Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry
JIANG MingHong1, LIU XinChao2,3, TANG HuaJun2, XIN XiaoPing2, CHEN JiQuan4, DONG Gang2,5, WU RuQun4, SHAO ChangLiang,21 College of Primary Education, Hulunbuir University, Hulunbuir 021008, Inner Mongolia, China 2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 3 Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China 4 Center for Global Change and Earth Observations, Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA 5 School of Life Science, Shanxi University, Taiyuan 030006, China
Abstract Life Cycle Assessment (LCA) is a generally accepted method to evaluate the overall environmental burden and production efficiency during the entire life cycle of a product, which is widely used for production management structure optimization in the enterprises and policy formulation in governments. In recent years, for food safety and environmental protection considerations, more and more studies emphasize that the LCA method should be used in animal husbandry to comprehensively assess the environmental burden and resources consumption during the animal-source food production. In China, LCA research and application of animal husbandry are rare, especially in the northern grassland pastoral area, which are the main livestock produce region, and no LCA research on the local livestock production system has been carried out. This paper reviewed the framework and research status of livestock production LCA methods on the main sections and processes, including (1) the goal and scope definition of livestock husbandry LCA; (2) life cycle inventory (LCI); and (3) life cycle impact assessment (LCIA). Through review the domestic and foreign LCA literatures on animal husbandry production, we noticed that the frame and methodology of animal husbandry LCA had been constructed well in developed country. It had an importance instructing significance for the research and practical application of Chinese animal husbandry LCA. However, we also needed to recognize that due to the differences in the specific situations of the livestock industry between domestic and foreign country, foreign LCA experience should not be applied directly in China. First of all, in the northern pastoral areas of China, family farm is the main production system mode of local livestock production, unclear boundaries between herdsmen's life needs and livestock production inputs exist in this system, therefore, it is difficult to apply the foreign experiences directly. Secondly, it is really a challenge to collect the data required for livestock husbandry LCA, which is the biggest restrictive factor of LCA application in livestock production in China. Third, compared with the animal husbandry developed countries, such as European countries, the United States and Australia, due to the gaps in livestock production technology and management methods, the livestock production in the northern pastoral areas of China is affected more by natural factors, such as precipitation, and various marketing factors, including the market supplies and demands. This is also an important issue that must be considered in the research and application of animal husbandry LCA in China. In order to widely practice Chinese livestock husbandry LCA, the following aspects should be improved: (1) the investigation about material input and output of livestock husbandry production in the northern pastoral areas of China should be carried out to collect necessary data; (2) the Chinese animal husbandry LCA database should be established in order to improve the accuracy of livestock husbandry LCA; and (3) we should strengthen the interdisciplinary study to clarify the natural and social driving factors in the development of animal husbandry, and to provide data reference and technology support for the sustainable development of animal husbandry in the northern pastoral areas of China. Keywords:life cycle assessment;northern grassland pastoral area;animal husbandry;livestock production system;resource consumption;environmental impact assessment
PDF (508KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 姜明红, 刘欣超, 唐华俊, 辛晓平, 陈吉泉, 董刚, 吴汝群, 邵长亮. 生命周期评价在畜牧生产中的应用研究现状及展望[J]. 中国农业科学, 2019, 52(9): 1635-1645 doi:10.3864/j.issn.0578-1752.2019.09.014 JIANG MingHong, LIU XinChao, TANG HuaJun, XIN XiaoPing, CHEN JiQuan, DONG Gang, WU RuQun, SHAO ChangLiang. Research Progress and Prospect of Life Cycle Assessment in Animal Husbandry[J]. Scientia Acricultura Sinica, 2019, 52(9): 1635-1645 doi:10.3864/j.issn.0578-1752.2019.09.014
总体而言,LCA评价范围的界定也就是系统边界设置的越完整,对于环境影响和资源消耗的评价结果就越准确[43,44]。理想的情况下,LCA分析的系统边界应包含与产品相关的所有方面,完全意义上实现“从摇篮到坟墓(from cradle to grave)”即从原材料获取到产品生产、使用、废弃物处理、再循环和最终废弃处置的全生命周期评价[1]。然而对于大部分农畜产品LCA,受限于数据可获取性等客观条件,都将评价重点放在从原材料生产获取开始直到畜牧产品从农场售出为止这一阶段的生产环节和过程上,以限制LCA研究的复杂性,相应的系统边界被称为“从摇篮到农场大门(from cradle to farm gate)”[4,45-46]。图2展示的是作者归纳的我国草原畜牧生产系统从摇篮到农场大门这一系统边界所包含的主要生产环节对应的物料投入和资源环境影响。但是也有一些LCA评价在条件允许的情况下,将系统边界扩展到农场大门以外,实现从摇篮到坟墓的完整生命周期的评价[1]。例如,HELLER等[47]在关于美国有机乳制品产业碳排放的LCA评价研究中,利用有机乳制品企业产品追溯数据完整的特点对有机乳制品产业中从饲料生产一直到产品被使用后废物处理的完整生命周期的碳排放进行了估算。
Fig. 2System boundary of animal husbandry LCA(from cradle to farm gate)
选择功能单位的目的就是将LCA所评价畜牧生产系统的主要功能与系统产生的环境影响联系起来。一般而言,LCA评价选择畜牧产品生产也就是系统的经济功能作为主要研究角度,因而将环境影响或资源消耗分摊到产品上进行描述,作为度量单位的产品就被称为LCA评价的功能单位,如肉牛或肉羊生产系统往往采用每千克活体重或胴体重作为功能单位[36,38,41],乳制品生产系统则常用每公斤/公升牛奶或脂肪和蛋白质校正乳作为功能单位[21,48]。在实际应用中还需要根据生产系统的特点来设定功能单位,例如HELLE等[47]在有机乳制品LCA中把功能单位定义为一升装的商品液态牛奶;而MCAULIFFE等[33]和MOREL等[49]等在关于肉牛生产系统的LCA评价中,考虑到育肥肉牛的生产,将功能单位设置为活体重的增长量(kg of live weight gain或live weight produced)。
E=R×(I-A)-1×p Ri=ci/xi 式中,E为为产品 p 引起的各部门环境负担向量,R为对角矩阵,其对角元素Ri是部门i单位货币产出的环境负担,(I-A)-1为列昂惕夫逆矩阵,反映了经济的中间投入产出结构以及生产技术水平,I为单位矩阵,A为直接消耗系数矩阵,p为产品列向量,ci为部门i的环境负担,xi为部门i的总产出。
BALDINIC, GARDONID, GUARINOM . A critical review of the recent evolution of life cycle assessment applied to milk production , 2017,140:421-435. DOI:10.1016/j.jclepro.2016.06.078URL [本文引用: 5]
ANANDC K, AMORB . Recent developments, future challenges and new research directions in LCA of buildings: A critical review , 2017,67:408-416. DOI:10.1016/j.rser.2016.09.058URL [本文引用: 1]
FANGK, DONGL, RENJ, ZHANGQ, HANL, FUH . Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China , 2017,365:30-44. DOI:10.1016/j.ecolmodel.2017.09.024URL [本文引用: 1]
NIJDAMD, ROODT, WESTHOEKH . The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes , 2012,37(6):760-770. DOI:10.1016/j.foodpol.2012.08.002URL [本文引用: 2]
BAOW, CHENL, GUOH T, SUNL . Application of life cycle assessment method in green design products Standard Science (Suppl.), 2016(S1):22-25. (in Chinese) [本文引用: 1]
LIX H, JIJ P, MAX M, WANGJ T . Life cycle greenhouse gas emission assessment of fuel ethanol based on EIO-LCA Acta Scientiarum Naturalium Universitatis Pekinensis, 2011 ( 06):1081-1088. (in Chinese) [本文引用: 3]
ZHANGY Q, JIAL M, LIUS Q, SONGY J, SUS C . Evaluation of cleaner production of woody biodiesel using LCA method China Oils and Fats, 2017 ( 10):100-105. (in Chinese) [本文引用: 2]
Food and Agriculture Organization of the United Nations (FAO), International Fund for Agricultural Development (IFAD), the United Nations Children’s Fund (UNICEF), World Food Programme (WFP), World Health Organization (WHO), The state of food security and nutrition in the world 2017: Building resilience for peace and food security. 2017. . URL [本文引用: 1]
VANZANTEN H H E, MOLLENHORSTH, KLOOTWIJKC W, VANMIDDELAAR C E, DEBOER I J M . Global food supply: Land use efficiency of livestock systems , 2016,21(5):747-758. DOI:10.1007/s11367-015-0944-1URL [本文引用: 2]
唐华俊, 李哲敏 . 基于中国居民平衡膳食模式的人均粮食需求量研究 , 2012,45(11):2315-2327. DOI:10.3864/j.issn.0578-1752.2012.11.022Magsci [本文引用: 1] 【目的】中国是发展中的农业大国,人均资源极其稀缺,粮食安全始终是关系到国民经济发展、社会稳定与国家自立的全局性重大战略问题。人均粮食需求量是计算国家粮食需求量、制定保障粮食安全相关政策时的基础性指标。论文首次从居民营养健康的视角出发,分析中国人均粮食需求量的组成部分,测算基于平衡膳食模式下的中国人均粮食需求量,为实现资源的效用最大化、确保中国粮食安全提供新的数据支持,也为相应消费引导政策的制定提供科学依据。【方法】采用膳食平衡分析法计算基于平衡膳食模式下的人均口粮和饲料用粮、加工用粮的需求量;采用趋势预测法计算种子用粮、工业用粮、损耗等人均需求量。在此基础上,应用情景分析法讨论其不同影响程度。【结果】基于平衡膳食模式的人均粮食需求量不超过400 kg•a-1;其中,低方案为252.64 kg•a-1,中方案为322.07 kg•a-1,高方案为386.60 kg•a-1。近年来,中国实际人均粮食消费量在406.09—378.88 kg•a-1波动,实际值大于基于平衡膳食模式下的人均粮食需求量。【结论】中国人均粮食需求量 322.07 kg•a-1,基本满足中国人均粮食安全的需求量。如果中国粮食人均占有量386.60 kg•a-1,就能够基本确保中国的粮食安全。目前,中国居民由于不合理的食物消费结构模式,造成基于平衡膳食模式下的人均粮食需求量与人均粮食消费量存在差异。为此,国家应该以营养健康为目标调整食物生产结构、加强居民对平衡膳食结构等食物消费认识的宣传普及工作,以及引导居民建立合理的食物消费习惯。 TANGH J, LIZ M . Study on per capita grain demand based on Chinese reasonable dietary pattern Scientia Agricultura Sinica, 2012,45(11):2315-2327. (in Chinese) DOI:10.3864/j.issn.0578-1752.2012.11.022Magsci [本文引用: 1] 【目的】中国是发展中的农业大国,人均资源极其稀缺,粮食安全始终是关系到国民经济发展、社会稳定与国家自立的全局性重大战略问题。人均粮食需求量是计算国家粮食需求量、制定保障粮食安全相关政策时的基础性指标。论文首次从居民营养健康的视角出发,分析中国人均粮食需求量的组成部分,测算基于平衡膳食模式下的中国人均粮食需求量,为实现资源的效用最大化、确保中国粮食安全提供新的数据支持,也为相应消费引导政策的制定提供科学依据。【方法】采用膳食平衡分析法计算基于平衡膳食模式下的人均口粮和饲料用粮、加工用粮的需求量;采用趋势预测法计算种子用粮、工业用粮、损耗等人均需求量。在此基础上,应用情景分析法讨论其不同影响程度。【结果】基于平衡膳食模式的人均粮食需求量不超过400 kg•a-1;其中,低方案为252.64 kg•a-1,中方案为322.07 kg•a-1,高方案为386.60 kg•a-1。近年来,中国实际人均粮食消费量在406.09—378.88 kg•a-1波动,实际值大于基于平衡膳食模式下的人均粮食需求量。【结论】中国人均粮食需求量 322.07 kg•a-1,基本满足中国人均粮食安全的需求量。如果中国粮食人均占有量386.60 kg•a-1,就能够基本确保中国的粮食安全。目前,中国居民由于不合理的食物消费结构模式,造成基于平衡膳食模式下的人均粮食需求量与人均粮食消费量存在差异。为此,国家应该以营养健康为目标调整食物生产结构、加强居民对平衡膳食结构等食物消费认识的宣传普及工作,以及引导居民建立合理的食物消费习惯。
MCAULIFFEG A, CHAPMAND V, SAGEC L . A thematic review of life cycle assessment (LCA) applied to pig production , 2016,56:12-22. DOI:10.1016/j.eiar.2015.08.008URL [本文引用: 1]
NOTARNICOLAB, SALAS, ANTONA, MCLARENS J, SAOUTERE, SONESSONU . The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges , 2017,140:399-409. DOI:10.1016/j.jclepro.2016.06.071URL
CLUNES, CROSSINE, VERGHESEK . Systematic review of greenhouse gas emissions for different fresh food categories , 2017,140:766-783. DOI:10.1016/j.jclepro.2016.04.082URL
CAPPERJ L, CADYR A, BAUMAND E . The environmental impact of dairy production: 1944 compared with 2007 , 2009,87(6):2160-2167. DOI:10.2527/jas.2009-1781URL
TANGH J, WUW B, YUQ Y, XIAT, YANGP, LIZ G . Key research priorities for agricultural land system studies Scientia Agricultura Sinica, 2015,48(05):900-910. (in Chinese)
HOUX Y . Priority Approaches, techniques and models to sustainably tap the grassland productivity potential Scientia Agricultura Sinica, 2016,49(16):3229-3238. (in Chinese) [本文引用: 1]
SUNZ H . Study on the LCA technical system of recycle agriculture -Taking Jilin province as an example Changchun: Jilin University, 2009. ( in Chinese) [本文引用: 1]
BAIL . The study on LCA of pork production for cleaner production in Sichuan and key technologies of swine manure treatment [D]. , 2007. ( in Chinese) [本文引用: 1]
WANGX Q, LEDGARDS, LUOJ, GUOY, ZHAOZ, GUOL, LIUS, ZHANGN, DUANX, MAL . Environmental impacts and resource use of milk production on the north China plain, based on life cycle assessment , 2018,625:486-495. DOI:10.1016/j.scitotenv.2017.12.259URL [本文引用: 5]
WANGX Q, KRISTENSENT, MOGENSENL, KNUDSENM T, WANGX . Greenhouse gas emissions and land use from confinement dairy farms in the Guanzhong plain of China - Using a life cycle assessment approach , 2016,113:577-586. DOI:10.1016/j.jclepro.2015.11.099URL [本文引用: 4]
LIUJ W . Rethinking of grass industry development in Chinese rural area Acta Agrestia Sinica, 2009(3):270-273. (in Chinese) [本文引用: 1]
李青丰Michalk D陈良张萍佟绍敏 , . 中国北方草原畜牧业限制因素以及管理策略分析 , 2003,11(2):178-182. Magsci [本文引用: 1] 根据对内蒙古一个有关草地保护和管理项目的调研,分析了影响草原资源可持续利用和草原畜牧业发展的一些限制因素。调研发现,草原地承包及租赁体制、饲草料生产和供给策略、家畜放牧制度等是影响本地区畜牧业生产体系和草原可持续性的主要因素。基于本研究结果,提出了“春季休牧”(或称之为“延迟放牧)的生产方式。同时,推荐了一些可缓解冬春季节严重饲草料不足的措施。 LIQ F, MICHALKD, CHENL, ZHANGP, TONGS M . Analysis of constrains and management strategy for animal production in grassland of northern China Agrestia Sinica, 2003,11(2):178-182. (in Chinese) Magsci [本文引用: 1] 根据对内蒙古一个有关草地保护和管理项目的调研,分析了影响草原资源可持续利用和草原畜牧业发展的一些限制因素。调研发现,草原地承包及租赁体制、饲草料生产和供给策略、家畜放牧制度等是影响本地区畜牧业生产体系和草原可持续性的主要因素。基于本研究结果,提出了“春季休牧”(或称之为“延迟放牧)的生产方式。同时,推荐了一些可缓解冬春季节严重饲草料不足的措施。
WANGG Q, HUAR . Problems in grassland ecological protection and construction Inner Mongolia Social Sciences, 2013 ( 04):163-167. (in Chinese) [本文引用: 1]
MAL, ZHANGY . A study of on the sustainable development model and countermeasures of pastoral areas in China Chinese Journal of Grassland, 2013(02):104-109. (in Chinese) [本文引用: 1]
HUANGQ R . The status and development suggestions of ecological and animal husbandry in Inner Mongolia Hulunboir grassland [D]. , 2012. ( in Chinese) [本文引用: 1]
MAL, ZHANGY . Thoughts and countermeasures of the construction of Chinese grassland ecological civilization .Journal of Financial and Economic Theory, 2017(06):64-71. (in Chinese) [本文引用: 1]
XID L, PENGX Y . Data acquisition for inventory analysis in LCA .Environmental Sciences, 1997(05):86-89. (in Chinese) [本文引用: 2]
MCAULIFFEG A, TAKAHASHIT, ORRR J, HARRISP, LEEM R F . Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems , 2018,171:1672-1680. DOI:10.1016/j.jclepro.2017.10.113URL [本文引用: 4]
BEAUCHEMINK A, HENRYJANZEN H, LITTLES M, MCALLISTERT A, MCGINNS M . Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study , 2010,103(6):371-379. DOI:10.1016/j.agsy.2010.03.008URL [本文引用: 2]
WIEDEMANNS G, LEDGARDS F, HENRYB K, YANM-J, MAON, RUSSELLS J . Application of life cycle assessment to sheep production systems: Investigating co-production of wool and meat using case studies from major global producers , 2015,20(4):463-476. DOI:10.1007/s11367-015-0849-zURL [本文引用: 3]
ZONDERLAND-THOMASSENM A, LIEFFERINGM, LEDGARDS F . Water footprint of beef cattle and sheep produced in New Zealand: Water scarcity and eutrophication impacts , 2014,73:253-262. DOI:10.1016/j.jclepro.2013.12.025URL [本文引用: 3]
SULTANAM N, UDDINM M, RIDOUTTB G, PETERSK J . Comparison of water use in global milk production for different typical farms , 2014,129:9-21. DOI:10.1016/j.agsy.2014.05.002URL [本文引用: 1]
RIPOLL-BOSCHR, DEBOER I J M, BERNUéSA, VELLINGAT V . Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems , 2013,116:60-68. DOI:10.1016/j.agsy.2012.11.002URL [本文引用: 2]
PELLETIERN, PIROGR, RASMUSSENR . Comparative life cycle environmental impacts of three beef production strategies in the upper midwestern United States , 2010,103(6):380-389. DOI:10.1016/j.agsy.2010.03.009URL [本文引用: 1]
ARSENAULTN, TYEDMERSP, FREDEENA . Comparing the environmental impacts of pasture-based and confinement-based dairy systems in Nova Scotia (Canada) using life cycle assessment , 2009,7(1):19-41. DOI:10.3763/ijas.2009.0356URL [本文引用: 1]
TICHENORN E, PETERSC J, NORRISG A, THOMAG, GRIFFINT S . Life cycle environmental consequences of grass-fed and dairy beef production systems in the northeastern United States , 2017,142:1619-1628. DOI:10.1016/j.jclepro.2016.11.138URL [本文引用: 3]
O’BRIEND, SHALLOOL, PATTONJ, BUCKLEYF, GRAINGERC, WALLACEM . A life cycle assessment of seasonal grass-based and confinement dairy farms , 2012,107:33-46. DOI:10.1016/j.agsy.2011.11.004URL [本文引用: 1]
WANGC B, ZHANGX L, PANGM Y . A review on hybrid life cycle assessment: Development and application .Journal of Natural Resources, 2015(07):1232-1242. (in Chinese) [本文引用: 3]
SONGD N, CHAIL Y, HED W . Summarization on the life cycle assessment model .Industrial Safety and Environmental Protection, 2006(12):38-40. (in Chinese) [本文引用: 2]
BATALLAI, KNUDSENM T, MOGENSENL, HIERROó D, PINTOM, HERMANSENJ E . Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands , 2015,104(Suppl.C):121-129. DOI:10.1016/j.jclepro.2015.05.043URL [本文引用: 3]
CROSSONP, SHALLOOL, O’BRIEND, LANIGANG J, FOLEYP A, BOLANDT M, KENNYD A . A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems , 2011, 166-167:29-45. [本文引用: 1]
HELLERM C, KEOLEIANG A . Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States , 2011,45(5):1903-1910. [本文引用: 3]
FLYSJ?A, HENRIKSSONM, CEDERBERGC, LEDGARDS, ENGLUNDJ E . The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden , 2011,104(6):459-469. DOI:10.1016/j.agsy.2011.03.003URL [本文引用: 1]
MORELK, FARRIéJ-P, RENONJ, MANNEVILLEV, AGABRIELJ, DEVUNJ . Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France , 2016,144(Supplement C):133-143. DOI:10.1016/j.agsy.2016.02.006URL [本文引用: 2]
O'BRIEND, BOHANA, MCHUGHN, SHALLOOL . A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming , 2016,148:95-104. DOI:10.1016/j.agsy.2016.07.004URL [本文引用: 2]
SALOUT, LE MOU?L C, VANDER WERF H M G . Environmental impacts of dairy system intensification: The functional unit matters! , 2017,140:445-454. DOI:10.1016/j.jclepro.2016.05.019URL [本文引用: 1]
EADYS, CARREA, GRANTT . Life cycle assessment modelling of complex agricultural systems with multiple food and fibre co-products , 2012,28:143-149. DOI:10.1016/j.jclepro.2011.10.005URL [本文引用: 1]
ROYP, NEID, ORIKASAT, XUQ, OKADOMEH, NAKAMURAN, SHIINAT . A review of life cycle assessment (LCA) on some food products , 2009,90(1):1-10. DOI:10.1016/j.jfoodeng.2008.06.016URL [本文引用: 1]
O’BRIEND, BRENNANP, HUMPHREYSJ, RUANEE, SHALLOOL . An appraisal of carbon footprint of milk from commercial grass-based dairy farms in Ireland according to a certified life cycle assessment methodology , 2014,19(8):1469-1481. DOI:10.1007/s11367-014-0755-9URL [本文引用: 1]
WANGZ B, WANGM, CHENF . Carbon footprint analysis of crop production in north China plain Scientia Agricultura Sinica, 2015,48(01):83-92. (in Chinese) [本文引用: 1]
HUANGW Q, DONGH M, ZHUZ P, LIUC, TAOX P, WANGY . Research progress and analysis of carbon footprint of livestock products Scientia Agricultura Sinica, 2015,48(01):93-111. (in Chinese) [本文引用: 1]
ZHENGX J, HUB . Domestic literature review and the latest overseas research progress of life cycle assessment Sciences & Technology Progress and Policy, 2013 ( 06):155-160. (in Chinese) [本文引用: 1]
SALVADORS, CORAZZINM, ROMANZINA, BOVOLENTAS . Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration , 2017,196(Supplement C):644-650. DOI:10.1016/j.jenvman.2017.03.052URL [本文引用: 1]
LAVEL B . Using input-output analysis to estimate economy-wide discharges , 1995,29(9):420-426. DOI:10.1021/es00009a748URL [本文引用: 1]
HENDRICKSONC T . Environmental life cycle assessment of goods and services : An input-output approach , 2006,34(14):116-130. [本文引用: 1]
ZHUANGM H, GONGBUZEREN, LIW J . Greenhouse gas emission of pastoralism is lower than combined extensive/intensive livestock husbandry: A case study on the Qinghai-Tibet Plateau of China , 2017,147:514-522. DOI:10.1016/j.jclepro.2017.01.126URL [本文引用: 1]
ZUCALIM, TAMBURINIA, SANDRUCCIA, BAVAL . Global warming and mitigation potential of milk and meat production in Lombardy (Italy) , 2017,153:474-482. DOI:10.1016/j.jclepro.2016.11.037URL [本文引用: 1]
MCCLELLANDS C, ARNDTC, GORDOND R, THOMAG . Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review , 2018,209:39-45. DOI:10.1016/j.livsci.2018.01.008URL [本文引用: 1]
LIUS . Life cycle assessment of dairy cattle feed crops in Guanzhong plain [D]., 2010. ( in Chinese) [本文引用: 1]
HEADM, SEVENSTERM, ODEGARDI, KRUTWAGENB, CROEZENH, BERGSMAG . Life cycle impacts of protein-rich foods: creating robust yet extensive life cycle models for use in a consumer app , 2014,73:165-174. DOI:10.1016/j.jclepro.2013.11.026URL [本文引用: 1]
GEYERR, STOMSD M, LINDNERJ P, DAVISF W, WITTSTOCKB . Coupling GIS and LCA for biodiversity assessments of land use , 2010,15(5):454-467. DOI:10.1007/s11367-010-0170-9 [本文引用: 1]
PAYANDEHZ, KHEIRALIPOURK, KARIMIM, KHOSHNEVISANB . Joint data envelopment analysis and life cycle assessment for environmental impact reduction in broiler production systems , 2017,127:768-774. DOI:10.1016/j.energy.2017.03.112URL [本文引用: 1]
STYLESD, GONZALEZ-MEJIAA, MOORBYJ, FOSKOLOSA, GIBBONSJ . Climate mitigation by dairy intensification depends on intensive use of spared grassland , 2018,24(2):681-693. DOI:10.1111/gcb.2018.24.issue-2URL [本文引用: 1]