Identification and Gene Mapping of a Lesion Mimic Mutant spl34 in Rice (Oryza sativa L.)
LIUBao-Yu, LIUJun-Hua, DUDan, YANMeng, ZHENGLi-Yuan, WUXue, SANGXian-Chun, ZHANGChang-Wei*, Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crop, Chongqing 400716, China 通讯作者:张长伟, E-mail: 603519375@qq.com 收稿日期:2017-05-22 接受日期:2017-11-21 网络出版日期:2018-03-12 版权声明:2018作物学报编辑部作物学报编辑部 基金资助:本研究由国家转基因生物新品种培育重大专项(2016ZX08001002-002)资助 作者简介: -->673325435@qq.com
关键词:水稻;类病斑突变体;spl34;基因;精细定位 Abstract A mutant spotted leaf 34 (spl34) was screened from the progeny of indica restorer line Jinhui 10 treated with ethyl methane sulfonate (EMS). Brown lesions in spl34 exhibit on the sheath of lower leaves at the late tillering stage, then spred from the midrib to entire leaf and finally throughout the whole plant at maturity stage. Compared with the wild type, the plant height, ear length, grain number per panicle, seed setting rate and thousand-grain weight as well as the activities of protective enzymes (CAT, POD, and T-SOD) were all significantly decreased while the content of reactive oxygen species (ROS) increased in spl34. The shading assay showed that the formation of lesions in spl34 was induced by light. Histochemical analysis showed that spl34 had excessive hydrogen peroxide (H2O2) deposition and programmed cell death in the position of lesions. In addition, the chlorophyll fluorescence was weaker in spl34 than in the wild type under the fluorescence microscopy. There was no significant difference in blast resistance between spl34 and the wild type. Genetic analysis suggested that the phenotype of spl34 was controlled by a single recessive nuclear gene, which was mapped between InDel markers LR49 and LR52 on chromosome 4 with an interval of 200 kb. Sequencing analysis revealed that a single base substitution (G to T) occurred at 3449 bp in the DNA sequence of LOC_Os04g56480, resulting in an amino acid change from tryptophane to cysteine. The qRT-PCR results showed that the transcriptional level of LOC_Os04g56480 was down-regulated in spl34, while that of some pathogenesis-related genes was highly up-regulated when compared with the wild type.
整个生育期野生型植株未出现类病斑, 而在分蘖后期突变体spl34下部叶片的叶鞘上开始出现褐色斑点, 随后褐色斑点向植株上部扩散, 至成熟期整个植株的叶片和叶鞘均分布有褐斑(图1-A, B, C)。成熟期突变体spl34的株高、穗长较野生型显著降低, 每穗粒数、结实率和千粒重较野生型极显著降低, 但两者的有效穗数则无显著差异(表1)。 显示原图|下载原图ZIP|生成PPT 图1分蘖期、成熟期野生型(WT)和突变体spl34的表型 A: 分蘖期野生型(WT)和突变体spl34植株; B: 成熟期野生型(WT)和突变体spl34植株; C: 成熟期野生型(WT)和突变体spl34的叶片。 -->Fig. 1Phenotype of the wild type (WT) and the spl34 mutant at tillering stage and mature period A: plants of the wild type (WT) and the spl34 mutant at tillering stage; B: plants of the wild type (WT) and the spl34 mutant at mature period; C: leaves of the wild type (WT) and the spl34 mutant at mature period. -->
Table 1 表1 表1野生型(WT)和spl34的主要农艺性状 Table 1Agronomic traits of the wild type (WT) and spl34 mutant
材料 Material
株高 Plant height (cm)
有效穗数 Effective panicle
穗长 Panicle length (cm)
每穗粒数 Grain number per panicle
结实率 Seed-setting rate (%)
千粒重 1000-grain weight (g)
WT
107.12±3.35
8.60±1.20
25.26±1.40
180.90±12.48
78.41±4.45
25.57±0.81
Spl34
100.32±3.59*
8.80±0.82
22.34±1.22*
135.42±8.66**
53.65±3.96**
22.68±0.30**
*在0.05水平上差异显著; **在0.01水平上差异显著。* Significantly different at P<0.05; ** significantly different at P<0.01. 新窗口打开
2.2 对遮光处理的响应
对野生型的叶片和突变体即将出现类病斑的叶片用锡箔纸进行遮光处理1周后显示, 突变体被锡箔纸遮盖的部位不出现或只出现极少量的类病斑, 而叶片其他部位出现大量的类病斑。遮光处理的部位复光1周后出现明显的类病斑(图2)。说明突变体spl34的类病斑受光诱导。 显示原图|下载原图ZIP|生成PPT 图2遮光对野生型和突变体spl34叶片的影响 A: 野生型遮光处理后; B: 野生型遮光处理后复光1周; C: 突变体spl34遮光后; D: 突变体spl34遮光处理后复光1周后。 -->Fig. 2Effects of shading on the wild type and the spl34 mutant leaves A: leaf of the wild type after shading; B: leaf of wild type regained normal light for one week after shading; C: leaf of spl34 after shading; D: leaf of spl34 regained normal light for one week after shading. -->
2.3 光合色素含量的变化
抽穗期突变体的倒一叶光合色素含量均略高于野生型, 但未达到显著差异水平; 而倒二叶和倒三叶光合色素含量均较野生型低, 且分别达到了显著和极显著差异水平(图3), 这与突变体在抽穗期倒一叶还未出现类病斑, 倒二叶出现类病斑但较倒三叶少有关。 显示原图|下载原图ZIP|生成PPT 图3野生型(WT)和突变体spl34抽穗期光合色素含量 *在0.05水平上差异显著; **在0.01水平上差异显著。A~C: 抽穗期野生型(WT)和突变体spl34的倒一叶(A)、倒二叶(B)和倒三叶(C)光合色素含量。 -->Fig. 3Photosynthetic pigments contents of the wild type and the spl34 mutant at heading stage A-C: photosynthetic pigments contents of the flag leaves, second leaves, third leaves respectively in the wild type and the spl34 mutant at heading stage. * Significantly different at P<0.05; ** significantly different at P<0.01. -->
2.4 突变体荧光显微镜观察结果
抽穗期取野生型的叶片及突变体有类病斑的叶片制作冷冻切片, 于荧光显微镜下观察显示, 突变体spl34的叶绿体产生的红色荧光弱于野生型, 且突变体中出现类病斑的部位(图4-D中白色箭头处)叶绿体产生的红色荧光也较未出现类病斑的部位弱(图4-D中黄色箭头处), 说明突变体产生类病斑的部位发生了叶绿素降解。 显示原图|下载原图ZIP|生成PPT 图4野生型和突变体spl34叶片的自发荧光 A, B: 野生型在自然光和紫外光下叶片横切显微结构; C, D: 突变体spl34在自然光和紫外光下叶片横切显微结构; 标尺: 100 μm。白色箭头所指部位为类病斑形成部位, 黄色箭头所指部位为未形成类病斑部位。 -->Fig. 4Autofluorescence of the wild type and the spl34 mutant A, B: microstructure in cross section of wild type under natural light and UV light; C, D: microstructure in cross section of spl34 mutant under natural light and UV light; Bar=100 μm. The positions pointed by white arrows are the lesion formation sites, those with yellow arrows are the sites without lesion mimic. -->
2.5 突变体叶片的细胞程序性死亡和H2O2积累
台盼蓝染色结果显示, 突变体spl34的叶片有类病斑的部位及其周围被染成深蓝色, 说明该部位存在细胞程序性死亡, 而野生型的叶片被染成均匀的浅蓝色, 说明其叶片上未发生细胞程序性死亡(图5-A, B)。这可能是产生类病斑的部位发生了过敏性反应而导致细胞死亡。DAB染色结果显示, 突变体spl34的叶片上有大量红褐色斑点, 而野生型的叶片上并未出现类似的斑点(图5-C, D), 说明突变体在类病斑产生的过程中伴随着H2O2的积累。 显示原图|下载原图ZIP|生成PPT 图5野生型(WT)和突变体spl34的组织化学分析 A, B: 野生型(WT)和突变体spl34叶片的台盼蓝染色; C, D: 野生型(WT)和突变体spl34叶片的DAB染色。 -->Fig. 5Histochemical analysis of the wild type and the spl34 mutant A, B: leaves of the wild type (WT) and the spl34 mutant stained by trypan blue; C, D: leaves of the wild type (WT) and the spl34 mutant stained by DAB. -->
2.6 突变体生理指标的变化
抽穗期突变体的H2O2含量极显著高于野生型, 而其O2-含量只有倒三叶较野生型极显著升高, 倒一、倒二叶的O2-含量与野生型相比无显著差异, 这可能与突变体孕穗期倒一叶无类病斑, 倒二叶刚出现类病斑, 倒三叶类病斑较明显有关; 突变体的•OH含量与野生型相比无显著差异(图6-A~C)。对CAT、POD、SOD等抗氧化酶活性测定结果显示, 突变体的抗氧化酶活性显著或极显著低于野生型(图6-D~F), 说明植株体内的抗氧化酶活性降低使得突变体清除自由基能力下降, 导致突变体体内的H2O2和O2-含量升高, 而•OH因其氧化能力很强, 产生后便立刻与其他分子发生反应, 不需要专门的酶来清理, 因此突变体体内的抗氧化酶活性降低对其含量影响不大。 显示原图|下载原图ZIP|生成PPT 图6抽穗期野生型(WT)和突变体spl34的生理指标 *在0.05水平上差异显著; **在0.01水平上差异显著。 -->Fig. 6Physiological indices of the wild type (WT) and the spl34 mutant at heading stage * Significantly different at P<0.05; ** significantly different at P<0.01. -->
2.7 突变体的稻瘟病菌抗谱测定和稻瘟病抗性鉴定
56个供试单孢菌株中有54个菌株对丽江新团黑谷严重侵染, 为有效菌株。54个有效菌株经7个中国鉴别品种鉴定划分为6个中国生理群19个生理小种。ZB 群为优势种群, 小种出现频率为61.11%; ZA群为重要种群, 小种出现频率为20.37%; ZC、ZD、ZE和ZG等种群的小种出现频率均较低, 分别为3.7%、3.7%、1.86%和12.96%。 表2显示, 突变体spl34对ZA生理群的抗病频率比野生型升高15.38%, 而对ZB生理群的抗病频率比野生型降低3.63%, 对ZC、ZD、ZE和ZG生理群的抗病频率则与野生型相同, 特别是对总群的抗病频率也与野生型相同。说明与野生型相比, 突变体的抗谱并未明显拓宽。 Table 2 表2 表2野生型(WT)与突变体spl34对稻瘟病菌的抗谱 Table 2Resistance spectrum of the wild type (WT) and the spl34 mutant to rice blast (%)
材料 Material
对稻瘟病各生理群的抗病频率 Resistance frequency to each physiological group
总群抗病频率 Resistance frequency to total population
ZA
ZB
ZC
ZD
ZE
ZG
WT
39.39±5.25
74.75±1.76
0
100
100
100
70.37±1.85
spl34
45.45±5.45
72.04±4.10
0
100
100
100
70.37±3.20
新窗口打开 苗瘟、叶瘟和穗颈瘟的抗性鉴定结果(表3)显示, 突变体苗瘟、叶瘟病情指数和穗颈瘟的病穗率均比野生型略高, 但差异并不显著。说明突变体与野生型的稻瘟病抗性差异也不明显或略显降低。 Table 3 表3 表3野生型(WT)与突变体spl34的稻瘟病病情指标 Table 3Disease indices of the wild type and the spl34 mutant to rice blast (%)
材料 Material
苗瘟病情指数 Disease indexes of leaf blast at seedling stage
叶瘟病情指数 Disease indexes of leaf blast at tillering stage
Huang QN, YangY, Shi YF, ChenJ, Wu JL.Recent advances in research on spotted-leaf mutants of rice (Oryza sativa) .Chin J Rice Sci, 2010, 24: 108-115 (in Chinese with English abstract) [本文引用: 2]
[3]
LorrainS, VailleauF, BalaguéC, RobyD.Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants . Trends Plant Sci, 2003, 8: 263-271 [本文引用: 1]
Sun HM, Zhang CJ, Li BT, Pan XH.Advances of study on rice lesion mimic mutants .Acta Agric Shanghai, 2014, 30(03): 142-147 (in Chinese with English abstract) [本文引用: 1]
[5]
WalbotV, Hoisington DA, Neuffer MG.Disease lesion mimic mutations. In: Kosuge T, Meredith C, eds . Genetic Engineering of Plants. Plenum, New York, 1983. pp 431-442 [本文引用: 1]
[6]
Dietrich RA, Richberg MH, SchmidtR, DeanC, Dangl JL.A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death .Cell, 1997, 88: 685-694 [本文引用: 1]
[7]
Shi LY, Lv XL, Weng JF, Zhu HY, Liu CL, Hao ZF, ZhouY, Zhang DG, Li MS, Ci XK, Li XH, Zhang SH.Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.) .Acta Agron Sin, 2014, 2: 132-143 [本文引用: 1]
[8]
SpassievaS, HilleJ.A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1, homologue . Plant Sci, 2002, 162: 543-549 [本文引用: 1]
[9]
Xiao GQ, Zhang HW, Lu XY, Huang RF.Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice(Oryza sativa L.) .J Integr Agric, 2015, 14: 1687-1696 [本文引用: 1]
Pan LQ, LuW, Li XB, Wu DX, Wang XY.Characteristics of lesion mimic mutants from indica rice 93-11 . J Nucl Agric Sci, 2015, 29: 413-420 (in Chinese with English abstract) [本文引用: 1]
[11]
YinZ, ChenJ, ZengL, GohM, LeungH, Khush GS, Wang GL.Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight . Mol Plant-Microbe Interact, 2000, 13: 869-876 [本文引用: 1]
[12]
Chen XF, HaoL, Pan JW, Zheng XX, Jiang GH, JinY, Gu ZM, QianQ, Zhai WX, Ma BJ.SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949 [本文引用: 3]
[13]
Zeng LR, Qu SH, BordeosA, Yang CW, BaraoidanM, Yan HY, XieQ, Nahm BH, LeungH, Wang GL.Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity .Plant Cell, 2004, 16: 2795-2808 [本文引用: 2]
[14]
MoriM, TomitaC, SugimotoK, HasegawaM, HayashiN, Dubouzet JG, OchiaiH, SekimotoH, HirochikaH, KikuchiS.Isolation and molecular characterization of aSpotted leaf 18 mutant by modified activation-tagging in rice . Plant Mol Biol, 2007, 63: 847-860 [本文引用: 2]
[15]
QiaoY, JiangW, Lee JH, Park BS, Choi MS, PiaoR, Woo MO, Roh JH, HanL, Paek NC, Seo HS, Koh HJ.SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice(Oryza sativa) .New Phytol, 2010, 185: 258-274 [本文引用: 3]
[16]
Wang LJ, Pei ZY, Tian YC, He CZ.OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation .Mol Plant-Microbe Interact, 2005, 18: 375-384 [本文引用: 2]
Chen HL, Xiang YH, Zhao JY, Yin DD, Liang GH, Zhai WX, Jiang GH.Genetic analysis and gene fine mapping of rice lesion mimic mutant c5. Acta Agron Sin, 2013, 39: 1148-1154 (in Chinese with English abstract) [本文引用: 1]
Zhong ZQ, Luo WL, Liu YZ, WangH, Chen ZQ, GuoT.Characterization of a novel spotted leaf mutantspl32 and mapping of Spl32(t) gene in rice(Oryza sativa) .Acta Agron Sin, 2015, 41: 861-871 (in Chinese with English abstract) [本文引用: 1]
[19]
YamanouchiU, YanoM, LinH, AshikariM, YamadaK.A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein .Proc Natl Acad Sci USA, 2002, 99: 7530-7535 [本文引用: 3]
[20]
Jiao BB, Wang JJ, Zhu XD, Zeng LZ, LiQ, He ZH.A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice .Mol Plant, 2012, 5: 205-217 [本文引用: 2]
[21]
Tong XH, Qi JF, Zhu XD, Mao BZ, Zeng LJ, Wang BH, LiQ, Zhou GX, Xu XJ, Lou YG, He ZH.The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway .Plant J, 2012, 71: 763-775 [本文引用: 1]
[22]
Undan JR, TamiruM, AbeA, YoshidaK, KosugiS, TakagiH, YoshidaK, KanzakiH, SaitohH, FekihR, SharmaS, UndanJ, YanoM, TerauchiR.Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.) .Genes Genet Syst, 2012, 87: 169-179 [本文引用: 2]
[23]
Kim JA, ChoK, SinghR, Jung YH, Jeong SH, Kim SH, LeeJ, Cho YS, Agrawal GK, RakwalR, TamogamiS, KerstenB, Jeon JS, AnG, Jwa NS.Rice OsACDR1 (Oryza sativa, accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance .Mol Cells, 2009, 28: 431-439 [本文引用: 2]
[24]
Lin AH, Wang YQ, Tang JY, XueP, Li CL, Liu LC, HuB, Yang FQ, Loake GJ, Chu CC.Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice .Plant Physiol, 2012, 158: 451-464 [本文引用: 1]
[25]
Sun CH, Liu LC, Tang JY, Lin AH, Zhang FT, FangJ, Zhang GF, Chu CC.RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice .J Genet Genomics, 2011, 38: 29-37 [本文引用: 1]
FekihR, TamiruM, KanzakiH, AbeA, YoshidaK, KanzakiE, SaitohH, TakagiH, NatsumeS, Undanet JR, UndanJ, TerauchiR.The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response . Mol Genet Genomics, 2015, 290: 611-622 [本文引用: 1]
[28]
SakurabaY, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions .Plant J, 2013, 74: 122-133 [本文引用: 1]
[29]
Tang JY, Zhu XD, Wang YQ, Liu LC, XuB, LiF, FangJ, Chu CC.Semi-dominant mutations in the CC-NB-LRR-type R, gene,NLS1, lead to constitutive activation of defense responses in rice .Plant J, 2011, 66: 996-1007 [本文引用: 1]
[30]
FujiwaraT, MaisonneuveS, IsshikiM, MizutaniM, Chen LT, Wong HL, KawasakiT, ShimamotoK.Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice .J Biol Chem, 2010, 285: 11308-11313 [本文引用: 1]
[31]
ChernM, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC.Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light .Mol Plant Microbe Interact, 2005, 18: 511-520 [本文引用: 1]
[32]
Zhao JY, Liu PC, Li CR, Wang YY, Guo LQ, Jiang GH, Zhai WX.LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice .J Genet Genomics, 2017, 44: 107-118 [本文引用: 1]
[33]
WangS, Lei CL, Wang JL, MaJ, TangS, Wang CL, Zhao KJ, TianP, ZhangH, Qi CY, Cheng ZJ, ZhangX, Guo XP, Liu LL, Wu CY, Wan JM.SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice .J Exp Bot, 2017, 68: 899-913 [本文引用: 1]
[34]
Lichtenthaler HK.Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes . Methods Enzymol, 1987, 148: 350-382 [本文引用: 1]
[35]
Bowling SA, Clarke JD, Liu YD, Klessig DF, Dong XN.The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance .Plant Cell, 1997, 9: 1573-1584 [本文引用: 1]
[36]
Thordal-ChristensenH, Zhang ZG, Wei YD, Collinge DB.Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction .Plant J, 1997, 11: 1187-1194 [本文引用: 1]
HuangF, Cheng KL, Peng GL, Luo QM, Chen GH, Zhu YC.The standard evaluating system of rice resistance to blast in Sichuan province .J China Agric Univ, 1998, 3(suppl-1): 23-26 (in Chinese with English abstract) [本文引用: 1]
Zhang CW, Ling YH, Sang XC, LiP, Zhao FM, Yang ZL, Li YF, Fang LK, He GH.Transgenic rice lines harboring McCHIT1 gene from Balsam Pear(Momordica charantia L.) and their blast resistance .Acta Agron Sin, 2011, 37: 1991-2000 (in Chinese with English abstract) [本文引用: 1]
All China Coorporation of Research on Physiological Races of Pyricularia oryzae. Research on physiological races of rice blast fungus in China .Acta Phytopathol Sin, 1980, 10: 71-82 (in Chinese with English abstract) [本文引用: 1]
[40]
International Rice ResearchInstitute. Standard Evaluation System for Rice (SES) . Los Baños,Philippines: IRRI, 2002. pp 14-18 [本文引用: 1]
[41]
Rogers SO, Bendich AJ.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues .Plant Mol Biol, 1985, 5: 69-76 [本文引用: 1]
[42]
Feng BH, YangY, Shi YF, Shen HC, Wang HM, Huang QN, XuX, Lu XG, Wu JL.Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae .J Integr Plant Biol, 2013, 55: 473-483 [本文引用: 1]
[43]
NoutoshiY, ItoT, SekiM, NakashitaH, YoshidaS, MarcoY, ShirasuK, ShinozakiK.A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death .Plant J, 2005, 43: 873-888 [本文引用: 1]
[44]
AraseS, Zhao CM, AkimitsuK, YamamotoM, IchiiM.A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens .J Gen Plant Pathol, 2000, 66: 109-116 [本文引用: 1]
Qiu JH, MaN, Jiang HW, Sheng ZH, Shao GN, Tang SQ, Wei XJ, Hu PS.Identification and gene mapping of a lesion mimic mutantlmm4 in rice .Chin J Rice Sci, 2014, 28: 367-376 (in Chinese with English abstract) [本文引用: 1]
[46]
LiuG, WangL, ZhouZ, LeungH, Wang GL, HeC.Physical mapping of a rice lesion mimic gene,Spl1, to a 70-kb segment of rice chromosome 12 .Mol Gen Genomics, 2004, 272: 108-115 [本文引用: 1]