删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

播/收期对冬小麦-夏玉米一年两熟模式周年 气候资源分配与利用特征的影响

本站小编 Free考研考试/2021-12-26

周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明,中国农业科学院作物科学研究所/农业部作物生理生态与栽培重点开放实验室,北京100081

Effects of Different Sowing and Harvest Dates of Winter Wheat- Summer Maize Under Double Cropping System on the Annual Climate Resource Distribution and Utilization

ZHOU BaoYuan, MA Wei, SUN XueFang, GAO ZhuoHan, DING ZaiSong, LI CongFeng, ZHAO Ming,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081

通讯作者: 赵明,E-mail:zhaoming@caas.cn

收稿日期:2018-12-5接受日期:2019-03-18网络出版日期:2019-05-01
基金资助:国家重点研发计划.2018YFD0300504


Received:2018-12-5Accepted:2019-03-18Online:2019-05-01
作者简介 About authors
周宝元,E-mail: zhoubaoyuan@caas.cn









摘要
【目的】优化冬小麦-夏玉米一年两熟模式周年气候资源配置,探索两季最佳的资源搭配模式,进一步挖掘当前气候和生产条件下黄淮海地区周年产量潜力和资源利用效率。【方法】本研究通过10月上旬至12月上旬设置冬小麦不同播期和夏玉米不同收获期,建立了5种冬小麦-夏玉米一年两熟模式周年气候资源分配方式,于2015—2017年在中国农业科学院河南新乡试验站进行田间试验,对其产量、光温水等气候资源分配及利用特征进行研究。【结果】随冬小麦播期及夏玉米收获期推迟,两作物生长季光温水资源分配比例分别由处理Ⅰ的46%﹕54%、60%﹕40%、42%﹕58%调整至处理V的34%﹕66%、49%﹕51%、34%﹕66%范围内,小麦季生长天数及其分配的光温水资源量逐渐减少,将更多的资源分配到玉米季,从而导致小麦产量降低,但由于处理V的ZM66小麦品种维持了较高的穗数和穗粒数,因此与处理Ⅰ比产量降低不显著。然而,处理V玉米季生理生长时间较处理Ⅰ延长约15 d,2016和2017年光温水资源分配量分别增加143.8和120.7 MJ·m-2、290.5和281.6℃、12.4和25.7 mm,粒重分别增加13.1%和15.5%,周年产量两年分别提高7.9%和6.7%;籽粒脱水时间增加约45d,光温水资源分配量两年分别增加322.5和336.3 MJ·m-2、509.6和497.8℃、56.7和14.1mm,籽粒含水量降至14.4%—17.3%,达到机械直接收获标准。同时,由于处理V小麦季光温水资源分配量显著降低,特别是减少底墒水和越冬水灌溉约150mm,2016和2017年其光能、温度和水分生产效率较处理Ⅰ分别提高12.5%和15.8%、10.9%和7.7%、39.6%和59.3%,玉米季虽然光能、温度生产效率有所降低,但水分生产效率显著提高,因此周年光能、温度和水分生产效率两年分别提高7.3%和9.1%、5.6%和5.1%、17.3%和29.3%。【结论】在不增加任何投入的前提下通过播/收期的调整(小麦12月上旬播种,玉米11月中旬收获)优化冬小麦-夏玉米一年两熟模式周年气候资源配置,可进一步提升其周年产量和光温水资源利用效率,对于促进黄淮海冬小麦-夏玉米种植模式可持续发展具有重要意义。
关键词: 冬小麦-夏玉米种植模式;播/收期;资源分配;产量;资源利用效率

Abstract
【Objective】 The study was carried out to optimize the inter-season climatic resource distribution of traditional winter wheat-summer maize cropping system and explore the optimal two-season climatic resource distribution model, so as to further increase the annual yield potential and resource utilization efficiency of Huang-Huai-Hai region. 【Method】 In this study, five sowing dates of winter wheat and corresponding harvest dates of summer maize were set from early October to early December, and the field experiment was conducted at Xinxiang county from 2015 to 2017. Based on the field experiments, The annual yield, climate resources distribution and resources use efficiency were studied. 【Result】 With the sowing/harvest dates delayed, days of wheat growth period and amount of radiation, temperature, and precipitation resources gradually reduced, more growth time and resources were transferred to maize season, and the resources distribution rate between two seasons changed from treatmentⅠ (46%:54%, 60%:40%, 42%:58%) to treatment V (34%:66%, 49%:51%, 34%:66%), which resulted in decrease of wheat grain yield. However, due to greater number of ears and grains of ZM66, no significant difference was found in wheat yield between treatmentⅠ and treatment V. Maize grain weight increased by 13.1% and 15.5% due to 15 d, 143.8 and 120.7 MJ·m -2, 290.5 and 281.6℃, 12.4 and 25.7 mm increasing in 2016 and 2017, respectively, in maize growth duration, radiation, accumulated temperature, and precipitation, eventually the annual grain yield of treatment V increased by 7.9% and 6.7% compared than that of treatmentⅠ, respectively. In addition, the grain water content decreased to 14.4%-17.3% due to 15 d, 322.5 and 336.3 MJ·m -2, 509.6 and 497.8℃, 56.7 and 14.1 mm increasing in maize growth duration, radiation, accumulated temperature, and precipitation in 2016 and 2017, respectively. At the same time, because of radiation and temperature resources in wheat season of treatment V decreased significantly, especially the irrigation water reduced 150 mm, the radiation, temperature and water production efficiency of wheat for treatment V increased by 12.5% and 15.8%, 10.9% and 7.7%, 39.6% and 59.3% in 2016 and 2017, respectively, compared than treatmentⅠ. During maize growth season, radiation and temperature production efficiency under treatment V decreased, but water production efficiency increased significantly than that under treatmentⅠ, so the annual radiation, temperature and water production efficiency of treatment V increased by 7.3% and 9.1%, 5.6% and 5.1%, 17.3% and 29.3% in 2016 and 2017, respectively, compared than treatmentⅠ, respectively. 【Conclusion】 It is of great significance for promoting the sustainable development of winter wheat-summer maize double cropping system in the Huang-Huai-Hai plain by changing sowing and harvest dates (Wheat was sown in early December and maize was harvested in mid-November) to optimize the distribution of resources between two seasons for winter wheat-summer maize double cropping system without any input.
Keywords:winter wheat-summer maize cropping system;sowing/harvest date;resource distribution;grain yield;resources use efficiency


PDF (479KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年 气候资源分配与利用特征的影响[J]. 中国农业科学, 2019, 52(9): 1501-1517 doi:10.3864/j.issn.0578-1752.2019.09.003
ZHOU BaoYuan, MA Wei, SUN XueFang, GAO ZhuoHan, DING ZaiSong, LI CongFeng, ZHAO Ming. Effects of Different Sowing and Harvest Dates of Winter Wheat- Summer Maize Under Double Cropping System on the Annual Climate Resource Distribution and Utilization[J]. Scientia Acricultura Sinica, 2019, 52(9): 1501-1517 doi:10.3864/j.issn.0578-1752.2019.09.003


0 引言

【研究意义】黄淮海平原是我国重要的粮食产区,冬小麦-夏玉米一年两熟为该区主要种植模式,其小麦、玉米产量分别占全国总产的50%和40%左右[1],为保障我国粮食安全做出了重要贡献。然而,由于黄淮海资源紧缺,大部分地区光热资源一季有余、两季不足,制约了夏玉米机械粒收技术的发展;同时由于降水不足且分布不均,小麦季耗水严重,地下水过度开采问题日益加剧[2,3],限制了冬小麦-夏玉米一年两熟种植模式周年产量、资源利用效率及经济效益的提升。因此,探索周年气候资源高效利用的技术途径对于促进黄淮海平原冬小麦-夏玉米种植模式的可持续发展具有重要意义。【前人研究进展】由于C4作物具有较高光合能力,有人提出充分发挥玉米的产量潜力,逐渐压缩小麦的生长时间,以高效利用光热水资源。为此,20世纪90年代开始,许多科学家在冬小麦-夏玉米一年两熟的基础上进行了以强化“C4玉米”为核心的周年高产及资源高效利用的技术途径探索[4,5,6,7,8]。陈阜等[4]建立了“冬小麦/春玉米/夏玉米”和“冬小麦/春玉米/夏玉米/秋玉米”等集约多熟种植,增加玉米种植比例,实现周年单产20 000 kg·hm-2以上。赵秉强等[5]和李立娟等[6]建立了小麦-玉米-玉米和玉米-玉米等集约多熟高产技术模式,实现了全年光温资源高效利用,两种种植模式均可达到18 000 kg·hm-2的高产水平。然而,这些模式均属于高集约和高投入的种植,虽然提高了周年产量和资源利用效率,但增加了人工投入,且难以进行机械化操作,不适应当前的生产发展形势。王树安等[9,10]通过将冬小麦播种期和夏玉米收获期推迟,对两季气候资源进行再分配,将更多的光温资源分配给更加高光效的玉米,建立了冬小麦-夏玉米“双晚”技术模式,实现周年产量15 000 kg·hm-2以上,光、温资源生产力分别提高64%和124%。SUN等[11]和付雪丽等[12]研究也证明,冬小麦晚播通过加大种植密度,提高播种质量,其产量和资源效率变化不明显,而夏玉米晚收产量显著提高,因此周年产量和资源效率显著提高。可见,通过播/收期的调整优化冬小麦-夏玉米一年两熟模式周年气候资源配置是进一步提高其周年产量及光温水资源利用效率的有效途径。【本研究切入点】随着经济社会发展,高产、高效及环境友好协同发展已成为当前我国农业生产的主要目标。但是该区小麦季耗水量大[13,14,15],地下水过度开采等问题[16,17,18]尚未有效解决;虽然“双晚”技术延长了夏玉米籽粒灌浆时间,但籽粒收获时含水量仍在30%以上,导致机械直接收获籽粒质量差[19,20]。同时,在全球气候变暖的大背景下,近年来我国黄淮海平原秋、冬季气温持续增加,日照时数减少,干旱及洪涝灾害等极端天气频发[21,22],导致冬小麦拔节孕穗期遭受冻害、冬旱和春旱[11],夏玉米授粉结实期遭遇高温、干旱或阴雨寡照[23,24]的风险进一步加剧。因此,探索适应新的生产条件和气候条件的冬小麦-夏玉米一年两熟模式周年气候资源最佳分配方式是进一步提升黄淮海周年产量及资源利用效率的重要途径。【拟解决的关键问题】本研究以充分发挥玉米高光效优势为核心,通过在较大时间范围内连续设置小麦播种期(10月上旬至12月上旬)和玉米收获期(9月下旬至11月下旬)对周年光温水等资源进行重新分配,建立5种冬小麦与夏玉米生长季资源分配方式,研究其周年产量、气候资源分配及利用效率特征,确立冬小麦-夏玉米一年两熟模式周年气候资源最佳分配模式,以期为促进黄淮海平原粮食作物周年高产高效种植提供理论依据。

1 材料与方法

1.1 试验地概况

试验于2015—2017年在中国农业科学院新乡试验基地(37°41′02″N,116°37′23″E)进行。该区属于暖温带大陆性季风气候,年平均气温14℃,全年≥10℃积温4 647.2℃,年降水量573.4 mm,多在7、8月间,年日照时数2 323.9 h,能够充分满足冬小麦-夏玉米一年两熟模式种植。试验田土壤类型为黏壤土,耕层含有机质12.6 g·kg-1、速效氮61.2 mg·kg-1、速效磷16.2 mg·kg-1、速效钾109.9 mg·kg-1,pH 8.21。

1.2 试验设计

小麦播期设置范围10月上旬(当地农民习惯播种期)至12月上旬(小麦冬前不出苗),每隔15 d左右设置一个播期,共5个播期,包括当地农民习惯的播种期和能够保证小麦正常成熟且冬前能正常播种的最晚播期,各处理小麦均达到生理成熟后收获。与小麦播期相对应的玉米收获期设置范围9月下旬(当地农民习惯收获期)至11月下旬,每隔15 d设置一个收获期,共5个收获期。以Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ分别代表5个冬小麦-夏玉米一年两熟模式播/收期搭配组合,详见表1

Table 1
表1
表1不同播/收期处理冬小麦-夏玉米种植方案
Table 1Scheme for winter wheat-summer maize with different sowing/harvest dates
年份
Year
处理
Treatment
小麦季Wheat玉米季Maize
品种
Variety
播种期
Sowing date
(M-D)
成熟期
Maturity date
(M-D)
灌水量
Water use
(mm)
种植密度
Planting density
(×104·hm-2)
品种
Variety
播种期
Sowing date
(M-D)
成熟期
Maturity date
(M-D)
收获期
Harvest date
(M-D)
灌水量
Water use
(mm)
种植密度
Planting density
(×104·hm-2)
2015-2016AK5810-1106-02300300ZD95806-1109-251506.75
ZM6610-1106-01300300XY33506-1109-251506.75
AK5810-2606-02300405ZD95806-1110-1010-101506.75
ZM6610-2606-01300405XY33506-1110-0810-081506.75
AK5811-1006-04300510ZD95806-1110-1010-251506.75
ZM6611-1006-02300510XY33506-1110-0810-231506.75
AK5811-2406-06225615ZD95806-1110-1011-091506.75
ZM6611-2406-04225615XY33506-1110-0811-071506.75
AK5812-806-07150720ZD95806-1110-1011-241506.75
ZM6612-806-06150720XY33506-1110-0811-221506.75
2016-2017AK5810-1306-05300300ZD95806-1209-281506.75
ZM6610-1306-04300300XY33506-1209-281506.75
AK5810-2806-05300405ZD95806-1210-1310-131506.75
ZM6610-2806-04300405XY33506-1210-1010-101506.75
AK5811-1106-07300510ZD95806-1210-1310-281506.75
ZM6611-1106-05300510XY33506-1210-1010-251506.75
AK5811-2506-09225615ZD95806-1210-1311-121506.75
ZM6611-2506-07300615XY33506-1210-1011-091506.75
AK5812-1006-09150720ZD95806-1210-1311-271506.75
ZM6612-1006-08300720XY33506-1210-1011-241506.75
Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ are the different sowing dates of wheat and harvest dates of maize from one to five. The same as below
Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ分别代表5个小麦播种期及对应的玉米收获期处理。下同

新窗口打开|下载CSV

选用当地播种面积较大的小麦、玉米品种各2个为供试材料,小麦品种为矮抗58(AK58)和中麦66(ZM66),玉米为杂交种先玉335(XY335)和郑单958(ZD958)。小麦采用17 cm等行距种植,第一期播种密度设3×106株/hm2,10月15日以后播种每推迟2 d,相应增加1×104株基本苗。小麦收获后于6月上中旬免耕播种玉米,密度设6.75×104株/hm2,60 cm等行种植。小区面积为168 m2(4.8 m×35 m),3次重复,随机排列。小麦季Ⅰ、Ⅱ和Ⅲ处理灌水时期均为播种前、越冬期、拔节期和抽穗期,Ⅳ处理为播种前、拔节期和抽穗期,Ⅴ为出苗期和孕穗期;玉米季各处理灌水时期相同,2016年分别为播种期和拔节期,2017年为拔节期和大喇叭口期。两季作物均采用大水漫灌方式,每次灌水量均为75 mm。其他管理措施同高产田。

1.3 测定项目与方法

1.3.1 气象资料收集 气象数据来源于国家气象局网站(http://www.cma.gov.cn)。主要包括平均气温、日照时数和降雨量等指标。

1.3.2 作物生长季资源分配率与分配比值 为了定量分析冬小麦-夏玉米一年两熟模式作物生长季资源分配,提出了资源分配率和资源分配比值等指标,并建立了相应的计算公式:

积温分配率(TDR)= 单季积温量(Tx)/ 周年积温总量(T);

辐射分配率(RDR)= 单季辐射量(Rx)/ 周年辐射总量(R);

降雨分配率(PDR)= 单季降雨量(Px)/ 周年降雨总量(P);

积温比值(TR)= 第一季积温量(T1)/ 第二季积温量(T2);

辐射比值(RR)= 第一季辐射量(R1)/ 第二季辐射量(R2);

降雨比值(PR)= 第一季降雨量(P1)/ 第二季降雨量(P2);

太阳总辐射Q = Q0 (a+bS/S0)。

式中,Q为太阳总辐射,Q0为天文辐射,S为太阳实测日照时数,S0为太阳可照时数,S/S0为日照百分率,a、b为待定系数[25]

积温计算过程中,小麦季下限温度取值为0℃,玉米季下限温度取值为10℃[26]

1.3.3 产量及产量构成 冬小麦收获时,每个小区取有代表性的3个点,每个点实收1 m2进行测产,每个点取20株进行考种,调查穗粒数和千粒重。夏玉米收获时,每小区取中间4行穗(48 m2),测定全部收获穗的穗鲜重、穗数,选取样本穗20穗(误差小于0.1 kg)进行考种,另外选取样本穗20穗风干后脱粒,称重,测定含水量,换算成14%含水量的重量,进而折合成公顷产量。

1.3.4 光、温、水生产效率 光能生产效率(g·MJ-1)=籽粒产量/单位面积太阳辐射量;积温生产效率(kg·hm-2·℃-1)= 单位面积籽粒产量/生长季积温总量;水分生产效率(kg·hm-2·mm-1)=籽粒产量/(单位面积降水量+单位面积灌水量)。

1.4 数据处理

利用Microsoft Excel 2016和SPSS16.0软件进行数据处理和统计分析,采用Sigma Plot 10.0软件作图。

2 结果

2.1 不同播/收期搭配下冬小麦-夏玉米一年两熟模式作物生长季天数变化

本研究中两作物生长天数的计算依据为小麦季为播种至达到生理成熟的天数,玉米季为播种至收获的天数。由表1可知,夏玉米在第二收获期(处理Ⅱ)时达到生理成熟,第二至第三、四和五收获期增加的生长天数主要为玉米成熟后籽粒物理脱水时间。

随播期推迟,小麦生理成熟期也相应推迟(表1),处理Ⅴ两品种成熟期分别较处理Ⅰ推迟5 d(2016年)和4 d(2017年),但总生育天数均逐渐减少(图1),品种间差异不显著。2016年第Ⅱ至Ⅴ播期处理两品种平均生育期天数分别为221、201、183和167 d,较传统播期处理(Ⅰ,233 d)分别减少5.1%、13.7%、21.5%和28.3%;2017年第Ⅱ至Ⅴ播期处理两品种平均生育期天数分别为222、204、185和169 d,较传统播期处理(Ⅰ,234 d)分别减少5.1%、12.8%、20.9%和27.8%。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同播/收期处理冬小麦-夏玉米生长季天数

A为2015—2016年小麦,B为2016年玉米,C为2016—2017年小麦,D为2017年玉米。柱上不同字母表示差异达5%显著水平。下同
Fig. 1Total growth duration of winter wheat-summer maize with different sowing/harvest dates

A is the wheat season in 2015-2016, B is the maize season in 2016, C is the wheat season in 2016-2017, D is the maize season in 2017. Different letters within a column mean significant at 5% level. The same as below


随收获期推迟,夏玉米生长天数逐渐增加,品种间差异不显著(图1)。2016年第Ⅱ至Ⅴ收获期处理两品种平均生长天数分别为120、135、150和165 d,较传统收获期(Ⅰ,105 d)分别增加14.3%、28.6%、42.9%和57.1%;2017年第Ⅱ至Ⅴ收获期处理两品种平均生长天数分别为121、136、152和167 d,较传统收获期处理(Ⅰ,107 d)分别增加13.1%、27.1%、42.1%和56.1%。在第二收获期(处理Ⅱ)时玉米籽粒达生理成熟,Ⅲ至Ⅴ处理籽粒物理脱水时间分别为15、30和45 d。

冬小麦-夏玉米周年总生长天数随着播收期推迟变化不明显,处理间和品种间差异均不显著。2016年第Ⅰ至Ⅴ处理周年生长天数分别为340、342、338、335和334 d,2017年分别为342、345、343、339和338 d。

2.2 不同播/收期搭配下冬小麦-夏玉米一年两熟模式周年气候资源分配特征

表2可知,播收期改变导致作物生长季积温量变化较大,但品种间差异不显著。随小麦播期推迟,生长季积温量显著下降,2015—2016年变化范围1 877.7—2 457.8℃,Ⅱ至Ⅴ处理积温量分别显著低于传统播期(Ⅰ),降低7.7%、15.7%、22.2%和23.6%;2016—2017年变化范围1 853.5—2 392.8℃,Ⅱ至Ⅴ处理积温量分别低于Ⅰ处理,降低6.2%、16.0%、19.9%和22.5%。

Table 2
表2
表2不同播/收期处理冬小麦-夏玉米一年两熟模式周年积温分配
Table 2Distribution of accumulated temperature between winter wheat and summer maize with different sowing/harvest dates
年份
Year
处理
Treatment
小麦季Wheat玉米季Maize周年Annual
积温
Accumulated temperature (℃)
分配率
Distribution rate (%)
积温
Accumulated temperature (℃)
分配率
Distribution rate
(%)
积温
Accumulated temperature (℃)
两季比
Rate between two seasons
2015-20162457.8a46a2894.1d54d5351.9a0.8a
2281.5b42b3184.6c58c5466.1a0.7b
2071.3c38c3381.2bc62b5452.5a0.6c
1960.8d36d3517.4b64ab5478.2a0.6c
1877.7e34e3694.2a66a5571.9a0.5d
2016-20172392.8a46a2862.5d54d5255.2b0.8a
2254.0b42b3144.1c58c5397.9ab0.7b
2009.6c38c3361.5b62b5371.1ab0.6c
1916.2d36d3475.7b64ab5391.9ab0.6c
1853.5e34e3641.9a66a5495.4a0.5d
年份Year (Y)0.0160.6960.0050.4890.0020.488
处理Treatment (T)0.0010.0070.0010.0020. 1010.001
Y×T0.5750.5490.1320.5210.3200.642
Values within a column followed by different letters mean significantly different at P<0.05. The same as below
小写字母表示0.05水平差异显著。下同

新窗口打开|下载CSV

随玉米收获期推迟,生长季分配积温量逐渐增加,2016年变化范围2 894.1—3 594.2℃,Ⅱ到Ⅴ处理积温量分别显著高于Ⅰ处理,提高10.0%、16.8%、21.5%和27.6%;2017年变化范围2 862.5—3 541.9℃,Ⅱ到Ⅴ处理积温量分别显著高于Ⅰ处理,提高9.8%、17.4%、21.4%和27.2%。另外,由传统收获期(Ⅰ)至籽粒完全达到生理成熟(Ⅱ)所需积温量两年分别为290.5和281.6℃;生理成熟后籽粒进入脱水阶段,2016年Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间积温量分别为196.6、332.8和509.6℃,2017年分别为217.4、331.6和497.8℃。

周年总积温量在处理间和年际间差异不显著,2015—2016年5个处理平均为5 424.1℃,2016—2017年平均为5 322.3℃。年际间各季积温量占周年总积温量的比例及两季的比值相对固定,Ⅰ至Ⅴ处理小麦季积温量占周年总积温量的比例分别为46%、42%、38%、36%和34%,玉米生长季分别为54%、58%、62%、64%和66%;小麦季与玉米季积温量比值分别为0.8、0.7、0.6、0.6和0.5。Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间积温量占生长季积温量的6.1%、9.5%和13.7%,占周年总积温量的比例分别为3.9%、6.1%和9.3%。

表3可以看出,随小麦播期推迟,生长季总辐射量显著下降,年际间差异显著。2015—2016年辐射量变化范围2 105.7—2 528.5 MJ·m-2,Ⅲ至Ⅴ处理辐射量分别显著低于Ⅰ处理,降低10.7%、13.3%和16.7%;2016—2017年辐射量变化范围2 012.0—2 423.3 MJ·m-2,Ⅲ至Ⅴ播期处理辐射量分别显著低于Ⅰ处理,降低8.9%、13.8%和17.0%。

Table 3
表3
表3不同播/收期处理冬小麦-夏玉米一年两熟模式周年辐射分配
Table 3Distribution of radiation between winter wheat and summer maize with different sowing/harvest dates
年份
Year
处理
Treatment
小麦 Wheat玉米Maize周年Annual
辐射
Radiation
(MJ·m-2)
分配率
Distribution rate
(%)
辐射
Radiation
(MJ·m-2)
分配率
Distribution rate (%)
辐射
Radiation
(MJ·m-2)
两季比
Rate between two seasons
2015-20162528.5a59a1727.1d41c4285.6a1.5a
2459.6a57a1870.9c43c4330.5a1.3b
2258.3b53b1978.0b47b4236.3a1.1c
2192.9bc52b2056.5b48b4249.3a1.1c
2105.7c49c2193.4a51a4299.1a1.0d
2016-20172423.3a60a1628.3e40c4051.7a1.5a
2326.8a57b1749.0d43c4075.8a1.3b
2208.2b54c1854.6c46b4062.8a1.2c
2088.6c52c1955.2b48b4043.7a1.1d
2012.0c49d2085.3a51a4097.3a1.0e
年份Year (Y)0.0060.2860.0090.5890.0020.590
处理Treatment (T)0.0010.0070.0030.0020.1920.001
Y×T0.5750.7710.9250.9770.6760.874

新窗口打开|下载CSV

随玉米收获期的延迟,生长季辐射量逐渐增加,2016年变化范围1 727.1—2 193.4 MJ·m-2,Ⅱ至Ⅴ处理辐射量分别显著高于Ⅰ处理,提高8.3%、14.5%、19.1%和27.0%;2017年变化范围是1 628.3—2 085.3 MJ·m-2,Ⅱ至Ⅴ处理辐射量分别显著高于Ⅰ处理,提高7.4%、13.9%、20.1%和28.1%。由传统收获期(Ⅰ)至玉米籽粒完全达到生理成熟(Ⅱ)所需辐射量两年分别为143.8和120.7 MJ·m-2;生理成熟后籽粒进入脱水阶段,2016年Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间辐射量分别为107.1、185.6和322.5 MJ·m-2,2017年分别为105.6、206.2和336.3 MJ·m-2

周年总辐射量在品种间、处理间和年际间差异不显著(表3),2015—2016年5个处理平均为4 280.2 MJ·m-2,2016—2017年平均为4 066.3 MJ·m-2。各季辐射量占周年总辐射量的比例及两季的比值相对固定,2015—2016年,Ⅰ至Ⅴ处理小麦季辐射量占周年总辐射量的比例分别为59%、57%、53%、52%和49%,玉米季分别为41%、43%、47%、48%和51%,小麦季与玉米季辐射量比值分别为1.5、1.3、1.1、1.1和1.0。2016—2017年,Ⅰ至Ⅴ处理小麦季辐射量占周年总辐射量的比例分别为60%、57%、54%、52%和49%,玉米季分别为40%、43%、46%、48%和51%,两季比值分别为1.5、1.3、1.2、1.1和1.0。Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间辐射量占生长季辐射量的5.6%、9.8%和15.4%,占周年总辐射量的比例分别为2.6%、4.7%和7.9%。

表4可以看出,播收期的改变造成作物生长季降水量变化较大,年际间差异显著,品种间差异不显著。2015—2016年,除处理Ⅱ小麦季降水量显著低于处理Ⅰ外,各处理无显著差异,变化范围168.9—206.6 mm。2016—2017年,小麦季降水量随播期推迟逐渐降低,变化范围149.6—192.4 mm,Ⅱ到Ⅴ播期处理降水量分别低于Ⅰ处理,降低12.6%、17.9%、18.9%和22.2%。

Table 4
表4
表4不同播/收期处理冬小麦-夏玉米一年两熟模式周年降水分配
Table 4Distribution of precipitation between winter wheat and summer maize with different sowing/harvest dates
年份
Year
处理
Treatment
小麦 Wheat玉米Maize周年Annual
降水
Precipitation
(mm)
分配率
Distribution rate
(%)
降水
Precipitation
(mm)
分配率
Distribution rate (%)
降水
Precipitation
(mm)
两季比
Rate between two seasons
2015-2016179.8a41b263.3d59c443.1b0.7a
168.9b37b285.7c63b454.6b0.6b
181.6a36a320.3b64ab501.9a0.6b
174.5ab35c330.9ab65ab505.4a0.5c
175.2ab34c342.4a66a517.6a0.5c
2016-2017192.4a43a253.1c57c445.5a0.8a
168.2b38b278.8b62b447.2a0.6b
157.9c35c288.7a65ab446.6a0.5c
156.1c35c289.9a65ab446.3a0.5c
149.6c34c292.9a66a442.5a0.5c
年份Year (Y)0.0010.040.0010.2860.0020.682
处理Treatment (T)0.0060.0010.0010.0010. 0010.013
Y×T0.0010.0020.0460.0060.0010.043

新窗口打开|下载CSV

随玉米收获期的延迟,生长季降水量逐渐增加,2016年变化范围273.3—342.4 mm,Ⅱ至Ⅴ处理降水量分别显著高于Ⅰ处理,提高8.5%、21.6%、25.7%和30.1%;2017年变化范围253.1—292.9 mm,Ⅱ至Ⅴ处理降水量分别显著高于Ⅰ处理,提高10.2%、14.1%、14.5%和15.7%。由传统收获期(Ⅰ)至玉米籽粒达到完全生理成熟(Ⅱ)所需降水量两年分别为12.4和25.7 mm,生理成熟后籽粒进入脱水阶段,Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间降水量2016年分别为34.6、45.2和56.7 mm,2017年分别为9.9、11.1和14.1 mm。

年际间周年总降水量差异显著(表4),2015—2016年各处理变化范围为443.1—517.6 mm,其中Ⅲ到Ⅴ处理降水量均分别显著高于Ⅰ处理,提高13.3%、14.1%和16.8%。2016—2017年各处理降水量无显著差异,平均为445.5 mm。2015—2016年,Ⅰ至Ⅴ处理小麦季降水量占周年总降水量的比例分别为38%、37%、40%、35%和34%,玉米季分别为62%、63%、59%、65%和66%,小麦季与玉米季降水量比值分别为0.7、0.6、0.6、0.5和0.5。2016—2017年,Ⅰ至Ⅴ处理小麦季降水量占周年总降水量的比例分别为43%、38%、35%、35%和34%,玉米季分别为57%、62%、65%、65%和66%,两季比值分别为0.8、0.6、0.5、0.5和0.5。Ⅲ、Ⅳ、Ⅴ处理籽粒脱水期间降水量占生长季降水量的10.8%、13.7%和16.6%(2016年),3.4%、3.8%和4.8%(2017年);占周年总降水量的比例分别为6.9%、8.9%和11.0%(2016年),2.2%、2.5%和3.2%(2017年)。

2.3 不同播/收期搭配下冬小麦-夏玉米一年两熟模式单季及周年产量

表5可以看出,随播期推迟,小麦季产量呈先下降再上升的趋势,处理Ⅰ产量最高,除Ⅴ播期外,品种间无显著差异。2015—2016年Ⅰ处理AK58产量为8 212.9 kg·hm-2,分别高于Ⅲ、Ⅳ和Ⅴ处理16.5%、25.8%和9.7%;Ⅰ处理ZM66产量为8 011.5 kg·hm-2,分别高于Ⅲ和Ⅳ处理16.1%和26.2%,与Ⅴ处理差异不显著。2016—2017年Ⅰ处理AK58产量为9 401.9 kg·hm-2,分别高于Ⅲ、Ⅳ和Ⅴ处理20.9%、27.4%和8.9%;Ⅰ处理ZM66产量为9 278.7 kg·hm-2,分别高于Ⅲ和Ⅳ处理17.1%和21.6%,与Ⅴ处理差异不显著。年际间小麦产量差异较大,2016—2017年Ⅰ至Ⅴ处理平均产量分别高于2015—2016年15.1%、14.9%、12.6%、16.6%和15.8%。

Table 5
表5
表5不同播期冬小麦产量及产量构成
Table 5Yield and yield components of winter wheat with different sowing dates
年份
Year
播期
Sowing date
品种
Variety
产量
Grain yield
(kg·hm-2)
穗数
Spikes number
(×104/hm2)
穗粒数
Kernel number per spike
千粒重
Thousand kernel weight (g)
2015-2016AK588212.9a634.5a32.3ab42.3a
ZM668011.5ab637.5a33.5a41.2ab
AK588141.4ab645.1a31.6bc40.7abc
ZM667830.1bc625.5ab32.7ab39.4cdef
AK587099.7d598.5bc30.8c39.5bcdef
ZM666902.5d601.5bc31.2bcd38.5def
AK586528.5e580.5c30.1d38.1ef
ZM666346.4e598.5bc30.6cd37.8f
AK587487.4c634.2a30.8cd39.6bcde
ZM667859.7b627.3ab32.4ab39.8bcd
2016-2017AK589401.9a663.2a32.7bc44.6a
ZM669278.7a657.3a34.5a43.3abc
AK589225.6a652.5a32.2bcd43.8ab
ZM669120.1a655.4a33.7ab43.1abc
AK587775.9c616.5b31.2cde41.7cde
ZM667925.1c619.2b32.4bcd41.2de
AK587377.6d601.5b30.6e40.4e
ZM667631.9cd612.6b31.3cde40.1e
AK588630.9b657.2a31.1de41.6cde
ZM669139.2a654.1a33.9ab42.5bcd

新窗口打开|下载CSV

产量构成因素中,小麦穗数、穗粒数和千粒重均受播期影响较大。由表5可知,随播期推迟,小麦穗数、穗粒数和千粒重均呈先下降后上升的趋势。与处理Ⅰ相比,Ⅲ和Ⅳ播期两品种穗数、穗粒数和千粒重均显著降低,Ⅴ处理AK58穗粒数和千粒重显著降低。2015—2016年,Ⅲ处理AK58和ZM66穗数较处理Ⅰ分别降低6.1%和5.9%,穗粒数分别降低5.8%和7.4%,千粒重分别降低7.1%和7.0%;Ⅳ处理AK58和ZM66穗数较处理Ⅰ分别降低9.3%和6.5%,穗粒数分别降低8.3%和9.5%,千粒重分别降低11.1%和8.9%;Ⅴ处理AK58穗粒数较处理Ⅰ降低5.8%,千粒重降低6.8%,但ZM66穗数、穗粒数和千粒重与Ⅰ处理无显著差异。2016—2017年,Ⅲ处理AK58和ZM66穗数较Ⅰ处理分别降低7.5%和6.1%,穗粒数分别降低4.8%和6.5%,千粒重分别降低6.9%和5.1%;Ⅳ处理AK58和ZM66穗数较Ⅰ处理分别降低10.2%和7.4%,穗粒数分别降低6.9%和10.2%,千粒重分别降低10.4%和7.9%;Ⅴ处理AK58穗粒数较Ⅰ处理降低5.1%,千粒重降低7.2%,ZM66穗数、穗粒数和千粒重与处理Ⅰ无显著差异。

表6可以看出,随收获期推迟,玉米季产量逐渐增加,品种间差异不显著,Ⅱ、Ⅲ、Ⅳ和Ⅴ处理产量显著高于Ⅰ处理,但Ⅲ、Ⅳ和Ⅴ处理间差异不明显。2016年Ⅱ至Ⅴ处理XY335产量分别较正常收获期处理(Ⅰ)提高8.6%、14.5%、16.1%和17.5%,ZD958产量分别较处理Ⅰ提高10.0%、19.6%、19.8%和21.6%。2017年Ⅱ至Ⅴ处理XY335产量分别较处理Ⅰ提高6.9%、14.6%、16.8%和15.4%,ZD958产量分别较处理Ⅰ提高7.8%、14.5%、18.7%和16.8%。

Table 6
表6
表6不同收获期处理夏玉米产量及产量构成
Table 6Yield and yield components of summer maize with different harvest dates
年份Year处理
Treatment
品种
Variety
产量
Grain yield
(kg·hm-2)
穗数
Ears number
(×104/hm2)
穗粒数
Grain number per ear
千粒重
Thousand kernel weight (g)
籽粒含水量
Water content
(%)
2016XY3359524.5d6.2a478.1ab321.3d38.8a
ZD9588979.6e6.3a463.9b315.4d39.7a
XY33510340.4bc6.4a481.6ab343.9bc30.7c
ZD9589879.8cd6.3a475.9ab338.7c32.7b
XY33510901.2a6.3a479.6ab365.7a22.9e
ZD95810738.8ab6.3a475.1ab356.0abc25.5d
XY33511058.6a6.4a483.6ab366.3a18.5g
ZD95810759.3ab6.3a479.9ab359.4ab21.4f
XY33511188.1a6.3a486.8a363.9a14.9i
ZD95810922.9a6.4a481.3ab356.5ab17.3h
2017XY3359089.4e6.5a422.1b329.9c38.9a
ZD9589202.9e6.6a439.2ab320.7c40.0a
XY3359718.8d6.5a429.0ab352.3b31.8c
ZD9589924.2cd6.5a436.6ab359.5b33.4b
XY33510413.1bc6.6a425.6b372.5ab23.7e
ZD95810536.9ab6.6a440.8ab370.1ab26.1d
XY33510617.5ab6.5a428.1ab376.8a18.9g
ZD95810926.9a6.5a448.5a373.5ab21.4f
XY33510490.2ab6.6a431.6ab374.2ab14.4i
ZD95810746.5ab6.4a442.2ab377.2a16.5h

新窗口打开|下载CSV

随收获期推迟,玉米穗数和穗粒数没有显著变化,而千粒重显著增加,Ⅲ、Ⅳ和Ⅴ处理间没有显著差异,但显著高于Ⅰ和Ⅱ处理,且品种间差异不显著(表6—7)。2016年Ⅱ至Ⅴ处理XY335和ZD958的千粒重分别比处理Ⅰ增加6.6%和6.9%、12.1%和14.2%、12.3%和15.0%、11.7%和14.3%;2017年Ⅱ至Ⅴ处理XY335和ZD958的千粒重分别比处理Ⅰ增加9.2%和10.8%、14.1%和13.3%、15.1%和14.1%、14.5%和15.0%。

随玉米收获期推迟,籽粒含水量显著下降,且品种间差异较大(表7)。由表6可知,2016年Ⅱ至Ⅴ处理XY335和ZD958的收获籽粒含水量分别比处理Ⅰ降低20.9%和17.6%、41.0%和35.8%、52.3%和46.1%、61.6%和56.4%,其中Ⅴ处理XY335和ZD958的籽粒含水量分别为14.9%和17.3%;2017年Ⅱ至Ⅴ处理XY335和ZD958的收获籽粒含水量分别比处理Ⅰ降低18.3%和16.5%、39.1%和34.8%、51.4%和46.5%、62.9%和58.8%,其中Ⅴ处理XY335和ZD958的收获籽粒含水量分别为14.4%和16.5%。

Table 7
表7
表7年际间、处理间和品种间冬小麦-夏玉米产量及产量构成因素方差分析
Table 7The ANOVA analyses for yield and yield components of winter wheat and summer maize by years, treatment, and variety
小麦Wheat玉米Maize
产量
Grain yield
穗数
Spikes
number
穗粒数
Kernel number per spike
千粒重
Thousand kernel weight
产量
Grain yield
穗数
Ears
number
穗粒数
Grain number per ear
千粒重
Thousand kernel weight
籽粒含水量
Water content
年份
Year (Y)
0.0010.0110.0010.0030.0020.0010.0010.0010.199
处理
Treatment (T)
0.0020.2630.0030.0010.0010.9840.3330.0010.003
品种
Variety (V)
0.7010.8170.0020.0430.1690.8170.2580.0330.001
Y×T0.2620.6560.9880.5850.2300.7130.9710.5840.172
Y×V0.0600.7010.0840.5390.0010.8470.0030.1490.597
T×V0.0030.8870.0630.2350.6000.8640.9470.5910.093
Y×T×V0.8880.9790.9220.9750.7620.7310.9150.6720.990

新窗口打开|下载CSV

如前所述,随着播期的推迟,小麦季产量降低,但相应的玉米季产量显著增加,因此周年产量不降低甚至有所增加。由图2可知,各播收期处理中,处理Ⅴ周年平均产量最高,两年分别为18 729.1和19 503.4 kg·hm-2,与处理Ⅱ差异不显著,但显著高于Ⅰ、Ⅲ和Ⅳ处理,2015—2016年增幅分别为7.8%、5.0%和7.9%,2016—2017年增幅分别为5.5%、6.4%和6.7%。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同播/收期处理冬小麦-夏玉米一年两熟模式周年产量

A为2015—2016年产量,B为2015—2016年产量
Fig. 2Grain yield of winter wheat-summer maize double cropping system with different treatments

A is grain yield in 2015-2016, B is grain yield in 2016-2017


2.4 不同播/收期搭配下冬小麦-夏玉米一年两熟模式气候资源利用效率

表8可以看出,随播期推迟,小麦季积温生产效率发生显著变化,年际间差异显著。2015—2016年Ⅴ处理小麦季平均积温生产效率为4.09 kg·hm-2·℃-1,显著高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理,提高10.9%、11.7%、21.4%和24.7%;2016—2017年Ⅴ处理平均积温生产效率为4.79 kg·hm-2·℃-1,显著高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理,提高7.7%、14.0%、24.4%和25.4%。随收获期推迟,玉米季积温生产效率发生显著变化,其中Ⅱ处理显著高于Ⅳ和Ⅴ处理,与Ⅰ和Ⅲ处理差异不显著。2016年Ⅱ处理玉米季平均积温生产效率为3.27 kg·hm-2·℃-1,较Ⅳ和Ⅴ处理分别提高5.5%和6.2%;2017年Ⅱ处理玉米季平均积温生产效率为3.24 kg·hm-2·℃-1,较Ⅳ和Ⅴ处理分别提高6.6%和7.6%。因此,Ⅱ和Ⅴ周年积温生产效率显著高于Ⅰ、Ⅲ和Ⅳ,但二者差异不显著。2015—2016年Ⅱ和Ⅴ周年积温生产效率分别为3.43和3.42 kg·hm-2·℃-1,分别高于Ⅰ、Ⅲ和Ⅳ处理5.9%和5.6%、5.5%和5.2%、8.2%和7.9%;2016—2017年Ⅱ和Ⅴ处理周年积温生产效率分别为3.63和3.62 kg·hm-2·℃-1,分别高于Ⅰ、Ⅲ和Ⅳ处理5.2%和5.1%、5.5%和5.2%、9.3%和9.0%。

Table 8
表8
表8不同播/收期处理冬小麦-夏玉米光温生产效率
Table 8Production efficiency of accumulated temperature and radiation for winter wheat and summer maize with different sowing/ harvest dates
年份
Year
处理
Treatment
积温生产效率
Production efficiency of temperature (kg·hm-2·℃-1)
光能生产效率
Production efficiency of radiation (g·MJ-1)
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
2015-20163.30c3.20ab3.24b0.32b0.54ab0.41b
3.66b3.27a3.43a0.32b0.56a0.43a
3.37c3.20ab3.25b0.31b0.55ab0.42ab
3.28c3.10b3.17b0.29c0.53b0.41b
4.09a3.08b3.42a0.36a0.50c0.44a
2016-20173.90c3.18ab3.45b0.38b0.56ab0.44b
4.20b3.24a3.63a0.39b0.58a0.47a
3.85c3.18ab3.44b0.35c0.56ab0.45ab
3.82c3.04bc3.32b0.35c0.54b0.44b
4.79a3.01c3.62a0.44a0.51c0.48a
年份Year (Y)0.0010.5900.0170.0010.0690.002
处理Treatment (T)0.0010.3470.0490.0020.0010. 022
Y×T0.4120.8990.6980.0310.9770.867

新窗口打开|下载CSV

表8可以看出,随播期推迟,小麦季光能生产效率呈先降低后增加的趋势,年际间差异显著。2015—2016年Ⅴ处理小麦季光能生产效率平均为0.36 g·MJ-1,分别高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理12.5%、12.5%、14.1%和24.1%;2016—2017年Ⅴ处理小麦季光能生产效率平均为0.44 g·MJ-1,分别高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理15.8%、12.8%、25.3%和25.7%。随着收获期推迟,玉米季光能生产效率呈先增加后降低趋势,Ⅱ处理显著高于Ⅳ和Ⅴ处理,与处理Ⅰ和Ⅲ差异不显著。2015—2016年Ⅱ处理玉米季光能生产效率为0.56 g·MJ-1,分别高于Ⅳ和Ⅴ处理5.7%和12.1%;2016—2017年Ⅱ处理玉米季光能生产效率为0.58 g·MJ-1,分别高于Ⅳ和Ⅴ处理7.4%和13.7%。因此,Ⅱ和Ⅴ处理周年光能生产效率显著高于处理Ⅰ和Ⅳ,但二者差异不显著。2015—2016年Ⅱ和Ⅴ处理周年光能生产效率分别为0.44和0.43 g·MJ-1,分别高于Ⅰ和Ⅳ处理5.0%和7.3%、5.2%和7.4%;2016—2017年Ⅱ和Ⅴ处理周年光能生产效率分别为0.48和0.47 g·MJ-1,分别高于Ⅰ和Ⅳ处理6.8%和9.1%、6.9%和9.2%。

表9可以看出,随播期推迟,小麦耗水量(降水量与灌水量之和)显著下降,Ⅴ处理耗水量最低,两年分别为325.5 和299.6 mm,显著低于其他播期处理。各播期处理中,Ⅴ处理水分生产效率最高,2015—2016年为23.6 kg·hm-2·mm-1,分别高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理39.6%、38.8%、62.8%和46.6%;2016—2017年为29.7 kg·hm-2·mm-1,分别高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理56.3%、51.5%、75.7%和54.7%。随收获期推迟,玉米耗水量逐渐增加,Ⅴ处理耗水量最高,两年分别为492.4和442.9 mm,但由于产量显著增加,2016年水分生产效率与处理Ⅰ无显著差异,2017年高于Ⅰ处理6.6%。除2016年处理Ⅲ玉米水分生产效率显著高于处理Ⅰ外,其他处理间水分生产效率差异不显著。因此,处理Ⅴ周年水分生产效率最高,两年分别为23.0和26.9 kg·hm-2·mm-1,2016年显著高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理,提高17.3%、12.2%、22.9%和18.6%,2017年显著提高于Ⅰ、Ⅱ、Ⅲ和Ⅳ处理,提高29.3%、25.1%、32.5%和24.5%。

Table 9
表9
表9不同播/收期处理冬小麦-夏玉米水分生产效率
Table 9Production efficiency of water for winter wheat-summer maize with different sowing/harvest dates
年份
Year
处理
Treatment
小麦季Wheat玉米季Maize周年Annual
耗水量
Water use
(mm)
水分生产效率
Water use efficiency
(kg·hm-2·mm-1)
耗水量
Water use
(mm)
水分生产效率
Water use efficiency (kg·hm-2mm-1)
耗水量
Water use
(mm)
水分生产效率
Water use efficiency (kg·hm-2·mm-1)
2015-2016479.8a16.9b413.3d22.4b593.1b19.6bc
468.9a17.0b435.7c23.9a604.6b20.5ab
481.6a14.5d470.3bc23.0ab651.9a18.7c
399.5b16.1c480.9ab22.7b655.4a19.4c
325.2c23.6a492.4a22.5b667.6a23.0a
2016-2017492.4a19.0b403.1b22.6b595.5a20.8bc
468.2b19.6b428.8a23.5ab597.2a21.5b
457.9b16.9c438.7a23.6ab596.6a20.3c
381.1c19.2b439.9a24.0a596.3a21.6b
299.6d29.7a442.9a24.1a592.5a26.9a
年份Year (Y)0.0180.0020.0010.1860.0010.001
处理Treatment (T)0.0010.0010.0040.0730.0170.003
Y×T0.0070.0060.0690.2260.0010.012
Water use is the amount of precipitation and irrigation
耗水量为生育期总降水量与灌水量的总和

新窗口打开|下载CSV

3 讨论

3.1 播/收期改变冬小麦和夏玉米生长季气候资源分配

优化传统冬小麦-夏玉米模式季节间气候资源配置,探索两季最佳的气候资源搭配模式是进一步挖掘黄淮海地区周年产量潜力和资源利用效率的重要途径。由于C4作物具有较高光合能力,有人提出充分发挥玉米的产量潜力,逐渐压缩小麦的生长时间的方法,以高效利用光热资源[4,5],从而建立了冬小麦-夏玉米“双晚”技术模式,实现了周年产量达到15 000 kg·hm-2以上,光、温资源生产力分别提高64%和124%[9,10]。然而,随着黄淮海地区气候条件和生产条件的变化,冬小麦生长季遭遇冻害、冬旱和春旱及耗水严重等问题日益严峻[11, 14],同时由于两季时间限制夏玉米收获籽粒含水量在30%以上,严重影响机械直接收获籽粒质量,降低玉米生产效益[19,20]。为进一步探索适应新的气候条件和生产条件的冬小麦-夏玉米一年两熟模式作物生长季最佳的气候资源分配方案,本研究从10月上旬(当地农民习惯播种期)至12月上旬(种子冬前不萌发出苗),设置了5种冬小麦-夏玉米播收期搭配模式。研究表明,通过播/收期调整,小麦生育期天数由正常播期的236 d减少至第五播期的168 d,相应的玉米晚收生长天数由传统收获的106 d(Ⅰ)增加至166 d(V),处理V小麦晚播和玉米晚收的时间较“双晚”技术模式延长50 d左右[9,10,11,12]。另外,当处理Ⅱ夏玉米收获时籽粒达到生理成熟,处理Ⅲ、Ⅳ和V增加的时间(15—45 d)主要用于籽粒物理性脱水。生长时间的改变导致作物生长季内光温水资源量发生显著变化,随着播/收期推迟,两作物生长季光温水资源分配比例分别由处理Ⅰ的60%﹕40%、46%﹕54%、42%﹕58%调整至处理V的49%﹕51%、34%﹕66%、34%﹕66%范围内,小麦季光温水资源量逐渐减少,玉米季显著增加,其中处理Ⅲ至V玉米籽粒脱水期间的光温资源量分别占周年资源总量的9.3%和7.9%,降水资源所占比例为11.0%(2016)和3.2%(2017)。虽然各处理年际间光温水资源量差异显著,但其占周年总资源量的比例相对固定(降水除外),与我们前期的研究结果一致[8],这也为进一步分析资源分配与产量形成的关系提供了定量标准。可见,通过播/收期的调整可实现冬小麦-夏玉米一年两熟模式作物生长季气候资源的重新分配,为进一步建立两季最佳的气候资源搭配模式提供了依据。

3.2 播/收期影响冬小麦和夏玉米产量形成

前人研究表明,作物产量形成与其所在地区的光温水等生态条件密切相关[19, 27-30]。本研究通过播/收期调整,使得冬小麦-夏玉米一年两熟模式作物生长季资源分配发生显著变化,各处理产量也随之发生了明显改变。冬小麦产量随播期推迟逐渐降低,降幅为1 866.5—2 024.3 kg·hm-2,但处理Ⅱ及处理V的ZM66品种产量与正常播期无显著差异;且玉米季产量随收获期推迟显著增加,增幅为1 528.1—2 208.5 kg·hm-2,因此处理Ⅱ和V周年产量显著提高,而处理Ⅲ和Ⅳ与处理Ⅰ周年产量无显著差异。这与前人关于冬小麦-夏玉米“双晚”试验结果趋势相似[8, 11-12, 31]。从产量构成因素看,本研究中小麦晚播导致穗数、穗粒数和千粒重均降低,但处理Ⅱ和V下降不显著,尤其是ZM66品种在处理Ⅱ和V具有较高的穗数、穗粒数和千粒重。前人研究表明,晚播可提高某些小麦品种旗叶叶绿素含量,维持叶片较高的光合物质生产能力[32,33],特别是选择高温条件下具有较高花后光合能力和干物质积累能力的小麦品种(如济麦22)是维持极晚播小麦较高产量的关键[34]。由此我们推测本研究选用的ZM66品种在处理Ⅱ和V播期下具有较高的花后光合物质生产能力,从而维持了小麦较高的有效穗粒数和粒重;同时由于晚播造成小麦分蘖减少,特别是处理V主要依靠主茎成穗,通过增加播种量保证了足够的穗数[11,12],从而维持了较高的产量。这与前人冬小麦极晚播(11月上中旬)试验结果类似[34],通过选用济麦22品种和增加播量至800—850 粒/m2在河北吴桥实现了冬小麦最高达82 900 kg·hm-2的产量水平。然而,不同地区因其光温水资源禀赋的差异,种植该模式时应先确定该区小麦适宜的越冬状态、品种、播期及密度等条件,以保证较高的小麦产量。

另外,夏玉米晚收显著延长了灌浆期(15 d),使植株营养器官积累的内源物质继续向籽粒转移,导致粒重显著增加[11-12, 35],处理Ⅱ至V玉米产量显著提高,但由于处理Ⅱ(10月上旬)玉米已达到生理成熟,继续延长收获期粒重和产量不再增加,因此处理Ⅱ至V玉米产量无显著差异。然而,由于处理V玉米生理成熟后至收获约45 d,保证了籽粒充分脱水,因此收获时籽粒含水量降至14.4%—17.3%。研究表明,籽粒含水量是影响机械粒收质量的重要因素,籽粒含水率超过20%时收获机械损伤率急剧增加[36],且收获后的高温快速干燥使籽粒破碎敏感度进一步增大[37,38]。柴宗文等[19]和李璐璐[20]等研究表明,夏玉米籽粒含水量为25%时机械收获籽粒破碎率为6.6%,杂质率为1.1%,而含水量降到17%时破碎率为5.8%,杂质率为0.1%。当收获玉米的籽粒含水率在25%以上时,每吨玉米烘干的费用为24加元,每年加拿大因烘干玉米的费用超过2 亿加元[39];我们前期对我国玉米籽粒机收现状调研结果表明,每吨玉米籽粒由含水量25%烘干到14%成本需要34.4元左右,而每吨含水量为17%的籽粒烘干成本仅需 8.9元左右,而本研究中处理V玉米收获时籽粒含水量已降至17%以下,可通过进一步筛选脱水快的品种达到籽粒机收直入库的含水量标准(14%)。此外,目前的籽粒烘干设备需要消耗大量的电力和煤炭资源,也会造成资源浪费和环境污染。可见,处理V是一种既能保证冬小麦-夏玉米一年两熟模式较高周年产量,又能提高夏玉米机械收获籽粒质量和效益的两季作物生长季气候资源分配的最佳方式。

3.3 播/收期影响冬小麦和夏玉米生长季及周年气候资源利用效率

分析播/收期调控对冬小麦-夏玉米模式周年光温水资源生产效率的影响发现,由于处理V小麦季光温水资源量显著降低,特别是小麦冬前不出苗其灌水量减少150 mm(底墒水和越冬水),但其产量下降不显著,因此小麦季光能、温度和水分生产效率分别较处理Ⅰ平均提高14.2%、9.3%和47.9%;而玉米季虽然光能、温度生产效率有所降低,但水分生产效率显著提高,因此处理V冬小麦-夏玉米周年光能、温度和水分生产效率分别提高8.2%、5.4%和23.3%。这主要是因为通过播/收期的调整使小麦季冗余资源转移给更加高效的玉米季,实现了周年生长季与气候资源的优化配置,从而提高了气候资源的利用效率[8, 11-12]。另外,前人研究表明气候变化导致我国北方温度持续上升,极端天气频发[21,22],冬小麦播种过早导致冬前苗期旺长,拔节孕穗提前,易遭受严重冻害和干旱,造成减产[11]。本研究通过将小麦播期推迟至12月上旬,种子冬季不萌发出苗,可避免苗期冻害和干旱影响;且该播期下小麦拔节期(3月底4月初)晚于传统播期小麦(3月上中旬),可避免倒春寒发生对幼穗发育的影响(3月中下旬)[40,41]。可见,通过播/收期调整实现冬小麦-夏玉米一年两熟模式作物生长季气候资源优化配置,特别是处理V(小麦12月上旬播种,玉米11月中旬收获)的气候资源搭配模式,可显著提高其周年产量及资源利用效率。然而,作物生长季节内光温水资源的时空分布,及其与作物生长发育的动态匹配程度也是影响单季作物产量形成及资源利用效率的重要因素[22, 29, 42],因此进一步研究生长季节内光温资源变化与小麦生长发育的定量匹配关系对于建立更加完善的冬小麦-夏玉米一年两熟周年资源高效种植模式具有重要意义,这也是我们下一步研究的重点。

小麦是我国主要的口粮作物,玉米主要用作饲料和工业加工,但在特殊时期也可作为口粮。从某种意义上讲,这两大粮食作物因其共同的能量属性,存在相互替代和互补的关系。例如,2010—2011年由于国内小麦价格低廉,大量小麦用于饲料加工(中国饲料行业信息网,2012)。近年来,华北地区小麦季耗水量大且利用效率低的问题导致该区地下水过度开采,引起一系列的环境问题[16,17,18],且受气候变化影响,冬季冻害、干旱等问题进一步加剧[11],限制了该区传统冬小麦-夏玉米模式的可持续发展。本研究建立的小麦冬寄籽-玉米机收粒模式(处理V)在一定程度上缓解了小麦季耗水严重和冬季干旱、冻害,同时可有效解决玉米籽粒机收的问题。然而,考虑到小麦作为口粮对于保障我国粮食安全的重要性,该模式的建立并不能完全取代整个黄淮海地区传统的冬小麦-夏玉米一年两熟种植模式,而是希望在黄淮海北部光温水资源紧缺区,特别是河北黑龙港流域和环京津的水分亏缺区,在根据当地光温水资源条件进行适宜品种和播收期筛选的前提下种植该模式,以进一步提高该区周年资源利用效率和经济效益。

4 结论

以充分发挥玉米高光效优势为核心,通过调节小麦播种期和玉米收获期对两季光温水等资源进行优化配置,建立了5种冬小麦-夏玉米一年两熟作物生长季气候资源分配模式。随冬小麦播期和夏玉米收获期推迟,小麦生育期天数和生长季光温水资源分配量逐渐减少,从而导致小麦季产量降低,但由于极晚播(12月上旬)(处理V)小麦的ZM66品种维持了较高的穗数和穗粒数,产量与正常播期无显著差异,同时由于耗水量显著降低,小麦季光温水生产效率显著提高;而玉米生长时间和光温水资源量明显增加,导致粒重显著提高,且籽粒含水量降至14.4%—17.3%,产量显著提高,虽然光温生产效率有所降低,但水分生产效率显著提高,因此处理V周年产量和光温水资源利用效率较正常播收期处理显著提高。然而,在种植该模式时,应首先根据不同地区光温水资源条件确定小麦适宜的越冬状态,进而确定品种、播期及密度等措施。综上所述,在不增加任何投入的前提下通过播/收期调整来优化冬小麦-夏玉米一年两熟模式周年气候资源配置,减少冬小麦季耗水量,并提高夏玉米籽粒机械收获质量,促进黄淮海冬小麦-夏玉米一年两熟模式可持续发展。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

中华人民共和国农业部. 中国农业统计资料. 北京: 中国农业出版社, 2015.
[本文引用: 1]

Ministry of Agriculture of the Peoples’ Republic of China. China Agriculture Statistical Report . Beijing: China Agriculture Press, 2015. ( in Chinese)
[本文引用: 1]

WANG H X, LIU C M, ZHANG L . Water-saving agriculture in China: An overview
Advances in Agronomy, 2002,75:135-171.

DOI:10.1016/S0065-2113(02)75004-9URL [本文引用: 1]

费宇红, 张兆吉, 张凤娥, 王昭, 陈宗宇, 陈京生, 钱永, 李亚松 . 气候变化和人类活动对华北平原水资源影响分析
地球学报, 2007,28(6):567-571.

DOI:10.3321/j.issn:1006-3021.2007.06.009URL [本文引用: 1]
华北平原是我国粮食的重要产地.地下水资源是该地区的主要供水水 源,在开采量增加和气候变化的影响下,水资源问题制约着该地区的发展.特别是近些年来降水量减少、气温呈上升趋势,使本来就少的水资源更削弱了补给资源. 通过对降水、蒸发、地表径流、地下水流场变化、地下水资源的系列变化分析,认为降水量减少、气温升高、人类治水工程和开采地下水等因素是造成本地区水资源 减少的重要原因.
FEI Y H, ZHANG Z J, ZHANG F E, WANG Z, CHEN Z Y, CHEN J S, QIAN Y, LI Y S . An analysis of the influence of human activity and climate change on water resources of the North China Plain
Acta Geoscientica Sinica, 2007,28(6):567-571. (in Chinese)

DOI:10.3321/j.issn:1006-3021.2007.06.009URL [本文引用: 1]
华北平原是我国粮食的重要产地.地下水资源是该地区的主要供水水 源,在开采量增加和气候变化的影响下,水资源问题制约着该地区的发展.特别是近些年来降水量减少、气温呈上升趋势,使本来就少的水资源更削弱了补给资源. 通过对降水、蒸发、地表径流、地下水流场变化、地下水资源的系列变化分析,认为降水量减少、气温升高、人类治水工程和开采地下水等因素是造成本地区水资源 减少的重要原因.

陈阜, 逄焕成 . 冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨
中国农业大学学报, 2000,5(5):12-16.

DOI:10.3321/j.issn:1007-4333.2000.05.003URL [本文引用: 3]
Based on the wheat corn double cropping system, the intercropping pattern of wheat/cron/corn was developed in Huang Huai Plain. The new pattern had higher productivity and resources use efficiency. The yield and the utilization rate of solar energy and heat increased by more than 20%. It showed that this new multiple cropping pattern is an effective way to further increase yield in this region. The key points for wheat/cron/cron pattern to get high yield are to construct multiple canopy structure to add total ears, and improve both of the light penetrating state and light intercepting capacity. The important cultivation measures for the wheat/corn/cron were to select suitable variety, moderate density and stripe type, especially to improve technologies of early planting and harvesting.
CHEN F, PANG H C . Research on mechanism for maximum yield of intercropping pattern wheat/corn/corn
Journal of China Agricultural University, 2000,5(5):12-16. (in Chinese)

DOI:10.3321/j.issn:1007-4333.2000.05.003URL [本文引用: 3]
Based on the wheat corn double cropping system, the intercropping pattern of wheat/cron/corn was developed in Huang Huai Plain. The new pattern had higher productivity and resources use efficiency. The yield and the utilization rate of solar energy and heat increased by more than 20%. It showed that this new multiple cropping pattern is an effective way to further increase yield in this region. The key points for wheat/cron/cron pattern to get high yield are to construct multiple canopy structure to add total ears, and improve both of the light penetrating state and light intercepting capacity. The important cultivation measures for the wheat/corn/cron were to select suitable variety, moderate density and stripe type, especially to improve technologies of early planting and harvesting.

赵秉强, 张福锁, 李增嘉, 李风超, 劳秀荣, 史春余, 董庆裕, 张骏, 刘嘉军, 杨恩学 . 黄淮海农区集约种植制度的超高产特性研究
中国农业科学, 2001,34(6):649-655.

DOI:10.3321/j.issn:0578-1752.2001.06.013URLMagsci [本文引用: 3]
探讨了黄淮海农区冬小麦||早春玉米/夏玉米、早春玉米/夏玉米及冬小麦-夏玉米3种集约种植制度的超高产生产特性。结果表明,冬小麦||早春玉米/夏玉米产量达20.52~21.79t/ha,间套行又可间套蔬菜生产,增产增效,但该模式时空集约性强,机械化操作难度相对较大;早春玉米/夏玉米产量可达18.24~18.39t/ha,同时该方式又可纳入春、秋两季蔬菜间套种植,具有粮菜结合,高产高效的特征;采用20+40模式种植冬小麦-玉米两熟,产量可达18.47~20.89t/ha。3种种植制度单位面积产量比黄淮海农区目前高产吨粮田(1t/666.7m2,15t/ha)增产21.63%~45.28%,初步实现了粮食进一步高产的新突破。
ZHAO B Q, ZHANG F S, LI Z J, LI F C, LAO X R, SHI C Y, DONG Q Y, ZHANG J, LIU J J, YANG E X . Studies on the super-high yield characteristics of three intensive multiple cropping systems in Huanghuaihai area
Scientia Agricultura Sinica, 2001,34(6):649-655. (in Chinese)

DOI:10.3321/j.issn:0578-1752.2001.06.013URLMagsci [本文引用: 3]
探讨了黄淮海农区冬小麦||早春玉米/夏玉米、早春玉米/夏玉米及冬小麦-夏玉米3种集约种植制度的超高产生产特性。结果表明,冬小麦||早春玉米/夏玉米产量达20.52~21.79t/ha,间套行又可间套蔬菜生产,增产增效,但该模式时空集约性强,机械化操作难度相对较大;早春玉米/夏玉米产量可达18.24~18.39t/ha,同时该方式又可纳入春、秋两季蔬菜间套种植,具有粮菜结合,高产高效的特征;采用20+40模式种植冬小麦-玉米两熟,产量可达18.47~20.89t/ha。3种种植制度单位面积产量比黄淮海农区目前高产吨粮田(1t/666.7m2,15t/ha)增产21.63%~45.28%,初步实现了粮食进一步高产的新突破。

李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明 . 黄淮海双季玉米产量性能与资源效率的研究
作物学报, 2011,37(7):1229-1234.

DOI:10.3724/SP.J.1006.2011.01229URLMagsci [本文引用: 2]
冬小麦-夏玉米一直是黄淮海两熟区的主要种植模式,近年来由于气候变化,冬季冻害和干旱时有发生,为了充分发挥玉米C<sub>4</sub>作物高光效、高资源利用效率的特点,探索了双季玉米的新型种植模式。于2009年和2010年在河南新乡以冬小麦-夏玉米传统种植为对照,进行了双季籽粒玉米产量性能与资源效率测定,结果表明,双季玉米与传统冬小麦-夏玉米模式相比,周年产量略高,两年平均增幅2.3%;周年光、温生产效率平均增加26.1%和6.5%,周年经济效益显著增加,平均为1 628元 hm<sup>-2</sup>,还有140 d农田休闲期。说明双季玉米模式是光温生产效率高、经济效益好的高效和简化的种植模式,也是一种有利于土壤休闲和避开冬季冻害和干旱的生态安全的模式,该模式将成为黄淮海地区长期冬小麦/夏玉米模式的补充,也是冬小麦冬季受灾的一种补救技术。
LI L J, WANG M Y, XUE Q L, CUI Y H, HOU H P, GE J Z, ZHAO M . Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai river valleys region
Acta Agronomica Sinica, 2011,37(7):1229-1234. (in Chinese)

DOI:10.3724/SP.J.1006.2011.01229URLMagsci [本文引用: 2]
冬小麦-夏玉米一直是黄淮海两熟区的主要种植模式,近年来由于气候变化,冬季冻害和干旱时有发生,为了充分发挥玉米C<sub>4</sub>作物高光效、高资源利用效率的特点,探索了双季玉米的新型种植模式。于2009年和2010年在河南新乡以冬小麦-夏玉米传统种植为对照,进行了双季籽粒玉米产量性能与资源效率测定,结果表明,双季玉米与传统冬小麦-夏玉米模式相比,周年产量略高,两年平均增幅2.3%;周年光、温生产效率平均增加26.1%和6.5%,周年经济效益显著增加,平均为1 628元 hm<sup>-2</sup>,还有140 d农田休闲期。说明双季玉米模式是光温生产效率高、经济效益好的高效和简化的种植模式,也是一种有利于土壤休闲和避开冬季冻害和干旱的生态安全的模式,该模式将成为黄淮海地区长期冬小麦/夏玉米模式的补充,也是冬小麦冬季受灾的一种补救技术。

MENG Q F, SUN Q P, CHEN X P, CUI Z L, YUE S C, ZHANG F S, VOLKER R . Alternative cropping systems for sustainable water and nitrogen use in the North China Plain
Agriculture, Ecosystems and Environment, 2012,146(1):93-102.

DOI:10.1016/j.agee.2011.10.015URL [本文引用: 1]
Serious water deficits and excessive nitrogen (N) applications are threatening the sustainability of intensive agriculture in the North China Plain (NCP). This study examined the possibility of replacing the conventional system (Con.W/M) of winter wheat ( Triticum aestivum L.) and summer maize ( Zea mays L.), with an optimized double cropping system (Opt.W/M), a 2-year system (winter wheat/summer maize–spring maize, W/M–M), and a monoculture system (spring maize, M) based on optimal water and N management strategies. From 2004 to 2010, a long-term field experiment conducted in the NCP showed that although >70 mm of irrigation water can be saved with Opt.W/M compared with Con.W/M, annual net groundwater use under Opt.W/M was still 250 mm, 65–90% of which was consumed during the winter wheat season. When wheat production was decreased, 35% and 61% of irrigation water could be reduced in W/M–M and M compared to Con.W/M, respectively. As a result, annual groundwater use was decreased to 190 mm in W/M–M and 94 mm in M. Meanwhile, the N fertilizer rate was reduced 59% and 72% in W/M–M and M compared to Con.W/M, respectively. There were no significant differences in net economic returns between Con.W/M and W/M–M across the 6-year period. In the 6 years, no significant economic loss was observed between Con.W/M and M except in the 2008–2010 rotation. The W/M–M and M systems showed great potential to reduce water and N application and achieve groundwater use balance, and thus should be considered for economic and sustainable agricultural development in the NCP.

周宝元, 王志敏, 岳阳, 马玮, 赵明 . 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较
作物学报, 2015,41(9):1373-1385.

DOI:10.3724/SP.J.1006.2015.01393URL [本文引用: 4]
Optimizing traditional wheat-maize cropping and exploring new cropping system are essential for increasing annual yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain. The optimized winter wheat-summer maize cropping (T1) and double maize cropping (T2) were established in our field experiment conducted in Xinxiang from 2009 to 2012. The dry matter production, grain yield, and energy (light and temperature) use efficiency were investigated in the two cropping systems and compared with those in traditional cropping system (CK). In the two optimized cropping systems, the distributions of light and temperature between two cropping seasons were adjusted to 0.7:1.0 and 1.4:1.0 in T1 cropping system, and 1.5:1.0 and 1.0:1.0 in T2 cropping system, respectively, by changing the sowing and harvest dates. Under T1 condition, the annual yield increased by 7.8% over that of CK ( crop plays the key role in promoting the annual production capability in T1 and T2. The two optimized cropping systems (T1 and T2) may lighten the thoughts for adjusting production patterns to meet an increasing desire of high yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain.
ZHOU B Y, WANG Z M, YUE Y, MA W, ZHAO M . Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems
Acta Agronomica Sinica, 2015,41(9):1373-1385. (in Chinese)

DOI:10.3724/SP.J.1006.2015.01393URL [本文引用: 4]
Optimizing traditional wheat-maize cropping and exploring new cropping system are essential for increasing annual yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain. The optimized winter wheat-summer maize cropping (T1) and double maize cropping (T2) were established in our field experiment conducted in Xinxiang from 2009 to 2012. The dry matter production, grain yield, and energy (light and temperature) use efficiency were investigated in the two cropping systems and compared with those in traditional cropping system (CK). In the two optimized cropping systems, the distributions of light and temperature between two cropping seasons were adjusted to 0.7:1.0 and 1.4:1.0 in T1 cropping system, and 1.5:1.0 and 1.0:1.0 in T2 cropping system, respectively, by changing the sowing and harvest dates. Under T1 condition, the annual yield increased by 7.8% over that of CK ( crop plays the key role in promoting the annual production capability in T1 and T2. The two optimized cropping systems (T1 and T2) may lighten the thoughts for adjusting production patterns to meet an increasing desire of high yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain.

王树安 . 吨良田技术—小麦-夏玉米两茬平播亩产吨粮的理论与技术体系研究. 北京: 农业出版社, 1991.
[本文引用: 3]

WANG S A. Technology for Grain Production with a Yield of 15 Tons per Hectare. Theory and Technology with a High Yield Output of 15 Tons per Hectare in Winter Wheat and Summer Maize Double- Cropping System. Beijing: Agriculture Press, 1991. (in Chinese)
[本文引用: 3]

王树安 . 中国吨粮田建设. 北京: 北京农业大学出版社, 1994.
[本文引用: 3]

WANG S A. Construction of the Grain Field with a Yield of 15 Tons per Hectare in China . Beijing: Beijing Agricultural University Press, 1994. (in Chinese)
[本文引用: 3]

SUN H Y, ZHANG X Y, CHEN S Y, PEI D, LIU C M . Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain
Industrial Crops and Products, 2007,25(3):239-247.

DOI:10.1016/j.indcrop.2006.12.003URL [本文引用: 10]
Rotation of winter wheat ( Triticum aestivum L.) and summer maize ( Zea mays L.) is the prevailing double-cropping system in the North China Plain. Typically, winter wheat is planted at the beginning of October and harvested during early June. Maize is planted immediately after wheat and harvested around 25th of September. The growing season of maize is limited to about 100 110 days. How to rectify the sowing date of winter wheat and the harvest time of summer maize are two factors to achieve higher grain yield of the two crops. Three-year field experiments were carried out to compare the grain yield, evapotranspiration (ET), water use efficiency (WUE) and economic return under six combinations of the harvest time of summer maize and sowing date of winter wheat from 2002 to 2005. Yield of winter wheat was similar for treatments of sowing before 10th of October. Afterwards, yield of winter wheat was significantly reduced ( P < 0.05) by 0.5% each day delayed in sowing. The kernel weight of maize was significantly increased ( P < 0.05) by about 0.6% each day delayed from harvest before 5th of October. After 10th of October, kernel weight of maize was not significantly increased with the delay in harvest because of the lower temperature. The kernel weight of maize with thermal time was in a quadratic relationship. Total seasonal ET of winter wheat was reduced by 2.5 mm/day delayed in sowing and ET of maize was averagely increased by 2.0 mm/day delayed in harvest. The net income, benefit ost and net profit per millimetre of water used of harvest maize at the beginning of October and sowing winter wheat around 10th of October were greater compared with other treatments. Then the common practice of harvest maize and sowing winter wheat in the region could be delayed by 5 days correspondingly.

付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明 . 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究
作物学报, 2009,35(9):1708-1714.

DOI:10.3724/SP.J.1006.2009.01708URLMagsci [本文引用: 6]
<p><span >为了进一步明确黄淮平原冬小麦晚播、夏玉米晚收的</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;增产及资源高效的效应,</span><span >选用</span><span >2</span><span >个中熟冬小麦品种和</span><span >2</span><span >个中晚熟夏玉米品种,于</span><span >2006</span><span >&mdash;</span><span >2008</span><span >年先后在河南温县和焦作进行大田试验,研究作物群体物质生产、产量形成参数定量指标及光温资源的分配利用。结果表明,冬小麦晚播产量降低不明显,夏玉米晚收产量显著提高</span><span >747</span><span >~</span><span >2 700</span><span > kg hm<sup>-2</sup></span><span >,</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;</span><span >周年产量</span><span >21 891~22 507 kg hm<sup>-2</sup></span><span >,比对照提高</span><span >442~2 575 kg hm<sup>-2</sup></span><span >。冬小麦晚播平均叶面积指数、每平方米穗数和穗粒数降低,但平均净同化率、收获指数和粒重提高达</span><span >5%</span><span >显著水平;夏玉米晚收平均叶面积指数、收获指数、生育期天数和粒重均显著提高。</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;</span><span >栽培优化了周年资源分配,提高生育期与光、温资源变化的吻合度,其生产效率分别提高</span><span >2.22%~10.86%</span><span >和</span><span >0.47%</span><span >~11.56%</span><span >。小麦和玉米品种的遗传类型是影响&ldquo;双晚&rdquo;栽培技术的关键。因此,选用小麦晚播早熟高产和玉米长生育期晚熟品种,通过有效调节资源配置,将小麦冗余的光温资源分配给</span><span >C<sub>4</sub></span><span >高光效作物玉米,是提高周年高产高效的重要途径。</span></p>
FU X L, ZHANG H, JIA J Z, DU L F, FU J D, ZHAO M . Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system
Acta Agronomica Sinica, 2009,35(9):1708-1714. (in Chinese)

DOI:10.3724/SP.J.1006.2009.01708URLMagsci [本文引用: 6]
<p><span >为了进一步明确黄淮平原冬小麦晚播、夏玉米晚收的</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;增产及资源高效的效应,</span><span >选用</span><span >2</span><span >个中熟冬小麦品种和</span><span >2</span><span >个中晚熟夏玉米品种,于</span><span >2006</span><span >&mdash;</span><span >2008</span><span >年先后在河南温县和焦作进行大田试验,研究作物群体物质生产、产量形成参数定量指标及光温资源的分配利用。结果表明,冬小麦晚播产量降低不明显,夏玉米晚收产量显著提高</span><span >747</span><span >~</span><span >2 700</span><span > kg hm<sup>-2</sup></span><span >,</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;</span><span >周年产量</span><span >21 891~22 507 kg hm<sup>-2</sup></span><span >,比对照提高</span><span >442~2 575 kg hm<sup>-2</sup></span><span >。冬小麦晚播平均叶面积指数、每平方米穗数和穗粒数降低,但平均净同化率、收获指数和粒重提高达</span><span >5%</span><span >显著水平;夏玉米晚收平均叶面积指数、收获指数、生育期天数和粒重均显著提高。</span><span >&ldquo;</span><span >双晚</span><span >&rdquo;</span><span >栽培优化了周年资源分配,提高生育期与光、温资源变化的吻合度,其生产效率分别提高</span><span >2.22%~10.86%</span><span >和</span><span >0.47%</span><span >~11.56%</span><span >。小麦和玉米品种的遗传类型是影响&ldquo;双晚&rdquo;栽培技术的关键。因此,选用小麦晚播早熟高产和玉米长生育期晚熟品种,通过有效调节资源配置,将小麦冗余的光温资源分配给</span><span >C<sub>4</sub></span><span >高光效作物玉米,是提高周年高产高效的重要途径。</span></p>

王志敏, 王璞, 兰林旺, 周殿玺 . 黄淮海地区优质小麦节水高产栽培研究
中国农学通报, 2003,19(4):22-43

DOI:10.3969/j.issn.1000-6850.2003.04.007URLMagsci [本文引用: 1]
黄淮海地区优质小麦生产必须走节水高产之路。分析了节水与优质、高产的关系,并提出了优质小麦节水高产栽培技术体系
WANG Z M, WANG P, LAN L W, ZHOU D X . A water-saving and high-yielding cultivation system for bread wheat in Huang-Huai-Hai area of China
Chinese Agricultural Science Bulletin, 2003,19(4):22-43. (in Chinese)

DOI:10.3969/j.issn.1000-6850.2003.04.007URLMagsci [本文引用: 1]
黄淮海地区优质小麦生产必须走节水高产之路。分析了节水与优质、高产的关系,并提出了优质小麦节水高产栽培技术体系

ZHANG X Y, PEI D, HU C S . Conserving groundwater for irrigation in the North China Plain
Irrigation Science, 2003, 21,11(4) 159-166.

DOI:10.1007/s00271-002-0059-xURL [本文引用: 2]
Winter wheat and summer maize are the staple crops in the piedmont of Mt. Taihang in the North China Plain. High levels of production depend largely on the use of irrigation. However, irrigation is causing a rapid decline of the groundwater table. To assure sustainable agricultural development in this densely populated region, improvement is needed in farmland water-use efficiency (WUE) to reduce the overall application of irrigation water. This paper investigated two ways to improve WUE, which could be easily implemented by local farmers. One way was to regulate the irrigation scheduling of winter wheat. The other was to utilize straw mulching with winter wheat and maize to reduce soil evaporation. Field experimental results, carried out at Luancheng Station from 1997 to 2000, showed that the common practice of irrigating winter wheat four times each season did not produce as high a yield as three irrigations in a dry year, or one irrigation in a wet year. The latter produced the highest grain production and highest relative WUE. Measurements of evapotranspiration and soil evaporation using a large-scale weighing lysimeter and microlysimeters showed that about 30% of the total evapotranspiration was from soil evaporation. Straw mulching reduced soil evaporation by 40 mm for winter wheat and 43 mm for maize in the 1998/1999 seasons. WUE was improved by over 10%. The combination of these two measures could reduce irrigation applications in the region.

SUN H Y, SHEN Y J, YU Q, FLERCHINGER G N, ZHANG Y Q, LIU C M, ZHANG X Y . Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain
Agricultural Water Management, 2010,97(8):1139-1145.

DOI:10.1016/j.agwat.2009.06.004URL [本文引用: 1]
Limited precipitation restricts crop yield in the North China Plain, where high level of production depends largely on irrigation. Establishing the optimal irrigation scheduling according to the crop water requirement (CWR) and precipitation is the key factor to achieve rational water use. Precipitation data collected for about 40 years were employed to analyze the long-term trend, and weather data from 1984 to 2005 were used to estimate the CWR and irrigation water requirements (IWR). Field experiments were performed at the Luancheng Station from 1997 to 2005 to calculate the soil water consumption and water use efficiency (WUE). The results showed the CWR for winter wheat and summer maize were similar and about 430 mm, while the IWR ranged from 247 to 370 mm and 0 to 336 mm at the 25% and 75% precipitation exceedance probabilities for winter wheat and summer maize, respectively. The irrigation applied varied in the different rainfall years and the optimal irrigation amount was about 186, 161 and 99 mm for winter wheat and 134, 88 and 0 mm for summer maize in the dry, normal and wet seasons, respectively. However, as precipitation reduces over time especially during the maize growing periods, development of water-saving management practices for sustainable agriculture into the future is imperative.

FOSTER S, GARDUNO H, EVANS R, OLSON D, TIAN Y, ZHANG W Z, HAN Z S . Quaternary aquifer of the North China Plain- assessing and achieving groundwater resource sustainability
Hydrogeology Journal, 2004,12(9):81-93.

DOI:10.1007/s10040-003-0300-6URL [本文引用: 2]
The Quaternary Aquifer of the North China Plain is one of the world’s largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 2502years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability.

HU C S, DELGADO J A, ZHANG X Y, MA L . Assessment of groundwater use by wheat (Triticum aestivum L.) in the Luancheng Xian region and potential implications for water conservation in the northwestern North China Plain
Journal Soil Water Conservation, 2005,60(2):80-88.

[本文引用: 2]

张光辉, 费宇红, 刘克岩, 王金哲 . 华北平原农田区地下水开采量对降水变化响应
水科学进展, 2006,17(1):43-48.

DOI:10.3321/j.issn:1001-6791.2006.01.007Magsci [本文引用: 2]
通过区域农业开采量、区域平均年末浅层地下水位对区域年降水量变化的响应特征研究,结果表明:区域农业开采量与年降水量之间存在两极互逆效应,即在枯水年份,作物需耗水量和区域农业开采量增大;在丰水年份,作物需耗水量和区域农业开采量减小。上述规律,突现了在连续枯水年份地下水对农业安全保障的特殊作用。由此,提出了农业开采量的利用水平、合理性和节水潜力以及预测的新的评价方法。
ZHANG G H, FEI Y H, LIU K Y, WANG J Z . Regional groundwater pumpage for agriculture responding to precipitation in North China Plain
Advances in Water Science, 2006,17(1):43-48. (in Chinese)

DOI:10.3321/j.issn:1001-6791.2006.01.007Magsci [本文引用: 2]
通过区域农业开采量、区域平均年末浅层地下水位对区域年降水量变化的响应特征研究,结果表明:区域农业开采量与年降水量之间存在两极互逆效应,即在枯水年份,作物需耗水量和区域农业开采量增大;在丰水年份,作物需耗水量和区域农业开采量减小。上述规律,突现了在连续枯水年份地下水对农业安全保障的特殊作用。由此,提出了农业开采量的利用水平、合理性和节水潜力以及预测的新的评价方法。

柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系
中国农业科学, 2017,50(11):2036-2043.

DOI:10.3864/j.issn.0578-1752.2017.11.009URL [本文引用: 4]
【目的】机械粒收技术是现代玉米生产的关键技术,是国内外玉米收获技术发展的方向和中国玉米生产转方式的关键。明确当前中国玉米机械粒收质量的现状,研究影响收获质量的主要因素,推动玉米机械粒收技术发展。【方法】利用2011—2015年在西北、黄淮海和东北和华北玉米产区15个省(市)168个地块获得的1 698组收获质量样本数据,分析当前中国玉米机械粒收质量的现状及其影响因素。【结果】结果表明,籽粒破碎率平均为8.63%,杂质率为1.27%,田间损失籽粒(落穗、落粒合计)为24.71 g·m~(-2),折合每亩损失16.5 kg,平均损失率为4.12%,破碎率高是当前中国玉米机械粒收存在的主要质量问题。收获玉米籽粒平均含水率为26.83%,含水率与破碎率、杂质率及机收损失率之间均呈极显著正相关。其中,破碎率(y)与籽粒含水率(x)符合二次多项式y=0.0372x~2-1.483x+20.422(R~2=0.452**,n=1 698),在一定含水率范围内(含水率大于19.9%),破碎率随籽粒含水率增大而增大。【结论】当前中国玉米机械粒收时破碎率偏高,而籽粒含水率高是导致破碎率高的主要原因。对此,建议选育适当早熟、成熟期籽粒含水率低、脱水速度快的品种,适时收获,配套烘干存贮设施等作为中国各玉米产区实现机械粒收的关键技术措施。
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content
Scientia Agricultura Sinica, 2017,50(11):2036-2043. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2017.11.009URL [本文引用: 4]
【目的】机械粒收技术是现代玉米生产的关键技术,是国内外玉米收获技术发展的方向和中国玉米生产转方式的关键。明确当前中国玉米机械粒收质量的现状,研究影响收获质量的主要因素,推动玉米机械粒收技术发展。【方法】利用2011—2015年在西北、黄淮海和东北和华北玉米产区15个省(市)168个地块获得的1 698组收获质量样本数据,分析当前中国玉米机械粒收质量的现状及其影响因素。【结果】结果表明,籽粒破碎率平均为8.63%,杂质率为1.27%,田间损失籽粒(落穗、落粒合计)为24.71 g·m~(-2),折合每亩损失16.5 kg,平均损失率为4.12%,破碎率高是当前中国玉米机械粒收存在的主要质量问题。收获玉米籽粒平均含水率为26.83%,含水率与破碎率、杂质率及机收损失率之间均呈极显著正相关。其中,破碎率(y)与籽粒含水率(x)符合二次多项式y=0.0372x~2-1.483x+20.422(R~2=0.452**,n=1 698),在一定含水率范围内(含水率大于19.9%),破碎率随籽粒含水率增大而增大。【结论】当前中国玉米机械粒收时破碎率偏高,而籽粒含水率高是导致破碎率高的主要原因。对此,建议选育适当早熟、成熟期籽粒含水率低、脱水速度快的品种,适时收获,配套烘干存贮设施等作为中国各玉米产区实现机械粒收的关键技术措施。

李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆 . 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化
中国农业科学, 2017,50(11):2052-2060.

DOI:10.3864/j.issn.0578-1752.2017.11.011URL [本文引用: 3]
【目的】黄淮海夏播玉米区收获期偏早、籽粒含水率普遍偏高,制约了机械粒收的收获质量,延期收获能够降低收获期籽粒含水率,但是该过程是否因籽粒重量下降造成产量损失尚不明确。本文开展玉米生理成熟后田间站秆脱水期间籽粒含水率与粒重变化情况研究,为机械粒收技术的推广应用提供依据。【方法】本研究于2015年和2016年在河南新乡中国农业科学院综合试验站进行,选择22个当前主要种植品种为供试材料,采取统一授粉,连续测定籽粒重量与籽粒含水率变化。其中,2015年授粉后26 d开始测定,生理成熟后26—52 d结束;2016年授粉后11 d开始测定,生理成熟后16—35 d结束。分析生理成熟后田间脱水期间籽粒含水率与粒重变化。【结果】22个参试品种生理成熟期百粒干重为23.3—37.4 g,平均为30.8 g;籽粒含水率为21.5%—33.1%,平均为27.5%。22个品种生理成熟后分别经过16—52 d田间站秆晾晒后,百粒干重为22.9—38.4 g,平均为32.0 g;籽粒含水率为12.9%—24.4%,平均为17.3%。生理成熟前籽粒重量随着授粉后天数增加而逐渐增加,不同测试时期之间存在显著差异;生理成熟后随着田间站秆时间延长,籽粒含水率变化呈极显著下降趋势,而籽粒重量未表现出显著变化,不同熟期品种和不同年份结果表现一致;生理成熟后籽粒重量与籽粒含水率之间不存在显著相关关系。【结论】黄淮海夏玉米生理成熟后田间站秆晾晒脱水期间,籽粒含水率显著下降,而籽粒重量并未发生显著变化,延期收获降低了籽粒含水率,并且不会因粒重下降造成产量损失。
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K . Corn kernel weight and moisture content after physiological maturity in field
Scientia Agricultura Sinica, 2017,50(11):2052-2060. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2017.11.011URL [本文引用: 3]
【目的】黄淮海夏播玉米区收获期偏早、籽粒含水率普遍偏高,制约了机械粒收的收获质量,延期收获能够降低收获期籽粒含水率,但是该过程是否因籽粒重量下降造成产量损失尚不明确。本文开展玉米生理成熟后田间站秆脱水期间籽粒含水率与粒重变化情况研究,为机械粒收技术的推广应用提供依据。【方法】本研究于2015年和2016年在河南新乡中国农业科学院综合试验站进行,选择22个当前主要种植品种为供试材料,采取统一授粉,连续测定籽粒重量与籽粒含水率变化。其中,2015年授粉后26 d开始测定,生理成熟后26—52 d结束;2016年授粉后11 d开始测定,生理成熟后16—35 d结束。分析生理成熟后田间脱水期间籽粒含水率与粒重变化。【结果】22个参试品种生理成熟期百粒干重为23.3—37.4 g,平均为30.8 g;籽粒含水率为21.5%—33.1%,平均为27.5%。22个品种生理成熟后分别经过16—52 d田间站秆晾晒后,百粒干重为22.9—38.4 g,平均为32.0 g;籽粒含水率为12.9%—24.4%,平均为17.3%。生理成熟前籽粒重量随着授粉后天数增加而逐渐增加,不同测试时期之间存在显著差异;生理成熟后随着田间站秆时间延长,籽粒含水率变化呈极显著下降趋势,而籽粒重量未表现出显著变化,不同熟期品种和不同年份结果表现一致;生理成熟后籽粒重量与籽粒含水率之间不存在显著相关关系。【结论】黄淮海夏玉米生理成熟后田间站秆晾晒脱水期间,籽粒含水率显著下降,而籽粒重量并未发生显著变化,延期收获降低了籽粒含水率,并且不会因粒重下降造成产量损失。

WANG J, WANG E L, YANG X G, ZHANG F S, YIN H . Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation
Climatic Change, 2012,113(3/4):825-840.

DOI:10.1007/s10584-011-0385-1URL [本文引用: 2]
AbstractIn the North China Plain, the grain yield of irrigated wheat-maize cropping system has been steadily increasing in the past decades under a significant warming climate. This paper combined regional and field data with modeling to analyze the changes in the climate in the last 40 years, and to investigate the influence of changes in crop varieties and management options to crop yield. In particular, we examined the impact of a planned adaptation strategy to climate change -“Double-Delay” technology, i.e., delay both the sowing time of wheat and the harvesting time of maize, on both wheat and maize yield. The results show that improved crop varieties and management options not only compensated some negative impact of reduced crop growth period on crop yield due to the increase in temperature, they have contributed significantly to crop yield increase. The increase in temperature before over-wintering stage enabled late sowing of winter wheat and late harvesting of maize, leading to overall 4–6% increase in total grain yield of the wheat-maize system. Increased use of farming machines and minimum tillage technology also shortened the time for field preparation from harvest time of summer maize to sowing time of winter wheat, which facilitated the later harvest of summer maize.

刘志娟, 杨晓光, 王文峰 . 气候变化背景下中国农业气候资源变化Ⅳ. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征
应用生态学报, 2011,22(4):905-912.

URLMagsci [本文引用: 3]
<p>基于中国黄淮海平原半湿润暖温麦-玉两熟灌溉农区66个气象台站1961&mdash;2007年的气候资料,比较分析了该区域内1961&mdash;1980年和1981&mdash;2007年2个时段喜凉作物和喜温作物温度生长期长度以及温度生长期内的活动积温、日照时数、降水量、参考作物蒸散量和干燥度等农业气候资源的时空变化特征.结果表明: 随着气候变暖,与1961&mdash;1980年的平均状况相比,1981&mdash;2007年研究区域喜凉作物和喜温作物温度生长期均呈延长趋势,分别延长了7.4和6.9 d;&ge;0 ℃和&ge;10 ℃积温总体表现为增加趋势,其气候倾向率分别为4.0~137.0和1.0~142.0 ℃&middot;d&middot;(10 a)<sup>-1</sup>;喜凉作物和喜温作物温度生长期日照时数均呈显著下降趋势;全区仅安徽省北部和河南省东南部喜凉作物和喜温作物温度生长期内降水量呈增加趋势,其他地区均呈减少趋势,且以河北省、山东省北部的减幅最明显;全区大部分区域喜凉作物和喜温作物温度生长期内参考作物蒸散量呈下降趋势,干燥度呈增加趋势.</p>
LIU Z J, YANG X G, WANG W F . Changes of China agricultural climate resources under the background of climate change. Ⅳ.Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain
Chinese Journal of Applied Ecology, 2011, 22(4):905-912. (in Chinese)

URLMagsci [本文引用: 3]
<p>基于中国黄淮海平原半湿润暖温麦-玉两熟灌溉农区66个气象台站1961&mdash;2007年的气候资料,比较分析了该区域内1961&mdash;1980年和1981&mdash;2007年2个时段喜凉作物和喜温作物温度生长期长度以及温度生长期内的活动积温、日照时数、降水量、参考作物蒸散量和干燥度等农业气候资源的时空变化特征.结果表明: 随着气候变暖,与1961&mdash;1980年的平均状况相比,1981&mdash;2007年研究区域喜凉作物和喜温作物温度生长期均呈延长趋势,分别延长了7.4和6.9 d;&ge;0 ℃和&ge;10 ℃积温总体表现为增加趋势,其气候倾向率分别为4.0~137.0和1.0~142.0 ℃&middot;d&middot;(10 a)<sup>-1</sup>;喜凉作物和喜温作物温度生长期日照时数均呈显著下降趋势;全区仅安徽省北部和河南省东南部喜凉作物和喜温作物温度生长期内降水量呈增加趋势,其他地区均呈减少趋势,且以河北省、山东省北部的减幅最明显;全区大部分区域喜凉作物和喜温作物温度生长期内参考作物蒸散量呈下降趋势,干燥度呈增加趋势.</p>

BORRAS L, GAMBIN B L . Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach
Field Crops Research, 2010,118(1):1-12.

DOI:10.1016/j.fcr.2010.04.010URL [本文引用: 1]
Maize ( Zea mays L.) yield is a function of the number harvested kernels per unit land area and the individual kernel weight (KW). Kernel weight and its development show a wide variability due to the genotype, the environment, the crop management, and all possible interactions. Commercial maize hybrids differ markedly in the patterns (rate and duration of kernel growth) behind differences in final KW. The same can be observed when public or elite proprietary maize inbred lines are analyzed. To progress in our understanding of KW variability, we reviewed and discussed current knowledge for analyzing kernel growth as an integrated system, modulated by processes linking different levels of organization (the different kernel tissues, the whole kernel, the plant, the canopy). Ideas on how to integrate this knowledge towards the development of a multi-hierarchical scale framework for predicting KW under different growth environments are currently needed, as they have high relevance for dissecting the genetic basis of kernel growth and maize yield definition at the canopy level. At the kernel and tissue level, we highlight the need of focusing and studying traits like assimilate movement into developing kernels, endosperm cell division, endosperm cell death, kernel internal homeostasis and kernel water relations. These specific processes need to be connected affecting the rate or duration of grain filling at the whole kernel level for studying kernel size variability. At the plant and canopy levels, the dynamic response of both kernel number and potential KW to plant growth around flowering appears critical for understanding KW variations, as maize final KW is highly associated with the potential KW determined during the first stages of grain filling. Focusing on the period around flowering in this species is important for yield improvement through both yield components, kernel number and size. At present it seems that maize potential yield can only be improved by modifying the sink capacity established at the end of the lag phase and increasing the source strength during grain filling so as to fulfill this potential.

CAIRNS J E, SONDER K, ZAIDI P H, VERHULST N, MAHUKU G, BABU R, NAIR S K, DAS B, GOVAERTS B, VINAYAN M T, RASHID Z, NOOR J J, DEVI P, SAN VICENTE F M, PRASANNA B M . Maize production in a changing climate: Impacts, adaptation, and mitigation strategies//SPARKS D. Advances in Agronomy. Burlington: Academic Press, 2012,114:1-58.
[本文引用: 1]

杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960—2000 年黄河流域太阳总辐射气候变化规律研究
应用气象学报, 2005,16(2):243-248.

DOI:10.11898/1001-7313.20050213URL [本文引用: 1]
A series of global solar radiation models of different temporal and spatial scales were developed using the technique of data integration. The accuracy of different models was analyzed thoroughly. The empirical coefficients of monthly single station models, belonging to 35 solar observation stations distributed within and surround the Yellow River Basin, were extended spatially by Inverse Distance Weight Interpolation Method. By virtue of the spatial distribution of coefficients for global solar radiation simulation as well as the relative sunshine duration data observed from 164 convention meteorological stations, the global solar radiation of the Yellow River Basin from 1960 to 2000 were estimated and their climatic change tendency were analyzed in detail. The results show that the global solar radiation is significantly decreased, especially in the seasons of summer and winter.
YANG X M, ZENG Y, QIU X F, JIANG A J . The climatic change of global solar radiation over the Yellow River basin during 1960-2000
Journal of Applied Meteorological Science, 2005,16(2):243-248. (in Chinese)

DOI:10.11898/1001-7313.20050213URL [本文引用: 1]
A series of global solar radiation models of different temporal and spatial scales were developed using the technique of data integration. The accuracy of different models was analyzed thoroughly. The empirical coefficients of monthly single station models, belonging to 35 solar observation stations distributed within and surround the Yellow River Basin, were extended spatially by Inverse Distance Weight Interpolation Method. By virtue of the spatial distribution of coefficients for global solar radiation simulation as well as the relative sunshine duration data observed from 164 convention meteorological stations, the global solar radiation of the Yellow River Basin from 1960 to 2000 were estimated and their climatic change tendency were analyzed in detail. The results show that the global solar radiation is significantly decreased, especially in the seasons of summer and winter.

郑海霞, 封志明, 游松财 . 基于GIS的甘肃省农业生产潜力研究
地理科学进展, 2003,22(4):400-408.

DOI:10.11820/dlkxjz.2003.04.008URLMagsci [本文引用: 1]
在气象数据库、属性数据库和GIS支持下,采用机制法对作物生产潜力模型进行了光、温、水、土逐级订正,得到了甘肃省的光合、光温、降水、水资源及土地的生产潜力,其结果很好的反映了甘肃省农业生产和农业资源分布的空间格局,各级订正的有效系数进一步揭示了各种资源因子对农业生产的限制程度。
ZHENG H X, FENG Z M, YOU S C . A study on potential land productivity based on GIS technology in Gansu province
Progress in Geography, 2003,22(4):400-408. (in Chinese)

DOI:10.11820/dlkxjz.2003.04.008URLMagsci [本文引用: 1]
在气象数据库、属性数据库和GIS支持下,采用机制法对作物生产潜力模型进行了光、温、水、土逐级订正,得到了甘肃省的光合、光温、降水、水资源及土地的生产潜力,其结果很好的反映了甘肃省农业生产和农业资源分布的空间格局,各级订正的有效系数进一步揭示了各种资源因子对农业生产的限制程度。

BERGAMASCHI H, WHEELER T R, CHALLINOR A J, COMIRAN F, HECKLER B M M . Maize yield and rainfall on different spatial and temporal scales in Southern Brazil
Pesquisa Agricultural Brasil, 2007,42:603-613.

DOI:10.1590/S0100-204X2007000500001URL [本文引用: 1]

RATTALINO EDREIRA J I, BUDAKLI CARPICI E, SAMMARRO D, OTEGUI M E . Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids
Field Crops Research, 2011,123(2):62-73.

DOI:10.1016/j.fcr.2011.04.015URL
Final kernel number in the uppermost ear of temperate maize ( Zea mays L.) hybrids is smaller than the potential represented by the number of florets differentiated in this ear, and than the number of silks exposed from it (i.e., kernel set <1). This trend increases when stressful conditions affect plant growth immediately before (GS 1) or during (GS 2) silking, but the magnitude of change has not been documented for heat stress effects and hybrids of tropical background. In this work we evaluated mentioned traits in field experiments (Exp 1 and Exp 2), including (i) two temperature regimes, control and heated during daytime hours (ca. 33–40 °C at ear level), (ii) two 15-d periods during GS 1 and GS 2, and (iii) three hybrids (Te: temperate; Tr: tropical; TeTr: Te × Tr). We also measured crop anthesis and silking dynamics, silk exposure of individual plants, and the anthesis–silking interval (ASI). Three sources of kernel loss were identified: decreased floret differentiation, pollination failure, and kernel abortion. Heating affected all surveyed traits, but negative effects on flowering dynamics were larger (i) for anthesis than for silking with the concomitant decrease in ASI, and (ii) for GS 1 than for GS 2. Heat also caused a decrease in the number of (i) florets only when performed during GS 1 (6115.5% in Exp 1 and 619.1% in Exp 2), and only among Te and TeTr hybrids, (ii) exposed silks of all GS × Hybrid combinations, and (iii) harvestable kernels (mean of 6151.8% in GS 1 and 6174.5% in GS 2). Kernel abortion explained 95% of the variation in final kernel numbers ( P < 0.001), and negative heat effects were larger on this loss (38.6%) than on other losses (≤11.3%). The tropical genetic background conferred an enhanced capacity for enduring most negative effects of heating.

ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M . Maize grain yield and dry matter production responses to variations in weather conditions
Agronomy Journal, 2016,108(1):196-204.

DOI:10.2134/agronj2015.0196URL [本文引用: 1]
Variations in weather conditions could alter maize (Zea mays L.) growth and development. This study was conducted to determine the eco-physiological determinants of variations in maize yield with weather conditions, and the relationship between grain yield, dry matter production, and climatic factors. Eight sowing dates were set at 15- to 20-d intervals from mid-March to mid-July during 2012 and 2013 in the Huang-Huai-Hai region of China. When the sowing date was delayed, the yield increased initially and later declined, and the greatest yield was obtained at 12 June (SD6) sowing date for both years. The increased yield for SD6 was mainly attributed to the 1000-kernel weight and post-silking dry matter production, which were mainly influenced by the post-silking plant growth rate. Variations in temperature and radiation were the primary factors that infl uenced the post-silking dry matter production of maize, and eventually influenced grain yield. High temperatures (daily maximum temperature [Tmax] > 28.1 C) during postsilking under early sowing conditions and low temperatures (daily minimum temperature [Tmin] < 17.7 C) under late sowing conditions combined with low radiation (accumulated radiation [Ra] < 1 005.4 MJ m2) decreased the post-silking plant growth rate, thereby decreasing the dry matter production and grain yield. Therefore, when the sowing was done from 25 May to 27 June, the relatively higher maize yield would be obtained. We conclude that variations in weather conditions (temperature and radiation) from silking to maturity significantly affect the plant growth rate of maize, influence post-silking dry matter production, and grain yield.

LIU Y, WANG E L, YANG X G, WANG J . Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s
Global Change Biology, 2010,16(8):2287-2299.

DOI:10.1111/j.1365-2486.2009.02077.xURL [本文引用: 1]
The North China Plain (NCP) is the most important agricultural production area in China. Crop production in the NCP is sensitive to changes in both climate and management practices. While previous studies showed a negative impact of climatic change on crop yield since 1980s, the confounding effects of climatic and agronomic factors have not been separately investigated. This paper used 25 years of crop data from three locations (Nanyang, Zhengzhou and Luancheng) across the NCP, together with daily weather data and crop modeling, to analyse the contribution of changes in climatic and agronomic factors to changes in grain yields of wheat and maize. The results showed that the changes in climate were not uniform across the NCP and during different crop growth stages. Warming mainly occurred during the vegetative (preflowering) growth stage of wheat and maize, while there was a cooling trend or no significant change in temperatures during the postflowering stage of wheat (spring) or maize (autumn). If varietal effects were excluded, warming during vegetative stages would lead to a reduction in the length of the growing period for both crops, generally leading to a negative impact on crop production. However, autonomous adoption of new crop varieties in the NCP was able to compensate the negative impact of climatic change. For both wheat and maize, the varietal changes helped stabilize the length of preflowering period against the shortening effect of warming and, together with the slightly reduced temperature in the postflowering period, extend the length of the grain-filling period. The combined effect led to increased wheat yield at Zhengzhou and Luancheng; increased maize yield at Nanyang and Luancheng; stabilized wheat yield at Nanyang, and a slight reduction in maize yield at Zhengzhou, compared with the yield change caused entirely by climatic change.

高海涛, 王育红, 孟战赢, 席玲玲, 段国辉, 温红霞 . 小麦-玉米双晚种植对周年产量和资源利用的影响
麦类作物学报, 2012,32(6):1102-1106.

DOI:10.7606/j.issn.1009-1041.2012.06.016URLMagsci [本文引用: 1]
为了了解黄淮海地区冬小麦晚播、夏玉米晚收“双晚”种植模式的增产效应,选用 3 个半冬性冬小麦品种和3个中晚熟夏玉米品种为材料,研究了冬小麦播期、夏玉米收获期对周年产量及水温资源分配利用的影响。结果表明,适期晚播冬小麦增产0.98%~8.17%,晚收夏玉米产量提高1 050.2~1 459.4 kg·hm<sup>-2</sup>,“双晚”种植模式周年最高产量达 19 409.6 kg·hm <sup>-2</sup>,增幅16.64%。冬小麦适期晚播使降水生产效率和积温生产效率分别提高7.06%~14.68%和5.95%~13.49%,夏玉米晚收分别提高1.22%~4.44%和2.48%~5.50%。 说明“双晚”种植模式能有效利用水、温资源,起到增产作用。
GAO H T, WANG Y H, MENG Z Y, XI L L, DUAN G H, WEN H X . Effects of later sowing of winter wheat and later harvest of summer maize cropping system on yield and resources use efficiency of whole-year
Journal of Triticeae Crops, 2012,32(6):1102-1106. (in Chinese)

DOI:10.7606/j.issn.1009-1041.2012.06.016URLMagsci [本文引用: 1]
为了了解黄淮海地区冬小麦晚播、夏玉米晚收“双晚”种植模式的增产效应,选用 3 个半冬性冬小麦品种和3个中晚熟夏玉米品种为材料,研究了冬小麦播期、夏玉米收获期对周年产量及水温资源分配利用的影响。结果表明,适期晚播冬小麦增产0.98%~8.17%,晚收夏玉米产量提高1 050.2~1 459.4 kg·hm<sup>-2</sup>,“双晚”种植模式周年最高产量达 19 409.6 kg·hm <sup>-2</sup>,增幅16.64%。冬小麦适期晚播使降水生产效率和积温生产效率分别提高7.06%~14.68%和5.95%~13.49%,夏玉米晚收分别提高1.22%~4.44%和2.48%~5.50%。 说明“双晚”种植模式能有效利用水、温资源,起到增产作用。

裴雪霞, 王娇爱, 党建友, 张定一 . 播期对优质小麦籽粒灌浆特性及旗叶光合特性的影响
中国生态农业学报, 2008,16(1):121-128.

URLMagsci [本文引用: 1]
采用裂区设计,研究了播期对强筋小麦"临优145"和中筋小麦"临优2018"籽粒灌浆进程中粒重、蛋白质含量、籽粒产量、蛋白质产量、旗叶叶绿素相对含量及净光合速率的影响,并探明了它们间的相关性.结果表明:不同播期下优质小麦灌浆进程及蛋白质含量符合一元三次方程,分别呈"慢 -快 -慢"的"S"型和"高 -低 - 高"的"V"型变化;开花后23 d蛋白质含量最低;蛋白质产量随灌浆进程呈持续上升趋势.随播期推迟,优质小麦最大粒重、最大灌浆速率、平均灌浆速率及起始生长势提高,灌浆持续期和有效灌浆持续期延长,旗叶叶面积、叶绿素相对含量和净光合速率提高,产量呈先升高后降低趋势,并以10月9日最高.相关性分析表明,灌浆速率与千粒重极显著正相关,"临优145"有效灌浆持续期与千粒重显著正相关,"临优2018"有效灌浆持续期与千粒重间相关性不显著.
PEI X X, WANG J A, DANG J Y, ZHANG D Y . Characteristics of grain filling and flag leaf photosynthesis of high quality wheat under different planting dates
Chinese Journal of Eco-Agriculture, 2008,16(1):121-128. (in Chinese)

URLMagsci [本文引用: 1]
采用裂区设计,研究了播期对强筋小麦"临优145"和中筋小麦"临优2018"籽粒灌浆进程中粒重、蛋白质含量、籽粒产量、蛋白质产量、旗叶叶绿素相对含量及净光合速率的影响,并探明了它们间的相关性.结果表明:不同播期下优质小麦灌浆进程及蛋白质含量符合一元三次方程,分别呈"慢 -快 -慢"的"S"型和"高 -低 - 高"的"V"型变化;开花后23 d蛋白质含量最低;蛋白质产量随灌浆进程呈持续上升趋势.随播期推迟,优质小麦最大粒重、最大灌浆速率、平均灌浆速率及起始生长势提高,灌浆持续期和有效灌浆持续期延长,旗叶叶面积、叶绿素相对含量和净光合速率提高,产量呈先升高后降低趋势,并以10月9日最高.相关性分析表明,灌浆速率与千粒重极显著正相关,"临优145"有效灌浆持续期与千粒重显著正相关,"临优2018"有效灌浆持续期与千粒重间相关性不显著.

张甲元, 周苏玫, 尹钧, 刘万代, 李巧云, 石珊珊, 年力 . 适期晚播对弱春性小麦籽粒灌浆期光合性能的影响
麦类作物学报, 2011,31(3) : 535-539.

DOI:10.7606/j.issn.1009-1041.2011.03.027URLMagsci [本文引用: 1]
为了解适期晚播对小麦生育后期光合性能的影响,以弱春性小麦强筋品种郑麦9023、中筋品种偃展4110和弱筋品种豫麦50为材料,研究了不同播期(旱播10月17日、适播10月24日、晚播10月31日)下小麦灌浆期旗叶的光合性能和产量特征。结果表明,郑麦9023晚播的籽粒产量比适播低8.26%,比早播高4.68%;偃展4110和豫麦50晩播籽粒产量分别比适播和早播平均高14.38%和18.55%。灌浆期各品种的叶面积指数晚播与适播处理差异不大,但均明显高于早播,平均高出12.7%;郑麦9023和偃展4110旗叶叶绿素含量晩播高于适播和早播,尤其花后14 d后差异达显著水平;旗叶净光合速率晚播处理中郑麦9023一直较高,偃展4110在花后21 d后明显高于适播和早播,豫麦50花后0~7 d较高。3个品种的灌浆速率晩播处理也占明显的优势。因此,适期晩播能维持弱春性小麦品种灌浆期较好的光合性能,获得较高的籽粒产量。
ZHANG J Y, ZHOU S M, YIN J, LIU W D, LI Q Y, SHI S S, NIAN L . Effect of suitable late sowing on photosynthetic performance of weak spring wheat during grain filling stage
Journal of Triticeae Crops, 2011,31(3):535-539. (in Chinese)

DOI:10.7606/j.issn.1009-1041.2011.03.027URLMagsci [本文引用: 1]
为了解适期晚播对小麦生育后期光合性能的影响,以弱春性小麦强筋品种郑麦9023、中筋品种偃展4110和弱筋品种豫麦50为材料,研究了不同播期(旱播10月17日、适播10月24日、晚播10月31日)下小麦灌浆期旗叶的光合性能和产量特征。结果表明,郑麦9023晚播的籽粒产量比适播低8.26%,比早播高4.68%;偃展4110和豫麦50晩播籽粒产量分别比适播和早播平均高14.38%和18.55%。灌浆期各品种的叶面积指数晚播与适播处理差异不大,但均明显高于早播,平均高出12.7%;郑麦9023和偃展4110旗叶叶绿素含量晩播高于适播和早播,尤其花后14 d后差异达显著水平;旗叶净光合速率晚播处理中郑麦9023一直较高,偃展4110在花后21 d后明显高于适播和早播,豫麦50花后0~7 d较高。3个品种的灌浆速率晩播处理也占明显的优势。因此,适期晩播能维持弱春性小麦品种灌浆期较好的光合性能,获得较高的籽粒产量。

WANG B, ZHANG Y H, HAO B Z, XU X X, ZHAO Z G, WANG Z M, XU Q W . Grain yield and water use efficiency in extremely-late sown winter wheat cultivars under two irrigation regimes in the North China Plain
PLoS ONE, 2016,11(4):e0153695.

DOI:10.1371/journal.pone.0153695URLPMID:27100187 [本文引用: 2]
Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m612. Average yields of 7.42 t ha611and WUE of 1.84 kg m613were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

RACZ F, KASA S, HADI G . Daily changes in the water content of early and late maturing grain maize varieties in the later stages of over-ripening
Cereal Research Communications, 2008,36(4):583-589.

DOI:10.1556/CRC.36.2008.4.7URL [本文引用: 1]
The water content of the grain, the cob and the internode below the ear, and the thousand-kernel mass of early (Mv 251, Ipoly) and late (Tisza, Mv 500) maize varieties were recorded three times a day between 7 and 17 November 2006. No daily drying was observed in the moisture content of the kernels, cobs or ear stalks. The only exception was the internode below the ear, which tended to dry gradually. Although significant differences were found between the varieties, these probably developed prior to the testing period, and did not change to any great extent during the measurements. From the point of view of harvest date, no substantial change can be expected in the equilibrium water content reached for each variety at different moisture levels, so it is unlikely that savings can be made on drying costs.

DUTTA P K . Effects of grain moisture, drying methods, and variety on breakage susceptibility of shelled corns as measured by the Wisconsin Breakage Tester
[D]. Ames: Iowa State University, 1986.

[本文引用: 1]

JOHNSON D Q, RUSSELL W A . Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize
Crop Science, 1982,22(4):805-809.

DOI:10.2135/cropsci1982.0011183X002200040025xURL [本文引用: 1]
The objective of this research was to determine the potential for selection of maize (Zea mays L.) genotypes that are superior for resistance to kernel breakage and to evaluate the relationships among several kernel characteristics affecting grain quality. Eighty random inbreds and 40 of their single-cross hybrids were grown at two locations in 1976 to 1979. Data taken included date of anthesis, endosperm type, harvest moisture, Stein breakage test, 300-kernel weight, 300 kernel volume, specific gravity, and a Fast Green dye test. The combined analysis of variance for inbreds and hybrids indicated highly significant differences among genotypes for all traits. Heritability estimates (entry mean basis) were relatively high for all traits (77 to 87%), except for specific gravity (39%). The estimated variance component for genotype x environment was significant for all traits, but the relative magnitude was 25% to 58% as large as the estimate for genotype. Breakage-resistant genotypes tended to have smaller flinty-type kernels. Inbred-hybrid correlations were calculated for the midparent values with their hybrid progeny. Correlations for an inbred trait with the same trait of the hybrid were relatively large (r = 0.54 to 0.79). Endosperm type (r = 0.34) and 300-kernel weight (r = 0.53) of parents may predict resistance to breakage in hybrids. Selection differentials showed a restricted selection index controlling seed size would most likely improve resistance to kernel breakage.

BAUER P J, CARTER P R . Effect of seeding date plant density, moisture availability and soil nitrogen fertility on maize kernel breakage susceptibility
Crop Science, 1986,26(6):1220-1226.

DOI:10.2135/cropsci1986.0011183X002600060030xURL [本文引用: 1]
The objectives of this study were to evaluate seeding date, plant density, moisture availability, and soil N fertility effects on maize (Zea mays L.) kernel breakage susceptibility. Three hybrids within each of three relative maturity (RM) groups (90, 100, 110 days by Minnesota Relative Maturity Rating System) were grown in separate seeding date and plant density studies at Arlington, WI [Plano silt loam (fine-silty, mixed, mesic, Typic Argiudoll)], in 1983 and 1984. Maize was seeded four times at 10-day intervals beginning 1 May. Average densities were 1.75,3.75,5.75, and 7.75 plants m&#8211;2. Hybrids were also evaluated in separate irrigated and dryland trials at Hancock, WI [Plainfield sandy loam (mixed, mesic, Typic Udipsamment)]. In a soil N study, grain samples were collected from an experiment at Arlington in which three N rates (0,11, and 22 g m&#8211;2 were applied. Grain was combine-harvested at 25% kernel moisture (except at Hancock where moistures ranged from 21 to 32%) and dried at 82&#176;C in 1983 and 60&#176;C in 1984. Kernel breakage susceptibility, test weight and kernel weight, volume, density, and grain yield were measured. Delayed planting, high plant densities, and low applied N increased kernel breakage susceptibility. At Hancock, higher kernel breakage susceptibility occurred with irrigated- vs. dryland-produced maize. Kernel physical parameters measured were not closely related to kernel breakage susceptibility, except in the soil N study, where the largest range occurred for each variable. The 110-day RM hybrids had lower kernel breakage susceptibility than 90- and 100-day RM hybrids.

LACKEY R. Corn energy value-a comparison of harvesting corn as shelled dried corn, high moisture corn, high moisture cob corn (cob meal) and corn silage
Ministry of Agriculture Food & Rural Affairs, 2008[2017-02-09]. .

URL [本文引用: 1]

王怡 . 黄淮海麦区小麦倒春寒冻害及其防御措施
农业科技通讯, 2014(1):139-140, 211.

DOI:10.3969/j.issn.1000-6400.2014.01.049URL [本文引用: 1]
近几年来,由于自然灾害发生频繁,尤其是低温冻害,给黄淮小麦生产造成了较大的影响。通过多年的试验研究,分析了小麦冻害的类型和成因,提出了预防和补救措施,对于保证小麦产量具有一定的作用。
WANG Y . Winter injury on wheat in Huang-huai-hai wheat zone and its prevention measures
Bulletin of Agricultural Science and Technology, 2014(1):139-140, 211. (in Chinese)

DOI:10.3969/j.issn.1000-6400.2014.01.049URL [本文引用: 1]
近几年来,由于自然灾害发生频繁,尤其是低温冻害,给黄淮小麦生产造成了较大的影响。通过多年的试验研究,分析了小麦冻害的类型和成因,提出了预防和补救措施,对于保证小麦产量具有一定的作用。

LI X N, CAI J, LIU F L, DAI T B, CAO W X, JIANG D . Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low temperature
Functional Plant Biology, 2014,41:690-703.

DOI:10.1071/FP13306URL [本文引用: 1]
Spring low temperature events affect winter wheat (Triticum aestivum L.) during late vegetative or reproductive development, exposing plants to a subzero low temperature stress when winter hardening is lost. The increased climatic variability results in wheat being exposed to more frequent adverse impacts of combined low temperature and water stress, including drought and waterlogging. The responses of potted wheat plants cultivated in climatic chambers to these environmental perturbations were investigated at physiological, proteomic and transcriptional levels. At the physiological level, the depressed carbon (C) assimilation induced by the combined stresses was due mainly to stomatal closure and damage of photosynthetic electron transport. Biochemically, the adaptive effects of early moderate drought or waterlogging stress were associated with the activation of antioxidant enzyme system in chloroplasts and mitochondria of leaf under low temperature. Further proteomic analysis revealed that the oxidative stress defence, C metabolism and photosynthesis related proteins were modulated by the combined low temperature and water stress. Collectively, the results indicate that impairment of photosynthesis and C metabolism was responsible for the grain yield loss in winter wheat under low temperature in combination with severe drought or waterlogging stress. In addition, prior mild drought or waterlogging contributed to the homeostasis of oxidative metabolism and relatively better photosynthesis, and hence to less grain yield loss under later spring low temperature stress.

LIU Y E, XIE R Z, HOU P, LI S K, ZHANG H B, MING B, LONG H L, LIANG S M . Phenological responses of maize to changes in environment when grown at different latitudes in China
Field Crops Research, 2013,144:192-199.

DOI:10.1016/j.fcr.2013.01.003URL [本文引用: 1]
Environmental conditions greatly affect the growth of maize. To examine differences in phenological responses of maize (Zea mays L.) to climatic factors under different environmental conditions as induced by latitude, experiments were conducted from 2007 to 2010 at 34 sites in seven Chinese provinces located in the north spring maize region of China between latitudes 35°11′ and 48°08′N in the cultivation of hybrid zhengdan958 (ZD958). Latitude is an important geographical factor which significantly affects temperature, sunshine hours, and the duration of crop growth. The findings of this study indicate that for every 1° increase in the latitude, northward, the growth durations of sowing to emergence and emergence to silking were significantly increased by 0.7 d and 1.25 d, respectively as a consequence of lowering temperatures (mean, maximum, and minimum temperatures). Reproductive growth duration (silking to maturity), which was significantly correlated with the precipitation, decreased by 0.8 d with each 1° increase in latitude northward. At higher latitudes, the number of growing degree days (GDD) of maize vegetative growth duration (emergence to silking) was significantly higher, and the GDD of the reproductive growth duration were significantly lower. The average photoperiod during the photoperiod-sensitive phase of maize development across all the experimental sites was 14.9h with a range of 13.7–15.6h. Total leaf numbers increased from 18.7 to 23.7 with an average of 21.0 across all experimental sites. Significant and positive linear relationships were found to occur between both latitude and photoperiods and latitude and total leaf number. In the north China spring maize region, the mean growth duration of ZD958 was 143.73 d, which constituted 82.8% of the frost free period, the percentage increasing with higher latitude. These findings strongly indicate that in order to ensure high and stable production of maize in the north spring maize region of China, with its limited heat resources, especially in the high-latitude regions, there is a need to cultivate short-growth-duration cultivars.
相关话题/资源 作物 生理 机械 生产