关键词:普通小麦;粒重;品种粒重类型;平均灌浆速率 Abstract The knowledge on relationship between grain weight and grain-filling parameters is important for yield potential and stability improvement of common wheat. Logistic equation was used for fitting the grain-filling dataset from 14 leading cultivars and advanced lines, sown at Anyang, Henan province in three successive seasons from 2012 to 2015. The results showed that grain weight and all grain-filling rate (GFR) related parameters were mainly influenced by genotype, while grain-filling period related parameters were mainly influenced by environment. There was significant difference on all GFR parameters including the average and the highest GFR, and those in the three periods among cultivar groups based on grain weight, showing a trend of high-grain-weight cultivar > medium-grain-weight cultivar > low-grain-weight cultivar, whereas there was no significant difference for grain-filling period related parameters among the cultivar groups. GFR, especially in the fast increase period, was the major factor that made the significant difference of grain weight among cultivars. Positive correlations between grain weight and all GFR related parameters were observed (P < 0.001), with the coefficients of 0.97 for GFR in the fast increase period and 0.90 for average GFR, whereas no significant correlations were found between grain weight and grain-filling period related parameters. Therefore, average GFR was proposed to be used in quantitative trait loci mapping to improve grain weight of wheat in the Yellow and Huai Rivers Valley.
Keywords:common wheat;grain weight;cultivar group based on grain weight;average grain-filling rate -->0 PDF (551KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267 https://doi.org/10.3724/SP.J.1006.2018.00260 MIAOYong-Jie, YANJun, ZHAODe-Hui, TIANYu-Bing, YANJun-Liang, XIAXian-Chun, ZHANGYong, HEZhong-Hu. Relationship between Grain Filling Parameters and Grain Weight in Leading Wheat Cultivars in the Yellow and Huai Rivers Valley[J]. Acta Agronomica Sinica, 2018, 44(02): 260-267 https://doi.org/10.3724/SP.J.1006.2018.00260 黄淮麦区是我国最重要的小麦产区, 播种面积和总产分别约占全国的55%和60%, 对保障粮食安全至关重要[1]。过去60余年, 黄淮麦区小麦产量年遗传增益约为0.48%~1.05%, 其构成因素中千粒重年遗传增益较大, 为0.35%~0.51% [2]。虽然近15年产量遗传增益放缓, 但粒重仍持续提高[3], 表明粒重改良是该麦区产量显著提高的关键因素。粒重主要受基因型控制, 并受环境显著影响, 粒重在产量构成因素中的遗传力最高[4,5]。已定位了大量粒重相关QTL, 位于2A、4D、5B、6B、7B和7D染色体上的QTL效应较大, 单个位点可解释4.8%~28.0%的表型变异[6,7,8]。其中, TaCwi[9]、TaGW2[10]、TaSus2[11]、TaCKX6[12]、TaSAPl[13]、TaGS1a[14]、TaGS-D1[15]、TaGASR7-A1[16]、TaGS5-3A[17]、6-SFT-A2[18]等多个相关基因已被克隆, 可解释4.8%~14.6%的表型变异。 粒重由籽粒灌浆速率和持续时间决定[19,20,21,22,23]。灌浆速率主要受基因型控制, 灌浆持续时间主要由特定地区的气候和耕作栽培制度决定[23,24,25,26]。有关灌浆速率和持续时间对粒重的贡献尚无定论, 多数研究认为, 在灌浆期偏短的地区, 灌浆速率对粒重的贡献大于持续时间[26,27,28,29,30]。因此, 育种工作的重点是提高灌浆速率。 灌浆速率是决定我国北部冬麦区小麦品种粒重最重要的参数[29]; 黄淮麦区水地和旱地品种籽粒灌浆特性存在显著差异, 旱地品种的灌浆速率高于水地品种, 但其籽粒灌浆时间较短[30]。这些研究多集中于描述具体品种的灌浆特性, 对不同粒重类型品种间的籽粒灌浆特性可能因为工作量大而缺乏系统研究, 且很少涉及黄淮麦区水地主栽品种的粒重与籽粒灌浆特性之间的关系。本研究通过分析品种间籽粒灌浆特性的差异, 明确粒重与籽粒灌浆特征参数的关系, 揭示灌浆速率和持续时间对粒重的相对重要性, 旨在为黄淮麦区小麦品种的粒重改良提供理论依据。
1 材料与方法
1.1 品种及田间设计
选用黄淮麦区14份水地主栽品种和苗头品系(表1), 于2012—2015年度种植在河南安阳。良星99和周麦18分别是黄淮北片和南片冬麦区国家水地组区域试验的对照品种。济麦22和矮抗58是黄淮麦区近10年累计推广面积最大的两个主栽品种。郑麦366、周麦16、良星66、周麦27、存麦1号、中麦895和中麦875均为当前生产上的主推品种, 中麦871和中麦140是本课题组新育成的苗头品系。荔垦4号是中麦895、中麦875和中麦871的父本。 Table 1 表1 表114份参试品种名称、系谱及其审定年份 Table 1Names, pedigrees and released years of the 14 cultivars investigated
“/” denotes that the lines has not been released yet.“/”表示未审定。 新窗口打开 采用随机区组设计, 2次重复。小区面积6 m2, 6行区, 4 m行长, 行距20 cm。试验地前茬玉米, 收获后秸秆还田, 播种前底施复合肥(N、P2O5、K2O比例17∶1∶17) 750 kg hm-1和尿素75 kg hm-1, 深翻。10月10日前后播种, 每公顷基本苗210万株。分别于越冬期、返青期、孕穗期和灌浆期灌溉4次, 并结合越冬水和孕穗水分别追施尿素112.5 kg hm-1和150 kg hm-1。返青期化学除草一次, 抽穗扬花期“一喷三防”, 其他管理措施同当地大田生产。
所有品种的籽粒饱满度均较好, 表明灌浆正常。Logistic方程决定系数(R2)均在0.99以上, 说明拟合方程可以有效描述籽粒灌浆进程。不同粒重类型品种灌浆进程均呈“S”型变化曲线, 灌浆速率变化趋势呈单峰曲线, 表现为慢—快—慢的特征(图1), 不同粒重类型品种间平均和最大灌浆速率及渐增期、快增期和缓增期灌浆速率及其籽粒增重量均存在显著差异, 表现为高粒重>中等粒重>低粒重, 灌浆持续时间则差异不显著(表4)。渐增期、快增期和缓增期持续时间分别约占整个灌浆期的31.2%、36.9%和31.9%, 其籽粒增重量则分别约占粒重的21.1%、57.8%和21.1%。与渐增期和缓增期相比, 快增期高、中、低粒重类型品种间灌浆速率和籽粒增重量差异较大。高粒重和中等粒重类型品种的最大灌浆速率到达时间显著晚于低粒重类型品种, 其他灌浆持续时间相关参数类型间差异均不显著。 显示原图|下载原图ZIP|生成PPT 图1不同粒重类型小麦品种的籽粒灌浆速率曲线 -->Fig. 1Grain-filling rate curve of different grain-weight wheat cultivars -->
Table 4 表4 表4不同粒重类型品种的籽粒灌浆特征参数 Table 4Grain-filling parameters in different grain-weight cultivars
籽粒灌浆特征参数 Grain-filling parameter
高粒重品种 High grain weight cultivar
中等粒重品种 Medium grain weight cultivar
低粒重品种 Low grain weight cultivar
千粒重 TGW (g)
56.5 a
50.0 b
45.1 c
平均灌浆持续时间 T (d)
38.2 a
39.0 a
38.0 a
平均灌浆速率 Ra (mg grain-1 d-1)
1.48 a
1.28 b
1.19 c
最大灌浆速率 Rmax (mg grain-1 d-1)
2.59 a
2.29 b
2.16 c
最大灌浆速率到达时间 Tmax (d)
19.4 a
19.3 a
18.5 b
渐增期持续时间 T1 (d)
12.1 a
12.0 a
11.6 a
渐增期灌浆速率 R1 (mg grain-1 d-1)
0.99 a
0.88 b
0.82 c
渐增期增重量 W1 (mg grain-1)
11.9 a
10.6 b
9.5 c
快增期持续时间 T2 (d)
14.1 a
14.4 a
13.9 a
快增期灌浆速率 R2 (mg grain-1 d-1)
2.27 a
2.00 b
1.89 c
快增期增重量 W2 (mg grain-1)
32.6 a
28.9 b
26.1 c
缓增期持续时间 T3 (d)
11.7 a
12.5 a
12.5 a
缓增期灌浆速率 R3 (mg grain-1 d-1)
1.05 a
0.85 b
0.78 c
缓增期增重量 W3 (mg grain-1)
11.9 a
10.6 b
9.5 c
TGW: thousand-grain weight; T: average grain-filling period; Ra: average grain-filling rate; Tmax: days reaching the maximum grain-filling rate; Rmax: maximum grain-filling rate; T1: grain-filling pyramid period; R1: grain-filling rate in T1; W1: grain weight accumulated in T1; T2: grain-filling fast increase period; R2: grain-filling rate in T2; W2: grain weight accumulated in T2; T3: grain-filling slow increase period; R3: grain-filling rate in T3; W3: grain weight accumulated in T3. Different letters after each parameter measurements indicate significant difference among cultivar groups at P < 0.05. 新窗口打开
2.4 千粒重与籽粒灌浆特征参数的相关性
千粒重与各时期籽粒灌浆速率均呈显著正相关(P < 0.001), 其中与快增期灌浆速率的相关程度最密切(r = 0.97), 与平均灌浆速率的相关程度次之(r = 0.90) (图2和表5)。千粒重与各时期籽粒增重量均呈显著正相关(r = 0.97, P < 0.001), 与灌浆持续时间参数相关均不显著(表5)。 显示原图|下载原图ZIP|生成PPT 图2千粒重与灌浆速率的线性回归 A: 快增期灌浆速率; B: 平均灌浆速率。 -->Fig. 2Linear regressions between thousand-grain weight and grain-filling rate A: grain-filling rate in the fast increase period; B: average grain-filling rate. -->
Table 5 表5 表5千粒重与籽粒灌浆特征参数的相关系数 Table 5Correlation coefficients between thousand-grain weight and grain-filling parameters
参数 Parameter
T
Ra
Tmax
Rmax
T1
R1
W1
T2
R2
W2
T3
R3
W3
TGW
0.03
0.90***
0.42
0.87***
0.46
0.85***
0.97***
0.23
0.97***
0.97***
-0.40
0.86***
0.97***
T
-0.13
0.67**
-0.21
0.55*
-0.04
0.13
0.56*
-0.21
0.13
0.36
-0.08
0.13
Ra
0.40
0.87***
0.43
0.96***
0.97***
0.23
0.87***
0.97***
-0.57*
0.94***
0.97***
Tmax
0.07
0.80***
0.38
0.57*
0.85***
0.07
0.57*
-0.42
0.57*
0.57*
Rmax
0.37
0.81***
0.82***
-0.22
0.97***
0.82***
-0.19
0.67**
0.82***
T1
0.30
0.57*
0.37
0.37
0.57*
-0.17
0.46
0.57*
R1
0.95***
0.32
0.81**
0.95***
-0.51
0.91***
0.95***
W1
0.38
0.82***
0.99***
-0.47
0.92***
0.99***
T2
-0.22
0.38
-0.51
0.48
0.38
R2
0.82***
-0.19
0.67**
0.82***
W2
-0.48
0.92***
0.99***
T3
-0.78**
-0.47
R3
0.92***
TGW: thousand-grain weight; T: average grain-filling period; Ra: average grain-filling rate; Tmax: days reaching the maximum grain-filling rate; Rmax: maximum grain-filling rate; T1: grain-filling pyramid period; R1: grain-filling rate in T1; W1: grain weight accumulated in T1; T2: grain-filling fast increase period; R2: grain-filling rate in T2; W2: grain weight accumulated in T2; T3: grain-filling slow increase period; R3: grain-filling rate in T3; W3: grain weight accumulated in T3. *, **, and *** indicate significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively.TGW: 千粒重; T: 平均灌浆持续时间; Ra: 平均灌浆速率; Tmax: 最大灌浆速率到达时间; Rmax: 最大灌浆速率; T1: 渐增期持续时间; R1: 渐增期灌浆速率; W1: 渐增期增重; T2: 快增期持续时间; R2: 快增期灌浆速率; W2: 快增期增重; T3: 缓增期持续时间; R3: 缓增期灌浆速率; W3: 缓增期增重。*、**和***分别表示在0.05、0.01和0.001概率水平显著相关。 新窗口打开
黄淮麦区小麦粒重和灌浆速率各参数主要受基因型控制, 灌浆持续时间主要受环境影响。不同粒重类型品种间灌浆速率存在显著差异, 表现为高粒重>中等粒重>低粒重。灌浆速率, 特别是快增期灌浆速率的差异是导致品种间粒重高低的主要因素。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。
Ru ZG, Feng SW, LiG.High yield potential and effective ways of wheat in Yellow and Huai River Valley Facultative Winter Wheat Region ., 2015, 48: 3388-3393 (in Chinese with English abstract) [本文引用: 1]
[2]
ZhouY, He ZH, Sui XX, Xia XC, Zhang XK, Zhang GS.Genetic improvement of grain yield and associated traits in the Northern China Winter Wheat Region from 1960 to 2000 ., 2007, 47: 245-253 [本文引用: 1]
[3]
Gao FM, Ma DY, Yin GH, RashieedA, DongY, Xiao YG, Xia XC, Wu XX, He ZH.Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley Winter Wheat Zone since 1950 ., 2017, 57: 760-773 [本文引用: 1]
Xiao SH, He ZH.Wheat yield and end use quality improvement in China . In: Zhuang Q S, ed. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 497-542 (in Chinese) [本文引用: 1]
[5]
Wang YQ, Hao CY, ZhengJ, Ge HM, ZhouY, Ma ZQ, Zhang XY.A haplotype block associated with thousand kernel weight on chromosome 5DS in common wheat (Triticum aestivum L.) . , 2015, 57: 662-672 [本文引用: 1]
[6]
Huang XQ, CosterH, M. Ganal W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.) . , 2003, 106: 1379-1389 [本文引用: 2]
[7]
ElouafiI, Nachit MM.A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits . , 2004, 108: 401-413 [本文引用: 1]
[8]
Quarrie SA, SteedA, CalestaniC, SemikhodskiiA, LebretonC, ChinoyC, SteeleN, PljevljakusićD, WatermanE.A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments . , 2005, 110: 865-880 [本文引用: 2]
[9]
Ma DY, YanJ, He ZH, WuL, Xia XC.Characterization of a cell wall invertase geneTaCwi-A1 on common wheat chromosome 2A and development of functional markers . , 2010, 29: 43-52 [本文引用: 2]
[10]
Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY.Identification and development of a functional marker ofTaGW2 associated with grain weight in bread wheat(Triticum aestivum L.) . , 2011, 122: 211-223 [本文引用: 2]
[11]
Jiang QY, HouJ, Hao CY, Wang LF, Ge HM, Dong Y S. Zhang X Y.The wheat (T. aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated with yield traits . , 2011, 11: 49-61 [本文引用: 1]
Chang JZ, Zhang JN, Mao XG, LiA, Jia JZ, Jing RL.Polymorphism ofTaSAPl-Al and its association with agronomic traits in wheat . , 2013, 237: 1495-1508 [本文引用: 1]
[14]
GuoY, SunJ, ZhangG, WangY, KongF, ZhaoY, LiS.Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits ofTaGS1a in wheat . , 2013, 154: 119-125 [本文引用: 1]
[15]
Zhang YJ, Liu JD, Xia XC, He ZH., 2014, 34: 1097-1107 [本文引用: 1]
[16]
DongL, WangF, LiuT, DongZ, LiA, JingR, MaoL, LiY, LiuX, ZhangK, WangD.Natural variation ofTaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions . , 2014, 34: 937-947 [本文引用: 1]
[17]
MaL, LiT, HaoC, WangY, ChenX, ZhangX.TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield . , 2016, 14: 1269-1280 [本文引用: 1]
[18]
Yue AQ, LiA, Mao XG, Chang XP, Li RZ, Jing RL.Identification and development of a functional marker from6-SFT-A2 associated with grain weight in wheat . , 2015, 35: 63 [本文引用: 1]
[19]
Dngid SD, Brule-Babel A L. Rate and duration of grain filling in five spring wheat (Triticum aestivum L.) genotypes . , 1994, 74: 681-686 [本文引用: 1]
[20]
Saini HS, Westgate ME.Reproductive development in grain crops during drought ., 1999, 68: 59-96 [本文引用: 2]
[21]
ZahediM, Jenner CF.Analysis of effects in wheat of high temperature on grain filling attributes estimated from mathematical models of grain filling ., 2003, 141: 203-212 [本文引用: 2]
[22]
Yang JC, Zhang JH.Grain filling of cereals under soil drying ., 2006, 169: 223-236 [本文引用: 1]
[23]
Kamaluddin, Singh RM, Abdin MZ, Khan MA, AlamT, KhamS, Prasad LC, Joshi AK. Inheritance of grain filling duration in spring wheat (Triticum aestivum L. em Thell) . , 2007, 50: 504-507 [本文引用: 2]
[24]
Wong L SL, Baker RJ. Selection for time to maturity in spring wheat ., 1986, 26: 1171-1175 [本文引用: 1]
[25]
Talbert LE, Lanning SP, Murphy RL, Martin JM.Grain fill duration in twelve hard red spring wheat crosses: genetic variation and association with other agronomic traits ., 2001, 41: 1390-1395 [本文引用: 1]
Wu XL, Tang YL, Li CS, WuC, HuangG, MaR.Characteristics of grain filling in wheat growing in Sichuan basin ., 2014, 40: 337-345 (in Chinese with English abstract) [本文引用: 2]
[27]
Dias AS, Lidon FC.Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis ., 2009, 195: 137-147 [本文引用: 2]
[28]
MotzoR, GiuntaF, PrunedduG.The response of rate and duration of grain filling to long-term selection for yield in Italian durum wheats ., 2010, 61: 162-169 [本文引用: 1]
Zeng ZR, Pang JZ, Zhou GY, Zhao SN, Cao ML.Grain filling properties of winter wheat varieties in northern part of China ., 1996, 22: 720-728 (in Chinese with English abstract) [本文引用: 2]
Wu SH, Duan GH, Gao HT, Zhang XP, Wen HX, Yu SP, MaF.Research on wheat grain filling process of water and dryland ecological types of wheat in Huang-Huai area ., 2009, 29: 1015-1021 (in Chinese with English abstract) [本文引用: 2]
Wang RX, Zhang XY, WuL, WangR, HaiL, Yan CS, You GX, Xiao SH.QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat ., 2008, 34: 1750-1756 (in Chinese with English abstract) [本文引用: 1]