Effects of Biochar and Other Amendments on the Cabbage Growth and Soil Fertility in Yellow-Brown Soil and Red Soil
Lü Bo,, WANG YuHan, XIA Hao, YAO ZiHan, JIANG CunCang,College of Resources and Environment, Huazhong Agricultural University/Microelement Research Center, Wuhan 430070通讯作者:
第一联系人:
收稿日期:2018-04-8接受日期:2018-07-17网络出版日期:2018-11-16
基金资助: |
Received:2018-04-8Accepted:2018-07-17Online:2018-11-16
摘要
关键词:
Abstract
Keywords:
PDF (403KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
吕波, 王宇函, 夏浩, 姚子涵, 姜存仓. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315 doi:10.3864/j.issn.0578-1752.2018.22.009
Lü Bo, WANG YuHan, XIA Hao, YAO ZiHan, JIANG CunCang.
0 引言
【研究意义】我国酸性土壤分布广泛,遍及湖北、湖南和江西等14个省区,总面积达203×104 km2,约占全国耕地面积的21%[1]。酸性土壤养分有效性低,铝活性较高,铝毒害和肥力低下是对作物生长和环境造成严重负面影响的主要因素[2]。随着我国工业发展和社会进步,土壤酸化程度进一步加剧,对我国粮食总量造成巨大威胁,因此改良酸性土壤对农业生产意义重大。【前人研究进展】研究发现,施用石灰是目前改良酸性土壤的普遍措施,它可直接降低土壤酸度,显著提高蔬菜类作物的产量[3]。腐殖酸钾在促进作物营养代谢,增强作物抵抗外界变化的能力以及改良土壤性状等[4]方面都有良好作用。生物炭在改良酸性土壤和促进作物生长等[5,6]方面有明显的效果,其富含矿质养分可提高土壤中速效磷钾等养分含量,较强的吸附能力可减少养分的淋失及固定等损失[7]。胡敏等[8]通过比较生石灰、油菜秸秆等5种不同改良剂,发现其对酸性土壤的改良效果以生石灰较好。张济世等[9]分析比较不同改良剂对滨海盐渍化土壤理化性质及小麦生长的影响,表明含钙物料的改良剂对土壤改良效果较好,腐殖酸类物质对小麦生长的作用明显。张祥等[10]研究表明,生物炭对酸性黄棕壤和红壤理化性质的影响不同,对红壤的改良效应优于黄棕壤。植物可溶性蛋白及丙二醛含量通常作为衡量抗逆能力大小的指标,可更好地体现多种改良剂对不同类型土壤上作物的生长状况,已有研究[11]证实作物可溶性蛋白及丙二醛含量与其抗逆性有关。此外,试验通过测定土壤酶活性以及速效养分含量[12]作为土壤肥力的指标。于寒青等[13]以及包耀贤等[14]研究均说明有机质、速效氮、速效磷和速效钾可作为土壤肥力综合评价指标。陈心想等[15]研究发现土壤酶活性也常作为土壤肥力指标之一,土壤酶活性的高低能够反映土壤养分转化能力的大小。【本研究切入点】在不同类型酸性土壤上,多种改良剂对作物生长及土壤肥力的影响存在差异。目前关于不同改良剂对单一类型土壤或某一改良剂对不同类型土壤改良的研究较多,而多种改良剂在不同类型土壤上的作用机制及施用效果的对比研究相对缺乏。【拟解决的关键问题】在这项研究中,选取我国南方典型的两种酸性土壤(黄棕壤和红壤)作为试验材料,综合考虑酸性土壤上白菜的生长状况及土壤肥力,对比生物炭、生石灰和腐殖酸钾等对酸性土壤改良效应的差异,从而揭示3种改良剂对酸性土壤改良的机制,为其实际应用提供理论依据。1 材料与方法
1.1 试验材料
供试作物为鲁白六号白菜。供试土壤分别为黄棕壤(Yellow-brown Soil,YS)和红壤(Red Soil,RS),其黄棕壤取自华中农业大学校内大田耕层,红壤取自咸宁市贺胜桥镇土壤耕层,均为第四纪黏土沉积物母质发育,质地黏重。土壤自然风干后,除去石块及植物未腐烂残体,全部研磨过2 mm筛,混匀后储存备用。供试改良剂分别为生物炭(C)、腐殖酸钾(HA-K)和生石灰(CaO)。生物炭由沈阳农业大学提供,以花生壳为原料在400℃下热解制备而成,全碳含量321.9 g·kg-1,全氮18.8 g·kg-1,全磷2.6 g·kg-1,全钾8.5 g·kg-1。腐殖酸钾(K2O含量为10%)易溶于水,黑色粉末。供试土壤和改良剂基本性质如表1所示。Table 1
表1
表1供试土壤及改良剂的基本性质
Table 1
土壤与改良剂 Soil and modifier | pH | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
黄棕壤YS | 5.2 | 87.5 | 5.91 | 169.4 | 13.3 |
红壤RS | 4.8 | 35 | 2.3 | 110.9 | 7.4 |
生石灰CaO | 12.6 | / | / | / | / |
腐殖酸钾HA-K | 8.5 | 124.2 | / | 59700 | 387 |
生物炭C | 8 | 102.4 | 274.74 | 4280 | 477.6 |
新窗口打开|下载CSV
1.2 试验设计
试验以土培盆栽的方式进行,黄棕壤(YS)和红壤(RS)2种土壤共设8个处理,分别采用腐殖酸钾(HA-K)、生物炭(C)和生石灰(CaO)与基肥配施。具体为:(1)CK+NPK(YS);(2)0.3%HA-K +NPK (YS);(3)3%C+NPK(YS);(4)0.3%CaO +NPK(YS);(5)CK+NPK(RS);(6)0.3%HA-K+NPK(RS);(7)3%C+NPK(RS);(8)0.3%CaO+NPK(RS),每个处理4次重复,改良剂的百分比(%)=改良剂重量/干土重量×100%。试验所用塑料盆底部有孔,排水通气良好,高12 cm,外口直径21 cm,内口直径17.7 cm。具体步骤为:取过2 mm筛的风干土样2.0 kg于盆中,称取基肥:NH4NO3 0.57 g·kg-1,KH2PO4 0.44 g·kg-1,KCl 0.48 g·kg-1(其中N 0.20 g·kg-1干土,P2O5 0.10 g·kg-1干土,K2O 0.38 g·kg-1干土)。腐殖酸钾、生物炭、生石灰分别和基肥分别施入各不同处理土壤且均匀混合,微量元素用阿农营养液(pH为6.0)。种子晾晒后浸泡于纯水中过夜(4℃),挑选饱满一致的种子播种于塑料盆中,每盆约20颗,均匀分散。发芽后间苗培养,每盆定植2株长势一致的幼苗继续培养。试验于8月1日播种,8月31日收获,期间定时浇水,通过重量差减法控制为75%的田间持水量。收获时把白菜地上部齐土剪下,备用。收获后的土壤去除根系后风干磨碎且分别过20目和100目筛备用。1.3 测试方法
收获的植株测定株高、叶片数和鲜重等农艺性状后,在105℃下杀青,75℃烘干至恒重后称干重,干样磨碎后储存备用。采用硫代巴比妥酸反应法[16]测定叶片丙二醛含量;采用考马斯亮蓝比色法测定叶片中可溶性蛋白含量[16];采用浓H2SO4-H2O2消煮,蒸馏定氮法测定植株全氮含量[17],钼锑抗比色法测定植株全磷含量[17]、火焰光度法测定植株全钾含量[17]。土壤基本理化性质参照鲍士旦[17]《土壤农化分析》测定:使用pH计测定土壤pH(土水比1:2.5),10.0 g土+25.0 mL水;碱解扩散法测定土壤碱解氮;NH4OAc浸提,火焰光度法测定土壤速效钾;NaHCO3浸提,钼锑抗比色法测定土壤速效磷。采用靛酚蓝比色法测定土壤脲酶活性[18];采用3,5二硝基水杨酸比色法测定土壤蔗糖酶活性[18];采用磷酸苯二钠比色法测定土壤酸性磷酸酶活性[18];用庞叔薇等[19]浸提方法测定土壤交换性铝的含量。
1.4 数据处理
养分积累量[20](total accumulation amount, TAA)=养分含量×植株干物质积累量。采用Microsoft Excel 2010对数据整理,ANOVA进行显著性差异比较,用SAS 9.1软件进行单因素方差分析,所有数值均为3次重复的平均值(±标准误差,P<0.05)。
2 结果
2.1 不同改良剂对两种类型土壤上白菜农艺性状及生物量的影响
如表2所示,相对于黄棕壤上各处理,红壤上白菜的株高、叶片数及产量较低。与对照相比,添加3种改良剂均可以有效促进白菜的生长。黄棕壤上添加生物炭,白菜的株高、产量和叶片数均高于对照处理,其中株高和产量达到显著水平,分别增加了44.7%和49.9%;与腐殖酸钾或生石灰处理相比,生物炭处理的株高、产量和叶片数较低,且均达到显著水平;就产量而言,与对照相比,施用生物炭后增加量最低,施用生石灰后增加幅度最大,达到了66.7%,其次是腐殖酸钾,增加了63.1%。红壤上施用生物炭后,相对于对照处理白菜株高增加了3.4倍,产量也大幅提升,均达到显著水平。这些结果表明,无论是对红壤还是黄棕壤,添加生石灰时白菜的生长和产量均最好;添加生物炭在黄棕壤上效果最差,但在红壤上对白菜生长的促进作用显著高于腐殖酸钾。Table 2
表2
表2不同改良剂对两种类型土壤上白菜农艺性状及生物量的影响
Table 2
土壤类型 Soil type | 处理 Treatment | 株高 Plant height (cm) | 产量 Yield (g/plant) | 每株叶片数 Leaf number per plant |
---|---|---|---|---|
黄棕壤 YS | CK | 9.4±0.3c | 15.90±0.24c | 7.7±0.6b |
HA-K | 13.6±0.6a | 25.93±2.04a | 8.0±0.0b | |
C | 11.7±0.5b | 23.83±0.77b | 8.3±0.6b | |
CaO | 12.8±0.8a | 26.50±0.16a | 9.3±0.6a | |
红壤 RS | CK | 1.4±0.1d | 0.07±0.01c | 3.0±0.0d |
HA-K | 2.3±0.2c | 0.18±0.02c | 4.3±0.6c | |
C | 6.2±0.1b | 7.26±0.91b | 5.4±0.7b | |
CaO | 9.2±0.8a | 9.83±0.95a | 8.3±0.6a |
新窗口打开|下载CSV
2.2 不同改良剂对两种类型土壤上白菜养分吸收的影响
相对于黄棕壤各处理,红壤上白菜对养分的吸收受到抑制(表3)。黄棕壤上添加改良剂后白菜的氮磷钾含量及积累量均高于对照处理,促进白菜对养分的吸收;相对于对照处理,生物炭的施用效果最差,其氮磷钾积累量分别增加了53.7%、74.0%和49.3%;施用腐殖酸钾与生石灰的效果相近,施用生石灰对白菜氮磷钾含量及积累量的提升幅度最大,其氮磷钾积累量分别增加了77.5%、102.0%和40.5%。红壤上添加生物炭或生石灰后,白菜的氮磷钾含量及积累量显著高于对照处理;但施用腐殖酸钾后,其氮磷钾含量及积累量与对照相比无显著差异。无论是在红壤还是黄棕壤上,添加生物炭或生石灰均可以促进白菜对养分的吸收;在红壤上添加腐殖酸钾效果最差,但黄棕壤上其效果显著优于生物炭。Table 3
表3
表3不同改良剂对两种类型土壤上白菜养分吸收的影响
Table 3
土壤类型 Soil type | 处理 Treatment | N | P | K | |||
---|---|---|---|---|---|---|---|
NC(g·kg-1) | TAA(mg/plant) | NC(g·kg-1) | TAA(mg/plant) | NC(g·kg-1) | TAA(mg/plant) | ||
黄棕壤 YS | CK | 23.30c | 28.60c | 5.27c | 6.47b | 16.70b | 20.54b |
HA-K | 24.64bc | 46.21b | 8.18a | 15.33a | 19.17a | 35.93a | |
C | 24.98b | 43.97b | 6.40b | 11.26ab | 17.42b | 30.66a | |
CaO | 26.54a | 50.76a | 6.84b | 13.07a | 17.29b | 33.07a | |
红壤 RS | CK | 13.44b | 0.27c | 0.50b | 0.01c | 2.49c | 0.05c |
HA-K | 9.74c | 0.39c | 0.20c | 0.01c | 1.89c | 0.08c | |
C | 26.63a | 9.25b | 2.53a | 0.88b | 18.18a | 6.32b | |
CaO | 27.20a | 20.27a | 4.13a | 3.08a | 16.02b | 11.93a |
新窗口打开|下载CSV
2.3 不同改良剂对白菜叶片可溶性蛋白与丙二醛含量的影响
图1所示,相对于对照处理,黄棕壤上施用生物炭使白菜叶片的可溶性蛋白含量显著增加,增加了25.4%,其效果较腐殖酸钾和生石灰处理差,腐殖酸钾和生石灰处理分别增加了47.2%和51.7%;红壤上添加不同改良剂使白菜叶片可溶性蛋白含量均显著提高,其影响效果以生石灰最好,增加了85.9%,其次是生物炭,增加了43.7%,施用腐殖酸钾影响效果最差,仅增加了24.4%。与对照相比,黄棕壤上施用生物炭可以降低白菜叶片丙二醛含量,但未达到显著水平,施用腐殖酸钾与生物炭效果相近,但生石灰处理使白菜叶片丙二醛含量显著降低,降低了36.2%。相对于对照处理,红壤上施用生物炭和生石灰均显著降低丙二醛含量,分别降低了46.2%和56.5%;但腐殖酸钾处理的白菜叶片丙二醛含量显著增加了27.4%,加重了白菜遭受逆境胁迫的程度。结果表明,无论是在黄棕壤还是红壤上,添加生石灰改良剂对于提高白菜抗逆性均有最好的效果;在黄棕壤上添加腐殖酸钾和生物炭无显著影响,但在红壤上添加生物炭有很好的效果。图1
新窗口打开|下载原图ZIP|生成PPT图1不同改良剂对白菜叶片可溶性蛋白与丙二醛含量的影响
不同小写字母之间表示各处理间差异显著(P<0.05)。下同
Fig. 1Effects of modifiers on soluble protein and Malondialdehyde content in cabbage leaves
Different small letters in the same column meant significant difference at 0.05 level. The same as below
2.4 不同改良剂对两种类型土壤养分的影响
如表4所示,与对照相比,各处理土壤碱解氮含量均显著降低,黄棕壤上添加生物炭、腐殖酸钾和生石灰分别降低了20.4%、7.0%和26.8%,红壤上添加生物炭、腐殖酸钾和生石灰分别降低了28.5%、9.3%和56.0%。不同改良剂对土壤有效磷含量的影响不同,黄棕壤上施用生物炭和腐殖酸钾均使土壤有效磷含量显著增加,分别增加了17.3%和59.6%,但施用生石灰使有效磷含量显著降低,其中施用生物炭的优势更加突出;而在红壤各处理中,3种改良剂处理的土壤有效磷含量相对于对照无显著差异。相对于对照处理,黄棕壤上施用生物炭对土壤速效钾含量影响最好,增加了8.5%,腐殖酸钾处理与对照无显著差异,而添加生石灰使速效钾含量显著降低;红壤上各处理间差异较大,施用生物炭使速效钾含量显著增加,增加了38.6%;腐殖酸钾处理与对照无显著差异;但施用生石灰使速效钾含量显著降低,降低了17.0%。相对于对照处理,施用生物炭和腐殖酸钾均分别提高两种类型土壤的有机质含量,但影响效果不同,其中以生物炭处理效果最好,黄棕壤上有机质含量提高了168.4%,红壤上有机质含量提高了775.6%,说明生物炭可以促进土壤有机质的积累;腐殖酸钾处理与对照无显著差异;但施用生石灰使两种土壤上有机质含量显著降低,分别降低了43.6%和19.5%。总体而言,两种类型酸性土壤下,施用生物炭对碱解氮、有效磷、速效钾和有机质的作用最明显,其作用效果优于腐殖酸钾或生石灰。Table 4
表4
表4不同改良剂对两种类型土壤养分的影响
Table 4
土壤类型 Soil type | 处理 Treatment | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
黄棕壤 YS | CK | 82.83±2.02a | 7.73±0.10c | 246±4b | 13.3±0.6b |
HA-K | 77.00±3.50b | 9.07±0.54b | 240±7b | 19.2±0.4b | |
C | 65.92±0.73c | 12.34±0.43a | 267±6a | 35.7±1.4a | |
CaO | 60.67±3.64d | 6.20±0.34d | 193±15c | 7.5±0.3c | |
红壤 RS | CK | 124.83±2.67a | 3.87±0.28a | 329±12b | 4.1±0.5b |
HA-K | 113.17±1.01b | 3.81±0.19a | 307±18b | 5.9±0.0b | |
C | 89.25±3.03c | 3.92±0.47a | 456±4a | 35.9±0.9a | |
CaO | 54.98±2.64d | 3.66±0.29a | 273±3c | 3.3±0.3c |
新窗口打开|下载CSV
2.5 不同改良剂对两种类型土壤pH及交换性铝的影响
图2显示,各处理土壤pH均较对照提高,但提高幅度相差较大,其中黄棕壤上生物炭处理提高1.39个单位,其效果高于腐殖酸钾处理,但较生石灰处理的低,施用生石灰提高3.25个单位;红壤上生物炭处理提高0.82个单位,腐殖酸钾和生石灰处理分别提高0.52和3.22个单位。总的来说,各处理对黄棕壤和红壤两种典型土壤pH的影响表现出一致性,均以生石灰效果最好,其次是生物炭,最差的是腐殖酸钾。交换性Al3+对植物生长的影响最大。黄棕壤和红壤上添加生物炭均显著降低交换性铝含量,分别降低了89.3%和93.9%,其效果优于腐殖酸钾处理,但与生石灰处理无显著差异。添加腐殖酸钾对黄棕壤和红壤上交换性铝含量影响不同,黄棕壤交换性铝含量有所增加,但红壤交换性铝含量显著减少,其中红壤上对照处理为448.72 μg·g-1,腐殖酸钾处理为371.81 μg·g-1,腐殖酸钾对红壤交换性铝含量的减少幅度较小,其含量仍很高。无论是在黄棕壤上还是红壤上,添加生物炭和生石灰均提高土壤pH,降低交换性铝含量;黄棕壤上施用腐殖酸钾提高土壤pH,增加交换性铝含量,红壤上施用腐殖酸钾使土壤pH增加且使交换性铝含量降低。图2
新窗口打开|下载原图ZIP|生成PPT图2不同改良剂对两种类型土壤pH及交换性铝的影响
Fig. 2Effects of different modifiers on pH and exchange-Al in two types of soil
2.6 不同改良剂对两种类型土壤酶活性的影响
如表5所示,相对于对照处理,黄棕壤上各处理均增加了脲酶活性,施用生物炭增加幅度最大,增加了24.2%,生物炭处理显著优于生石灰和腐殖酸处理,其中生石灰处理显著增加了11.1%,而腐殖酸钾处理与对照无显著差异;红壤上各处理与黄棕壤不同,施用生物炭和腐殖酸钾均未达到显著水平,其中生物炭处理仅增加了19.0%,而生石灰处理降低脲酶活性,达到显著水平,降低了28.6%。相对于对照处理,施用生物炭对两种土壤蔗糖酶活性无显著影响;黄棕壤和红壤上施用腐殖酸钾和生石灰均显著增加了蔗糖酶活性,其中在黄棕壤上分别增加了44.7%和99.0%,在红壤上分别增加了152.7%和303.6%,且均以施用生石灰效果最好。相对于对照处理,施用生物炭显著增加了黄棕壤和红壤的酸性磷酸酶活性,分别增加了51.9%和132.4%;施用腐殖酸钾对两种类型土壤酸性磷酸酶活性均未显著影响;施用生石灰对黄棕壤的酸性磷酸酶活性无显著影响,但显著降低了红壤的酸性磷酸酶活性,降低了70.5%。Table 5
表5
表5不同改良剂对两种类型土壤酶活性的影响
Table 5
土壤类型 Soil type | 处理 Treatment | 脲酶 Urease (mg·g-1·h-1) | 蔗糖酶 Sucrase (mg·g-1·h-1) | 酸性磷酸酶 Acid phosphatase (μg·g-1·h-1) |
---|---|---|---|---|
黄棕壤 YS | CK | 0.33±0.03c | 14.95±1.48c | 24.27±0.66b |
HA-K | 0.34±0.01c | 21.63±0.94b | 24.80±0.80b | |
C | 0.41±0.02a | 15.45±1.39c | 36.86±2.26a | |
CaO | 0.37±0.04b | 29.75±0.97a | 23.27±1.91b | |
红壤 RS | CK | 0.21±0.04a | 13.33±0.54c | 6.48±0.41b |
HA-K | 0.21±0.02a | 33.68±1.72b | 7.02±0.76b | |
C | 0.25±0.01a | 10.81±0.83c | 15.06±1.08a | |
CaO | 0.15±0.02b | 53.80±5.00a | 1.91±0.37c |
新窗口打开|下载CSV
3 讨论
3.1 改良剂施用对两种类型土壤上白菜生长的影响
本试验中,两种酸性土壤上施用生物炭、生石灰和腐殖酸钾后,白菜的生长状况在一定程度上均得以改善,诸多研究[5-6,8]有类似的结果。相比于黄棕壤,红壤上白菜的生物量减少,叶片丙二醛含量较高,受逆境胁迫程度大,对比两种土壤的性质发现红壤中各处理的有效磷含量与pH均低于黄棕壤,其交换性铝含量均远远高于黄棕壤,因此这可能与红壤中低有效磷含量、低pH及铝毒害等因素[21]密切相关。黄棕壤上施用生物炭、腐殖酸钾和生石灰均显著提高了白菜产量,促进其对氮磷钾养分吸收与积累,增加叶片可溶性蛋白含量且显著降低丙二醛含量,增强其抗逆性;3种改良剂中以生物炭的改良效果较小,可能是生物炭自身含有少量有毒物质使其对作物产量的提升局限于一定范围之内,王欣等[22]的研究有相同的结果。值得注意的是,腐殖酸钾在两种土壤上的改良效果表现不同,黄棕壤上施用腐殖酸钾对白菜的影响较好,可能是由于腐殖酸钾作为一种生理活性物质,促进白菜根系生长发育,进而对白菜生长的促进作用较为明显。梁太波等[23]对生姜的研究以及王宇函等[24]对白菜的研究有相同的结果;然而红壤上施用腐殖酸钾对白菜的生长无明显改善作用,对比腐殖酸钾和生物炭处理不难发现,施用腐殖酸钾后红壤pH 提升0.52个单位,交换性铝含量为371.81 μg·g-1,白菜长势较好的生物炭处理的红壤pH 提升0.82个单位,交换性铝含量仅为27.48 μg·g-1,说明腐殖酸钾处理的白菜生长受到抑制主要与铝毒害有密不可分的联系;但KALIS等[25]研究认为腐殖酸钾可与铝结合降低其生物利用度和毒性,与本结果不太一致,对此,DOBRANSKYTE等[26]认为腐殖酸钾仅部分减少铝毒害,且形成的腐殖酸-铝复合物仍对作物有毒害作用,因此腐殖酸钾并不能较好地改善土壤肥力,只是很大程度上利于作物根系发育从而促进其生长,其作用存在一定局限性。3.2 改良剂的施用对两种类型土壤肥力的影响
本研究中,与对照和腐殖酸钾处理相比,施用生物炭后,土壤碱解氮含量显著降低,这与张晗芝等的研究[27]结果一致,其可能是由于生物炭具有很高的C/N以及不稳定碳分解导致氮的固定,从而降低了碱解氮的含量;然而,宋大利等[28]研究表明生物炭提高潮土土壤速效氮含量,其结果与本研究相矛盾,这可能与土壤性质以及生物炭用量有关。生物炭与其他改良剂对土壤有效磷含量的影响不同。施用腐殖酸钾和生石灰较施用生物炭其土壤有效磷含量减少,这可能与改良剂性质和土壤pH变化[29]有密切联系。一方面,生物炭自身含有丰富的磷素,添加后不仅会直接提高土壤有效磷的含量,还会促进磷酸根在土壤中的溶解[30],但腐殖酸钾和生石灰的磷素含量较低;另一方面,生物炭对土壤pH起缓冲作用[10],提高了黄棕壤和红壤的pH,进而减少了磷素在土壤中的固定;虽生石灰也显著提高了土壤pH,但胡敏等[8]认为生石灰pH较高,使得土壤pH过高,交换铝水解产生对磷具有强吸附作用的羟基铝聚合物,从而降低磷的有效性。虽然生物炭施用均增加了土壤有效磷含量,但在黄棕壤和红壤中表现不一致,其在黄棕壤中达到显著水平,但在红壤中未达到显著水平。这可能是由于红壤中铁氧化物对磷的吸附以及养分易淋失等[31]原因造成的。各处理中土壤速效钾含量均较高,3种改良剂中以生物炭施用影响效果最好,是因为生物炭含有矿质养分且由于孔隙结构和巨大的表面积使其易吸附钾离子[5],从而提高了土壤速效钾含量;但值得注意的是,腐殖酸钾虽然含有大量速效钾养分,但其对土壤钾养分的提高较生物炭差,腐殖酸可与金属离子络合影响金属离子的可用性[32],而且其结构复杂,可能导致金属结合位点的类型和数量分布发生变化[33],从而降低土壤速效钾含量。在两种土壤上,与对照处理相比,施用生物炭均增加脲酶、酸性磷酸酶的活性,施用腐殖酸钾对脲酶、酸性磷酸酶无显著影响,而施用生石灰显著降低脲酶、酸性磷酸酶的活性。蔗糖酶与其他酶不同,施用生石灰和腐殖酸钾均显著增加蔗糖酶活性,而生物炭对该酶活性无显著影响。相关研究[15,34]表明生物炭可以改变土壤微生物的数量和活性,在提高土壤酶促反应速率的同时,增加酶-底物复合物的稳定性,从而提高土壤脲酶、酸性磷酸酶活性;然而蔗糖酶的辅基会受到某些阴离子的封阻[35],在提高酶活性的同时也被一些因素限制,因此生物炭对蔗糖酶活性无显著影响;而生石灰使得土壤养分降低、pH过高[36]也会间接影响土壤酶活性的大小。
4 结论
4.1
施用生石灰和生物炭均显著增加两种土壤上白菜产量,且增强其抗逆性。添加腐殖酸钾在黄棕壤和红壤上的效果不同,其明显促进黄棕壤上白菜生长,提升其抗逆性并提高产量,但对红壤上白菜的生长无明显改善作用。4.2
施用生物炭、生石灰和腐殖酸钾均提高了两种土壤的pH,降低了碱解氮含量;施用生物炭增加了土壤的有效磷、速效钾、有机质的含量、增强脲酶及酸性磷酸酶的活性,减少了交换性铝含量;施用生石灰促进了蔗糖酶活性提升,减少了有效磷、速效钾、有机质含量、降低脲酶与酸性磷酸酶活性以及交换性铝含量;添加腐殖酸钾提高了土壤的pH、有机质含量和蔗糖酶活性,降低了有效磷含量。因此,生物炭、生石灰和腐殖酸钾对两种酸性土壤上白菜生长和土壤肥力的改良效果有较大差异,但其在长期应用中的具体机制有待进一步探索。
(责任编辑 李云霞)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
URLMagsci [本文引用: 1]
<p>铝胁迫是酸性土壤上影响作物产量最重要的因素之一.目前,全球土壤酸化程度进一步加剧了铝胁迫.植物可通过将铝离子与有机酸螯合储藏于液泡和从根系中排出铝毒.排出铝毒主要通过苹果酸转运蛋白ALMT和柠檬酸转运蛋白MATE的跨膜运输来实现.编码ABC转运蛋白和锌指转录因子的基因与植物抗铝胁迫有关.这些抗铝毒基因的鉴别使得通过转基因和分子标记辅助育种等生物技术来提高农作物的抗铝毒能力成为可能.最后提出了植物抗铝胁迫研究中需要解决的关键问题及今后的研究方向.</p><div > </div>
URLMagsci [本文引用: 1]
<p>铝胁迫是酸性土壤上影响作物产量最重要的因素之一.目前,全球土壤酸化程度进一步加剧了铝胁迫.植物可通过将铝离子与有机酸螯合储藏于液泡和从根系中排出铝毒.排出铝毒主要通过苹果酸转运蛋白ALMT和柠檬酸转运蛋白MATE的跨膜运输来实现.编码ABC转运蛋白和锌指转录因子的基因与植物抗铝胁迫有关.这些抗铝毒基因的鉴别使得通过转基因和分子标记辅助育种等生物技术来提高农作物的抗铝毒能力成为可能.最后提出了植物抗铝胁迫研究中需要解决的关键问题及今后的研究方向.</p><div > </div>
,
URL [本文引用: 1]
The effects of pyrolysis condition on basic group of biochar and the influence factors to improve pH of acid soil by biochar under different particle size of raw materials(0.5,0.25~0.5,0.25mm),different sources of biomass materials(coir dust sources,cassava source,eucalyptus source,swine manure source),different pyrolysis temperature(300,400,500,600鈩)and different pyrolysis time(1,2,3,5h)were investigated.The result showed that all biochars under different pyrolysis condition were alkaline,the content of basic group was 0.40~1.05mmol/g.The basic group of different biomass materials was swine manure sourcecassava sourcecoir dust sourceseucalyptus source.The content of basic group increased with increasing of pyrolysis temperature,extending of pyrolysis time and decreasing of particle size of raw materials.It suggested that biochar could improve pH of acid soil significantly with increasing of the content of basic group.The improvement effects of acid soil increased with decreasing of particle size of raw materials,increasing of pyrolysis temperature,extending of pyrolysis time and increasing of biochar dosage.
,
DOI:10.1007/s11104-005-8941-yURL [本文引用: 1]
A field experiment with five lime rates (0, 3.75, 7.50, 11.25, and 15.00 Mg ha6301) was maintained on a red soil (Ultisol) for 15 years to determine changes of soil acidity and effect on crop yields. The soil acidity decreased while exchangeable Ca in plough layer (0-20 cm) increased with lime rate and time. The decreased subsoil (20-60 cm) acidity started to occur four years after liming, and the extent of decreased soil acidity increased with lime rate and time. The increased ranges of exchangeable Mg0562 in subsoil were greater than that of exchangeable Ca0562, suggesting that downward movement of Mg0562 into the subsoil was faster than that of Ca0562. Lime application significantly increased the yields of crops studied. During the period of experiment, the maximum yield increased 4.67 times for barley, 2.24 times for mungbean, 57.3% for wheat, 53.4% for sesame, 52.8% for broad bean, 44.1% for potato, 35.1 % for rapeseed, 32.1 % for cotton, 28.4% for corn, 18.5% for watermelon, 11.0% for cowpea and 8.8 % for soybean. Liming at the highest rate was in favor to the decline in subsoil acidity and yield increase, especially for the later period of the experiment. Residual effects of reducing soil acidity by liming for the treatments of 0.5 L, 1.0 L, 1.5 L, and 2.0 L could last for 5, 7, 12, and 14 years, respectively, and the effects of lime application on the yields could last for more than 15 years.
,
[本文引用: 1]
,
DOI:10.1021/es301029gURLPMID:22775244 [本文引用: 3]
According to the International Biochar Initiative (IBI), biochar is a charcoal which can be applied to soil for both agricultural and environmental gains. Biochar technology seems to have a very promising future. Nevertheless, the further development of this technology requires continuing research. The present paper provides an updated review on two subjects: the available alternatives to produce biochar from a biomass feedstock and the effect of biochar addition to agricultural soils on soil properties and fertility. A high number of previous studies have highlighted the benefit of using biochar in terms of mitigating global warning (through carbon sequestration) and as a strategy to manage soil processes and functions. Nevertheless, the relationship between biochar properties (mainly physical properties and chemical functionalities on surface) and its applicability as a soil amendment is still unclear and does not allow the establishment of the appropriate process conditions to produce a biochar with de...
,
DOI:10.1097/SS.0b013e3181981d9aURL [本文引用: 2]
Agricultural soils in the southeastern U.S. Coastal Plain region have meager soil fertility characteristics because of their sandy textures, acidic pH values, kaolinitic clays, low cation exchange capacities, and diminutive soil organic carbon contents. We hypothesized that biochar additions will help ameliorate some of these fertility problems. The study objectives were to determine the impact...
,
DOI:10.1016/j.ecoleng.2012.12.091URL [本文引用: 1]
As a soil amendment and important bio-resources, biochar has been reported to increases in soil nutrient availability. However, the involved direct or indirect mechanisms are still not clear. In present study, we evaluated the effects of four biochar application rates (0, 1, 5 and 10%, w/w) on inorganic P fractions, available NO3 -N, NH4+-N, K, Na, Ca, Mg and of Fe, Al oxides in a sandy soil. To discern direct and indirect mechanisms, separately soil and biochar equivalent to the respective part in the mixture of soil and biochar were also studied. The results suggested that cations such as K, Ca, Na, Mg in mixture were mainly originated form biochar while inorganic N showed little effects form biochar regardless of direct or indirect mechanisms. P solubility with biochar application was more complex because they also affected by altering soil pH, changes of Fe and Al oxides, and direct P contributions from biochar. In addition, changes of Fe and Al oxides were complicated by altering soil pH, sorption on biochar, and direct release form biochar. In result, Fe and Al oxides showed no observable effects on P fractions in our soil type. Although P availability was enhanced due to the pH changes and direct release from biochar, the observed P availability was greatly lower than the predicted P availability because of the precipitation of large amount of Ca contained in biochar with soluble P in mixture. The results suggested that biochar application, resulting in pH changes and mineral sorption, can indirectly change nutrient bioavailability especially for P apart from direct release form biochar. The long term effect of P availability with biochar application deserves further attention for large-scale soil ecological restoration.
,
DOI:10.11838/sfsc.20170320URL [本文引用: 3]
采用土壤培养及盆栽试验研究5种调理剂(生石灰、油菜秸秆、有机肥、钾硅肥、土壤改良剂,用量均为1.8 g/kg)对酸性土壤(pH值3.9)酸度指标和大麦幼苗生长的影响。土壤培养试验结果表明,施用生石灰、有机肥和钾硅肥均能明显提高土壤pH值,降低土壤交换性酸总量、交换性H 和交换性铝含量。其中以生石灰降酸效果最好,到培养第90 d,相比于对照处理提高了0.66个单位,土壤交换性铝含量减少了2.01 cmol/kg;其次是有机肥和钾硅肥处理,pH值较对照处理分别提高了0.14和0.15,土壤交换性铝含量分别降低了0.23和0.19 cmol/kg;油菜秸秆和土壤改良剂处理从酸度指标来看,与对照并没有显著差异。大麦幼苗盆栽试验结果表明,与对照相比,生石灰、油菜秸秆、有机肥、钾硅肥和土壤改良剂处理的大麦幼苗地上部生物量分别增加71.5%、24.1%、27.6%、28.2%、24.7%,大麦株高、根长、根系总表面积和根系活力均显著高于对照处理,根系平均直径减少,有利于养分和水分的吸收。综合结果表明,不同类型的调理剂对酸性土壤的降酸效果不尽相同,其中以生石灰效果最好,秸秆处理尽管没有有效降低土壤酸度但仍可明显促进作物生长,因此也可用作酸性土壤的改良物质,在实际生产中应因地制宜应用各种调节物质来促进作物生长。
DOI:10.11838/sfsc.20170320URL [本文引用: 3]
采用土壤培养及盆栽试验研究5种调理剂(生石灰、油菜秸秆、有机肥、钾硅肥、土壤改良剂,用量均为1.8 g/kg)对酸性土壤(pH值3.9)酸度指标和大麦幼苗生长的影响。土壤培养试验结果表明,施用生石灰、有机肥和钾硅肥均能明显提高土壤pH值,降低土壤交换性酸总量、交换性H 和交换性铝含量。其中以生石灰降酸效果最好,到培养第90 d,相比于对照处理提高了0.66个单位,土壤交换性铝含量减少了2.01 cmol/kg;其次是有机肥和钾硅肥处理,pH值较对照处理分别提高了0.14和0.15,土壤交换性铝含量分别降低了0.23和0.19 cmol/kg;油菜秸秆和土壤改良剂处理从酸度指标来看,与对照并没有显著差异。大麦幼苗盆栽试验结果表明,与对照相比,生石灰、油菜秸秆、有机肥、钾硅肥和土壤改良剂处理的大麦幼苗地上部生物量分别增加71.5%、24.1%、27.6%、28.2%、24.7%,大麦株高、根长、根系总表面积和根系活力均显著高于对照处理,根系平均直径减少,有利于养分和水分的吸收。综合结果表明,不同类型的调理剂对酸性土壤的降酸效果不尽相同,其中以生石灰效果最好,秸秆处理尽管没有有效降低土壤酸度但仍可明显促进作物生长,因此也可用作酸性土壤的改良物质,在实际生产中应因地制宜应用各种调节物质来促进作物生长。
,
DOI:10.11674/zwyf.16415URL [本文引用: 1]
【目的】盐分胁迫是滨海盐渍土上粮食产量提高的主要障碍因子之一。研究不同功能性改良物料对消除和减轻这一障碍因子的作用,为改良盐渍化土壤和提高作物产量提供理论依据。【方法】以小麦品种‘青麦6号’为供试材料,在滨海盐渍土上进行田间试验,设置7个处理为空白对照(CK)、含钙物料的磷石膏(PG)和脱硫石膏(FGD)、调酸物料的硫酸亚铁(FS)、含碳材料的牛粪(M)以及含碳和调酸物料的腐植酸(HA)和糠醛渣(FRs),分析比较不同改良剂对滨海盐渍化土壤理化性质以及对小麦生长发育的影响。【结果】施加改良剂降低了土壤表层(0—20 cm)的pH值,作为酸性材料的腐植酸、糠醛渣和硫酸亚铁效果明显,土壤的pH值较对照分别降低了0.10、0.11和0.11;施改良剂降低了土壤的交换性钠离子含量和钠的吸附比(sodium adsorption ratio,简称SAR),磷石膏和脱硫石膏提供充足的钙离子用于置换土壤中交换性钠离子,明显降低了不同土层中的交换性钠离子含量和SAR值,0—20 cm、20—40 cm和40—60 cm土层中,磷石膏和脱硫石膏对土壤交换性钠离子含量和SAR值的降低效果明显,其中施加磷石膏分别较对照降低了15.5%和18.3%(0—20 cm)、28.2%和28.6%(20—40 cm)、36.5%和36.5%(40—60 cm),施加脱硫石膏分别较对照降低了24.9%和27.9%(0—20 cm)、27.6%和26.3%(20—40 cm)、24.5%和25.0%(40—60 cm);施加改良剂增加了小麦成熟期的穗数,其中磷石膏、脱硫石膏和糠醛渣改良效果显著,分别较对照增加27.6%、24.5%和18.6%,并分别提高小麦的产量26.7%、17.8%和17.8%。【结论】酸性物料的糠醛渣、腐植酸和硫酸亚铁,可以明显降低土壤pH值和增加小麦苗期的茎蘖数量,综合考虑改良剂对土壤pH、Na~+含量、SAR值和小麦群体数量的影响,含碳的调酸物料的糠醛渣效果较好;含钙物料的磷石膏和脱17
DOI:10.11674/zwyf.16415URL [本文引用: 1]
【目的】盐分胁迫是滨海盐渍土上粮食产量提高的主要障碍因子之一。研究不同功能性改良物料对消除和减轻这一障碍因子的作用,为改良盐渍化土壤和提高作物产量提供理论依据。【方法】以小麦品种‘青麦6号’为供试材料,在滨海盐渍土上进行田间试验,设置7个处理为空白对照(CK)、含钙物料的磷石膏(PG)和脱硫石膏(FGD)、调酸物料的硫酸亚铁(FS)、含碳材料的牛粪(M)以及含碳和调酸物料的腐植酸(HA)和糠醛渣(FRs),分析比较不同改良剂对滨海盐渍化土壤理化性质以及对小麦生长发育的影响。【结果】施加改良剂降低了土壤表层(0—20 cm)的pH值,作为酸性材料的腐植酸、糠醛渣和硫酸亚铁效果明显,土壤的pH值较对照分别降低了0.10、0.11和0.11;施改良剂降低了土壤的交换性钠离子含量和钠的吸附比(sodium adsorption ratio,简称SAR),磷石膏和脱硫石膏提供充足的钙离子用于置换土壤中交换性钠离子,明显降低了不同土层中的交换性钠离子含量和SAR值,0—20 cm、20—40 cm和40—60 cm土层中,磷石膏和脱硫石膏对土壤交换性钠离子含量和SAR值的降低效果明显,其中施加磷石膏分别较对照降低了15.5%和18.3%(0—20 cm)、28.2%和28.6%(20—40 cm)、36.5%和36.5%(40—60 cm),施加脱硫石膏分别较对照降低了24.9%和27.9%(0—20 cm)、27.6%和26.3%(20—40 cm)、24.5%和25.0%(40—60 cm);施加改良剂增加了小麦成熟期的穗数,其中磷石膏、脱硫石膏和糠醛渣改良效果显著,分别较对照增加27.6%、24.5%和18.6%,并分别提高小麦的产量26.7%、17.8%和17.8%。【结论】酸性物料的糠醛渣、腐植酸和硫酸亚铁,可以明显降低土壤pH值和增加小麦苗期的茎蘖数量,综合考虑改良剂对土壤pH、Na~+含量、SAR值和小麦群体数量的影响,含碳的调酸物料的糠醛渣效果较好;含钙物料的磷石膏和脱17
,
DOI:10.3724/SP.J.1011.2013.00979URLMagsci [本文引用: 2]
为了探讨生物炭对不同土壤的改良效果, 采用盆栽试验, 研究了施用生物炭对我国南方两种代表性土壤(红壤和黄棕壤)理化性质的影响及其动态变化差异。结果表明: 强酸性红壤施用生物炭能明显提高pH而降低其酸度, 同时增加土壤的有机质、速效磷、速效钾和碱解氮含量, 且随着生物炭施用量(生物炭量/土壤量: 0、0.5%、1.0%、2.0%)的增加, 改良效果不断加强; 弱酸性黄棕壤施用生物炭也提高了土壤pH、有机质、速效磷、速效钾含量, 但对该土壤中的碱解氮含量无明显影响。不同生物炭用量的效应存在较大差异, 在2.0%时对两种土壤各理化性质影响均表现为最明显, 红壤pH平均增加0.61, 有机质、速效磷、速效钾、碱解氮分别平均提高203.4%、369.3%、368.0%、30.4%, 而黄棕壤pH、有机质、速效磷、速效钾分别平均增加0.55、124.2%、57.5%、50.3%。因而, 相同用量的生物炭对红壤的改良效应好于黄棕壤, 且施用生物炭对两种土壤速效钾含量影响最大, 其次是有机质、pH、速效磷、碱解氮。
DOI:10.3724/SP.J.1011.2013.00979URLMagsci [本文引用: 2]
为了探讨生物炭对不同土壤的改良效果, 采用盆栽试验, 研究了施用生物炭对我国南方两种代表性土壤(红壤和黄棕壤)理化性质的影响及其动态变化差异。结果表明: 强酸性红壤施用生物炭能明显提高pH而降低其酸度, 同时增加土壤的有机质、速效磷、速效钾和碱解氮含量, 且随着生物炭施用量(生物炭量/土壤量: 0、0.5%、1.0%、2.0%)的增加, 改良效果不断加强; 弱酸性黄棕壤施用生物炭也提高了土壤pH、有机质、速效磷、速效钾含量, 但对该土壤中的碱解氮含量无明显影响。不同生物炭用量的效应存在较大差异, 在2.0%时对两种土壤各理化性质影响均表现为最明显, 红壤pH平均增加0.61, 有机质、速效磷、速效钾、碱解氮分别平均提高203.4%、369.3%、368.0%、30.4%, 而黄棕壤pH、有机质、速效磷、速效钾分别平均增加0.55、124.2%、57.5%、50.3%。因而, 相同用量的生物炭对红壤的改良效应好于黄棕壤, 且施用生物炭对两种土壤速效钾含量影响最大, 其次是有机质、pH、速效磷、碱解氮。
,
URL [本文引用: 1]
Rice seeds were sown in soils treated with different calcium_containing chemicals. Calcium oxide had a distinct physiological effect on rice seedlings . In comparison with the control, the height of shoot, the number of roots and leaves all increased at the the application of 1.0% of CaO. Further studies indicated that the soil with 0.5% 1.5% CaO added reduced the leakage of electrolytes and the content of malonaldehyde, increased the content of chlorophyll and soluble protein in seedlings under chilling stress. The enhanced activity of peroxidase may be the cause of CaO improving the cold_tolerance of rice seedlings.
,
DOI:10.1371/journal.pone.0172767URLPMID:28263999 [本文引用: 1]
Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.
,
DOI:10.4028/www.scientific.net/AMM.37-38.1549URLMagsci [本文引用: 1]
在湖南祁阳进行了25年的生土熟化长期定位试验,研究花岗岩、第四纪红土和紫色砂页岩三种典型母质土壤在6种熟化方式下耕层(0—20 cm)土壤有机质演变特征。结果表明,不施肥处理土壤有机质含量25年没有显著变化; 不施肥秸秆还田能够缓慢增加土壤有机质含量,三种母质(花岗岩、第四纪红土和紫色砂页岩)土壤的有机质含量年平均增加量分别为0.32、0.20和0.17 g/kg; 施氮、磷、钾肥及施氮、磷、钾肥并秸秆还田,施有机物稻草及施有机物稻草并秸秆还田,三种母质土壤有机质含量均显著增加,其中以施氮、磷、钾肥并秸秆还田处理增加最大,年平均增加量分别为0.48、0.39和0.35 g/kg,25年后土壤有机质含量分别增加了5.6、2.8和3.1倍。根据土壤有机物的投入量、分解状况及作物生长等综合分析得出,花岗岩母质土壤有机质含量的增加速率大于紫色砂页岩土壤和第四纪红土土壤; 有机无机肥配施和秸秆还田是快速提高南方红壤地区不同母质土壤有机质含量的重要措施。
DOI:10.4028/www.scientific.net/AMM.37-38.1549URLMagsci [本文引用: 1]
在湖南祁阳进行了25年的生土熟化长期定位试验,研究花岗岩、第四纪红土和紫色砂页岩三种典型母质土壤在6种熟化方式下耕层(0—20 cm)土壤有机质演变特征。结果表明,不施肥处理土壤有机质含量25年没有显著变化; 不施肥秸秆还田能够缓慢增加土壤有机质含量,三种母质(花岗岩、第四纪红土和紫色砂页岩)土壤的有机质含量年平均增加量分别为0.32、0.20和0.17 g/kg; 施氮、磷、钾肥及施氮、磷、钾肥并秸秆还田,施有机物稻草及施有机物稻草并秸秆还田,三种母质土壤有机质含量均显著增加,其中以施氮、磷、钾肥并秸秆还田处理增加最大,年平均增加量分别为0.48、0.39和0.35 g/kg,25年后土壤有机质含量分别增加了5.6、2.8和3.1倍。根据土壤有机物的投入量、分解状况及作物生长等综合分析得出,花岗岩母质土壤有机质含量的增加速率大于紫色砂页岩土壤和第四纪红土土壤; 有机无机肥配施和秸秆还田是快速提高南方红壤地区不同母质土壤有机质含量的重要措施。
,
DOI:10.3864/j.issn.0578-1752.2012.20.009URLMagsci [本文引用: 1]
【目的】确定长期施肥下土壤肥力变化的适宜评价方法。【方法】以湖南望城和江西进贤的长期试验数据为基础,比较和分析因子分析法、相关系数法、内梅罗指数法3种评价方法对土壤肥力的综合评价结果,探明适宜土壤肥力变化的综合评价方法。【结果】20多年长期施肥下,3种评价方法所得综合土壤肥力指数(IFI)的变化趋势和差异性不同:因子分析法和相关系数法评价结果相似,而内梅罗指数法与二者存在一定差异,评价结果灵敏度较高。经验证,3种评价方法的IFI与作物产量间均呈极显著正相关,其中内梅罗指数法相关性更高。内梅罗指数法评价结果:低产的不施肥(CK)、偏施肥(NK)处理IFI随时间呈下降趋势;高产的均衡施肥(NPK、2NPK、NPKCa、NPKS、NPKM)处理IFI随时间趋稳,且均值显著高于不施肥和偏施肥的处理。【结论】因子分析法、相关系数法和内梅罗指数法均适用于长期施肥下土壤肥力的综合评价,但应首选内梅罗指数法,最后选相关系数法。
DOI:10.3864/j.issn.0578-1752.2012.20.009URLMagsci [本文引用: 1]
【目的】确定长期施肥下土壤肥力变化的适宜评价方法。【方法】以湖南望城和江西进贤的长期试验数据为基础,比较和分析因子分析法、相关系数法、内梅罗指数法3种评价方法对土壤肥力的综合评价结果,探明适宜土壤肥力变化的综合评价方法。【结果】20多年长期施肥下,3种评价方法所得综合土壤肥力指数(IFI)的变化趋势和差异性不同:因子分析法和相关系数法评价结果相似,而内梅罗指数法与二者存在一定差异,评价结果灵敏度较高。经验证,3种评价方法的IFI与作物产量间均呈极显著正相关,其中内梅罗指数法相关性更高。内梅罗指数法评价结果:低产的不施肥(CK)、偏施肥(NK)处理IFI随时间呈下降趋势;高产的均衡施肥(NPK、2NPK、NPKCa、NPKS、NPKM)处理IFI随时间趋稳,且均值显著高于不施肥和偏施肥的处理。【结论】因子分析法、相关系数法和内梅罗指数法均适用于长期施肥下土壤肥力的综合评价,但应首选内梅罗指数法,最后选相关系数法。
,
DOI:10.11654/jaes.2014.04.019URL [本文引用: 2]
以小麦-玉米轮作试验为研究对象,探究了施用不同量生物炭对塿土土壤生物活性动态变化的影响。生物炭用量设5个水平:B0(0 t·hm^-2)、B20(20 t·hm^-2)、B40(40 t·hm^-2)、B60(60 t·hm^-2)和B80(80 t·hm^-2),氮磷钾肥均作基肥施用。结果表明:生物炭可显著提高土壤脲酶、过氧化氢酶和玉米收获后碱性磷酸酶活性,但对蔗糖酶和小麦季碱性磷酸酶活性影响不显著,且显著提高土壤酶指数;提高土壤微生物量碳氮含量,用量为80 t·hm^-2时效果最显著,但降低土壤微生物量碳氮比;显著增加土壤三大类微生物类群的数量,增幅随其用量的增加而增加。动态变化显示,越冬期的土壤微生物量碳氮含量最低,但微生物量碳在拔节期出现高峰,而土壤微生物量氮在返青期出现高峰,与作物生育旺盛时期一致;显著减少微生物量碳和微生物量碳氮比的季节波动。施用生物炭可显著改善土壤微生物和酶活性,土壤酶指数为土壤酶活性的综合表征,可全面反映土壤酶活性对生物炭的响应特征,能够作为一种土壤质量评价方法。
DOI:10.11654/jaes.2014.04.019URL [本文引用: 2]
以小麦-玉米轮作试验为研究对象,探究了施用不同量生物炭对塿土土壤生物活性动态变化的影响。生物炭用量设5个水平:B0(0 t·hm^-2)、B20(20 t·hm^-2)、B40(40 t·hm^-2)、B60(60 t·hm^-2)和B80(80 t·hm^-2),氮磷钾肥均作基肥施用。结果表明:生物炭可显著提高土壤脲酶、过氧化氢酶和玉米收获后碱性磷酸酶活性,但对蔗糖酶和小麦季碱性磷酸酶活性影响不显著,且显著提高土壤酶指数;提高土壤微生物量碳氮含量,用量为80 t·hm^-2时效果最显著,但降低土壤微生物量碳氮比;显著增加土壤三大类微生物类群的数量,增幅随其用量的增加而增加。动态变化显示,越冬期的土壤微生物量碳氮含量最低,但微生物量碳在拔节期出现高峰,而土壤微生物量氮在返青期出现高峰,与作物生育旺盛时期一致;显著减少微生物量碳和微生物量碳氮比的季节波动。施用生物炭可显著改善土壤微生物和酶活性,土壤酶指数为土壤酶活性的综合表征,可全面反映土壤酶活性对生物炭的响应特征,能够作为一种土壤质量评价方法。
[本文引用: 2]
[本文引用: 2]
[本文引用: 4]
[本文引用: 4]
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
.
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2017.06.005URL [本文引用: 1]
【目的】探讨周年不同氮磷钾配施对砂姜黑土麦玉轮作体系产量及养分利用效率的影响,明确适宜豫东南砂姜黑土麦玉一体化种植的氮磷钾配施模式。【方法】于2012—2014年连续两年在河南省周口市商水县典型砂姜黑土区设置氮磷钾不同配施大田定位试验,研究磷钾肥总用量不变、2种氮用量投入水平下麦玉两季磷钾配施模式对冬小麦-夏玉米轮作种植体系氮、磷、钾养分吸收利用及产量的调控效应。其中,氮肥设全年用量360.00kg·hm^-2和540.00 kg·hm^-2两个梯度,磷钾肥总量不变,设计4种配施方式,即麦季全磷玉米全钾(磷肥和钾肥分别全部施用于小麦季和玉米季)、麦季全磷玉米重钾(磷肥全部施用于小麦季,钾肥按麦玉两季42﹕58的比例分配)、麦季重磷玉米全钾(磷肥按麦玉两季64﹕36的比例分配,钾肥全部施用于玉米季)、麦季重磷玉米重钾(磷肥按麦玉两季64﹕36的比例分配,钾肥按麦玉两季42﹕58的比例分配)。【结果】高氮水平下麦玉两季磷钾肥分施能促进作物产量三要素的协调发展,显著提高冬小麦的穗数和夏玉米的穗长与行粒数,且两年度单季作物和全年籽粒产量均以麦季重磷且玉米季重钾P8处理最高,周年产量分别达21 274.2 kg·hm^-2和20 219.1 kg·hm^-2。砂姜黑土区冬小麦和夏玉米地上部养分含量大小均表现为氮〉钾〉磷。与低氮水平相比,高氮水平有利于提高植株地上部总氮、磷、钾的含量,然而氮素的偏生产力(NPFP)、吸收效率(NUPE)、利用效率(NUE)有所降低。磷钾肥分施不仅能促进冬小麦和夏玉米对氮素的吸收,还可有效防止元素的流失,提高作物对磷素和氮素的吸收和利用,显著提高磷钾两类元素的偏生产力(PFP)、吸收效率(UPE)。而磷钾全施在麦玉某一季作物上,由于磷肥易固定、钾肥易流失的原因,造成肥料后效减小,下茬作物因17
DOI:10.3864/j.issn.0578-1752.2017.06.005URL [本文引用: 1]
【目的】探讨周年不同氮磷钾配施对砂姜黑土麦玉轮作体系产量及养分利用效率的影响,明确适宜豫东南砂姜黑土麦玉一体化种植的氮磷钾配施模式。【方法】于2012—2014年连续两年在河南省周口市商水县典型砂姜黑土区设置氮磷钾不同配施大田定位试验,研究磷钾肥总用量不变、2种氮用量投入水平下麦玉两季磷钾配施模式对冬小麦-夏玉米轮作种植体系氮、磷、钾养分吸收利用及产量的调控效应。其中,氮肥设全年用量360.00kg·hm^-2和540.00 kg·hm^-2两个梯度,磷钾肥总量不变,设计4种配施方式,即麦季全磷玉米全钾(磷肥和钾肥分别全部施用于小麦季和玉米季)、麦季全磷玉米重钾(磷肥全部施用于小麦季,钾肥按麦玉两季42﹕58的比例分配)、麦季重磷玉米全钾(磷肥按麦玉两季64﹕36的比例分配,钾肥全部施用于玉米季)、麦季重磷玉米重钾(磷肥按麦玉两季64﹕36的比例分配,钾肥按麦玉两季42﹕58的比例分配)。【结果】高氮水平下麦玉两季磷钾肥分施能促进作物产量三要素的协调发展,显著提高冬小麦的穗数和夏玉米的穗长与行粒数,且两年度单季作物和全年籽粒产量均以麦季重磷且玉米季重钾P8处理最高,周年产量分别达21 274.2 kg·hm^-2和20 219.1 kg·hm^-2。砂姜黑土区冬小麦和夏玉米地上部养分含量大小均表现为氮〉钾〉磷。与低氮水平相比,高氮水平有利于提高植株地上部总氮、磷、钾的含量,然而氮素的偏生产力(NPFP)、吸收效率(NUPE)、利用效率(NUE)有所降低。磷钾肥分施不仅能促进冬小麦和夏玉米对氮素的吸收,还可有效防止元素的流失,提高作物对磷素和氮素的吸收和利用,显著提高磷钾两类元素的偏生产力(PFP)、吸收效率(UPE)。而磷钾全施在麦玉某一季作物上,由于磷肥易固定、钾肥易流失的原因,造成肥料后效减小,下茬作物因17
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1002-6819.2015.04.035URLMagsci [本文引用: 1]
生物炭作为土壤改良剂和促进作物生长的应用价值已经被很多研究证实。该文综述了生物炭在改善农业土壤质量和作物生长中的应用研究进展,系统阐述了生物炭在提高农业土壤有效水含量,增加土壤矿质元素利用效率,缓解土壤酸化,降低土壤重金属生物有效性和提高农作物产量与质量方面的重要作用与微观机制。特别地,该文强调了生物炭应用于农业生态系统过程中可能引起的多环芳烃、重金属等污染物富集以及氮素根系吸收量下降等不可忽视的潜在问题,并对今后的重点研究方向进行了系统分析总结,以期为生物炭在提高土壤肥力质量与环境质量中的安全与高效利用提供科学参考。
DOI:10.3969/j.issn.1002-6819.2015.04.035URLMagsci [本文引用: 1]
生物炭作为土壤改良剂和促进作物生长的应用价值已经被很多研究证实。该文综述了生物炭在改善农业土壤质量和作物生长中的应用研究进展,系统阐述了生物炭在提高农业土壤有效水含量,增加土壤矿质元素利用效率,缓解土壤酸化,降低土壤重金属生物有效性和提高农作物产量与质量方面的重要作用与微观机制。特别地,该文强调了生物炭应用于农业生态系统过程中可能引起的多环芳烃、重金属等污染物富集以及氮素根系吸收量下降等不可忽视的潜在问题,并对今后的重点研究方向进行了系统分析总结,以期为生物炭在提高土壤肥力质量与环境质量中的安全与高效利用提供科学参考。
,
URLMagsci [本文引用: 1]
采用池栽试验方法研究了腐植酸钾对生姜根系生长发育及活性氧代谢的影响.结果表明:施用腐植酸钾显著地提高了生姜根系鲜质量和根系活力,促进了根系的生长发育,尤其在生育后期表现明显.施用腐植酸钾明显地提高了生育后期根系的超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,降低了膜脂过氧化产物丙二醛含量,延缓了根系衰老.根系的可溶性蛋白质含量分别比空白对照、等量腐植酸和等量氧化钾对照增加49.18%、25.89%和13.26%,生姜产量分别增加61.29%、48.13%和9.92%.
URLMagsci [本文引用: 1]
采用池栽试验方法研究了腐植酸钾对生姜根系生长发育及活性氧代谢的影响.结果表明:施用腐植酸钾显著地提高了生姜根系鲜质量和根系活力,促进了根系的生长发育,尤其在生育后期表现明显.施用腐植酸钾明显地提高了生育后期根系的超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,降低了膜脂过氧化产物丙二醛含量,延缓了根系衰老.根系的可溶性蛋白质含量分别比空白对照、等量腐植酸和等量氧化钾对照增加49.18%、25.89%和13.26%,生姜产量分别增加61.29%、48.13%和9.92%.
,
[本文引用: 1]
.
[本文引用: 1]
,
DOI:10.1897/04-576R.1URLPMID:16566154 [本文引用: 1]
Within the bioticl ligand model, which describes relationships between chemical speciation and metal binding at an organism's surface, multicomponent (long-term) metal uptake by plants has seldom been studied. In the present work, we exposed perennial ryegrass to nutrient solutions with two levels of Cd, Cu, Ni, Pb, and Zn (1 and 0.1 M) and with or without 30 mg/L of humic acid. Iron and Mn concentrations were constant over all treatments. The hypothesis tested was that humic acid lowers the free and labile metal concentration and, therefore, reduces the metal uptake and, finally, the metal content of the plant. The free metal ion concentrations in the nutrient solutions were measured by the Donnan membrane technique and labile metal concentrations by diffusive gradients in thin-films. The metal content of the shoots depends on the metal content of the roots. The metal content of the roots is a function of the adsorption of metals on the root surface. In a multicomponent system at metal concentrations of 1 M, humic acid decreased Cu, Pb, and Fe adsorption at the root surface, but it increased Cd, Zn, and Mn adsorption at the root surface. Complexation of cations such as Cu, Pb, and Fe with high affinity for (dissolved) organic matter may lead to increased uptake of cations with low affinity for organic matter (Ni, Zn, and Cd) because of competition between cations at the root surface. The results suggest that competition between metal ions can play a major role in multicomponent metal uptake, which has to be taken into account during risk assessments of metal-polluted soils.
,
DOI:10.1016/j.envpol.2005.06.030URLPMID:16242225 [本文引用: 1]
The influence of humic acid on the water chemistry of environmentally relevant concentrations of Al at neutral pH was studied, together with its effect on the bioavailability and toxicity of Al in Lymnaea stagnalis. Humic acid significantly reduced the loss of Al from the water and increased the fraction of filterable Al, although this was a relatively small fraction of total Al. Filterable Al concentration in the presence or absence of humic acid was independent of initial Al concentration. Humic acid only partly reduced toxicity, as observed by a reduction in behavioural suppression, and had no effect on the level of Al accumulated in tissues. These results suggest that humic acid maintains Al in a colloidal form that is bioavailable to L. stagnalis. However, these colloidal Al-humic acid species were less toxic since behavioural toxicity was reduced. Humic acid may play an important role in limiting the toxicity of Al to freshwater organisms.
,
DOI:10.3969/j.issn.1674-5906.2010.11.034URL [本文引用: 1]
采用田间盆栽试验,研究了生物炭(biochar)对玉米(Gramineae)苗期生长(60 d)及土壤化学性质的影响。结果表明,在玉米苗期的前33 d,生物炭(48 t.hm-2)对玉米株高的生长有显著抑制作用,但随着玉米的生长发育,生物炭的抑制作用逐渐消失。收获时(播种后60 d),生物炭对玉米植株干质量,N、P养分的吸收量没有显著影响;生物炭(12、48 t.hm-2)能显著提高土壤全N、有机碳质量分数,但对土壤全P、有效P、pH值没有显著影响。土壤全N、有机碳质量分数与生物炭用量(0、2.4、12、48 t.hm-2)为显著正相关(n=12,p〈0.01)。
DOI:10.3969/j.issn.1674-5906.2010.11.034URL [本文引用: 1]
采用田间盆栽试验,研究了生物炭(biochar)对玉米(Gramineae)苗期生长(60 d)及土壤化学性质的影响。结果表明,在玉米苗期的前33 d,生物炭(48 t.hm-2)对玉米株高的生长有显著抑制作用,但随着玉米的生长发育,生物炭的抑制作用逐渐消失。收获时(播种后60 d),生物炭对玉米植株干质量,N、P养分的吸收量没有显著影响;生物炭(12、48 t.hm-2)能显著提高土壤全N、有机碳质量分数,但对土壤全P、有效P、pH值没有显著影响。土壤全N、有机碳质量分数与生物炭用量(0、2.4、12、48 t.hm-2)为显著正相关(n=12,p〈0.01)。
,
DOI:10.11674/zwyf.16399URL [本文引用: 1]
【目的】探讨玉米秸秆生物炭配施氮肥对华北潮土区土壤理化特性和作物产量的影响,阐明土壤和植株对生物炭和氮肥施用的响应,旨在为该区域秸秆资源高效利用、培肥土壤及作物增产提供科学依据。【方法】以华北冬小麦–夏玉米轮作区为研究对象,研究玉米秸秆生物炭(缺氧条件下450℃热裂解1小时获得)配施氮肥对土壤养分含量、微生物量以及作物产量的影响。试验采用裂区设计,以秸秆生物炭施用量为主区,施氮量为副区。秸秆生物炭用量设0、7.5和22.5 t/hm^2 3个水平(以BC0、BC7.5、BC22.5表示);氮肥用量设0、150、225和300 kg/hm^2 4个水平(以N0、N150、N225、N300表示)。小麦在2014年10月9日播种,次年6月8日收获;玉米在2015年6月10日播种,当年9月28日收获。在作物成熟期进行产量测定,并采集0—20 cm土壤样品以及采用常规方法进行土壤有机碳(SOC)、全氮(TN)、可溶性有机碳(DOC)、铵态氮(NH4+-N)、硝态氮(NO3–-N)、土壤微生物量碳(MBC)和微生物量氮(MBN)的测定。【结果】生物炭对土壤养分含量、微生物量碳氮及作物产量有极显著影响。生物炭用量增加,土壤SOC、TN、DOC、NO3–-N含量以及土壤SOC/TN比值均显著增加,较BC0最大增加幅度分别为165.0%、74.1%、39.1%、75.1%和44.0%。MBC、MBN含量和作物产量均以BC7.5处理达最大值,较BC0最大增加幅度分别为49.2%、57.6%和46.1%,BC22.5较BC7.5处理平均降低12.1%、7.3%和9.7%;施用生物炭降低NH4+-N含量,BC7.5和BC22.5处理较BC0分别下降18.4%和23.7%。随着氮肥施用量的增加,SOC、DOC、NH4+-N、MBC、MBN含量均先增后减,在施氮水平为150 kg/hm^2时,其含量均达最大值,较N0最大增加幅度分别为29.7%、22.9%、44.8%、79.4%和115.3%。所有施氮的处理作物产量较N0均显著增加,而三个施氮处理间其产量差异不显著(P〉0.05)。【结论】在维持作物产
DOI:10.11674/zwyf.16399URL [本文引用: 1]
【目的】探讨玉米秸秆生物炭配施氮肥对华北潮土区土壤理化特性和作物产量的影响,阐明土壤和植株对生物炭和氮肥施用的响应,旨在为该区域秸秆资源高效利用、培肥土壤及作物增产提供科学依据。【方法】以华北冬小麦–夏玉米轮作区为研究对象,研究玉米秸秆生物炭(缺氧条件下450℃热裂解1小时获得)配施氮肥对土壤养分含量、微生物量以及作物产量的影响。试验采用裂区设计,以秸秆生物炭施用量为主区,施氮量为副区。秸秆生物炭用量设0、7.5和22.5 t/hm^2 3个水平(以BC0、BC7.5、BC22.5表示);氮肥用量设0、150、225和300 kg/hm^2 4个水平(以N0、N150、N225、N300表示)。小麦在2014年10月9日播种,次年6月8日收获;玉米在2015年6月10日播种,当年9月28日收获。在作物成熟期进行产量测定,并采集0—20 cm土壤样品以及采用常规方法进行土壤有机碳(SOC)、全氮(TN)、可溶性有机碳(DOC)、铵态氮(NH4+-N)、硝态氮(NO3–-N)、土壤微生物量碳(MBC)和微生物量氮(MBN)的测定。【结果】生物炭对土壤养分含量、微生物量碳氮及作物产量有极显著影响。生物炭用量增加,土壤SOC、TN、DOC、NO3–-N含量以及土壤SOC/TN比值均显著增加,较BC0最大增加幅度分别为165.0%、74.1%、39.1%、75.1%和44.0%。MBC、MBN含量和作物产量均以BC7.5处理达最大值,较BC0最大增加幅度分别为49.2%、57.6%和46.1%,BC22.5较BC7.5处理平均降低12.1%、7.3%和9.7%;施用生物炭降低NH4+-N含量,BC7.5和BC22.5处理较BC0分别下降18.4%和23.7%。随着氮肥施用量的增加,SOC、DOC、NH4+-N、MBC、MBN含量均先增后减,在施氮水平为150 kg/hm^2时,其含量均达最大值,较N0最大增加幅度分别为29.7%、22.9%、44.8%、79.4%和115.3%。所有施氮的处理作物产量较N0均显著增加,而三个施氮处理间其产量差异不显著(P〉0.05)。【结论】在维持作物产
,
DOI:10.1016/S2095-3119(13)60705-4URL [本文引用: 1]
Phosphorus change point indicating the threshold related to P leaching, largely depends on soil properties. Increasing data have shown that biochar addition can improve soil retention capacity of ions. However, we have known little about weather biochar amendment influence the change point of P leaching. In this study, two soils added with 0, 5, 10, 20, and 50 g biochar kg611 were incubated at 25°C for 14 d following adjusting the soil moisture to 50% water-holding capacity (WHC). The soils with different available P values were then obtained by adding a series of KH2PO4 solution (ranging from 0 to 600 mg P kg611 soil), and subjecting to three cycles of drying and rewetting. The results showed that biochar addition significantly lifted the P change points in the tested soils, together with changes in soil pH, organic C, Olen-P and CaCl2-P but little on exchangeable Ca and Mg, oxalate-extractable Fe and Al. The Olsen-P at the change points ranged from 48.65 to 185.07 mg kg611 in the alluvial soil and 71.25 to 98.65 mg kg611 in the red soil, corresponding to CaCl2-P of 0.31–6.49 and 0.18–0.45 mg L611, respectively. The change points of the alluvial soil were readily changed by adding biochar compared with that of the red soil. The enhancement of change points was likely to be explained as the improvement of phosphate retention ability in the biochar-added soils.
,
DOI:10.1007/s00374-014-0954-3URL [本文引用: 1]
This study investigated the effects of maize ( Zea maysL.) straw biochar on phosphorus (P) availability in two soils with different P sorption capacities (iron and aluminum dominated slight acid Red...
,
URLMagsci [本文引用: 1]
研究了pH和添加有机物料对红壤、砖红壤和水稻土中磷吸附-解吸的影响。结果表明,砖红壤和水稻土中磷的吸附量和解吸量均随pH的升高而降低,pH对红壤中磷吸附和解吸的影响很小。土壤阳离子交换量(CEC),铁、铝氧化物含量和有机质含量是影响磷吸附的主要因素。红壤的CEC和有机质含量很低,铁、铝氧化物含量高,因而对磷的吸附量最高。砖红壤和水稻土CEC较高,土壤表面对磷的排斥作用较大,而且较高含量的有机质覆盖了土壤表面的磷吸附位,因此这2种土壤对磷的吸附量低于红壤。添加稻草并进行恒温培养可使红壤和水稻土对磷的吸附量显著减少,但对砖红壤中磷吸附的影响较小。添加稻草使土壤磷的解吸量和解吸率增加,从而增加了土壤中吸附性磷的活性。
URLMagsci [本文引用: 1]
研究了pH和添加有机物料对红壤、砖红壤和水稻土中磷吸附-解吸的影响。结果表明,砖红壤和水稻土中磷的吸附量和解吸量均随pH的升高而降低,pH对红壤中磷吸附和解吸的影响很小。土壤阳离子交换量(CEC),铁、铝氧化物含量和有机质含量是影响磷吸附的主要因素。红壤的CEC和有机质含量很低,铁、铝氧化物含量高,因而对磷的吸附量最高。砖红壤和水稻土CEC较高,土壤表面对磷的排斥作用较大,而且较高含量的有机质覆盖了土壤表面的磷吸附位,因此这2种土壤对磷的吸附量低于红壤。添加稻草并进行恒温培养可使红壤和水稻土对磷的吸附量显著减少,但对砖红壤中磷吸附的影响较小。添加稻草使土壤磷的解吸量和解吸率增加,从而增加了土壤中吸附性磷的活性。
,
DOI:10.1016/S0045-6535(03)00185-1URLPMID:12729711 [本文引用: 1]
Effective phytoremediation of soils contaminated by heavy metals depends on their availability to plant uptake that, in turn, may be influenced by either the existing soil humus or an exogenous humic matter. We amended an organic and a mineral soil with an exogenous humic acid (HA) in order to enhance the soil organic carbon (SOC) content by 1% and 2%. The treated soils were further enriched with heavy metals (Cu, Pb, Cd, Zn, Ni) to a concentration of 0, 10, 20, and 40 渭g/g for each metal and allowed to age at room temperature for 1 and 2 months. After each period, they were extracted for readily soluble and exchangeable (2.5% acetic acid), plant-available (DTPA, Diethylentriaminepentaacetic acid), and occluded (1 N HNO3) metal species. Addition of HA generally reduced the extractability of the soluble and exchangeable forms of metals. This effect was directly related to the amount of added HA and increased with ageing time. Conversely, the potentially plant-available metals extracted with DTPA were generally larger with increasing additions of exogenous HA solutions. This was attributed to the formation of metal umic complexes, which ensured a temporary bioavailability of metals and prevented their rapid transformation into insoluble species. Extractions with 1 N HNO3 further indicated that the added metals were present in complexes with HA. The observed effects appeared to also depend on the amount of native SOC and its structural changes with ageing. The results suggest that soil amendments with exogenous humic matter may accelerate the phytoremediation of heavy metals from contaminated soil, while concomitantly prevent their environmental mobility.
,
DOI:10.1016/S0040-6031(03)00196-5URL [本文引用: 1]
The adsorption behavior of divalent cations M 2+ (Cu, Ni, Co and Zn) with commercial humic acid (HAAl) and also with an extracted fraction of peat soil (HAPs) was followed in aqueous solution. The series of adsorption isotherms were fitted to a modified Langmuir equation. The maximum number of moles adsorbed gave: 0.55±0.02, 0.66±0.02, 0.54±0.02, 0.40±0.02 mmol per gram for HAAl and 0.63±0.03, 0.61±0.06, 0.55±0.02, 0.54±0.03 mmol/g for solid HAPs, for copper, nickel, zinc and cobalt, respectively. The same interaction followed calorimetrically gave endothermic values: 2.4±1.0, 8.4±0.9, 18.3±0.9, 10.6±0.9 kJ mol 611 and 18.4±1.2, 15.9±1.4, 15.4±1.2, 15.0±1.2 kJ mol 611 for HAAl and HAPs, respectively, for the same sequence. Because all Gibbs free energies were negative. Complexation must be accompanied by an increase in entropy.
,
DOI:10.1016/j.envpol.2017.04.032URLPMID:28458251 [本文引用: 1]
Abstract Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright 2017 Elsevier Ltd. All rights reserved.
,
DOI:10.5846/stxb201410232083URLMagsci [本文引用: 1]
以小麦-玉米轮作交替种植下的田间试验为平台,探讨施用生物炭及3种炭基硝酸铵氮肥对土壤主要化学肥力因子、土壤微生物量碳、氮和酶活性的影响。田间试验共设6个处理,依次为:对照(施磷、钾肥,CK);生物炭(BC);硝酸铵氮肥(AN);掺混型生物炭基氮肥(CH);固-液吸附型生物炭基氮肥(XF);化学反应型生物炭基氮肥(FY)。结果表明,生物炭及3种生物炭基氮肥均显著提高土壤有机碳含量,并有效降低了有效磷和速效钾的含量。与CK处理相比较,CH、BC处理的土壤微生物量碳含量分别增加了22.10%、17.45%,而AN、XF、FY 3个处理则分别减少了9.09%、10.86%、1.46%;不同施肥处理土壤微生物量氮较CK均有增加,且BC、XF处理差异达显著水平,BC处理的增幅最大,达66.53%,XF处理的增幅次之,达到了62.78%,AN处理的增幅最小,为24.86%。与CK处理比较而言,FY、XF、CH均增加土壤蔗糖酶、脲酶和过氧化氢酶活性,且增加效应均依次减弱,FY、XF处理均增加碱性磷酸酶活性,而CH处理降低了碱性磷酸酶活性。FY、XF、CH较CK处理均可显著增加小麦产量,增产率分别为36.61%、22.58%、20.72%,且增产效果依次减弱。
DOI:10.5846/stxb201410232083URLMagsci [本文引用: 1]
以小麦-玉米轮作交替种植下的田间试验为平台,探讨施用生物炭及3种炭基硝酸铵氮肥对土壤主要化学肥力因子、土壤微生物量碳、氮和酶活性的影响。田间试验共设6个处理,依次为:对照(施磷、钾肥,CK);生物炭(BC);硝酸铵氮肥(AN);掺混型生物炭基氮肥(CH);固-液吸附型生物炭基氮肥(XF);化学反应型生物炭基氮肥(FY)。结果表明,生物炭及3种生物炭基氮肥均显著提高土壤有机碳含量,并有效降低了有效磷和速效钾的含量。与CK处理相比较,CH、BC处理的土壤微生物量碳含量分别增加了22.10%、17.45%,而AN、XF、FY 3个处理则分别减少了9.09%、10.86%、1.46%;不同施肥处理土壤微生物量氮较CK均有增加,且BC、XF处理差异达显著水平,BC处理的增幅最大,达66.53%,XF处理的增幅次之,达到了62.78%,AN处理的增幅最小,为24.86%。与CK处理比较而言,FY、XF、CH均增加土壤蔗糖酶、脲酶和过氧化氢酶活性,且增加效应均依次减弱,FY、XF处理均增加碱性磷酸酶活性,而CH处理降低了碱性磷酸酶活性。FY、XF、CH较CK处理均可显著增加小麦产量,增产率分别为36.61%、22.58%、20.72%,且增产效果依次减弱。
,
DOI:10.3969/j.issn.1001-0068.2008.04.021URL [本文引用: 1]
在酸性土壤上施用生石灰对土壤酶活性及大豆产量的影响初步研究表明,在大豆各生育期内酸性磷酸酶和转化酶活性随土壤酸性变弱而受到抑制,而脲酶和过氧化氢酶活性却增强,大豆产量呈现出随生石灰施入量的增加而增加的趋势,各处理与对照相比增产1.0%-9.5%。经土壤酶活性与大豆产量的相关分析得出,酸性土壤改良后土壤酶活性提高,在酸性较强的土壤上种植大豆,施肥时配合一定量的生石灰对提高土壤肥力、增加大豆产量有良好的促进作用,但在实际生产中的施用量要根据具体情况而定。
DOI:10.3969/j.issn.1001-0068.2008.04.021URL [本文引用: 1]
在酸性土壤上施用生石灰对土壤酶活性及大豆产量的影响初步研究表明,在大豆各生育期内酸性磷酸酶和转化酶活性随土壤酸性变弱而受到抑制,而脲酶和过氧化氢酶活性却增强,大豆产量呈现出随生石灰施入量的增加而增加的趋势,各处理与对照相比增产1.0%-9.5%。经土壤酶活性与大豆产量的相关分析得出,酸性土壤改良后土壤酶活性提高,在酸性较强的土壤上种植大豆,施肥时配合一定量的生石灰对提高土壤肥力、增加大豆产量有良好的促进作用,但在实际生产中的施用量要根据具体情况而定。