenotypic and molecular distances was low ( r =0.34, P ≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis ( r =0.53), F 1 performance ( r =0.61) and GCA ( r =0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F 1 performance and GCA for plant height and seeds plant 611 , (2) heterosis for number of pods plant 611 , and (3) F 1 performance for 1,000 seed weight. Molecular distance was correlated with GCA sum ( r =0.36, P ≤0.05) but not significantly with heterosis and F 1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA ( r =0.90, P ≤0.01 for ED and r =0.68, P ≤0.05 for JD) and mean heterosis ( r =0.79, P ≤0.05 for ED and r =0.77, P ≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F 1 performance and GCA than distances estimated from RAPD markers.

王学德, 潘家驹 . 棉花亲本遗传距离与杂种优势间的相关性研究
作物学报, 1990,16(1):32-38.

DOI:10.1007/BF02015343URLMagsci [本文引用: 2]
以棉花芽黄(Virescent)为指示性状辨别真伪杂种,:并采用 NCⅡ(North CarolinaⅡ)交配设计,对56个组合的杂种一代及其15个亲本进行两年(1986—1987)比较试验,研究棉花亲本遗传距离(D~2)与杂种产量优势(MH)的相关。研究结果表明:亲本遗传距离与杂种产量优势有显著或极显著的抛物线回归关系。遗传距离在一定范围内(0≤D~2≤7),杂
WANG X D, PAN J J . Studies on the relationship between genetic distance of parents and yield heterosis in hybrid cotton
Acta Agronomica Sinica, 1990,16(1):32-38. (in Chinese)

DOI:10.1007/BF02015343URLMagsci [本文引用: 2]
以棉花芽黄(Virescent)为指示性状辨别真伪杂种,:并采用 NCⅡ(North CarolinaⅡ)交配设计,对56个组合的杂种一代及其15个亲本进行两年(1986—1987)比较试验,研究棉花亲本遗传距离(D~2)与杂种产量优势(MH)的相关。研究结果表明:亲本遗传距离与杂种产量优势有显著或极显著的抛物线回归关系。遗传距离在一定范围内(0≤D~2≤7),杂

赵玉昌, 曹栓柱, 曹新川 . 陆地棉数量性状遗传距离与杂种优势关系的研究
塔里木大学学报, 2008,20(1):19-22.

DOI:10.3969/j.issn.1009-0568.2008.01.006URL [本文引用: 3]
利用9个不同陆地棉亲本及杂交组合,研究陆地棉亲本的遗传距离其杂交组合的杂种优势之间的关系。研究结果表明:强力、马值性状的中亲优势和超亲优势与亲本遗传距离存在显著或极显著的相关关系,单铃重的超亲优势与衣分的中亲优势与亲本遗传距离存在显著的相关关系。部分性状的杂种优势随遗传距离的增大而增大,但如马克隆、单铃重等的部分性状随亲本遗传距离的增加而减小。
ZHAO Y C, CAO S Z, CAO X C . Study of the relationship between genetic distance and heterosis in upland cotton
Journal of Tarim University, 2008,20(1):19-22. (in Chinese)

DOI:10.3969/j.issn.1009-0568.2008.01.006URL [本文引用: 3]
利用9个不同陆地棉亲本及杂交组合,研究陆地棉亲本的遗传距离其杂交组合的杂种优势之间的关系。研究结果表明:强力、马值性状的中亲优势和超亲优势与亲本遗传距离存在显著或极显著的相关关系,单铃重的超亲优势与衣分的中亲优势与亲本遗传距离存在显著的相关关系。部分性状的杂种优势随遗传距离的增大而增大,但如马克隆、单铃重等的部分性状随亲本遗传距离的增加而减小。

郝德荣, 何林池, 刘水东, 周金凤, 邢建美, 黄昭平 . 抗虫棉数量性状遗传距离与杂种优势关系的研究
金陵科技学院学报, 2008,24(4):50-55.

DOI:10.3969/j.issn.1672-755X.2008.04.012URL [本文引用: 2]
通过对31份抗虫棉种质资源材料的10个数量性状的主成分分析和 聚类分析,并采用作图法,研究了数量性状遗传距离与杂种优势指数之间的关系.31份抗虫棉种质资源的10个数量性状可归纳为5个主成分因子,其累积贡献率 达87.39%.在评价抗虫棉种质资源时,首先应考虑单株结铃数和衣分等产量结构因子,其次为株型因子,最后考虑果枝始节、生育期及早熟性等因子.31份 种质资源被归为4组,地理远近和亲缘关系与遗传距离并不存在必然联系.遗传距离与杂种优势的关系较为复杂,并非遗传距离越大杂种优势越明显.在进行抗虫棉 种质资源评价时,不能以地理来源或亲缘关系为唯一标准;在亲本选配时,应选择遗传距离中等偏大的材料.
HAO D R, HE L C, LIU S D, ZHOU J F, XING J M, HUANG S P . Study of the relationship between genetic distance and heterosis in insect resistant cotton
Journal of Jinling Institute of Technology, 2008,24(4):50-55. (in Chinese)

DOI:10.3969/j.issn.1672-755X.2008.04.012URL [本文引用: 2]
通过对31份抗虫棉种质资源材料的10个数量性状的主成分分析和 聚类分析,并采用作图法,研究了数量性状遗传距离与杂种优势指数之间的关系.31份抗虫棉种质资源的10个数量性状可归纳为5个主成分因子,其累积贡献率 达87.39%.在评价抗虫棉种质资源时,首先应考虑单株结铃数和衣分等产量结构因子,其次为株型因子,最后考虑果枝始节、生育期及早熟性等因子.31份 种质资源被归为4组,地理远近和亲缘关系与遗传距离并不存在必然联系.遗传距离与杂种优势的关系较为复杂,并非遗传距离越大杂种优势越明显.在进行抗虫棉 种质资源评价时,不能以地理来源或亲缘关系为唯一标准;在亲本选配时,应选择遗传距离中等偏大的材料.

陈强, 杨祖荣, 王谧, 范玉刚 . 几个陆地棉表型遗传距离与杂种优势之间的关系研究
江西农业学报, 2011,23(5):25-26.

DOI:10.3969/j.issn.1001-8581.2011.05.009URL [本文引用: 2]
以15个陆地棉组合及其亲本为材料,分析产量、品质两类表型性状 遗传距离,结果表明:所选材料产量与品质性状上的遗传距离其相关系数为0.88,表现为极显著;两类遗传距离与籽棉产量、皮棉产量、衣指、大样衣分、衣分 均表现为负相关,相关系数为-0.228~-0.017,且不显著;两类遗传距离与品质性状的相关程度低,其相关系数为-0.319~0.055,均不显 著.品质性状遗传距离与各品质性状中亲优势的相关性均优于产量性状遗传距离.
CHEN Q, YANG Z R, WANG M, FAN Y G . Research on relationship between phenotypic genetic distance and heterosis of several upland cotton combinations
Acta Agriculture Jiangxi, 2011,23(5):25-26. (in Chinese)

DOI:10.3969/j.issn.1001-8581.2011.05.009URL [本文引用: 2]
以15个陆地棉组合及其亲本为材料,分析产量、品质两类表型性状 遗传距离,结果表明:所选材料产量与品质性状上的遗传距离其相关系数为0.88,表现为极显著;两类遗传距离与籽棉产量、皮棉产量、衣指、大样衣分、衣分 均表现为负相关,相关系数为-0.228~-0.017,且不显著;两类遗传距离与品质性状的相关程度低,其相关系数为-0.319~0.055,均不显 著.品质性状遗传距离与各品质性状中亲优势的相关性均优于产量性状遗传距离.

赵仁渠, 杨明 . 样本对小麦遗传距离与杂种优势关系的影响
生物数学学报, 1994(1):48-53.

DOI:10.1007/BF02007173URL [本文引用: 2]
本文以10个小麦品种和按双列杂交配制的45个组合为材料,研究了样本容量和样本的数据结构对遗传距离与杂种优势关系的影响.结果表明:(1)当样本容量较小时,遗传距离与产量杂种优势的关系为不相关;随着样本容量的增加,遗传距离与产量杂种优势的关系有由不相关,到Y=axe~bx(a>0,b<0),Y=ax~be~cx(a、b>0,c<0)相关的变化趋势.(2)当样本的数据结构较差时,需较大样本容量,才能真实反映遗传距离与产量杂种优势的关系.
ZHAO R Q, YANG M . Studies on the effects of sample on the relationship between genetic distance and heterosis in wheat
Journal of Biomathematics, 1994(1):48-53. (in Chinese)

DOI:10.1007/BF02007173URL [本文引用: 2]
本文以10个小麦品种和按双列杂交配制的45个组合为材料,研究了样本容量和样本的数据结构对遗传距离与杂种优势关系的影响.结果表明:(1)当样本容量较小时,遗传距离与产量杂种优势的关系为不相关;随着样本容量的增加,遗传距离与产量杂种优势的关系有由不相关,到Y=axe~bx(a>0,b<0),Y=ax~be~cx(a、b>0,c<0)相关的变化趋势.(2)当样本的数据结构较差时,需较大样本容量,才能真实反映遗传距离与产量杂种优势的关系.

代攀虹, 孙君灵, 贾银华, 杜雄明, 王谧 . 利用表型数据构建陆地棉核心种质
植物遗传资源学报, 2016,17(6):961-968.

DOI:10.13430/j.cnki.jpgr.2016.06.001URL [本文引用: 1]
以5963份陆地棉种质资源为材料,根据品种主要突变性状和品种类型分组成11组群,在分组的基础上利用21个表型性状,用非加权类平均聚类分析法,构建了281份陆地棉核心种质,占全部种质资源总量的4.71%。利用不同性状的均值t测验、方差F测验、变异系数、多样性指数t检验、均值、极差、表型方差、变异系数、均值差异百分率、方差差异百分率、极差符合率、变异系数变化率、主成分分析等参数进行核心种质代表性检验和评价。结果表明,所构建的陆地棉核心种质可以代表全部种质的遗传多样性。
DAI P H, SUN J L, JIA Y H, DU X M, WANG M . Construction of core collection of upland cotton based on phenotypic data
Journal of Plant Genetic Resources, 2016,17(6):961-968. (in Chinese)

DOI:10.13430/j.cnki.jpgr.2016.06.001URL [本文引用: 1]
以5963份陆地棉种质资源为材料,根据品种主要突变性状和品种类型分组成11组群,在分组的基础上利用21个表型性状,用非加权类平均聚类分析法,构建了281份陆地棉核心种质,占全部种质资源总量的4.71%。利用不同性状的均值t测验、方差F测验、变异系数、多样性指数t检验、均值、极差、表型方差、变异系数、均值差异百分率、方差差异百分率、极差符合率、变异系数变化率、主成分分析等参数进行核心种质代表性检验和评价。结果表明,所构建的陆地棉核心种质可以代表全部种质的遗传多样性。

代攀虹, 孙君灵, 何守朴, 王立如, 贾银华, 潘兆娥, 庞保印, 杜雄明, 王谧 . 陆地棉核心种质表型性状遗传多样性分析及综合评价
中国农业科学, 2016,49(19):3694-3708.

DOI:10.3864/j.issn.0578-1752.2016.19.003URL [本文引用: 1]
【目的】分析陆地棉核心种质的遗传多样性和表型性状遗传变异规律,并探讨核心种质的综合评价方法。【方法】利用17个表型性状数据分析419份陆地棉核心种质的遗传多样性。用Shannon-weaver信息多样性指数计算表型性状的遗传多样性,用Nei’s 1973法计算表型性状遗传距离,并使用NTSYS-pc 2.20q软件对核心种质进行聚类分析;用SAS9.2对表型性状数据进行最佳线性无偏估计(BLUE),然后根据最佳线性无偏估计值计算出表型性状的最佳值。同时,结合主成分、回归和相关分析,研究核心种质的综合评价指标和方法。【结果】核心种质表型性状分析发现,单株铃数、单铃重、衣分、子指等性状的变异系数均较大,变异系数超过10%。而断裂比强度、马克隆值以及上半部平均长度的变异程度较小,变异系数均在10%以下。方差分析发现,各表型性状地点间、年份间、地点和年份间、品种间均有极显著差异;不同地理来源的种质表型性状差异较大,长江流域地理来源的种质生育期、伸长率、上半部平均长度、衣分等性状均高于其他的地理来源,西北内陆地理来源的种质纤维强度,单铃重、整齐度指数、株高、纺纱均匀性指数等综合性状最好,美国种质的产量和纤维品质的性状优于其他国家的总和。表型性状的遗传多样性指数范围为0.351—3.796,平均为1.715。分析不同地理来源种质的遗传多样性,发现黄河流域的遗传多样性和遗传丰富度最高,中国南部区域最低。类群聚类结果发现陆地棉整体分散,没有比较明显的类群关系,部分具有相似特点的种质聚类13个组群。核心种质综合评价表明在累计贡献百分比高于85%时,共发现7个主成分,陆地棉核心种质的表型性状综合值(F值)平均为1.740,来自澳大利亚的N74-250F值最高(2.302),辽阳绿绒棉的F值最低(0.624)。对17个表型性状与F值的相关分析,发现除马克隆值、子指和黄度外,单铃重、衣分、断裂比强度、上半部纤维长度等14个表型性状与F值间的相关性具有极显著差异,最后构建了以吐絮期、单铃重、伸长率、花期、马克隆值、株高、果枝数、纺纱均匀性指数8个表型性状为自变量的回归方程,综合评价核心种质资源。【结论】中国保存的陆地棉核心种质具有较为丰富的遗传多样性,不同地理来源遗传变异有较大的差异,不同生态区的核心种质具有独特的性状特性。
DAI P H, SUN J L, HE S P, WANG L R, JIA Y H, PAN Z E, PANG B Y, DU X M, WANG M . Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland ctton
Scientia Agricultura Sinica, 2016,49(19):3694-3708. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2016.19.003URL [本文引用: 1]
【目的】分析陆地棉核心种质的遗传多样性和表型性状遗传变异规律,并探讨核心种质的综合评价方法。【方法】利用17个表型性状数据分析419份陆地棉核心种质的遗传多样性。用Shannon-weaver信息多样性指数计算表型性状的遗传多样性,用Nei’s 1973法计算表型性状遗传距离,并使用NTSYS-pc 2.20q软件对核心种质进行聚类分析;用SAS9.2对表型性状数据进行最佳线性无偏估计(BLUE),然后根据最佳线性无偏估计值计算出表型性状的最佳值。同时,结合主成分、回归和相关分析,研究核心种质的综合评价指标和方法。【结果】核心种质表型性状分析发现,单株铃数、单铃重、衣分、子指等性状的变异系数均较大,变异系数超过10%。而断裂比强度、马克隆值以及上半部平均长度的变异程度较小,变异系数均在10%以下。方差分析发现,各表型性状地点间、年份间、地点和年份间、品种间均有极显著差异;不同地理来源的种质表型性状差异较大,长江流域地理来源的种质生育期、伸长率、上半部平均长度、衣分等性状均高于其他的地理来源,西北内陆地理来源的种质纤维强度,单铃重、整齐度指数、株高、纺纱均匀性指数等综合性状最好,美国种质的产量和纤维品质的性状优于其他国家的总和。表型性状的遗传多样性指数范围为0.351—3.796,平均为1.715。分析不同地理来源种质的遗传多样性,发现黄河流域的遗传多样性和遗传丰富度最高,中国南部区域最低。类群聚类结果发现陆地棉整体分散,没有比较明显的类群关系,部分具有相似特点的种质聚类13个组群。核心种质综合评价表明在累计贡献百分比高于85%时,共发现7个主成分,陆地棉核心种质的表型性状综合值(F值)平均为1.740,来自澳大利亚的N74-250F值最高(2.302),辽阳绿绒棉的F值最低(0.624)。对17个表型性状与F值的相关分析,发现除马克隆值、子指和黄度外,单铃重、衣分、断裂比强度、上半部纤维长度等14个表型性状与F值间的相关性具有极显著差异,最后构建了以吐絮期、单铃重、伸长率、花期、马克隆值、株高、果枝数、纺纱均匀性指数8个表型性状为自变量的回归方程,综合评价核心种质资源。【结论】中国保存的陆地棉核心种质具有较为丰富的遗传多样性,不同地理来源遗传变异有较大的差异,不同生态区的核心种质具有独特的性状特性。

KEMPTHORNE O, FINNEY D J . An introduction to genetic statistics
Aibs Bulletin, 1957,39(2):69-79.

DOI:10.2307/1292411URL [本文引用: 2]
ABSTRACT 2. print

BORCARD D, GILLET F, LEGENDRE P . Numerical Ecology with R
Springer, 2011: 332-334.

[本文引用: 1]

GB —2007《棉花细绒棉》条款解释
中国纤检, 2007(7):6-14.

DOI:10.3969/j.issn.1671-4466.2007.07.002URL [本文引用: 1]
GB 1103-2007《棉花细绒棉》国家强制性标准已由国家质量监督检验检疫总局、国家标准化管理委员会于2007年6月5日批准发布,将于2007年9月 1日起实施.标准立足于我国国情,充分考虑了棉花生产与流通现状,积极与国际接轨,满足了推行棉花质量检验体制改革的需要.
GB 1103—2007《Cotton–Upland cotton》Interpretation
China Fiber Inspection, 2007(7):6-14. (in Chinese)

DOI:10.3969/j.issn.1671-4466.2007.07.002URL [本文引用: 1]
GB 1103-2007《棉花细绒棉》国家强制性标准已由国家质量监督检验检疫总局、国家标准化管理委员会于2007年6月5日批准发布,将于2007年9月 1日起实施.标准立足于我国国情,充分考虑了棉花生产与流通现状,积极与国际接轨,满足了推行棉花质量检验体制改革的需要.

MILLER M, SONG Q, SHI X, JUENGER T E, CHEN Z J . Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis
Nature Communications, 2015,6:7453-7455.

[本文引用: 1]

张锡顺, 杨建国, 杨若菡, 徐宁生, 刘旭云, 杜刚 . 蓖麻数量性状遗传距离与杂种优势关系的研究
中国农业科学, 2006,39(3):209-216.

DOI:10.3321/j.issn:0578-1752.2006.03.029URL [本文引用: 1]
【Objective】To grope assoeted method in castor germplasms, and analysis degree that quantitative characters influenced yield, and realize the relationship between genetic distance and heterosis in castor. 【Method】To evaluate the factors affecting seed yield of castor and categorize castor resource, 46 castor germplasms were analyzed according to the key components analysis and cluster analysis of 11 quantitative characters. Study of the relationship between genetic distance of 21 castor inbred lines and heterosis were carried out by the graphics.【Result】The five biggest eigenvalues were chosen and their percentage of accumulative variance was 89.74%. The standard of the genetic key components had been put forward to evaluate castor germplasms. In these characters, ear length, the number of spikes and capsules of main primary and secondary branch should be selected firstly. Then the number of spike grains should be chosen and finally 100-kernel weight. 46 castor germplasms were classified into 4 groups. It was found that some varieties whose genetic distance was close were classified into geographic distant groups, and some varieties whose pedigree was close had larger genetic distance due to the different selection criteria. Genetic distance and heterosis showed a linear relationship according to F1 generation of 21 castor inbred lines. The largest genetic distance didn't mean the best heterosis. 【Conclusion】To evaluate castor germplasms' genetic difference didn't depended on geography origin and pedigree. Selecting parents with medium genetic distance may probably gain stronger heterosis.
ZHANG X S, YANG J G, YANG R H, XU N S, LIU X Y, DU G . Study of the relationship between genetic distance and heterosis in castor
Scientia Agricultura Sinica, 2006,39(3):209-216. (in Chinese)

DOI:10.3321/j.issn:0578-1752.2006.03.029URL [本文引用: 1]
【Objective】To grope assoeted method in castor germplasms, and analysis degree that quantitative characters influenced yield, and realize the relationship between genetic distance and heterosis in castor. 【Method】To evaluate the factors affecting seed yield of castor and categorize castor resource, 46 castor germplasms were analyzed according to the key components analysis and cluster analysis of 11 quantitative characters. Study of the relationship between genetic distance of 21 castor inbred lines and heterosis were carried out by the graphics.【Result】The five biggest eigenvalues were chosen and their percentage of accumulative variance was 89.74%. The standard of the genetic key components had been put forward to evaluate castor germplasms. In these characters, ear length, the number of spikes and capsules of main primary and secondary branch should be selected firstly. Then the number of spike grains should be chosen and finally 100-kernel weight. 46 castor germplasms were classified into 4 groups. It was found that some varieties whose genetic distance was close were classified into geographic distant groups, and some varieties whose pedigree was close had larger genetic distance due to the different selection criteria. Genetic distance and heterosis showed a linear relationship according to F1 generation of 21 castor inbred lines. The largest genetic distance didn't mean the best heterosis. 【Conclusion】To evaluate castor germplasms' genetic difference didn't depended on geography origin and pedigree. Selecting parents with medium genetic distance may probably gain stronger heterosis.

武耀廷, 张天真, 朱协飞, 王广明 . 陆地棉遗传距离与杂种F1、F2产量及杂种优势的相关分析
中国农业科学, 2002,35(1):22-28.

DOI:10.3321/j.issn:0578-1752.2002.01.005URLMagsci [本文引用: 1]
用两年田间试验数据和RAPD、ISSR与SSR分子标记,估算出36个陆地棉品种间的分子标记遗传距离为0.0701~0.4255,平均0.2844;表型遗传距离2.18~12.60,平均7.04;两者的相关系数为0.3350。双列杂交配置的28个F1和28个F2杂种群体,3个环境试验综合鉴定的F1与F2单株铃数、铃重、籽棉产量、衣分和皮棉产量间的相关系数分别为0.8035、0.8877、0.7135、0.9640和0.8956;F1、F2籽棉产量、皮棉产量的杂种优势平均数分别为13.62%、16.31%和7.90%、9.02%;F1、F2杂种间籽棉产量、皮棉产量杂种优势的相关系数分别为0.3689和0.3787。表型遗传距离、分子标记遗传距离与F1、F2产量性状表现及杂种优势之间的相关程度偏低,试验材料的选择也直接影响着它们之间的相关。
WU Y T, ZHANG T Z, ZHU X F, WANG G M . Relationship between F1, F2 yield, heterosis and genetic distance measured by molecular markers and parent performance in cotton
Scientia Agricultura Sinica, 2002,35(1):22-28. (in Chinese)

DOI:10.3321/j.issn:0578-1752.2002.01.005URLMagsci [本文引用: 1]
用两年田间试验数据和RAPD、ISSR与SSR分子标记,估算出36个陆地棉品种间的分子标记遗传距离为0.0701~0.4255,平均0.2844;表型遗传距离2.18~12.60,平均7.04;两者的相关系数为0.3350。双列杂交配置的28个F1和28个F2杂种群体,3个环境试验综合鉴定的F1与F2单株铃数、铃重、籽棉产量、衣分和皮棉产量间的相关系数分别为0.8035、0.8877、0.7135、0.9640和0.8956;F1、F2籽棉产量、皮棉产量的杂种优势平均数分别为13.62%、16.31%和7.90%、9.02%;F1、F2杂种间籽棉产量、皮棉产量杂种优势的相关系数分别为0.3689和0.3787。表型遗传距离、分子标记遗传距离与F1、F2产量性状表现及杂种优势之间的相关程度偏低,试验材料的选择也直接影响着它们之间的相关。

杨代刚, 马雄风, 周晓箭, 张先亮, 白凤虎, 王海风, 孟清芹, 裴小雨, 喻树迅 . 陆地棉配合力与杂种优势、遗传距离的相关性分析
棉花学报, 2012,24(3):191-198.

DOI:10.3969/j.issn.1002-7807.2012.03.001Magsci [本文引用: 1]
用10个陆地棉亲本进行不完全双列杂交,共配置了45个组合,计算亲本的一般配合力(GCA)、特殊配合力(SCA)、杂种优势,并结合SSR标记研究了陆地棉亲本配合力与杂种优势、遗传距离之间的相关关系。配合力分析发现,10个亲本的一般配合力和特殊配合力存在显著或极显著差异。分析亲本配合力、杂种优势和遗传距离的相关性发现,子棉产量、皮棉产量、衣分的一般配合力和杂种优势呈显著或极显著相关,纤维长度、比强度、麦克隆值、株高、果枝数、单株铃数、铃重、子棉产量、皮棉产量、衣分的特殊配合力和杂种优势均呈极显著正相关,而与遗传距离相关均不显著。单株铃数、铃重、子棉产量、皮棉产量、衣分的杂种优势与遗传距离均为正向显著或极显著相关。在育种实践中这些显著或极显著相关的性状可能具有较高的改良潜力。
YANG D G, MA X F, ZHOU X J, ZHANG X L, BAI F H, WANG H F, MENG Q Q, PEI X Y, YU S X . Correlation among combining ability, heterosis and genetic distance in upland cotton
Cotton Science, 2012,24(3):191-198. (in Chinese)

DOI:10.3969/j.issn.1002-7807.2012.03.001Magsci [本文引用: 1]
用10个陆地棉亲本进行不完全双列杂交,共配置了45个组合,计算亲本的一般配合力(GCA)、特殊配合力(SCA)、杂种优势,并结合SSR标记研究了陆地棉亲本配合力与杂种优势、遗传距离之间的相关关系。配合力分析发现,10个亲本的一般配合力和特殊配合力存在显著或极显著差异。分析亲本配合力、杂种优势和遗传距离的相关性发现,子棉产量、皮棉产量、衣分的一般配合力和杂种优势呈显著或极显著相关,纤维长度、比强度、麦克隆值、株高、果枝数、单株铃数、铃重、子棉产量、皮棉产量、衣分的特殊配合力和杂种优势均呈极显著正相关,而与遗传距离相关均不显著。单株铃数、铃重、子棉产量、皮棉产量、衣分的杂种优势与遗传距离均为正向显著或极显著相关。在育种实践中这些显著或极显著相关的性状可能具有较高的改良潜力。

宿俊吉, 陈红, 余渝, 林海, 宁新柱, 李吉莲, 刘萍, 刘丽, 相吉山, 邓福军 . 陆地棉遗传距离与纤维品质性状中亲优势及F1、F2表现的相关性研究
棉花学报, 2013,25(2):142-147.

DOI:10.3969/j.issn.1002-7807.2013.02.008URLMagsci [本文引用: 1]
通过29个陆地棉品种(系)表型性状及SSR标记遗传距离聚类分析,依据遗传距离大小在不同类群中选择了8个遗传背景差异不同的陆地棉亲本,进行不完全双列杂交,共配制了28个组合,开展了陆地棉纤维品质性状F<sub>1</sub>、F<sub>2</sub>表现及其中亲优势与遗传距离之间的相关、回归分析研究。结果发现杂种F<sub>1</sub>、F<sub>2</sub>纤维上半部平均长度、整齐度指数、断裂比强度及其中亲优势均与表型及SSR标记遗传距离正相关,其中杂种F<sub>1</sub>纤维上半部平均长度与2种遗传距离均达到了显著水平,断裂比强度与SSR标记遗传距离达显著水平;伸长率的杂种F<sub>1</sub>、F<sub>2</sub>表现及其中亲优势均与表型及SSR标记遗传距离负相关,其中杂种F<sub>1</sub>伸长率与SSR标记遗传距离显著负相关。回归分析发现与遗传距离达到显著或极显著相关的纤维品质性状,均与对应遗传距离具有显著或极显著拟合的曲线模型。这些显著或极显著的纤维品质性状,可在育种实践中为利用杂种优势改良棉纤维品质提供参考信息。
SU J J, CHEN H, YU Y, LIN H, NING X Z, LI J L, LIU P, LIU L, XIANG J S, DENG F J . The relationship of genetic distance to mid-parent heterosis and manifestations of F1&F2 of fiber quality traits in upland cotton
Cotton Science, 2013,25(2):142-147. (in Chinese)

DOI:10.3969/j.issn.1002-7807.2013.02.008URLMagsci [本文引用: 1]
通过29个陆地棉品种(系)表型性状及SSR标记遗传距离聚类分析,依据遗传距离大小在不同类群中选择了8个遗传背景差异不同的陆地棉亲本,进行不完全双列杂交,共配制了28个组合,开展了陆地棉纤维品质性状F<sub>1</sub>、F<sub>2</sub>表现及其中亲优势与遗传距离之间的相关、回归分析研究。结果发现杂种F<sub>1</sub>、F<sub>2</sub>纤维上半部平均长度、整齐度指数、断裂比强度及其中亲优势均与表型及SSR标记遗传距离正相关,其中杂种F<sub>1</sub>纤维上半部平均长度与2种遗传距离均达到了显著水平,断裂比强度与SSR标记遗传距离达显著水平;伸长率的杂种F<sub>1</sub>、F<sub>2</sub>表现及其中亲优势均与表型及SSR标记遗传距离负相关,其中杂种F<sub>1</sub>伸长率与SSR标记遗传距离显著负相关。回归分析发现与遗传距离达到显著或极显著相关的纤维品质性状,均与对应遗传距离具有显著或极显著拟合的曲线模型。这些显著或极显著的纤维品质性状,可在育种实践中为利用杂种优势改良棉纤维品质提供参考信息。

ZHANG J F, ABDELRAHEEM A, WU J X . Heterosis, combining ability and genetic effect, and relationship with genetic distance based on a diallel of hybrids from five diverse Gossypium barbadense cotton genotypes
Euphytica, 2017,213(9):208-222.

DOI:10.1007/s10681-017-1997-yURL [本文引用: 1]
The cultivated tetraploid Gossypium barbadense L. cotton produces superior natural fibers for the textile industry in the world. However, the possibility in utilization of heterosis to further increas

CHRISTIAN R, ANGELIKA C E, CHRISTOPH G, JAN L, FRANK T, RONAN S, THOMAS A, MARK S, LOTHAR W, MELCHINGER A E . Genomic and metabolic prediction of complex heterotic traits in hybrid maize
Nature Genetics, 2012,44(2):217-220.

[本文引用: 1]

桑世飞, 王会, 梅德圣, 刘佳, 付丽, 王军, 汪文祥, 胡琼 . 利用全基因组SNP芯片分析油菜遗传距离与杂种优势的关系
中国农业科学, 2015,48(12):2469-2478.

DOI:10.3864/j.issn.0578-1752.2015.12.020URL [本文引用: 1]
【目的】利用单核苷酸多态性(single nucleotide polymorphism,简称SNP)标记估算油菜优异亲本间的遗传距离,分析其与杂种优势间的关系,探讨利用SNP标记预测油菜杂种优势的可行性,为油菜杂种优势利用育种提供指导。【方法】将油菜波里马细胞质雄性不育系的6个保持系(1019B、1055B、6098B、8908B、6019B、ZS11B)和8个恢复系(R1、R2、R3、R6、R9、R10、R11、OR1)采用不完全双列杂交试验设计配制得到的46个F1杂种及其亲本,在湖北武汉、贵州贵阳和安徽巢湖3种生态环境下考察株高、分枝部位高度、一次有效分枝数、结角密度、主花序有效长、主花序有效角果数、单株有效角果数、每角粒数、千粒重及单株产量共10个产量相关性状,统计各性状在每个F1组合中的杂种优势,包括中亲优势和超亲优势。利用油菜全基因组60K SNP芯片对14个亲本进行基因型分型,对分型得到的SNP标记经质控后利用MEGA5.0软件估算亲本间的遗传距离,采用非加权类平均法(unweighted pair group method arithmetic averages,UPGMA)对亲本进行聚类分析,利用SAS9.1软件进行遗传距离与性状杂种优势的相关性分析。【结果】14个亲本经油菜全基因组60K SNP芯片进行基因型分型后共得到52 157个SNP位点,经质量控制后,最终筛选出40 201个SNP有效位点用于亲本遗传距离计算及聚类分析。14个亲本中以6098B与6019B的遗传距离最小,ZS11B与R6的遗传距离最大,所有亲本间的遗传距离介于0.1883—0.8811,平均为0.5217。14个亲本被分成4个主群,6个保持系为一个主群,8个恢复系中OR1单独为一个主群,R1、R3、R11为一个主群,R2、R6、R9、R10为一个主群,证明恢复系群体的遗传变异大于保持系,分群结果与实际系谱相符。所考察的10个性状的中亲优势均值变幅为-0.07%—38.78%,超亲优势均值变幅为-7.74%—20.78%。10个性状中除了一次有效分枝数外,其他性状的杂种优势效应显著,尤其是株高、每角粒数、分枝部位高度和单株产量,平均中亲优势分别达到6.83%、15.31%、16.13%和38.78%,正向中亲优势组合数分别有45、41、46和46个;平均超亲优势分别达到3.18%、5.19%、7.85%和20.78%,正向超亲优势的组合数分别有41、31、42和44个。10个性状中株高、分枝部位高度和单株产量的杂种优势与遗传距离的相关系数达到极显著正相关水平,该3个性状的中亲优势与遗传距离的相关系数分别为0.4200、0.5033和0.4711,超亲优势与遗传距离的相关系数分别为0.3884、0.4051和0.4038,而其他性状的杂种优势与遗传距离的相关性不显著。【结论】SNP标记在油菜基因型分型、遗传距离估算及聚类分析的研究中优势明显,基于全基因组SNP标记估算的遗传距离与油菜株高、分枝部位高度和单株产量的杂种优势相关性极显著,说明基于油菜60K SNP芯片分析亲本的遗传关系预测油菜杂种优势的效果显著。
SANG S F, WANG H, MEI D S, LIU J, FU L, WANG J, WANG W X, HU Q . Correlation analysis between heterosis and genetic distance evaluated by genome-wide SNP chip in Brassica napus
Scientia Agricultura Sinica, 2015,48(12):2469-2478. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2015.12.020URL [本文引用: 1]
【目的】利用单核苷酸多态性(single nucleotide polymorphism,简称SNP)标记估算油菜优异亲本间的遗传距离,分析其与杂种优势间的关系,探讨利用SNP标记预测油菜杂种优势的可行性,为油菜杂种优势利用育种提供指导。【方法】将油菜波里马细胞质雄性不育系的6个保持系(1019B、1055B、6098B、8908B、6019B、ZS11B)和8个恢复系(R1、R2、R3、R6、R9、R10、R11、OR1)采用不完全双列杂交试验设计配制得到的46个F1杂种及其亲本,在湖北武汉、贵州贵阳和安徽巢湖3种生态环境下考察株高、分枝部位高度、一次有效分枝数、结角密度、主花序有效长、主花序有效角果数、单株有效角果数、每角粒数、千粒重及单株产量共10个产量相关性状,统计各性状在每个F1组合中的杂种优势,包括中亲优势和超亲优势。利用油菜全基因组60K SNP芯片对14个亲本进行基因型分型,对分型得到的SNP标记经质控后利用MEGA5.0软件估算亲本间的遗传距离,采用非加权类平均法(unweighted pair group method arithmetic averages,UPGMA)对亲本进行聚类分析,利用SAS9.1软件进行遗传距离与性状杂种优势的相关性分析。【结果】14个亲本经油菜全基因组60K SNP芯片进行基因型分型后共得到52 157个SNP位点,经质量控制后,最终筛选出40 201个SNP有效位点用于亲本遗传距离计算及聚类分析。14个亲本中以6098B与6019B的遗传距离最小,ZS11B与R6的遗传距离最大,所有亲本间的遗传距离介于0.1883—0.8811,平均为0.5217。14个亲本被分成4个主群,6个保持系为一个主群,8个恢复系中OR1单独为一个主群,R1、R3、R11为一个主群,R2、R6、R9、R10为一个主群,证明恢复系群体的遗传变异大于保持系,分群结果与实际系谱相符。所考察的10个性状的中亲优势均值变幅为-0.07%—38.78%,超亲优势均值变幅为-7.74%—20.78%。10个性状中除了一次有效分枝数外,其他性状的杂种优势效应显著,尤其是株高、每角粒数、分枝部位高度和单株产量,平均中亲优势分别达到6.83%、15.31%、16.13%和38.78%,正向中亲优势组合数分别有45、41、46和46个;平均超亲优势分别达到3.18%、5.19%、7.85%和20.78%,正向超亲优势的组合数分别有41、31、42和44个。10个性状中株高、分枝部位高度和单株产量的杂种优势与遗传距离的相关系数达到极显著正相关水平,该3个性状的中亲优势与遗传距离的相关系数分别为0.4200、0.5033和0.4711,超亲优势与遗传距离的相关系数分别为0.3884、0.4051和0.4038,而其他性状的杂种优势与遗传距离的相关性不显著。【结论】SNP标记在油菜基因型分型、遗传距离估算及聚类分析的研究中优势明显,基于全基因组SNP标记估算的遗传距离与油菜株高、分枝部位高度和单株产量的杂种优势相关性极显著,说明基于油菜60K SNP芯片分析亲本的遗传关系预测油菜杂种优势的效果显著。

YANG M, WANG X, REN D, HUANG H, XU M, HE G, DENG X W . Genomic architecture of biomass heterosis in Arabidopsis
Proceedings of the National Academy of Sciences of the United States of America, 2017,114(30):8101-8106.

[本文引用: 1]

孙正文, 匡猛, 马峙英, 王省芬 . 利用CottonSNP63K芯片构建棉花品种的指纹图谱
中国农业科学, 2017,50(24):4692-4704.

DOI:10.3864/j.issn.0578-1752.2017.24.003URL [本文引用: 1]
[目的]利用SNP位点的单拷贝特性,结合陆地棉TM-1参考基因组序列信息,筛选基因组特异的SNP.[方法]以719份遗传背景来源广泛的陆地棉种质资源为材料,采用Illumina公司开发的CottonSNP63K芯片,利用GenomeStudio软件对芯片扫描所获得原始数据进行基因型数据质量控制,获得待测样品SNP位点的基因型数据.根据已公布的陆地棉TM-1基因组的两个版本——中国农业科学院棉花研究所版本Gossypium hirsutum(AD1) genome BGI v1.0与南京农业大学版本G.hirsutum(AD1)genome NBI v1.1为参考序列,对CottonSNP63K芯片(63058个SNP)各位点的侧翼序列分别进行全基因组Blast比对分析,以筛选具有单拷贝特性的特异SNP位点并用于样品指纹图谱的构建.[结果]利用CottonSNP63K芯片对719份材料进行SNP位点基因分型,主要表现为无检出信号的SNP位点、无多态性的SNP位点、具有多态性的SNP位点,而具有多态性的SNP位点的分型结果又可分为单位点SNP(基因组特异SNP)、双位点SNP和多位点SNP.通过对两个已公布的陆地棉TM-1参考基因组序列Blast比对结果表明,中国农业科学院棉花研究所TM-1基因组版本比对获得基因组特异SNP标记为5474个,而南京农业大学TM-1基因组版本比对获得基因组特异SNP标记仅为1850个,两者共有的特异SNP为1594个,进一步通过分型效果、检出率及多态性3个评价指标,筛选score值≥0.7,call frequency值≥0.95,且MAF值≥0.2的SNP位点,获得471个分型效果理想,检出率高且多态性较高的特异SNP位点.在471个SNP位点中,430个位于染色体上,41个位于scaffold片段上.考虑到标记间的连锁程度,剔除连锁标记37个,最终获得393个核心SNP位点.利用393个核心SNP构建了719份品种资源的特征DNA指纹图谱,除个别材料之间遗传背景高度相似、基因型完全一致外,97%的材料均能实现准确有效的鉴别.[结论]筛选出393个基因组特异的SNP,并利用这些核心SNP构建了719份资源材料的特征DNA指纹图谱,为SNP分子标记应用于棉花重要性状遗传改良提供了参考.
SUN Z W, KUANG M, MA Z Y, WANG S F . Using cotton SNP63K chip to construct fingerprint map of cotton varieties
Scientia Agricultura Sinica, 2017,50(24):4692-4704. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2017.24.003URL [本文引用: 1]
[目的]利用SNP位点的单拷贝特性,结合陆地棉TM-1参考基因组序列信息,筛选基因组特异的SNP.[方法]以719份遗传背景来源广泛的陆地棉种质资源为材料,采用Illumina公司开发的CottonSNP63K芯片,利用GenomeStudio软件对芯片扫描所获得原始数据进行基因型数据质量控制,获得待测样品SNP位点的基因型数据.根据已公布的陆地棉TM-1基因组的两个版本——中国农业科学院棉花研究所版本Gossypium hirsutum(AD1) genome BGI v1.0与南京农业大学版本G.hirsutum(AD1)genome NBI v1.1为参考序列,对CottonSNP63K芯片(63058个SNP)各位点的侧翼序列分别进行全基因组Blast比对分析,以筛选具有单拷贝特性的特异SNP位点并用于样品指纹图谱的构建.[结果]利用CottonSNP63K芯片对719份材料进行SNP位点基因分型,主要表现为无检出信号的SNP位点、无多态性的SNP位点、具有多态性的SNP位点,而具有多态性的SNP位点的分型结果又可分为单位点SNP(基因组特异SNP)、双位点SNP和多位点SNP.通过对两个已公布的陆地棉TM-1参考基因组序列Blast比对结果表明,中国农业科学院棉花研究所TM-1基因组版本比对获得基因组特异SNP标记为5474个,而南京农业大学TM-1基因组版本比对获得基因组特异SNP标记仅为1850个,两者共有的特异SNP为1594个,进一步通过分型效果、检出率及多态性3个评价指标,筛选score值≥0.7,call frequency值≥0.95,且MAF值≥0.2的SNP位点,获得471个分型效果理想,检出率高且多态性较高的特异SNP位点.在471个SNP位点中,430个位于染色体上,41个位于scaffold片段上.考虑到标记间的连锁程度,剔除连锁标记37个,最终获得393个核心SNP位点.利用393个核心SNP构建了719份品种资源的特征DNA指纹图谱,除个别材料之间遗传背景高度相似、基因型完全一致外,97%的材料均能实现准确有效的鉴别.[结论]筛选出393个基因组特异的SNP,并利用这些核心SNP构建了719份资源材料的特征DNA指纹图谱,为SNP分子标记应用于棉花重要性状遗传改良提供了参考.

WANG M, TU L, LIN M, LIN Z, WANG P, YANG Q, YE Z, SHEN C, LI J, ZHANG L . Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication
Nature Genetics, 2017,49(4):579-590.

DOI:10.1038/ng.3807URLPMID:28263319 [本文引用: 1]
Comparative population genomics offers an excellent opportunity for unraveling the genetic history of crop domestication. Upland cotton (Gossypium hirsutum) has long been an important economic crop, but a genome-wide and evolutionary understanding of the effects of human selection is lacking. Here, we describe a variation map for 352 wild and domesticated cotton accessions. We scanned 93 domestication sweeps occupying 74 Mb of the A subgenome and 104 Mb of the D subgenome, and identified 19 candidate loci for fiber-quality-related traits through a genome-wide association study. We provide evidence showing asymmetric subgenome domestication for directional selection of long fibers. Global analyses of DNase I ypersensitive sites and 3D genome architecture, linking functional variants to gene transcription, demonstrate the effects of domestication on cis-regulatory divergence. This study provides new insights into the evolution of gene organization, regulation and adaptation in a major crop, and should serve as a rich resource for genome-based cotton improvement.

MA Z, HE S, WANG X, SUN J, ZHANG Y, ZHANG G, WU L, LI Z, LIU Z, SUN G . Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield
Nature Genetics, 2018,50(6):803-813.

DOI:10.1038/s41588-018-0119-7URLPMID:29736016 [本文引用: 1]
Abstract Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.
相关话题/遗传 棉花 材料 资源 计算