The Characteristics of Sap Flow of Hanfu Apple Trees and Its Response to Environmental Factors
XIA GuiMin, SUN YuanYuan, WANG WeiZhi, WU Qi, CHI DaoCaiCollege of Water Conservancy, Shenyang Agricultural University, Shenyang 110161通讯作者:
收稿日期:2018-09-30接受日期:2018-12-10网络出版日期:2019-02-16
基金资助: |
Received:2018-09-30Accepted:2018-12-10Online:2019-02-16
作者简介 About authors
夏桂敏,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (781KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
夏桂敏, 孙媛媛, 王玮志, 吴奇, 迟道才. ‘寒富’苹果树茎流特征及其对环境因子的响应[J]. 中国农业科学, 2019, 52(4): 701-714 doi:10.3864/j.issn.0578-1752.2019.04.011
XIA GuiMin, SUN YuanYuan, WANG WeiZhi, WU Qi, CHI DaoCai.
0 引言
【研究意义】苹果因富含多种养分而成为世界上最广泛食用的水果之一。我国是世界上最大的苹果生产与消费国[1,2,3]。由于受气温和光照等气候条件的限制,我国东北高寒地区可栽培品种较少。‘寒富’是1978年用‘东光’作母本、‘富士’作父本选育出来的苹果品种,由于综合了双亲的优良性状,其树体抗寒性显著高于其他树种,在东北等冷凉地区广泛栽培。‘寒富’苹果的选育,使我国优质苹果经济栽培区域的安全线向北推移200公里,对发展我国“三北”寒冷地区的果业生产具有重要意义[4]。苹果树耗水量较大且对水分要求严格,水分是制约苹果树体生长、产量增加的主要因子之一,而树体蒸腾是果树耗水的主要方式。研究寒富苹果树蒸腾规律及其影响因子,对了解冷凉地区苹果树需水规律并指导其科学灌溉具有重要的作用。【前人研究进展】植物的蒸腾作用在植物生命过程中发挥着重要的作用。近年来,关于树木蒸腾耗水的测定方法研究较多[5,6],有研究结果表明树干边材中99%的茎流量用于叶片的蒸腾耗水[7],所以茎流速率和蒸腾速率有很好的相关性[8]。热技术法中的热扩散探针法在测定树干茎流方面有着连续、稳定、准确的优点,被普遍应用于树木蒸腾耗水研究[9,10]。孙习轩[11]研究发现不同地区、不同品种的苹果树蒸腾速率不同。对黄土干旱区、渭北高原、鲁西南地区[12,13,14,15,16,17]的苹果树茎流特征进行的研究也印证了这一点,不同地区苹果树的茎流启动时间、峰值、对天气的响应程度等都不尽相同。【本研究切入点】在已有的果树茎流研究中,如枣树、核桃树、葡萄[18,19,20]等多侧重于黄土高原和新疆盆地等高温干旱地区,而东北冷凉地区受寒潮影响冬季寒冷且漫长,全年日照时间显著低于高温干旱地区,环境条件差异较大。但是,对于该地区的果树茎流研究却甚少,而且在已有的研究中,对整个生育周期中茎流启动、峰值、下降的状态与茎流速率的关系并未被深入探究。【拟解决的关键问题】本研究利用热扩散探针法对东北高寒地区‘寒富’苹果树干茎流速率进行动态连续监测,深入分析不同尺度下树干茎流的变化特征及其对环境因子的响应状况,研究其蒸腾耗水规律,进而指导果园科学灌溉。1 材料与方法
试验于2017年5月1日至10月31日在辽宁省东北冷凉气候区苹果研发中心的试验果园进行。1.1 试验区概况
试验地位于辽宁省沈阳市沈河区,地处东经123°56′,北纬41°82′,平均海拔45 m,属于北温带受季风影响的半湿润大陆性气候,全年平均气温6.8—8.0℃,农耕期≥7.0℃,积温平均为3 281℃。全年最大冻土深度为148 cm,地下1.6 m处地温最高在8—9月为20℃左右,最低在4月为3℃左右。年平均降水量为721.9 mm,日照时数平均为2 372.5 h,无霜期为146—163 d。四季分明,降水集中,雨热同季,日照充足,温差较大,冬季漫 长。春季短,降水少,回暖快;夏季高温多雨,空气湿润;秋季天高气爽;冬季长达6个月,寒冷干燥。果园为棕壤土,通透性良好,果园管理水平较高。1.2 试验材料
‘寒富’苹果树龄7年,株行距为2 m×4 m。在果园中央选择12株生长良好、树干通直、无节疤、无病虫害,树势一致的苹果树,试验果树由北向南呈一列。采用小管出流方式进行灌溉,每月灌溉1次,每次灌溉时间持续2—3 d,如遇持续高温干旱天气,每月加灌1—2次,灌水量由工人依经验而定,适时除草和喷洒农药。‘寒富’苹果树生育期划分见表1。在现有生产条件下进行试验。Table 1
表1
表1寒富苹果树生育期时间表
Table 1
生育期 Growth period duration | 萌芽开花期 Budding and flowering stage | 幼果期 Young fruit stage | 果实膨大期 Fruit expansion stage | 果实成熟期 Fruit maturity | 落叶休眠期 Deciduous dormancy period |
---|---|---|---|---|---|
日期 Date | 2017.4.15— 2017.5.10 | 2017.5.11— 2017.6.12 | 2017.6.13— 2017.9.10 | 2017.9.11— 2017.10.15 | 2017.10.16— 2018.4.14 |
新窗口打开|下载CSV
1.3 试验方法
在选定的12株‘寒富’苹果树干上各安装一个TDP(Thermal Dissipation Probe)茎流计,所用植物茎流计为美国Dynamax公司生产的插针式FLGS-TDP,探针型号为TDP-10和TDP-30,长分别为10 mm和30 mm,针头直径均为1.2 mm。用数据采集器CR 1000(Campbell Scientific,UN)和PC 400来调节茎流计的工作电压和检测热电偶,系统每30 min采集1次数据,连续记录两探针间的温度差。TDP茎流计的安装步骤:(1)钻孔前准备:在树干上距离地面 30 cm高处去除树干表层老的粗糙的树皮。(2)钻孔:把钻模放在准备好的位置后用钻头钻 10 mm或30 mm 深的孔(TDP-10的钻孔孔深为10 mm,TDP-30的钻孔孔深为30 mm),两个孔之间距离 40 mm。(3)安装探针:把茎流计探针慢慢地插入钻孔中,留2—3 mm针杆在外面。注意不要压迫或拉动探针连接处的导线,安装好之后把电缆固定到树干上。(4)隔热防雨:在探针附近裹上胶泥,两边安装1/4球状泡沫,然后用反射性泡沫铝膜把树木、泡沫球和探针安装部位包裹起来,上方用胶带密封,下方稍留空隙以便水分可以流出。
太阳辐射、温度、风速等气象数据由果园气象站提供。
土壤体积含水率测量方法:在果树四周布设Trime管,使用土壤水分测量仪,采用人工测量的方式,每5—7 d测一次,降雨和灌水后加测一次土壤体积含水率,测量深度为10、20、30、40、50和60 cm。
1.4 数据处理及计算
树干边材茎流由Granier得出的计算公式计算,公式如下[8]:K=(dTM-dT)/dT
V=0.0119×K1.231×3600(cm/h)
式中:K为无量纲“茎流指数”,用于消除茎流速率为零时的温差;dTM为无茎流时加热探针与参考探针的最大温差(℃);dT为瞬时温差值(℃);V为茎流速率(cm·h-1);其中,dTM和dT均为仪器自动监测结果。
采用ORIGIN 9.0、Excel和SPSS 23.0进行作图和数据分析。
2 结果
2.1 树干茎流日变化特征
2.1.1 茎流速率单日变化规律 选取典型晴天对茎流进行分析,图1是‘寒富’苹果树在幼果期、果实膨大期、果实成熟期(2017/5/19、2017/6/17、2017/7/17、2017/8/11、2017/9/15、2017/10/13)的茎流速率日变化规律。结果显示,‘寒富’苹果树单日茎流速率整体上呈现出昼高夜低的单峰“几”字型变化,以7月17日为例:茎流在6:30启动,之后迅速增加,9:30到达峰值后开始缓慢下降,此过程一直持续到17:00,比较稳定。17:00以后,茎流速率陡然下降,在20:30左右降低至趋近于0并一直延续至次日6:00,随后再次升高。在‘寒富’苹果树的不同生长时期,其茎流速率的启动时间、到达峰值的时间、下降时间也有差异,由表2可以看出各月茎流启动时间较平稳,茎流到达峰值的时间6—9月较早,5月和10月较晚,茎流下降的时间5—8月在17:00左右小幅波动,而9月和10月的下降时间提前,这可能与果树生长时期气象因子的变化有关,不同生长时期观测日的主要气象因子日变化规律如图2所示。以上数据说明苹果树茎流在幼果期、果实膨大期和果实成熟期的启动时间和到达峰值的时间早,而且结束时间晚,有利于光合产物的积累,而在萌芽开花期和落叶休眠期则相反。图3显示在果树生长周期中,茎流启动时间和茎流下降时间均较集中,而茎流到达峰值时间比较分散,说明生长周期对茎流到达峰值的时间有较大影响而对启动时间和下降时间影响较小。茎流速率峰值为8月>7月>9月>10月>6月>5月,8月份茎流速率值最大,为15.60 cm·h-1;5月份最小,为7.17 cm·h-1。单日平均茎流速率为8月>7月>6月>10月>9月>5月,8月份最大为6.16 cm·h-1,5月份最小,为3.41 cm·h-1。各月茎流速率峰值和日平均茎流速率值均反映出8月茎流速率最大,是5月茎流速率值的2倍左右,说明苹果树茎流在果树生长盛期即果实膨大期最强,在萌芽阶段最弱。图1
新窗口打开|下载原图ZIP|生成PPT图1‘寒富’苹果树不同生长期茎流速率日变化规律
Fig. 1Daily variation of sap velocity rate in different growth stages of Hanfu apple trees
图2
新窗口打开|下载原图ZIP|生成PPT图2‘寒富’苹果树不同生长期主要气象因子日变化规律
Fig. 2Daily variation of main meteorological factors in different growth stages of Hanfu apple trees
图3
新窗口打开|下载原图ZIP|生成PPT图3茎流速率峰值与茎流状态关系图
Fig. 3Relationship between peak stem flow rate and stem flow state
Table 2
表2
表2‘寒富’苹果树茎流速率月际动态变化规律
Table 2
月份Month | 观测 日期 Date | 环境因子日均值 Environmental factor daily mean | 启动时间 Start-up time | 到达峰值 时刻 Peak time | 峰值 Peak value (cm·h-1) | 下降时刻 Fall time | 平均茎流速率 Mean sap velocity (cm·h-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
太阳净辐射 Rn (W·m-2) | 大气温度 T (℃) | 空气相对 湿度 RH (%) | 风速 Ws (m·s-1) | 10cm土壤体积含水率10cm soil moisture content (%) | |||||||
5 | 2017.5.19 | 285.98 | 28.91 | 29.93 | 2.66 | 12.11 | 6:30 | 12:30 | 7.17 | 17:00 | 3.41 |
6 | 2017.6.17 | 232.30 | 30.81 | 25.01 | 2.63 | 21.72 | 6:00 | 8:30 | 12.63 | 16:30 | 5.45 |
7 | 2017.7.17 | 314.94 | 29.78 | 50.96 | 2.26 | 18.38 | 6:30 | 9:30 | 14.25 | 17:00 | 5.89 |
8 | 2017.8.11 | 290.49 | 28.78 | 49.50 | 1.36 | 17.80 | 6:30 | 9:00 | 15.60 | 17:00 | 6.16 |
9 | 2017.9.15 | 172.57 | 22.00 | 40.94 | 1.32 | 14.98 | 7:00 | 10:00 | 13.92 | 14:30 | 4.75 |
10 | 2017.10.13 | 156.23 | 11.64 | 26.80 | 1.51 | 19.27 | 8:30 | 14:00 | 13.86 | 15:30 | 5.06 |
新窗口打开|下载CSV
2.1.2 夜间茎流变化特征 在对‘寒富’苹果树茎流的监测中发现,晚上茎流速率较低且接近于0,夜间茎流累积量在单日茎流量中占有一定比例。本试验将一天中太阳净辐射量为负值的时间段内的树木茎流定义为夜间茎流,不同生长期的昼、夜间茎流划分如表3所示。结果显示,‘寒富’苹果树夜间茎流速率均呈现出稳定的变化趋势,与夜间温度的变化趋势一致,与空气相对湿度的变化趋势相反,在零点到日出间的这段时间内茎流速率变化平缓且接近于0,而在日落后到次日零点的这个时间段内,仍然保持较高的茎流速率水平,如图4所示。说明日落后树体茎流并没有完全停止,是一个缓慢下降的过程,且在夜间一直以较低的茎流速率水平维持吸水状态。
Table 3
表3
表3昼夜时间划分表
Table 3
日期Date | 白昼Day time | 夜晚Night time |
---|---|---|
2017.5.19 | 6:00—18:00 | 18:30—次日5:30 |
2017.6.17 | 6:00—18:00 | 18:30—次日5:30 |
2017.7.17 | 5:30—18:30 | 19:00—次日5:00 |
2017.8.11 | 6:00—18:00 | 18:30—次日5:30 |
2017.9.15 | 6:30—16:30 | 17:00—次日6:00 |
2017.10.13 | 7:30—16:00 | 16:30—次日7:00 |
新窗口打开|下载CSV
图4
新窗口打开|下载原图ZIP|生成PPT图4夜间茎流速率变化
Fig. 4Variation of nocturnal sap velocity
2.1.3 昼夜间茎流的占比情况 为了了解白天和夜晚的茎流分布特点,将‘寒富’苹果树不同生长期的昼、夜茎流量分别累积进行统计,结果见表4。从表可以看出单日茎流量为8月>7月>6月>10月>9月>5月。8月最大,为7 933.58 g·d-1,5月最小,为4 400.32 g·d-1,8月单日茎流量约为5月的1.8倍。夜间茎流量占比情况为10月>9月>5月>6月>8月>7月,10月夜间茎流量最大,为2 271.92 g,且占比最大,达到了33.69%;7月夜间茎流量最小,为345.46 g·d-1,且占比也最小,仅占到了单日茎流量的4.57%,说明夜间茎流占果树单日茎流的比例相当可观,以至于不能忽略果树在夜间的耗水。表4显示,夜间大气温度和空气相对湿度越低时,夜间茎流量所占比重就越大,所以昼夜茎流量占比情况与气象也存在较大联系。同时,寒富苹果树在生育初期和末期的夜间茎流比在果树生长盛期的夜间茎流活跃,说明果树在生育中期茎流主要集中在白天,夜间茎流很微弱,以利于积累光合产物;而生育初期和生育末期果树生命活动弱,茎流密度较分散。
Table 4
表4
表4昼夜茎流量占比表
Table 4
日期 Date | 夜间主要气象因子均值与茎流量 Nocturnal mean of main meteorological factors and sap flow | 白天主要气象因子均值与茎流量 Diurnal mean of main meteorological factors and sap flow | 单日茎流量 Sap flow (g·d-1) | ||||
---|---|---|---|---|---|---|---|
大气温度 T (℃) | 空气相对湿度 RH (%) | 夜晚茎流量 Sap flow (g·d-1) | 大气温度 T (℃) | 空气相对湿度 RH (%) | 白天茎流量 Sap flow (g·d-1) | ||
2017.5.19 | 23.61 | 35.97 | 436.32 | 29.08 | 30.68 | 3964.00 | 4400.32 |
百分比Percentage | - | - | 9.92% | - | - | 90.08% | 100.00% |
2017.6.17 | 26.39 | 32.53 | 569.49 | 30.84 | 25.29 | 6528.45 | 7097.94 |
百分比Percentage | - | - | 8.02% | - | - | 91.98% | 100.00% |
2017.7.17 | 27.15 | 58.40 | 345.46 | 28.93 | 51.22 | 7220.51 | 7565.98 |
百分比Percentage | - | - | 4.57% | - | - | 95.43% | 100.00% |
2017.8.11 | 24.79 | 60.14 | 542.44 | 28.78 | 49.53 | 7391.13 | 7933.58 |
百分比Percentage | - | - | 6.84% | - | - | 93.16% | 100.00% |
2017.9.15 | 19.12 | 49.83 | 830.25 | 23.41 | 39.76 | 5367.94 | 6198.18 |
百分比Percentage | - | - | 13.39% | - | - | 86.61% | 100.00% |
2017.10.13 | 8.64 | 30.29 | 2271.92 | 12.28 | 32.12 | 4472.57 | 6744.49 |
百分比Percentage | - | - | 33.69% | - | - | 66.31% | 100.00% |
新窗口打开|下载CSV
2.2 寒富苹果树干茎流对环境因子的响应
不同生长时期的寒富苹果树茎流速率均表现出较大的差异,这与外界环境因素有着紧密的关系。选取7月24日—31日连续8 d的茎流速率和气象数据来分析寒富苹果树茎流与环境因子之间的关系。图5为寒富苹果树茎流速率与各气象因子的变化曲线,由图可以看出茎流速率与太阳净辐射(Rn)、空气相对湿度(RH)、空气水汽压差(VPD)、风速(Ws)、空气温度(T)、5 cm土层温度、20—40 cm土层温度的变化均表现出较强的相关性,而与10 cm土层温度变化的关系不明显。其中茎流速率与太阳净辐射、空气水汽压差、风速、空气温度、5 cm土层温度曲线的变化特征相似,而与空气相对湿度、20—40 cm土层温度曲线的变化趋势相反,说明太阳辐射和水汽压差等因子的增大会带动茎流升高,即促进果树蒸腾,而空气相对湿度和20—40 cm土层温度的增高会使茎流降低,对果树蒸腾产生消极影响,不利于光合产物的积累。图5
新窗口打开|下载原图ZIP|生成PPT图5寒富苹果树茎流速率与环境因子的趋势关系图
Fig. 5Relationship between sap velocity and environmental factors in Hanfu apple trees
对寒富苹果树茎流速率与各环境因子之间的相关性进行分析,结果见表5。由表可以看出,‘寒富’苹果树茎流速率与太阳净辐射、大气温度、相对湿度、水汽压差、风速、5 cm土层温度、20—40 cm土层温度均在0.01水平上显著相关,其中茎流速率与相对湿度、20—40 cm土层温度呈极显著负相关,与其他因子极显著正相关,与太阳辐射相关性最强,相关系数达到了0.852。相关性程度大小为:r(Rn)=0.852**>r(T)=0.656**>r(Ws)=0.619**>r(VPD)=0.616**>r(RH)=-0.557**>r(Ts,30cm)=-0.347**>r(Ts,20cm)= -0.281**>r(Ts,40cm)=-0.173**>r(Ts,5cm)=0.132**(**表示在0.01水平(双侧)上显著相关)。
Table 5
表5
表5寒富苹果树茎流速率与环境因子相关关系
Table 5
净辐射 Rn | 大气温度 T | 相对湿度 RH | 水气压差VPD | 风速 Ws | 5 cm土温 Ts,5 | 10 cm 土温Ts,10 | 20 cm 土温Ts,20 | 30 cm 土温Ts,30 | 40 cm 土温Ts,40 | 茎流速率 Sap velocity | |
---|---|---|---|---|---|---|---|---|---|---|---|
净辐射Rn | 1 | ||||||||||
大气温度T | 0.613** | 1 | |||||||||
相对湿度RH | -0.533** | -0.731** | 1 | ||||||||
水气压差VPD | 0.609** | 0.920** | -0.926** | 1 | |||||||
风速Ws | 0.622** | 0.431** | -0.566** | 0.548** | 1 | ||||||
5 cm土温Ts,5 | 0.114* | 0.742** | -0.494** | 0.687** | 0.148** | 1 | |||||
10 cm土温Ts,10 | -0.121* | 0.571** | -0.339** | 0.511** | -0.010 | 0.954** | 1 | ||||
20 cm土温Ts,20 | -0.315** | 0.321** | -0.119* | 0.256** | -0.180** | 0.791** | 0.935** | 1 | |||
30 cm土温Ts,30 | -0.308** | 0.039 | 0.123* | -0.025 | -0.262** | 0.458** | 0.660** | 0.864** | 1 | ||
40 cm土温Ts,40 | -0.094 | 0.025 | 0.099 | -0.020 | -0.145** | 0.268** | 0.428** | 0.637** | 0.915** | 1 | |
茎流速率 Sap velocity | 0.852** | 0.656** | -0.557** | 0.616** | 0.619** | 0.132** | -0.078 | -0.281** | -0.347** | -0.173** | 1 |
新窗口打开|下载CSV
以‘寒富’苹果树茎流速率为因变量,各个环境因子为自变量,依据引入因子P1<0.05,剔除因子P2>0.1的准则,将环境因子与茎流速率值进行逐步多元回归分析,建立茎流速率与环境因子的综合关系模型。寒富苹果树茎流速率与环境因子的逐步回归方程中,太阳净辐射、大气温度、相对湿度、水汽压差、风速、5 cm土层温度进入方程,10—40 cm土层温度这4个因子被排除,得到了环境因子对‘寒富’苹果树茎流作用的最优模型。寒富果树茎流速率和各环境因子的多元回归方程为:V=6.441+0.012Rn+1.874T–0.577Ts,5cm+1.915Ws–9.766VPD–0.362RH,方程的相关系数R2=0.842,调整后的R2=0.840,F为335.233,达到极显著水平。各个环境因子可以共同解释84.0%的‘寒富’苹果树茎流变化,剩余因子决定系数(e=$\sqrt{1-R^{2}}$)[21]为0.4,该值较大,说明还有其他因素对‘寒富’苹果树茎流有一定影响,比如土壤含水率、气孔导度、叶面积指数等。
为进一步探究沈阳地区环境因子对‘寒富’果树茎流的影响方式及作用大小,运用通径分析得到各环境因子对寒富果树茎流的影响程度(表6)。
Table 6
表6
表6环境因子对茎流速率的通径分析结果
Table 6
自变量 Independent variable | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 合计 Total | |||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | ||||
x1 | 0.852 | 0.478 | - | 0.8018 | -0.0285 | 0.1219 | -0.9427 | 0.4221 | 0.3746 |
x2 | 0.656 | 1.308 | 0.2930 | - | -0.1855 | 0.0845 | -1.4242 | 0.5790 | -0.6532 |
x3 | 0.132 | -0.250 | 0.0545 | 0.9705 | - | 0.0290 | -1.0635 | 0.3912 | 0.3817 |
x4 | 0.619 | 0.196 | 0.2973 | 0.5637 | -0.037 | - | -0.8483 | 0.4483 | 0.4240 |
x5 | 0.616 | -1.548 | 0.2911 | 1.2034 | -0.1718 | 0.1074 | - | 0.7334 | 2.1635 |
x6 | -0.557 | -0.792 | -0.2548 | -0.9561 | 0.1235 | -0.1109 | 1.4334 | - | 0.2351 |
新窗口打开|下载CSV
各环境因子对‘寒富’苹果树茎流的直接作用大小表现为VPD(-1.548)>T(1.308)>RH(-0.792)>Rn(0.478)>Ts,5cm(-0.250)>Ws(0.196),而间接作用表现为VPD(2.1635)>T(-0.6532)>Rn(-0.4696)>Ws(0.4240)>Ts,5cm(0.3817)>RH(0.2351),说明水汽压差(VPD)的直接作用最大,而风速(Ws)的直接作用最小。大气温度(T)和风速(Ws)主要通过水汽压差(VPD)和相对湿度(RH)的共同作用影响茎流;太阳净辐射(Rn)主要通过大气温度(T)、水汽压差(VPD)、相对湿度(RH)的共同作用对茎流产生影响。
环境因素中除了气象因子和土壤温度对茎流有影响外,土壤水分状况也是影响果树茎流的一个重要因子。本试验选取10—60 cm土层的土壤含水率和日尺度下的果树茎流量来分析两者之间的关系,生育期内土壤含水率与果树茎流量的变化如图6所示。各土层在生育期内的含水率变化趋势一致。但变化幅度差别较大,茎流量变化与土壤含水率变化较为一致,对各土层的含水率与茎流量做相关性分析(表7)发现,果树茎流量与10 cm和20 cm土层的含水率呈正相关,其中与10 cm土层含水率在0.01水平上呈显著正相关,相关性系数为0.521,与其他土层含水率呈负相关,相关性不显著,说明在日尺度下0—10 cm土层的土壤水分情况最能影响果树茎流。
图6
新窗口打开|下载原图ZIP|生成PPT图6生育期内土壤含水率与果树茎流的变化规律
Fig. 6Changes of soil moisture content and sap flow in Hanfu apple trees
Table 7
表7
表7土壤体积含水率与茎流量的相关性分析
Table 7
10 cm土层 含水率 10 cm soil MC | 20 cm土层 含水率 20 cm soil MC | 30 cm土层 含水率 30 cm soil MC | 40 cm土层 含水率 40 cm soil MC | 50 cm土层 含水率 50 cm soil MC | 60 cm土层 含水率 60 cm soil MC | 茎流量 Sap flow | |
---|---|---|---|---|---|---|---|
10cm土层含水率10cm soil MC | 1 | ||||||
20cm土层含水率20cm soil MC | 0.645** | 1 | |||||
30cm土层含水率30cm soil MC | 0.300 | 0.909** | 1 | ||||
40cm土层含水率40cm soil MC | 0.107 | 0.807** | 0.973** | 1 | |||
50cm土层含水率50cm soil MC | -0.027 | 0.719** | 0.929** | 0.985** | 1 | ||
60cm土层含水率60cm soil MC | -0.064 | 0.687** | 0.911** | 0.978** | 0.998** | 1 | |
茎流量Sap flow | 0.521** | 0.187 | -0.034 | -0.100 | -0.155 | -0.180 | 1 |
新窗口打开|下载CSV
3 讨论
许多研究表明树干茎流有着显著的昼夜变化规律,变化趋势呈“几”字形单峰曲线[18-19,22-23]。在本试验中,茎流速率曲线呈单峰形,这是由于果树茎流对太阳辐射、气温等环境因子的变化较为敏感,随着太阳辐射和温度的升高,茎流速率迅速启动,在太阳辐射和温度下降的同时,茎流速率也很快下降。冯志文等[14]对山东和甘肃苹果树生长季茎流的研究发现,茎流速率峰值会出现在中午12:00—15:00,在17:00—18:00开始迅速降低。而本试验‘寒富’苹果树的茎流峰值出现的最早时间为8:30,迅速下降的时间点也在14:30左右,可能是因为东北地区日出时间比上述研究区域的日出时间早,而后太阳辐射增强,温度升高,空气湿度降低,为茎流启动和到达峰值提供了有利条件,加上日落时间较上述研究区早,所以导致‘寒富’苹果树茎流峰值和下降的时刻都比其他地区要出现的早。夜间茎流不仅有利于树木自身的补充和水分平衡的调节[24],而且有助于驱动根系与植物体向上进行物质运输[25]。本试验中茎流在夜间变化不明显,茎流速率会趋于零但是不为零,与赵自国等[26]****的研究结果一致。夜间茎流是由根压引起的[27],根压会使水分主动被吸入体内,以此来补充白天树木蒸腾丢失的大量水分,恢复植物体内的水分平衡[28,29],且树冠和枝条是树体主要储水部位,夜间茎流可能是水流由根部上升至枝叶部分存储,为下一阶段的生长做准备[30]。树木昼夜茎流的贡献率对其整树蒸腾有重要的生理意义,有研究表明夜间茎流对全天蒸腾量的贡献比率可达到50% [31]。在本研究中,零点到日出的这段时间内‘寒富’果树茎流速率变化比较平缓,在日落后到次日零点的这个时间段内,依然保持较高的茎流速率水平,与陈立欣等[32]研究结果一致,果树夜间茎流占全天总茎流的比例波动幅度为4.57%—30%,说明夜间茎流可调节植物与环境间的水汽交换。
树体在不同的生长季节,会因为树体生长、光照、降雨、风等因素造成树体蒸腾量的变化,也就会引起树干茎流速率的变化。黄土高原区苹果树的茎流速率值在6月份最高[33],4月份最低,续海红等[34]研究山西苹果茎流也有此结果,耿兵[15]研究山东丘陵区的苹果结果与之相似,但茎流速率最低的是11月。黄土塬区19年生苹果树干茎流速率8月最高,5月最低。在本试验中,寒富苹果树晴天单日平均茎流速率8月最大,5月最小,与黄土塬区研究结果一致;阴天单日平均茎流速率6月最大,10月最小。这是因为5月苹果树正处于开花期和幼果期,苹果蒸腾面积较小,空气温度和土壤温度较低,树体生命活动较弱,所需水分较少,使树干茎流一直在较低水平;8月果树保持较高的生长态势,叶片均已发育完全,果实处于膨大期,加上气温比较高,太阳辐射也很强,树体需要大量的水来维持一系列生命活动,所以茎流速率较高;10月随着苹果的成熟,气温开始降低,进入生育末期苹果树树叶也开始凋落,果树整日蒸腾量也随之降低。
气象是茎流的主要制约条件,大量研究发现苹果树干茎流速率与太阳辐射呈极显著正相关关系[35,36,37],与空气相对湿度呈负相关关系[38,39,40],土壤温度对树干茎流的影响机制比较复杂,风速对树木茎流速率的影响也比较复杂,不同****研究结论也不同。宋凯[41]研究发现苹果树茎液流量与太阳辐射的关联度最好,但太阳辐射对树干茎流速率的影响有时滞效应。刘鑫[42]对杉木的研究发现太阳辐射与树干茎流速率的相关关系不明确,而与风速、地表温度呈显著正相关。在丁日升等[17]的研究中,苹果树茎流速率与风速的相关性不明显;张静等[16]的研究显示水汽压差在小时尺度下与苹果树干茎流速率极显著正相关。耿兵[15]发现茎流速率与土壤温度呈极显著负相关,而石游[40]研究发现,土壤温度的变动有着显著的节律性,但是由于受多种因素影响,土壤温度日趋势和树干茎流日变化趋势并不一致,土壤温度变化达到峰值的时间比树干茎流稍晚一点,观测发现每天土壤温度的高峰期都处于当天茎流高峰之后的下降期,所以很难评价两者的关系。在本研究中,‘寒富’苹果树茎流速率与太阳辐射呈极显著正相关,与温度、风速和水汽压差也呈显著正相关,与相对湿度呈显著负相关。由于太阳辐射的升高会导致空气温度升高、空气相对湿度下降,随之水汽压亏缺升高,这就可能会造成在辐射的刺激下气孔导度增大,蒸腾量加大,从而造成树干茎流速率增加;而风速的增大,会降低空气相对湿度,使叶片和空气的水汽压差增大,进而导致茎流速率的增大。综合以上发现,由于地理位置不同,各地区气候条件差异较大,主要影响茎流速率的因子也不尽相同,加之气象因子之间的相互关联性,使各地区茎流速率与气象因子的关系更为复杂。
冯永建等[43]对华北落叶松的研究表明土壤水分亏缺与否是华北落叶松蒸腾耗水差异的主要原因,生长季土壤水分对华北落叶松生长至关重要;张大龙等[44]对甜瓜的研究发现,气象环境因子对甜瓜蒸腾量的影响很大程度上取决于土壤水分含量。东北地区具有明显的冻融特性,会对土壤含水量产生影响,继而影响果树蒸腾,在本研究中,0—10 cm土层的水分情况最能影响果树茎流,对该土层处的水分变化最为敏感,说明本地区‘寒富’苹果树根系主要从10 cm土层处吸收水分来供给生长。
4 结论
寒富苹果树单日茎流速率整体上呈现出昼高夜低的单峰“几”字型变化,夜间茎流速率呈现出稳定的变化趋势。在零点到日出间的这段时间内茎流速率变化平缓且接近于0,而在日落后到次日零点时间段内,仍然保持较高的茎流速率水平。太阳净辐射是影响寒富苹果树茎流最重要的因子,‘寒富’苹果树茎流速率和各环境因子的多元回归方程为:V=6.441+0.012Rn+1.874T–0.577Ts,5cm+1.915Ws–9.766VPD–0.362RH,方程的相关系数R2为0.842。果树茎流量与10 cm土层含水率在0.01水平上呈显著正相关,与其他土层含水率相关性不显著。东北冷凉地区‘寒富’苹果树在生育盛期即6—9月蒸腾量较大,蒸腾受太阳辐射、风速等环境因子影响程度高,本地区7、8月太阳辐射较强,且气温较高,所以果园灌溉应注意在果树生长旺季即果实膨大期及时补充灌水,尤其应注意在7月和8月连续晴天的情况下增加灌水频率,保证果树在生长的关键时期不受水分胁迫而影响产量,且灌水时间宜选在日出前或者日落后,以减少由于蒸发造成灌溉水损失。
(责任编辑 赵伶俐)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.3969/j.issn.1009-6221.2013.06.013URL [本文引用: 1]
Apple is the main material for apple process and the main part of Chinese diet. There are many nutritional components in fruit and seed of apple. This paper reviews the sorts, levels of the main nutrients of apple fruits and seeds, as well as their physiological functions to human health, and expounds the suitable method to eat fresh apple and the direction and value of using apple pomace.
DOI:10.3969/j.issn.1009-6221.2013.06.013URL [本文引用: 1]
Apple is the main material for apple process and the main part of Chinese diet. There are many nutritional components in fruit and seed of apple. This paper reviews the sorts, levels of the main nutrients of apple fruits and seeds, as well as their physiological functions to human health, and expounds the suitable method to eat fresh apple and the direction and value of using apple pomace.
,
DOI:10.3969/j.issn.1009-9980.2007.03.019URL [本文引用: 1]
总结了我国苹果产业发展的成就和存在的问题,认为我国苹果产业正进入一个由世界苹果生产大国转变为产业强国的重大转折时期。今后的发展趋势将是稳定规模,提高单产,提高果品及其加工产品质量,发展二、三产业。发展重点是建立以简化省工、优质、丰产为特点的现代化苹果栽培管理技术体系,现代化贮藏、深加工技术体系和物流体系,加大科技对产业的支撑作用,改善科技服务与培训水平,改革技术推广体系,提高产业的标准化水平,如种植业推行良好操作规范(CHINA-GAP),建立可追溯制度,加工业实施全程质量控制体系以及HACCP(危害分析及关键控制点)认证,成立国家级苹果协会并协助农民组织起来成立合作社或协会,加快外向型苹果产
DOI:10.3969/j.issn.1009-9980.2007.03.019URL [本文引用: 1]
总结了我国苹果产业发展的成就和存在的问题,认为我国苹果产业正进入一个由世界苹果生产大国转变为产业强国的重大转折时期。今后的发展趋势将是稳定规模,提高单产,提高果品及其加工产品质量,发展二、三产业。发展重点是建立以简化省工、优质、丰产为特点的现代化苹果栽培管理技术体系,现代化贮藏、深加工技术体系和物流体系,加大科技对产业的支撑作用,改善科技服务与培训水平,改革技术推广体系,提高产业的标准化水平,如种植业推行良好操作规范(CHINA-GAP),建立可追溯制度,加工业实施全程质量控制体系以及HACCP(危害分析及关键控制点)认证,成立国家级苹果协会并协助农民组织起来成立合作社或协会,加快外向型苹果产
,
DOI:10.3969/j.issn.1009-9980.2008.03.018URL [本文引用: 1]
通过对国内外苹果生产与市场的比较,认为中国苹果产业现代化有一个较长的发展过程,不同地区实现现代化速度也会有所不同。工业对农业的装备与支持力度、果农文化素质的提高与合作组织的建立与完善是主要的影响因子,较高的果农文化素质是实现苹果产业现代化的基础。中国生产的苹果市场不论现在还是将来都主要在国内,但苹果外销却是现代化的拉动力。当前,种植业发展中值得重视的几个问题是:(1)努力提高单产,而不是依靠扩大面积增产。(2)增加总产量中的鲜果销售比例,并促进加工产品多样化。(3)重视发展有机苹果生产。(4)尽量保持苹果单价大体稳定。
DOI:10.3969/j.issn.1009-9980.2008.03.018URL [本文引用: 1]
通过对国内外苹果生产与市场的比较,认为中国苹果产业现代化有一个较长的发展过程,不同地区实现现代化速度也会有所不同。工业对农业的装备与支持力度、果农文化素质的提高与合作组织的建立与完善是主要的影响因子,较高的果农文化素质是实现苹果产业现代化的基础。中国生产的苹果市场不论现在还是将来都主要在国内,但苹果外销却是现代化的拉动力。当前,种植业发展中值得重视的几个问题是:(1)努力提高单产,而不是依靠扩大面积增产。(2)增加总产量中的鲜果销售比例,并促进加工产品多样化。(3)重视发展有机苹果生产。(4)尽量保持苹果单价大体稳定。
,
URL [本文引用: 1]
抗寒优质苹果新品种“短枝寒富”,系1978年以东光为母本,富士为父本杂交育成。在宁城县年平均气温7.6℃,1月份平均气温-12.5℃、绝对低温-32.7℃的地区,表现能安全自然越冬,抗旱抗腐烂病,植株为短枝型。果实为大果型,平均单果重205g;品质优,成熟期比国光早20d(天);耐贮性比国光强;结果期较早、丰产。1994年冬通过内蒙古自治区审定并命名。
URL [本文引用: 1]
抗寒优质苹果新品种“短枝寒富”,系1978年以东光为母本,富士为父本杂交育成。在宁城县年平均气温7.6℃,1月份平均气温-12.5℃、绝对低温-32.7℃的地区,表现能安全自然越冬,抗旱抗腐烂病,植株为短枝型。果实为大果型,平均单果重205g;品质优,成熟期比国光早20d(天);耐贮性比国光强;结果期较早、丰产。1994年冬通过内蒙古自治区审定并命名。
,
URL [本文引用: 1]
By the method of thermal dissipation,this paper studied the dynamic characteristics of the stem sap flow of Fraxinus mandshurica and Pinus sylvestris var.mongolica,the two major classes of wood anatomy,non-porous(coniferous) and ring-porous,at the Forest Ecosystem Research Station of Maoershan Mountain during growth season.Air temperature and relative humidity,soil moisture,and soil temperature were also measured.The results showed that on sunny days,the diurnal variation of sap flow density presented mono-peak pattern,mostly occurred from 9 AM to 14 PM.The maximum sap flow density was three times greater in F.mandshurica than in P.sylvestris var.mongolica.The ratio of sap flow quantity at nighttime to those in whole day was less than 20%,except in later autumn,indicating the effect of root pressure.After all leaves fallen till mid-October,there still existed sap flow.The seasonal average sap flow density was 48% higher in F.mandshurica than in P.sylvestris var.mongolica.Effective photosynthetic radiation and deficient vapor pressure were the dominant environmental variables affecting the diurnal variation of sap flow density on sunny days.
URL [本文引用: 1]
By the method of thermal dissipation,this paper studied the dynamic characteristics of the stem sap flow of Fraxinus mandshurica and Pinus sylvestris var.mongolica,the two major classes of wood anatomy,non-porous(coniferous) and ring-porous,at the Forest Ecosystem Research Station of Maoershan Mountain during growth season.Air temperature and relative humidity,soil moisture,and soil temperature were also measured.The results showed that on sunny days,the diurnal variation of sap flow density presented mono-peak pattern,mostly occurred from 9 AM to 14 PM.The maximum sap flow density was three times greater in F.mandshurica than in P.sylvestris var.mongolica.The ratio of sap flow quantity at nighttime to those in whole day was less than 20%,except in later autumn,indicating the effect of root pressure.After all leaves fallen till mid-October,there still existed sap flow.The seasonal average sap flow density was 48% higher in F.mandshurica than in P.sylvestris var.mongolica.Effective photosynthetic radiation and deficient vapor pressure were the dominant environmental variables affecting the diurnal variation of sap flow density on sunny days.
,
DOI:10.3321/j.issn:1001-7488.2006.08.017URLMagsci [本文引用: 1]
<p>热技术方法根据其设计原理可分为热脉冲法、热平衡法、热扩散法和激光热脉冲法。回顾利用热技术方法测算树木茎流的历史,概述热技术方法的产生和发展过程,重点论述4种热技术方法的设计原理、最新研究成果和概况,及实际应用中需注意的问题。基于热技术法的特殊优点,对其拓展性应用前景进行了展望:应用热技术方法对林木耗水进行尺度扩展,扩展模型中主导环境因子的导入,不同树种群体耗水量的估测等难点问题的深入研究和解决,将推动热技术理论和研究方法的进步。对现有的研究成果和研究目标进行分析认为,热扩散方法将成为未来几年研究树木液流的重要测算方法。</p>
DOI:10.3321/j.issn:1001-7488.2006.08.017URLMagsci [本文引用: 1]
<p>热技术方法根据其设计原理可分为热脉冲法、热平衡法、热扩散法和激光热脉冲法。回顾利用热技术方法测算树木茎流的历史,概述热技术方法的产生和发展过程,重点论述4种热技术方法的设计原理、最新研究成果和概况,及实际应用中需注意的问题。基于热技术法的特殊优点,对其拓展性应用前景进行了展望:应用热技术方法对林木耗水进行尺度扩展,扩展模型中主导环境因子的导入,不同树种群体耗水量的估测等难点问题的深入研究和解决,将推动热技术理论和研究方法的进步。对现有的研究成果和研究目标进行分析认为,热扩散方法将成为未来几年研究树木液流的重要测算方法。</p>
,
DOI:10.6041/j.issn.1000-1298.2012.11.016URL [本文引用: 1]
The experimental area located in Mizhi experimental station in loess plateau of China. According to the meteorological data observed by automatic weather station of Mizhi experimental station and using FAO Penman—Montieth equation, the crop reference evapotranspiration was calculated consequently in jujube’s growth period. Additionally, combined with crop evapotranspiration of jujubes under sufficient irrigation, the crop coefficient of drip-irrigation jujubes was studied. The water requirements and crop coefficient was determined in each growing period of jujube. Water requirements (crop evapotranspiration) in sprout-leaf development period, flowering and fruit-setting period, fruit development period and fruit development period was 68.1mm, 117.4mm, 224.4mm and 66.2mm, respectively. Crop coefficient in each growth period was as follows: 0.496 in sprout-leaf development period, 0.681 in flowering and fruit-setting period, 1.262 in fruit development period,and 0.944 in fruit mature period. A function relationship was established between crop coefficient and leaf area index, and the results demonstrated that there was a quadratic curve relationship between crop coefficient and leaf area index.
DOI:10.6041/j.issn.1000-1298.2012.11.016URL [本文引用: 1]
The experimental area located in Mizhi experimental station in loess plateau of China. According to the meteorological data observed by automatic weather station of Mizhi experimental station and using FAO Penman—Montieth equation, the crop reference evapotranspiration was calculated consequently in jujube’s growth period. Additionally, combined with crop evapotranspiration of jujubes under sufficient irrigation, the crop coefficient of drip-irrigation jujubes was studied. The water requirements and crop coefficient was determined in each growing period of jujube. Water requirements (crop evapotranspiration) in sprout-leaf development period, flowering and fruit-setting period, fruit development period and fruit development period was 68.1mm, 117.4mm, 224.4mm and 66.2mm, respectively. Crop coefficient in each growth period was as follows: 0.496 in sprout-leaf development period, 0.681 in flowering and fruit-setting period, 1.262 in fruit development period,and 0.944 in fruit mature period. A function relationship was established between crop coefficient and leaf area index, and the results demonstrated that there was a quadratic curve relationship between crop coefficient and leaf area index.
,
DOI:10.1093/treephys/3.4.309URLPMID:14975915 [本文引用: 2]
Abstract Transpiration of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand was evaluated by sap flow measurements during a 4-month period. Between-tree variation in sap flow depended on crown class. On a sunny day, total transpiration was 1.6, 8.0 and 22.0 liters day(-1) for suppressed, codominant and dominant trees, respectively. Transpiration estimated by sap flow fell below potential evapotranspiration when available soil water decreased below 30% of its maximum value. Sap flow measurements gave transpiration values similar to those obtained by the water balance method.
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/0168-1923(95)02252-XURL [本文引用: 1]
ABSTRACT Sap flow was measured on several species from the tropical rain forest in French Guiana during two successive years over the dry season. On bright days, sap flow densities (i.e. sap flow per unit of sapwood area) exhibited high variations from one species to another. Higher rates (3 to 4 kg dim612 h611) were observed on late stage forest species like Dicorynia guianensis, Eperua falcata or E. grandifolia, and lower rates on Vouacapoua americana and Carapa procera (1.0 to 1.5 kg dm612 h611).Calculated stand sap flow (F) was closely dependant on air vapour pressure deficit and less correlated to global radiation. A simple model of canopy conductance variations and hence of stand transpiration was derived from these measurements. Sap flow was linearly related to Penman Evapotranspiration (PET), the ratio F/PET being close to 0.75 under dry canopy conditions, as previously reported by Shuttleworth et al. (1984) in Central Amazon.
,
URL [本文引用: 1]
正1苹果树的需水量影响苹果树 需水量的因素是非常复杂的,但归纳起来,主要是3方面的因素:气候因素,包括太阳辐射、空气温度、湿度及风速等;生物学因素,包括叶面积指数、叶片的气孔 活动,叶面温度等;土壤因素,包括土壤水分状况及土壤结构等。因此不同地区、不同品种、不同树龄的苹果树需水量是不相同的。不论幼树还是结果树,各器官的 含水量是不平衡的,
URL [本文引用: 1]
正1苹果树的需水量影响苹果树 需水量的因素是非常复杂的,但归纳起来,主要是3方面的因素:气候因素,包括太阳辐射、空气温度、湿度及风速等;生物学因素,包括叶面积指数、叶片的气孔 活动,叶面温度等;土壤因素,包括土壤水分状况及土壤结构等。因此不同地区、不同品种、不同树龄的苹果树需水量是不相同的。不论幼树还是结果树,各器官的 含水量是不平衡的,
,
DOI:10.14067/j.cnki.1003-8981.2017.01.006URL [本文引用: 1]
为探明山旱塬区苹果园耗水规律以及影响果树耗水的主导因子,确定水分承载力,合理配置有限的水资源,于2014~2015年采用SF-L树干茎流仪和Watch Dog 2900ET自动气象站对山旱塬区花牛苹果树干茎流及环境因子进行了连续观测,分析了花牛苹果树干茎流速率的变化规律及其与环境因子的相关关系。结果表明,在果树生长周期,各月份根据日均茎流速率由大到小排列依次为5月、6月、7月、8月、9月,随着月份的递增,茎流峰值出现时间逐渐延迟;5~9月份苹果树干茎流速率变化规律表现为昼高夜低,7:00~9:00树干茎流速率开始急速上升,12:00~15:00达到最大值,17:00~18:00开始逐步下降,21:00趋于稳定;不同天气条件下苹果树干茎流速率为晴天大于雨天;对茎流速率与环境因子的相关性分析结果表明,太阳辐射强度、相对湿度、空气温度、饱和水气压差、露点温度与树干茎流速率呈极显著性相关,风速对茎流速率也有一定影响。
DOI:10.14067/j.cnki.1003-8981.2017.01.006URL [本文引用: 1]
为探明山旱塬区苹果园耗水规律以及影响果树耗水的主导因子,确定水分承载力,合理配置有限的水资源,于2014~2015年采用SF-L树干茎流仪和Watch Dog 2900ET自动气象站对山旱塬区花牛苹果树干茎流及环境因子进行了连续观测,分析了花牛苹果树干茎流速率的变化规律及其与环境因子的相关关系。结果表明,在果树生长周期,各月份根据日均茎流速率由大到小排列依次为5月、6月、7月、8月、9月,随着月份的递增,茎流峰值出现时间逐渐延迟;5~9月份苹果树干茎流速率变化规律表现为昼高夜低,7:00~9:00树干茎流速率开始急速上升,12:00~15:00达到最大值,17:00~18:00开始逐步下降,21:00趋于稳定;不同天气条件下苹果树干茎流速率为晴天大于雨天;对茎流速率与环境因子的相关性分析结果表明,太阳辐射强度、相对湿度、空气温度、饱和水气压差、露点温度与树干茎流速率呈极显著性相关,风速对茎流速率也有一定影响。
,
URL [本文引用: 1]
利用热扩散茎流测定系统(TDP)对渭北高原矮化红富士树干液流 进行长期定点定位观测,对苹果树开花期和新梢生长期的树干液流时空变化特征进行了分析,结果表明:晴天条件下,开花期表现为单峰曲线,日平均液流速率为 0.55 L·h-1,白天液流量占全天的86.84%;新梢生长期内表现为双峰曲线,日平均液流速率为1.16 L·h-1,白天液流量占全天的92.87%.阴天天气下呈多峰曲线.4、5、6月日平均液流量分别为2.40、3.17、3.95 mm.树干液流速率在树干东南和西南方向基本一致,北方向的树干液流速率较小,大约是前者的50%.
URL [本文引用: 1]
利用热扩散茎流测定系统(TDP)对渭北高原矮化红富士树干液流 进行长期定点定位观测,对苹果树开花期和新梢生长期的树干液流时空变化特征进行了分析,结果表明:晴天条件下,开花期表现为单峰曲线,日平均液流速率为 0.55 L·h-1,白天液流量占全天的86.84%;新梢生长期内表现为双峰曲线,日平均液流速率为1.16 L·h-1,白天液流量占全天的92.87%.阴天天气下呈多峰曲线.4、5、6月日平均液流量分别为2.40、3.17、3.95 mm.树干液流速率在树干东南和西南方向基本一致,北方向的树干液流速率较小,大约是前者的50%.
,
URL [本文引用: 2]
利用热扩散茎流测定系统(TDP)连续监测苹果树在生长季的茎流速率,同步观测太阳辐射、空气温度、空气相对湿度和风速等气象因子,选择晴天、阴天两种典型天气分析鲁西南地区苹果树干茎流速率的日变化及其与气象因子的关系。结果表明:苹果树干茎流速率在晴天条件下呈现单峰曲线,阴天条件下呈现多峰曲线。不同天气条件下,苹果树干茎流速率日变化波动曲线及其主要影响因子各异,但太阳辐射始终是茎流速率变化的主导因子。晴天茎流速率的主要影响因子依次为太阳辐射、空气相对湿度和空气温度;阴天依次为太阳辐射和空气温度。蒸腾量日际变化或季节变化特征为4月份逐渐升高、5~6月份达到高峰值、7月份后逐渐降低、10月份达到第二次高峰、11月初迅速降低。主要生长期蒸腾量为708.93 mm,其中,主要需水期(5~7月份、10月份)的蒸腾量为423.41 mm,占主要生长季的59.72%。
URL [本文引用: 2]
利用热扩散茎流测定系统(TDP)连续监测苹果树在生长季的茎流速率,同步观测太阳辐射、空气温度、空气相对湿度和风速等气象因子,选择晴天、阴天两种典型天气分析鲁西南地区苹果树干茎流速率的日变化及其与气象因子的关系。结果表明:苹果树干茎流速率在晴天条件下呈现单峰曲线,阴天条件下呈现多峰曲线。不同天气条件下,苹果树干茎流速率日变化波动曲线及其主要影响因子各异,但太阳辐射始终是茎流速率变化的主导因子。晴天茎流速率的主要影响因子依次为太阳辐射、空气相对湿度和空气温度;阴天依次为太阳辐射和空气温度。蒸腾量日际变化或季节变化特征为4月份逐渐升高、5~6月份达到高峰值、7月份后逐渐降低、10月份达到第二次高峰、11月初迅速降低。主要生长期蒸腾量为708.93 mm,其中,主要需水期(5~7月份、10月份)的蒸腾量为423.41 mm,占主要生长季的59.72%。
[D]. ,
[本文引用: 3]
[D]. ,
[本文引用: 3]
,
DOI:10.3864/j.issn.0578-1752.2016.13.014URL [本文引用: 2]
【目的】以黄土高原沟壑区的典型代表长武塬为研究区,通过环境因子估算19年生苹果树耗水速率在不同时间尺度上的可行性,以期为黄土塬区有限水资源条件下苹果发展的科学布局、合理制定果园管理措施、增强其生产能力提供理论依据。【方法】选取黄土塬区长武县19年生苹果林生态系统为研究对象,应用热扩散式茎流计(TDP)于2014年5—9月对苹果林内8株标准果树树干液流速率进行连续测定,并通过数据采集器CR1000(Campbell Scientific,UN)对数据进行采集分析,用位于距样地50 m处的自动气象观测站连续监测获取气象数据;分析不同时间尺度下19年生苹果树干液流速率与环境因子的关系,建立不同时间尺度下树干液流速率与环境因子的关系模型。【结果】小时尺度下,苹果树干液流速率与水汽压差相关关系最密切,且与太阳辐射、风速和地表温度均呈极显著相关关系,树干液流速率曲线呈明显的单峰曲线,逐步回归方程为:v=-11.683+2.3VPD+0.009Rs+0.55Ts+0.880Ws,相关系数为0.779。日尺度下,只有地表温度、水汽压差与苹果树干液流速率显著相关。逐步回归方程为:v=1.637+0.404Ts-3.097VPD,相关系数为0.771。月尺度下,19年生苹果树干液流速率整体表现为8月〉7月〉6月〉9月〉5月,进入逐步回归方程的仅有地表温度,逐步回归方程为:v=-3.524+0.509Ts,相关系数为0.981。时间尺度越大,与苹果树干液流速率相关的环境因子越少,但地表温度始终都是其主导因子,且相关系数随着时间尺度的增大而增大;风速只在小时尺度下与树干液流速率极显著相关。水汽压差在小时尺度下与树干液流速率极显著正相关,在日尺度下与树干液流速率极显著负相关;太阳辐射在3种尺度下与树干液流速率的相关关系不明确。3种尺度下的逐步回归方程,以月尺度下的相关系数最大。【结论】在较大
DOI:10.3864/j.issn.0578-1752.2016.13.014URL [本文引用: 2]
【目的】以黄土高原沟壑区的典型代表长武塬为研究区,通过环境因子估算19年生苹果树耗水速率在不同时间尺度上的可行性,以期为黄土塬区有限水资源条件下苹果发展的科学布局、合理制定果园管理措施、增强其生产能力提供理论依据。【方法】选取黄土塬区长武县19年生苹果林生态系统为研究对象,应用热扩散式茎流计(TDP)于2014年5—9月对苹果林内8株标准果树树干液流速率进行连续测定,并通过数据采集器CR1000(Campbell Scientific,UN)对数据进行采集分析,用位于距样地50 m处的自动气象观测站连续监测获取气象数据;分析不同时间尺度下19年生苹果树干液流速率与环境因子的关系,建立不同时间尺度下树干液流速率与环境因子的关系模型。【结果】小时尺度下,苹果树干液流速率与水汽压差相关关系最密切,且与太阳辐射、风速和地表温度均呈极显著相关关系,树干液流速率曲线呈明显的单峰曲线,逐步回归方程为:v=-11.683+2.3VPD+0.009Rs+0.55Ts+0.880Ws,相关系数为0.779。日尺度下,只有地表温度、水汽压差与苹果树干液流速率显著相关。逐步回归方程为:v=1.637+0.404Ts-3.097VPD,相关系数为0.771。月尺度下,19年生苹果树干液流速率整体表现为8月〉7月〉6月〉9月〉5月,进入逐步回归方程的仅有地表温度,逐步回归方程为:v=-3.524+0.509Ts,相关系数为0.981。时间尺度越大,与苹果树干液流速率相关的环境因子越少,但地表温度始终都是其主导因子,且相关系数随着时间尺度的增大而增大;风速只在小时尺度下与树干液流速率极显著相关。水汽压差在小时尺度下与树干液流速率极显著正相关,在日尺度下与树干液流速率极显著负相关;太阳辐射在3种尺度下与树干液流速率的相关关系不明确。3种尺度下的逐步回归方程,以月尺度下的相关系数最大。【结论】在较大
,
DOI:10.3969/j.issn.1672-3317.2004.02.005URL [本文引用: 2]
利用液流传感器(sapflowsensor)监测苹果树液流,并用自动气象站和土壤水分测定仪(TRIME-FM)对气象因素和土壤水分进行同步监测。分析了苹果树液流日变化和日际变化与太阳辐射强度的关系、苹果树液流Tr与参考作物蒸发蒸腾量ET0的相关性,以及Tr/ET0和100cm深的平均土壤相对含水率AW的关系。运用回归分析方法建立了液流通量与气象因子间的经验公式,并比较了预测值与实测值。其结果表明:液流变化曲线与太阳辐射的变化曲线较一致,太阳辐射是果树液流的首要影响因子;Tr和ET0变化曲线相似;相对含水率越大,Tr/ET0的值越大;反之越小;用经验公式预测的液流值与实测值相比较,二者最大相差10.13%,最小相差3.45%。
DOI:10.3969/j.issn.1672-3317.2004.02.005URL [本文引用: 2]
利用液流传感器(sapflowsensor)监测苹果树液流,并用自动气象站和土壤水分测定仪(TRIME-FM)对气象因素和土壤水分进行同步监测。分析了苹果树液流日变化和日际变化与太阳辐射强度的关系、苹果树液流Tr与参考作物蒸发蒸腾量ET0的相关性,以及Tr/ET0和100cm深的平均土壤相对含水率AW的关系。运用回归分析方法建立了液流通量与气象因子间的经验公式,并比较了预测值与实测值。其结果表明:液流变化曲线与太阳辐射的变化曲线较一致,太阳辐射是果树液流的首要影响因子;Tr和ET0变化曲线相似;相对含水率越大,Tr/ET0的值越大;反之越小;用经验公式预测的液流值与实测值相比较,二者最大相差10.13%,最小相差3.45%。
,
[本文引用: 2]
[本文引用: 2]
,
URL [本文引用: 2]
通过在新疆南疆田间试验,利用SF-G液流传感器和CIRAS-3便携式光合作用仪研究滴灌核桃树茎流速率变化规律及其与光合参数间的关系。结果表明:茎流速率的日变化在晴天条件下呈双峰曲线,峰值在13∶30与17∶30左右达到,多云天气条件下茎流速率的日变化呈多峰曲线;核桃树茎流速率与太阳辐射和大气温度具有显著性正相关,与大气相对湿度呈显著性负相关;核桃树茎流速率变化与光和参数Gs、Tleaf、WUE呈极显著性正相关,与RH、Ci呈极显著性负相关,与Pn、Tr显著性相关。
URL [本文引用: 2]
通过在新疆南疆田间试验,利用SF-G液流传感器和CIRAS-3便携式光合作用仪研究滴灌核桃树茎流速率变化规律及其与光合参数间的关系。结果表明:茎流速率的日变化在晴天条件下呈双峰曲线,峰值在13∶30与17∶30左右达到,多云天气条件下茎流速率的日变化呈多峰曲线;核桃树茎流速率与太阳辐射和大气温度具有显著性正相关,与大气相对湿度呈显著性负相关;核桃树茎流速率变化与光和参数Gs、Tleaf、WUE呈极显著性正相关,与RH、Ci呈极显著性负相关,与Pn、Tr显著性相关。
,
DOI:10.7522/j.issn.1000-694X.2013.00457URLMagsci [本文引用: 1]
<p>基于热平衡原理,运用FLOW32包裹式植物茎流计对甘肃敦煌南湖地区无核白葡萄液流速率进行长期连续观测,并对多个气象因子开展同步测定,分析探讨不同天气条件下葡萄液流速率及气象因子的日变化特征,进行了液流速率与各气象因子的回归分析,建立了液流速率的多元曲线回归模型,分析了葡萄树的耗水规律.结果表明:在不同天气条件下无核白葡萄树液流速率日变化差异显著,日均液流速率晴天 > 阴天 > 雨天;液流速率与光合有效辐射、水汽压亏缺呈线性相关,与冠层温度、冠层相对湿度呈曲线相关,相关程度大小顺序为光合有效辐射 > 水汽压亏缺 > 冠层温度 > 冠层相对湿度;建立液流速率的多元曲线回归模型,为研究葡萄树潜在耗水能力提供了预测手段;对比分析了无核白葡萄树的耗水量,为当地农业灌溉及种植等提供了合理化建议.</p>
DOI:10.7522/j.issn.1000-694X.2013.00457URLMagsci [本文引用: 1]
<p>基于热平衡原理,运用FLOW32包裹式植物茎流计对甘肃敦煌南湖地区无核白葡萄液流速率进行长期连续观测,并对多个气象因子开展同步测定,分析探讨不同天气条件下葡萄液流速率及气象因子的日变化特征,进行了液流速率与各气象因子的回归分析,建立了液流速率的多元曲线回归模型,分析了葡萄树的耗水规律.结果表明:在不同天气条件下无核白葡萄树液流速率日变化差异显著,日均液流速率晴天 > 阴天 > 雨天;液流速率与光合有效辐射、水汽压亏缺呈线性相关,与冠层温度、冠层相对湿度呈曲线相关,相关程度大小顺序为光合有效辐射 > 水汽压亏缺 > 冠层温度 > 冠层相对湿度;建立液流速率的多元曲线回归模型,为研究葡萄树潜在耗水能力提供了预测手段;对比分析了无核白葡萄树的耗水量,为当地农业灌溉及种植等提供了合理化建议.</p>
,
DOI:10.3969/j.issn.1674-5906.2014.08.020URL [本文引用: 1]
土壤是全球重要的碳库和氮库,在全球碳氮循环中具有重要地位。密云水库是华北地区最大的水库和北京市最重要的地表水水源地,其上游流域山地广布,地形复杂,气候变化明显,土壤类型和植被类型多样,影响土壤碳氮库的环境因素具有较强的变异性。为揭示环境因素对密云水库上游流域土壤有机碳(soil organic carbon,SOC)和全氮(total nitrogen,TN)含量的作用效应,采用野外采样、实验室分析与逐步回归分析和通径分析相结合的方法,研究了气候(温度和降水)、地形(海拔和坡度)、土壤理化性质(土壤容重、含水量、pH值和粘粒含量)等环境因素对流域SOC和TN含量的影响。结果表明:温度、土壤容重、含水量、pH值和粘粒含量对SOC含量的影响显著(P0.001),其中各因子的直接通径系数依次为:土壤含水量(0.439)土壤容重(-0.324)pH值(-0.238)温度(-0.209)土壤粘粒含量(0.092),间接通径系数依次为:土壤容重(-0.425)土壤粘粒含量(0.305)土壤含水量(0.287)pH值(-0.179)温度(-0.043),因此,土壤含水量、pH值和温度主要通过直接作用影响SOC含量,而土壤容重和粘粒含量则主要通过其它因子的作用间接影响SOC含量。海拔、土壤容重、含水量、pH值和粘粒含量对TN含量的影响显著(P0.001),其中各因子的直接通径系数依次为:土壤含水量(0.456)海拔(0.234)土壤容重(-0.228)pH值(-0.190)土壤粘粒含量(0.094),间接通径系数依次为:土壤容重(-0.484)土壤粘粒含量(0.301)海拔(0.247)土壤含水量(0.257)pH值(-0.202),因此,土壤含水量主要通过直接作用影响TN含量,而土壤容重和粘粒含量主要通过土壤含水量的作用间接影响TN含量,海拔和土壤pH值的直接作用与间接作用相当。气候、地形、土壤理化性质等环境因子能够联合解释SOC和TN含量变异性的75.0%和71.2%,但其它影响因子的剩余通径系数仍较大,分别为0.50和0.54,说明还有未考虑的其它重要影响因素,如成土母质、土地利用方式、耕作管理等,需要进一步深入分析。
DOI:10.3969/j.issn.1674-5906.2014.08.020URL [本文引用: 1]
土壤是全球重要的碳库和氮库,在全球碳氮循环中具有重要地位。密云水库是华北地区最大的水库和北京市最重要的地表水水源地,其上游流域山地广布,地形复杂,气候变化明显,土壤类型和植被类型多样,影响土壤碳氮库的环境因素具有较强的变异性。为揭示环境因素对密云水库上游流域土壤有机碳(soil organic carbon,SOC)和全氮(total nitrogen,TN)含量的作用效应,采用野外采样、实验室分析与逐步回归分析和通径分析相结合的方法,研究了气候(温度和降水)、地形(海拔和坡度)、土壤理化性质(土壤容重、含水量、pH值和粘粒含量)等环境因素对流域SOC和TN含量的影响。结果表明:温度、土壤容重、含水量、pH值和粘粒含量对SOC含量的影响显著(P0.001),其中各因子的直接通径系数依次为:土壤含水量(0.439)土壤容重(-0.324)pH值(-0.238)温度(-0.209)土壤粘粒含量(0.092),间接通径系数依次为:土壤容重(-0.425)土壤粘粒含量(0.305)土壤含水量(0.287)pH值(-0.179)温度(-0.043),因此,土壤含水量、pH值和温度主要通过直接作用影响SOC含量,而土壤容重和粘粒含量则主要通过其它因子的作用间接影响SOC含量。海拔、土壤容重、含水量、pH值和粘粒含量对TN含量的影响显著(P0.001),其中各因子的直接通径系数依次为:土壤含水量(0.456)海拔(0.234)土壤容重(-0.228)pH值(-0.190)土壤粘粒含量(0.094),间接通径系数依次为:土壤容重(-0.484)土壤粘粒含量(0.301)海拔(0.247)土壤含水量(0.257)pH值(-0.202),因此,土壤含水量主要通过直接作用影响TN含量,而土壤容重和粘粒含量主要通过土壤含水量的作用间接影响TN含量,海拔和土壤pH值的直接作用与间接作用相当。气候、地形、土壤理化性质等环境因子能够联合解释SOC和TN含量变异性的75.0%和71.2%,但其它影响因子的剩余通径系数仍较大,分别为0.50和0.54,说明还有未考虑的其它重要影响因素,如成土母质、土地利用方式、耕作管理等,需要进一步深入分析。
,
URL [本文引用: 1]
为了明晰黄土高原主要树种树干液流的动态特征,该文通过对已发表相关文献搜集与整理(19篇涉及11个树种),采用meta分析手段归纳黄土高原主要树种树干液流动态、耗水规律及其影响因素。研究发现:(1)该区主要树种树干液流存在明显的昼夜变化规律;(2)太阳辐射、水汽压亏缺、土壤含水率是影响树干液流的主要环境因素;(3)树干液流测量手段、树木生长阶段以及测量时的天气条件会给树木蒸腾耗水估算带来不确定性;(4)11个树种的蒸腾耗水量大小的顺序为:针叶树种(侧柏、油松)〈乡土阔叶树种(白榆、辽东栎、旱柳、柠条、河北杨、小叶杨、山杏)〈外来阔叶树种(刺槐、苹果)。本研究为黄土高原地区造林树种的合理选择及树种耗水评价提供参考。
URL [本文引用: 1]
为了明晰黄土高原主要树种树干液流的动态特征,该文通过对已发表相关文献搜集与整理(19篇涉及11个树种),采用meta分析手段归纳黄土高原主要树种树干液流动态、耗水规律及其影响因素。研究发现:(1)该区主要树种树干液流存在明显的昼夜变化规律;(2)太阳辐射、水汽压亏缺、土壤含水率是影响树干液流的主要环境因素;(3)树干液流测量手段、树木生长阶段以及测量时的天气条件会给树木蒸腾耗水估算带来不确定性;(4)11个树种的蒸腾耗水量大小的顺序为:针叶树种(侧柏、油松)〈乡土阔叶树种(白榆、辽东栎、旱柳、柠条、河北杨、小叶杨、山杏)〈外来阔叶树种(刺槐、苹果)。本研究为黄土高原地区造林树种的合理选择及树种耗水评价提供参考。
.
URL [本文引用: 1]
采用包裹式茎流计和小型自记式气象站对甘肃省会宁县太平镇主要农作物玉米的茎流速率及其周围的气象因子进行同步观测.分析结果表明:1)玉米的日茎流速率变化趋势基本一致,都呈“几”字型变化.晴朗天气下,茎流启动时间为6:00,于14:00~15:30达到峰值,持续较短时间后迅速降低,至晚上22:00达到较低值且在夜间保持了一定的茎流活动.而多云和阴雨天气玉米茎流速率则呈不规则曲线.2)玉米茎流速率与气象因子变化趋势相吻合.相关性分析结果表明,影响玉米茎流的主要因子依次是:光合有效辐射、空气温度、空气湿度、风速.玉米茎流速率与气象单因子分析及逐步回归方程表明,对半干旱区玉米茎流起关键作用的气象因子是光合有效辐射与空气湿度.
URL [本文引用: 1]
采用包裹式茎流计和小型自记式气象站对甘肃省会宁县太平镇主要农作物玉米的茎流速率及其周围的气象因子进行同步观测.分析结果表明:1)玉米的日茎流速率变化趋势基本一致,都呈“几”字型变化.晴朗天气下,茎流启动时间为6:00,于14:00~15:30达到峰值,持续较短时间后迅速降低,至晚上22:00达到较低值且在夜间保持了一定的茎流活动.而多云和阴雨天气玉米茎流速率则呈不规则曲线.2)玉米茎流速率与气象因子变化趋势相吻合.相关性分析结果表明,影响玉米茎流的主要因子依次是:光合有效辐射、空气温度、空气湿度、风速.玉米茎流速率与气象单因子分析及逐步回归方程表明,对半干旱区玉米茎流起关键作用的气象因子是光合有效辐射与空气湿度.
,
DOI:10.1093/treephys/26.4.411URLPMID:16414920 [本文引用: 1]
Abstract Transpiration is generally assumed to be insignificant at night when stomata close in response to the lack of photosynthetically active radiation. However, there is increasing evidence that the stomata of some species remain open at night, which would allow for nighttime transpiration if there were a sufficient environmental driving force. We examined nighttime water use in co-occurring species in a mixed deciduous stand at Harvard Forest, MA, using whole-tree and leaf-level measurements. Diurnal whole-tree water use was monitored continuously with Granier-style sap flux sensors in paper birch (Betula papyrifera Marsh.), red oak (Quercus rubra L.) and red maple (Acer rubrum L.). An analysis was conducted in which nighttime water flux could be partitioned between refilling of internal water stores and transpiration. Substantial nighttime sap flux was observed in all species and much of this flux was attributed to the refilling of depleted water stores. However, in paper birch, nighttime sap flux frequently exceeded recharge estimates. Over 10% of the total daily sap flux during the growing season was due to transpiration at night in paper birch. Nighttime sap flux was over 8% of the total daily flux in red oak and 2% in red maple; however, this flux was mainly associated with recharge. On nights with elevated vapor pressure deficit, sap flux continued through the night in paper birch, whereas it reached zero during the night in red oak and red maple. Measurements of leaf-level gas exchange on a night with elevated vapor pressure deficit showed stomatal conductance dropping by only 25% in paper birch, while approaching zero in red oak and red maple. The study highlighted differences in ecophysiological controls on sap flux exerted by co-occurring species. Paper birch is a fast-growing, shade-intolerant species with an earlier successional status than red oak and red maple. Risking water loss through nighttime transpiration may provide paper birch with an ecological advantage by enabling the species to maximize photosynthesis and support rapid growth. Nighttime transpiration may also be a mechanism for delivering oxygen to respiring cells in the deep sapwood of paper birch.
,
DOI:10.1071/fp02007URL [本文引用: 1]
N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~38002μmol mol–1). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3– enriched in 15N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and 15N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments, 15N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1093/treephys/24.9.951URLPMID:15234892 [本文引用: 1]
Abstract We monitored the radial distribution of sap flux density (v; g H2O m(-2) s(-1)) in the sapwood of six plantation-grown Pinus taeda L. trees during wet and dry soil periods. Mean basal diameter of the 32-year-old trees was 33.3 cm. For all trees, the radial distribution of sap flow in the base of the stem (i.e., radial profile) was Gaussian in shape. Sap flow occurred maximally in the outer 4 cm of sapwood, comprising 50-60% of total stem flow (F), and decreased toward the center, with the innermost 4 cm of sapwood (11-15 cm) comprising less than 10% of F. The percent of flow occurring in the outer 4 cm of sapwood was stable with time (average CV 40%). Diurnally, the radial profile changed predictably with time and with total stem flow. Seasonally, the radial profile became less steep as the soil water content (theta) declined from 0.38 to 0.21. Throughout the season, daytime sap flow also decreased as theta decreased; however, nighttime sap flow (an estimate of stored water use) remained relatively constant. As a result, the percentage of stored water use increased as theta declined. Time series analysis of 15-min values of F, theta, photosynthetically active radiation (PAR) and vapor pressure deficit (D) showed that F lagged behind D by 0-15 min and behind PAR by 15-30 min. Diurnally, the relationship between F and D was much stronger than the relationship between F and PAR, whereas no relationship was found between F and theta. An autoregressive moving average (ARIMA) model estimated that 97% of the variability in F could be predicted by D alone. Although total sap flow in all trees responded similarly to D, we show that the radial distribution of sap flow comprising total flow could change temporally, both on daily and seasonal scales.
,
DOI:10.6041/j.issn.1000-1298.2013.10.024URL [本文引用: 1]
A thermal dissipation probe (TDP) was used to continuously measure the sap-flow rate of apple tree in Changwu county in loess tableland area of China from July to October, 2012. The effect of meteorological factors, soil moisture and other environment factors on sap flow was analyzed. The results showed that diurnal variation of the sap-flow rate of apple tree was a single peak curve in both sunny and rainy days. On sunny day, the sap-flow started more early and stopped more lately than on rainy day. The sap-flow rate of apple tree was positively correlated with solar radiation, vapor pressure deficit, atmospheric temperature and atmospheric relative humidity with a linear equation, and negatively correlated with air relative humidity. The dependency of sap-flow rate on various meteorological factors on the sunny day was more significant than on the rainy day. In addition, the sap-flow rate of apple tree varied distinctly in different environment conditions of soil moisture. Under the water stress condition, the sap-flow rate was significantly lower than that under the moist soil condition. The change of sap-flow rate showed a broad-peak curve, indicating that the transpiration was higher under the moist soil condition.
DOI:10.6041/j.issn.1000-1298.2013.10.024URL [本文引用: 1]
A thermal dissipation probe (TDP) was used to continuously measure the sap-flow rate of apple tree in Changwu county in loess tableland area of China from July to October, 2012. The effect of meteorological factors, soil moisture and other environment factors on sap flow was analyzed. The results showed that diurnal variation of the sap-flow rate of apple tree was a single peak curve in both sunny and rainy days. On sunny day, the sap-flow started more early and stopped more lately than on rainy day. The sap-flow rate of apple tree was positively correlated with solar radiation, vapor pressure deficit, atmospheric temperature and atmospheric relative humidity with a linear equation, and negatively correlated with air relative humidity. The dependency of sap-flow rate on various meteorological factors on the sunny day was more significant than on the rainy day. In addition, the sap-flow rate of apple tree varied distinctly in different environment conditions of soil moisture. Under the water stress condition, the sap-flow rate was significantly lower than that under the moist soil condition. The change of sap-flow rate showed a broad-peak curve, indicating that the transpiration was higher under the moist soil condition.
,
Magsci [本文引用: 1]
研究马占相思树干的夜间水分补充现象有助于提高总蒸腾量、冠层气孔导度估算的准确度,同时可以深化对冠层蒸腾与树干液流所代表的日蒸腾之间时滞现象的认识。在广东鹤山马占相思林,采用热扩散探针法测定液流密度, 同步测定主要的环境因子,从不同的时间尺度分析其树干夜间水分补充现象。结果表明: 与白天相比较,夜间马占相思液流密度较小;夜间液流密度的变化幅度旱季比雨季大,树干夜间水分补充的主要时间段是前半夜;年内各个月份夜间水分补充量之间没有显著差异,它与环境因子之间相关关系不显著,但与胸径、树高、冠幅的回归曲线拟合较好;干季夜间补充的水分对总蒸腾量的贡献与白天蒸腾量、总的蒸腾量、水蒸气压亏缺(VPD)、光合有效辐射(PAR)以及大气温度(T)显著相关;湿季夜间补充的水分对总蒸腾量的贡献与白天蒸腾量、总蒸腾量显著相关。
Magsci [本文引用: 1]
研究马占相思树干的夜间水分补充现象有助于提高总蒸腾量、冠层气孔导度估算的准确度,同时可以深化对冠层蒸腾与树干液流所代表的日蒸腾之间时滞现象的认识。在广东鹤山马占相思林,采用热扩散探针法测定液流密度, 同步测定主要的环境因子,从不同的时间尺度分析其树干夜间水分补充现象。结果表明: 与白天相比较,夜间马占相思液流密度较小;夜间液流密度的变化幅度旱季比雨季大,树干夜间水分补充的主要时间段是前半夜;年内各个月份夜间水分补充量之间没有显著差异,它与环境因子之间相关关系不显著,但与胸径、树高、冠幅的回归曲线拟合较好;干季夜间补充的水分对总蒸腾量的贡献与白天蒸腾量、总的蒸腾量、水蒸气压亏缺(VPD)、光合有效辐射(PAR)以及大气温度(T)显著相关;湿季夜间补充的水分对总蒸腾量的贡献与白天蒸腾量、总蒸腾量显著相关。
,
URL [本文引用: 1]
The Hetao irrigated district draw water from the Huanghe River over 1.87 billion cubic meter per year which is one of important cause of the Huanghe River dring up.There are some measures of saving water and saving water potential in the irrigated district.Water proof layers of canals would save water by 2.2 billion cubic meter per year,improving irrigated type would save water 10%,building farmland-shelter forest would save water by 0.147 billion cubic meter per year,reusing the escape canal water would save water by 0.3 billion cubic meter per year.
URL [本文引用: 1]
The Hetao irrigated district draw water from the Huanghe River over 1.87 billion cubic meter per year which is one of important cause of the Huanghe River dring up.There are some measures of saving water and saving water potential in the irrigated district.Water proof layers of canals would save water by 2.2 billion cubic meter per year,improving irrigated type would save water 10%,building farmland-shelter forest would save water by 0.147 billion cubic meter per year,reusing the escape canal water would save water by 0.3 billion cubic meter per year.
// ,
URL [本文引用: 1]
本研究以西北地区23年盛果期苹果树为研究对象,试验设置为充分灌水,应用热脉冲技术对苹果树液流规律进行连续监测.依据监测结果确定了西北旱区苹果 树耗水量,利用净辐射等环境因素计算单株果树液流量并采用不同模型对液流进行模拟.结果表明:2008和2009年全生育期的平均蒸发蒸腾量分别为 3.99mm/d和3.85mm/d;日平均液流量均在展叶幼果期达到峰值,分别为3.77mm/d和3.76mm/d;西北旱区苹果树作物系数为 1.12;参考作物蒸发蒸腾量在整个生育期的6月中旬到7月下旬最大;整个生育期,苹果树日均液流量的峰值出现在6月下旬左右,大小约为5mm/d;液流 速率日变化呈单峰曲线,峰值约为7L/h;对不同的液流模拟模型进行分析,认为通过Penman-Monteith公式估算果树耗水相对准确.
URL [本文引用: 1]
本研究以西北地区23年盛果期苹果树为研究对象,试验设置为充分灌水,应用热脉冲技术对苹果树液流规律进行连续监测.依据监测结果确定了西北旱区苹果 树耗水量,利用净辐射等环境因素计算单株果树液流量并采用不同模型对液流进行模拟.结果表明:2008和2009年全生育期的平均蒸发蒸腾量分别为 3.99mm/d和3.85mm/d;日平均液流量均在展叶幼果期达到峰值,分别为3.77mm/d和3.76mm/d;西北旱区苹果树作物系数为 1.12;参考作物蒸发蒸腾量在整个生育期的6月中旬到7月下旬最大;整个生育期,苹果树日均液流量的峰值出现在6月下旬左右,大小约为5mm/d;液流 速率日变化呈单峰曲线,峰值约为7L/h;对不同的液流模拟模型进行分析,认为通过Penman-Monteith公式估算果树耗水相对准确.
,
DOI:10.3773/j.issn.1005-264x.2010.05.007URLMagsci [本文引用: 1]
<FONT face=Verdana>夜间液流有助于树木物质运输及其体内水分的补充(water recharge), 它不仅对植物的生长发育具有重要的生理生态学意义, 而且对大尺度植物蒸腾耗水的估算可能产生重要影响。2008年6月1日至8月31日, 以热扩散探针(thermal dissipation probe, TDP)技术对大连市劳动公园内的雪松(<EM>Cedrus deodara</EM>)、大叶榉(<EM>Zelkova schneideriana</EM>)、丝棉木(<EM>Euonymus bungeanus</EM>)和水杉(<EM>Metasequoia glyptostroboides</EM>) 4种乔木树种的不同径阶样木树干边材液流进行了测定, 并结合同步土壤水分与小气候观测结果分析了树木夜间(18:00至次日5:00)液流特征。实验结果表明, 树木普遍存在可感夜间液流, 夜间液流总量占观测期液流总量的比例在样木个体间呈现显著差异, 其变化范围为0.44%–75.96%; 观测期雨天夜间液流波动活跃, 显著高于晴天,其单日夜间液流总量可持平, 甚至高于日间液流。相关分析表明: 水汽压亏缺(vapor pressure deficit, <EM>VPD</EM>)和风速的变化与夜间蒸腾显著相关, 它们能够较好地解释液流变化(<EM>R<SUP>2</SUP></EM><SUP></SUP>> 0.6); 树木夜间液流主要用于夜间蒸腾和自身水分补充, 夜间液流现象主要发生在前半夜, 后半夜液流平稳且极接近0, 夜间液流量与相应的日间流量(<EM>R<SUP>2</SUP></EM> = 0.356, <EM>p</EM> = 0.00)及胸径(<EM>R<SUP>2</SUP></EM><SUB>Spearman</SUB> > 0.80) 显著相关, 说明植物本身的结构和生理特点也是影响树木夜间液流的重要因子。单株样木夜间液流占全天总蒸腾量的比例低于14.4%, 如不考虑夜间液流的影响, 根据日间液流通过尺度扩展推算的森林生态系统年蒸腾量可能偏低。</FONT>
DOI:10.3773/j.issn.1005-264x.2010.05.007URLMagsci [本文引用: 1]
<FONT face=Verdana>夜间液流有助于树木物质运输及其体内水分的补充(water recharge), 它不仅对植物的生长发育具有重要的生理生态学意义, 而且对大尺度植物蒸腾耗水的估算可能产生重要影响。2008年6月1日至8月31日, 以热扩散探针(thermal dissipation probe, TDP)技术对大连市劳动公园内的雪松(<EM>Cedrus deodara</EM>)、大叶榉(<EM>Zelkova schneideriana</EM>)、丝棉木(<EM>Euonymus bungeanus</EM>)和水杉(<EM>Metasequoia glyptostroboides</EM>) 4种乔木树种的不同径阶样木树干边材液流进行了测定, 并结合同步土壤水分与小气候观测结果分析了树木夜间(18:00至次日5:00)液流特征。实验结果表明, 树木普遍存在可感夜间液流, 夜间液流总量占观测期液流总量的比例在样木个体间呈现显著差异, 其变化范围为0.44%–75.96%; 观测期雨天夜间液流波动活跃, 显著高于晴天,其单日夜间液流总量可持平, 甚至高于日间液流。相关分析表明: 水汽压亏缺(vapor pressure deficit, <EM>VPD</EM>)和风速的变化与夜间蒸腾显著相关, 它们能够较好地解释液流变化(<EM>R<SUP>2</SUP></EM><SUP></SUP>> 0.6); 树木夜间液流主要用于夜间蒸腾和自身水分补充, 夜间液流现象主要发生在前半夜, 后半夜液流平稳且极接近0, 夜间液流量与相应的日间流量(<EM>R<SUP>2</SUP></EM> = 0.356, <EM>p</EM> = 0.00)及胸径(<EM>R<SUP>2</SUP></EM><SUB>Spearman</SUB> > 0.80) 显著相关, 说明植物本身的结构和生理特点也是影响树木夜间液流的重要因子。单株样木夜间液流占全天总蒸腾量的比例低于14.4%, 如不考虑夜间液流的影响, 根据日间液流通过尺度扩展推算的森林生态系统年蒸腾量可能偏低。</FONT>
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
DOI:10.11924/j.issn.1000-6850.casb15040030URL [本文引用: 1]
旨在通过对苹果树树干液流变化规律的研究,了解苹果树的冠层耗水量即田间蒸腾量的变化规律.将热扩散式茎流计安装在苹果树主干上,选取3种不同的天气状况,通过数据采集分析树干液流随时间的变化规律,以及灌后树干液流的变化规律.试验结果表明:苹果树树干液流在不同天气状况下大小排列顺序为:晴天>阴天>雨天,晴天和阴天情况下,呈“几”字单峰型曲线,雨天呈多峰曲线;在研究苹果树树干日液流随时间的变化规律发现,在6-9月期间,各月最大值的大小排列顺序为:6月>9月>7月>8月;日均值的大小排列顺序为:6月>8月>7月>9月.在研究灌后苹果树树干液流变化规律发现,不管是峰值还是日树干液流植,灌溉当天的值均为5天中最小的.试验得出的苹果树干液流变化规律,为初步研究苹果树的田间蒸腾量提供了基础数据.
DOI:10.11924/j.issn.1000-6850.casb15040030URL [本文引用: 1]
旨在通过对苹果树树干液流变化规律的研究,了解苹果树的冠层耗水量即田间蒸腾量的变化规律.将热扩散式茎流计安装在苹果树主干上,选取3种不同的天气状况,通过数据采集分析树干液流随时间的变化规律,以及灌后树干液流的变化规律.试验结果表明:苹果树树干液流在不同天气状况下大小排列顺序为:晴天>阴天>雨天,晴天和阴天情况下,呈“几”字单峰型曲线,雨天呈多峰曲线;在研究苹果树树干日液流随时间的变化规律发现,在6-9月期间,各月最大值的大小排列顺序为:6月>9月>7月>8月;日均值的大小排列顺序为:6月>8月>7月>9月.在研究灌后苹果树树干液流变化规律发现,不管是峰值还是日树干液流植,灌溉当天的值均为5天中最小的.试验得出的苹果树干液流变化规律,为初步研究苹果树的田间蒸腾量提供了基础数据.
,
DOI:10.13227/j.hjkx.2015.01.047URL [本文引用: 1]
蒸腾耗水是植被水分利用的重要方式和重要过程之一,对植物养分输送、生长发育、应对和缓解干旱胁迫以及改善区域微气候等都具有重要意义.研究以半干旱黄土区的油松植被为例,基于四针式热扩散探针法监测树干液流的动态变化,探讨其蒸腾耗水规律,分析油松树种的水分利用方式及对生存环境的适应能力.结果表明,油松的液流速率具有明显的季节性差异,不同月份的液流速率以4月最低,其次为10月、9月和8月,分别为0.024、0.057、0.062和0.071 m L·(cm2·min)-1.液流速率的日变化在各个时期都呈现昼高夜低趋势,夜间液流速率较低,但不为零.在降雨事件影响下,夜间液流量在日液流总量中的比重明显增加,是晴朗天气的3.9倍,而白天液流量所占比重下降31.8%.寒潮期间液流速率表现出相似的变化趋势,对突变环境具有较强的适应能力.油松液流速率与气象因子显著相关,对液流速率影响的大小顺序为:太阳辐射>水汽压亏缺>相对湿度>大气温度.
DOI:10.13227/j.hjkx.2015.01.047URL [本文引用: 1]
蒸腾耗水是植被水分利用的重要方式和重要过程之一,对植物养分输送、生长发育、应对和缓解干旱胁迫以及改善区域微气候等都具有重要意义.研究以半干旱黄土区的油松植被为例,基于四针式热扩散探针法监测树干液流的动态变化,探讨其蒸腾耗水规律,分析油松树种的水分利用方式及对生存环境的适应能力.结果表明,油松的液流速率具有明显的季节性差异,不同月份的液流速率以4月最低,其次为10月、9月和8月,分别为0.024、0.057、0.062和0.071 m L·(cm2·min)-1.液流速率的日变化在各个时期都呈现昼高夜低趋势,夜间液流速率较低,但不为零.在降雨事件影响下,夜间液流量在日液流总量中的比重明显增加,是晴朗天气的3.9倍,而白天液流量所占比重下降31.8%.寒潮期间液流速率表现出相似的变化趋势,对突变环境具有较强的适应能力.油松液流速率与气象因子显著相关,对液流速率影响的大小顺序为:太阳辐射>水汽压亏缺>相对湿度>大气温度.
,
DOI:10.1007/s00468-014-1113-zURL [本文引用: 1]
Key message Beside temperature, soil moisture was found as the most important environmental factor influencing the relationship between stem CO2 efflux and sap flow. Abstract Stem CO 2 efflux is an important component of the forest carbon balance. Even after several studies on this issue, there is still uncertainty about the influence of the sap flux on stem CO 2 efflux. This study analyses stem CO 2 efflux and sap flow measured on Norway spruce [ Picea abies (L.) Karst] trees and environmental factors influencing this relationship during the growing seasons of 2010 and 2011. Stem CO 2 efflux measurements were performed using an automatic dynamic closed gasometrical system, whilst sap flow measurements were carried out by applying a sap flow method heat pulse velocity. Stem CO 2 efflux was positively correlated with stem temperature; sap flow was positively correlated with incident global radiation. During optimal soil moisture conditions, stem CO 2 efflux and sap flow were positively correlated while during dry conditions, stem CO 2 efflux and sap flow were not positively correlated. Almost all significant correlations between stem CO 2 efflux and sap flow were not controlled by any investigated environmental factor.
,
DOI:10.1093/treephys/19.14.960URLPMID:10562406 [本文引用: 1]
Abstract Night and especially predawn tree water status is an important indicator of drought stress in trees. Leaf water potential (LWP) is frequently used as a measure of tree water status and hence drought stress; however, there are difficulties associated with sampling foliage from tall trees and determining LWP automatically. The current study was undertaken to determine whether sap flow index (SFI), which can be automatically and continuously recorded even during very low flows, can be used to estimate drought stress in trees caused by dry air under non-limiting soil water conditions. We made simultaneous measurements of LWP, heat pulse velocity (HPV) and SFI on apple trees (Malus domestica Borkh.) in the semiarid climate of southern Ukraine over several growing seasons. Predawn values of LWP were highly correlated with SFI. Over the range of low sap flow rates occurring at nighttime, where other methods of measuring sap flow are not sensitive, the SFI method was linear and very sensitive. Additional information about tree water status was obtained by comparing nighttime and daytime values of SFI. The ratio of predawn SFI to midday SFI and the period between the two daily SFI maxima (the first SFI peak occurred in the morning and the second peak occurred in the evening on cloudless days) can be used to characterize internal plant water balance. Although the daily course of SFI was variable, specific patterns were identified that reflected particular stages in the development of plant drought stress. An "air-drought-stress curve" was used to characterize the development of water stress in trees subjected to air drought during the growing season.
,
DOI:10.1007/s12665-014-3505-1URL [本文引用: 1]
Systematic field measurements were conducted to investigate the relationships between the sap flow of Salix bushes ( Salix psammophila ) and climatic variables and the sources of water use in the semi-arid Hailiutu River catchment in northwest China. The statistical analyses identified the controls of climatic factors on sap flow and the water use strategy of Salix bushes in periods characterized by different wetness conditions. Correlation analyses indicate strong positive correlations between diurnal sap flow, net radiation, air temperature and wind speed but a negative correlation with relative humidity. The peak values02of sap flow occured at the same time as the peak values02of net radiation but a few hours ahead of the peak values02of temperature and the relative humidity minimum. Multiple regression equations between diurnal sap flow and climatic factors (i.e., net radiation, temperature, relative humidity and wind speed) can account for more than 8002% of the variations in sap flow. Correlation and multiple linear regression analyses between sap flow, soil water contents and groundwater level were used to quantify the water sources of S. psammophila . The results indicate that Salix bushes can use both soil water and groundwater for transpiration. In the dry periods, the cumulative transpiration of Salix caused a continuous decline of soil water contents and shallow groundwater levels. During rain events, sap flow was very low, but immediately after the rain, the peak value of sap flow increased significantly due to better soil water availability. The correlation and regression analysis identified a strong relationship between sap flow and groundwater levels that fluctuated at depths of 145.5–180.702cm. Therefore, Salix bushes can be considered as groundwater-dependent plants in the Hailiutu River catchment.
,
DOI:10.1007/s11629-015-3618-3URL [本文引用: 1]
[D]. ,
[本文引用: 2]
[D]. ,
[本文引用: 2]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
DOI:10.3969/j.issn.1000-2006.2014.02.017URL [本文引用: 1]
2012年2月-2013年1月,利用热扩散技术和ECH2O系统对南京东善桥林场的杉木( Cunninghamia lan-ceolata)树干液流速率及相关环境因子进行连续观测,研究分析了杉木液流速率的变化特征。结果显示:不同季节不同天气的杉木液流速率日变化 表现出明显的昼夜变化规律,变化曲线表现为单峰曲线。夏季的液流速率最高,峰值为1?45~3?49 kg/h,其次是秋季(0?55~1?91 kg/h),春季的液流速率峰值为0?71~1?44 kg/h,冬季液流速率最低,峰值为0?30~0?85 kg/h。降雨雨量越大,雨后液流速率开始的时间越早,峰值越高,影响持续的时间越长。冬季,降雨开始后液流速率会迅速升高,雨后就会很快降低,而夏季, 液流速率会在雨后的白天表现出明显升高,在次日之后会再次降低到原来水平。影响杉木液流速率的主导环境因子存在季节性差异,各相关性系数分别为:春季饱和 水气压差(0?884),夏季空气相对湿度(-0?882),秋季饱和水气压差(0?798),冬季林外太阳辐射(0?621),土壤温度是影响杉木日均 液流速率的重要环境因子。
DOI:10.3969/j.issn.1000-2006.2014.02.017URL [本文引用: 1]
2012年2月-2013年1月,利用热扩散技术和ECH2O系统对南京东善桥林场的杉木( Cunninghamia lan-ceolata)树干液流速率及相关环境因子进行连续观测,研究分析了杉木液流速率的变化特征。结果显示:不同季节不同天气的杉木液流速率日变化 表现出明显的昼夜变化规律,变化曲线表现为单峰曲线。夏季的液流速率最高,峰值为1?45~3?49 kg/h,其次是秋季(0?55~1?91 kg/h),春季的液流速率峰值为0?71~1?44 kg/h,冬季液流速率最低,峰值为0?30~0?85 kg/h。降雨雨量越大,雨后液流速率开始的时间越早,峰值越高,影响持续的时间越长。冬季,降雨开始后液流速率会迅速升高,雨后就会很快降低,而夏季, 液流速率会在雨后的白天表现出明显升高,在次日之后会再次降低到原来水平。影响杉木液流速率的主导环境因子存在季节性差异,各相关性系数分别为:春季饱和 水气压差(0?884),夏季空气相对湿度(-0?882),秋季饱和水气压差(0?798),冬季林外太阳辐射(0?621),土壤温度是影响杉木日均 液流速率的重要环境因子。
,
DOI:10.3969/j.issn.1672-3007.2010.01.017URL [本文引用: 1]
Based on the field observation,the transpiration variation of Larix principi-rupprechtii forest in Diediegou Watershed in Liupan Mountain of Ningxia Province was studied from May to October in 2008.The results showed that the rainfall was the major factor impacting on the soil water potential.Soil water potential in different depth had the similar change tendency,but there were great differences among the variation range.Soil layer in 0-20cm,20-40cm,40-60cm had the biggest water potential gradient from June to September,and the soil water potential was lowest in August.The discending order in water consumption speed from May to October of Larix principi-rupprechtii was June,May,July,August,September,October,and the water consumption was 20.3%,25.4%,20.1%,18.6%,15.1%,10.7% of the growth season respectively.For Larix principi-rupprechtii forest,there was a distinct water shortage happened in earlier stage of growth season,and there was enough water at the later stage of growth season.There was a remarkable difference in water consumption speeds under the different soil water potential. The transpiration in the water enough conditions was higher than in the water shortage conditions significantly,besides,there was a significant relationship between the soil water potential at 20cm and 60cm depths and the sap flow change during the stage of water shortage.It could be concluded that the difference in transpiration consumption is caused by the soil water shortage,and the soil moisture at the earlier stage of growth season is very important for the growth of Larix princip-irupprechtii.
DOI:10.3969/j.issn.1672-3007.2010.01.017URL [本文引用: 1]
Based on the field observation,the transpiration variation of Larix principi-rupprechtii forest in Diediegou Watershed in Liupan Mountain of Ningxia Province was studied from May to October in 2008.The results showed that the rainfall was the major factor impacting on the soil water potential.Soil water potential in different depth had the similar change tendency,but there were great differences among the variation range.Soil layer in 0-20cm,20-40cm,40-60cm had the biggest water potential gradient from June to September,and the soil water potential was lowest in August.The discending order in water consumption speed from May to October of Larix principi-rupprechtii was June,May,July,August,September,October,and the water consumption was 20.3%,25.4%,20.1%,18.6%,15.1%,10.7% of the growth season respectively.For Larix principi-rupprechtii forest,there was a distinct water shortage happened in earlier stage of growth season,and there was enough water at the later stage of growth season.There was a remarkable difference in water consumption speeds under the different soil water potential. The transpiration in the water enough conditions was higher than in the water shortage conditions significantly,besides,there was a significant relationship between the soil water potential at 20cm and 60cm depths and the sap flow change during the stage of water shortage.It could be concluded that the difference in transpiration consumption is caused by the soil water shortage,and the soil moisture at the earlier stage of growth season is very important for the growth of Larix princip-irupprechtii.
,
DOI:10.5846/stxb201210051371URLMagsci [本文引用: 1]
研究大棚甜瓜的蒸腾规律和影响因子,可以为大棚甜瓜水分优化管理提供理论依据。利用大棚盆栽试验,设定了4个水分梯度,定量分析了大棚甜瓜蒸腾规律及蒸腾量与植株生理特性、气象环境因子、土壤水分含量的关系。结果表明:(1)各水分处理条件下甜瓜蒸腾强度日变化曲线均呈“双峰型”,有明显的“午休”现象。(2)甜瓜生理需水系数与叶面积指数、有效积温关系显著,分别呈线性和抛物线函数关系。(3)甜瓜全生育期累计蒸腾量呈现出“慢-快-慢”的变化规律,可以用Logistic函数进行模拟。(4)甜瓜叶面积指数、日平均空气温度、日平均空气相对湿度、日太阳辐射累积、土壤相对含水量均与单株日蒸腾量呈显著性相关关系;甜瓜叶面积指数对蒸腾的综合作用最大,是决策变量;土壤水分含量是限制变量,主要通过对其他因子的影响间接作用于蒸腾。(5)气象环境因子对甜瓜蒸腾量的影响力很大程度上取决于土壤水分含量;气象环境因子与蒸腾量的相关性随土壤水分含量的增大而增大,在土壤相对含水量为70%-80%范围内达到最高值,当土壤含水量接近田间持水量时,与各因子的相关系数逐渐下降。(6)甜瓜水分胁迫指数与土壤相对有效含水量关系显著,二者呈现线性关系。
DOI:10.5846/stxb201210051371URLMagsci [本文引用: 1]
研究大棚甜瓜的蒸腾规律和影响因子,可以为大棚甜瓜水分优化管理提供理论依据。利用大棚盆栽试验,设定了4个水分梯度,定量分析了大棚甜瓜蒸腾规律及蒸腾量与植株生理特性、气象环境因子、土壤水分含量的关系。结果表明:(1)各水分处理条件下甜瓜蒸腾强度日变化曲线均呈“双峰型”,有明显的“午休”现象。(2)甜瓜生理需水系数与叶面积指数、有效积温关系显著,分别呈线性和抛物线函数关系。(3)甜瓜全生育期累计蒸腾量呈现出“慢-快-慢”的变化规律,可以用Logistic函数进行模拟。(4)甜瓜叶面积指数、日平均空气温度、日平均空气相对湿度、日太阳辐射累积、土壤相对含水量均与单株日蒸腾量呈显著性相关关系;甜瓜叶面积指数对蒸腾的综合作用最大,是决策变量;土壤水分含量是限制变量,主要通过对其他因子的影响间接作用于蒸腾。(5)气象环境因子对甜瓜蒸腾量的影响力很大程度上取决于土壤水分含量;气象环境因子与蒸腾量的相关性随土壤水分含量的增大而增大,在土壤相对含水量为70%-80%范围内达到最高值,当土壤含水量接近田间持水量时,与各因子的相关系数逐渐下降。(6)甜瓜水分胁迫指数与土壤相对有效含水量关系显著,二者呈现线性关系。