删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

陆地棉种质资源抗旱性状的关联分析

本站小编 Free考研考试/2021-12-26

韩贝,1,**, 王旭文,2,**, 李保奇1, 余渝2, 田琴,2,*, 杨细燕,1,*1华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
2新疆农垦科学院棉花研究所 / 农业农村部西北内陆棉区棉花生物学与遗传育种重点实验室, 新疆石河子 832000

Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.)

HAN Bei,1,**, WANG Xu-Wen,2,**, LI Bao-Qi1, YU Yu2, TIAN Qin,2,*, YANG Xi-Yan,1,* 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
2Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science Xinjiang Academy of Agricultural and Reclamation Science / Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding (Xinjiang), Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, China

通讯作者: *田琴, E-mail: tq2005@126.com; 杨细燕, E-mail: yxy@mail.hzau.edu.cn

同等贡献(Contributed equally to this work)
收稿日期:2020-03-12接受日期:2020-10-14网络出版日期:2021-03-12
基金资助:国家自然科学基金项目.31560410
新疆生产建设兵团重点领域创新团队项目资助.2017CB011


Received:2020-03-12Accepted:2020-10-14Online:2021-03-12
Fund supported: National Natural Science Foundation of China.31560410
Innovation Team in Key Fields of Xin- jiang Production and Construction Corps .2017CB011

作者简介 About authors
韩贝, E-mail: bhan_z@163.com;

王旭文, E-mail: wxw629@163.com







摘要
干旱是导致全世界棉花严重减产、纤维品质下降的重要因素, 因此获得高产、优质、耐旱的棉花新品种一直是棉花的育种目标。本研究选取217份陆地棉栽培种组成的自然群体为研究对象, 采用全生育期处理组灌水量为对照组50%的干旱胁迫处理, 并在处理后期对217份材料的株高、衣分、单铃重等18个性状进行2年2点的表型鉴定, 干旱胁迫后, 群体间响应差异明显, 多个表型性状在对照和处理间表现显著差异。通过BLUP分析表型数据并计算各性状的抗旱系数; 全基因组范围选取的214对多态性SSR分子标记扫描群体, 共检测到393个多态性位点, 基因多样性系数平均值为0.402, 范围为0.072~0.631, PIC值平均为0.329, 范围为0.070~0.560; 群体结构分析表明, 该群体可分为2个亚群。用上述SSR标记分别对18个性状的抗旱系数进行关联分析, 共关联到76个极显著位点(P<0.01), 表型变异解释率为2.930%~7.218%, 其中共有14个标记位点能同时被2种或以上性状检测到。研究结果可为后期棉花杂交育种亲本选择及抗旱分子标记辅助育种提供理论基础及参考依据。
关键词: 陆地棉;抗旱性;抗旱系数;SSR标记;关联分析

Abstract
Drought stress is an important factor that leads to severe reduction in cotton fiber yield and quality worldwide, and new cotton varieties with high-yield, high-quality and drought-tolerant characteristics have been the goal for cotton breeding. In this study, 217 upland cotton accessions were selected for drought stress experiments and association study. The drought stress treatment panels were supplied with 50% the water volume of the controls, until the seedlings emerged. A total of 18 traits including agronomic traits, fiber yield indices and fiber quality indices, were investigated at two locations and for two years. After drought stress, there were significant differences in response between populations, and significant differences in phenotypic traits between control and treatments. The phenotypic data were analyzed by BLUP, and the drought resistance coefficient of each trait was calculated. A total of 393 loci were detected by 214 SSR marker in the tested cotton accessions. The average gene diversity coefficient was 0.402, with the range of 0.072-0.631; and the average PIC value was 0.329, ranging from 0.070 to 0.560. Genetic structure analysis showed that the group could be divided into two subgroups and it had no obvious correspondence with geographical origin. There were detected extremely 76 significant loci (P < 0.01), with explanation rate ranging from 2.931% to 7.218%, by association study using drought resistance coefficient (DRC) of 18 traits. Fourteen SSR marker could be detected by two or more traits at the same time. These results could provide a theoretical basis and reference for the parents selection and drought-resistant molecular marker-assisted breeding in cotton.
Keywords:upland cotton accessions;drought resistance;drought resistance coefficient;SSR maker;association analysis


PDF (1469KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. doi:10.3724/SP.J.1006.2021.04063
HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.)[J]. Acta Agronomica Sinica, 2021, 47(3): 438-450. doi:10.3724/SP.J.1006.2021.04063


棉花在整个生育期会遭遇各种生物及非生物逆境胁迫, 包括黄萎病和枯萎病等疾病、蚜虫和棉铃虫等虫害以及干旱、盐碱、高温等非生物胁迫。当前解决作物生长过程中的干旱问题已成为世界上许多国家和地区的一个重大难题[1,2]。干旱限制了棉花根部从土壤中吸收水分, 从而导致棉花的渗透势升高、花芽脱落、纤维伸长率降低、纤维壁厚度改变、棉铃尺寸减小、纤维质量变差和棉花总产量降低[3]。新疆是我国最大的产棉区、长绒棉生产基地和优质商品棉生产基地, 属干旱半干旱地区, 年降雨量少且水资源时空分布不平衡, 干旱问题十分严重, 因此研究现有棉花种质资源耐旱性的遗传多样性以及挖掘耐旱优异等位基因具有十分重要的现实意义。

抗旱性是由微效多基因控制的数量遗传性状。目前, 世界各国在干旱胁迫条件下的抗性生理及生物技术方面已开展了大量研究。Xiao等[4]通过对184份水稻材料的卷曲叶、干叶等抗旱性状进行全基因组扫描和关联分析, 鉴定了16个与抗旱性相关的QTL位点。棉花应对干旱胁迫的研究最早集中在根系结构及形态生理上。早在1989年, 美国科学家William等[5]通过研究, 证明提高根系吸收水分能力减轻干旱抑制作用。棉花适应干旱的遗传变异性大, 很多性状都被作为选择抗旱性棉花品种的重要指标, 其中包括形态指标(主根长度、根重量、侧根数量、根系生长速率和根冠比等)和生理指标(蒸腾速率、气孔导度、光合作用速率、叶片含水量和冠层温度等)[6,7]。之后随着生物技术迅速发展, SSR分子标记和SNP分子标记被广泛应用于棉花抗旱性研究和关联分析。桑晓慧等[8]利用74个SSR标记在萌发期以15%的PEG-6000对191份陆地棉材料进行胁迫处理及关联分析, 最终鉴定了15个与萌发期抗旱性显著相关的分子标记。Asena等[9]利用177个SSR分子标记对99份陆地棉品种进行水分充足和水分胁迫2种不同的浇水方式处理, 并对籽棉产量、皮棉产量、水分利用率、干旱敏感指数、干旱胁迫指数等11个指标进行关联分析, 分别鉴定到了与性状相关联的15个和23个SSR标记。Ulloa等[10]利用63K棉花芯片对2个RIL群体进行基因分型, 在正常灌溉与水分亏缺2种条件下共鉴定到150多个与产量和纤维品质相关的QTL。Hou等[11]通过对319份陆地棉材料在温室进行PEG胁迫处理, 利用GWAS鉴定出20个与耐旱性状相关的SNP, 并通过RNA-seq与qRT-PCR等技术验证最终得到4个候选基因。

本研究以我国不同生态棉区及部分国外陆地棉品种资源为研究对象, 分别于2016—2017年在新疆石河子和库尔勒两地进行干旱处理试验, 采用全生育期处理组灌水量为对照组50%的干旱胁迫处理, 并在后期对217份材料的株高、衣分、单铃重等18个性状进行测定。通过SSR全基因组扫描的方法进行关联分析, 从而挖掘出与耐旱性相关的特异性位点, 以期为棉花抗旱遗传改良提供理论基础。

1 材料与方法

1.1 试验材料及干旱处理设置

选取来自我国不同生态棉区及部分国外陆地棉品种组成的自然群体为试验材料, 共计217份, 由新疆农垦科学院棉花研究所收集保存(附表1)。试验于2016—2017年分别在新疆农垦科学院棉花研究所北疆石河子试验基地和新疆农垦科学院棉花研究所南疆库尔勒试验基地开展。设置2个水分处理: (1)对照组(正常灌水), 库尔勒全生育期共灌水12次, 总量合计6768 m3 hm-2; 石河子全生育期共灌水10次, 总量为4950 m3 hm-2; (2)干旱处理组, 两地各生育期灌水量为正常灌水量的50%, 即每次灌水减半(附表2)[10,11], 平膜覆盖地表及滴灌供水。南疆库尔勒试验基地于3月15日进行了额外的灌溉(4500 m3 hm-2)以减少土壤中盐分与碱的含量; 北疆石河子试验基地于4月20日进行了额外的灌溉(240 m3 hm-2)用于播种出苗。试验采用完全随机区组排列, 每组处理设置重复2次, 小区行长2.20 m, 平均行距0.45 m, 每个品种种植2行, 小区面积1.98 m2。机械覆盖地膜, 棉种人工点播, 株距10 cm, 实际收获株数16.5万株 hm-2。试验田土壤肥力均一, 其他管理措施同常规大田。在棉花生育期内同步统计2个试验点每月降雨量和均温(附图1)。

Table s1
附表1
附表1材料编号与群体结构划分
Table s1Table S1 Germplasm number and population structure division
材料编号
Germplasm number
品种名称
Cultivar name
地理来源
Geographic origin
生态区分布
Ecological division
群体结构划分
Population structure division
YU004中棉所35 Zhongmiansuo 35中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU07599B 99B美国 America美国 USAPop1
YU081SGK 321 SGK 321中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU099中棉所30 Zhongmiansuo 30中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU127新陆早10号 Xinluzao 10中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU129新陆早12号 Xinluzao 12中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU134新陆早18号 Xinluzao 18中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU137新陆早21号 Xinluzao 21中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU141新陆早25号 Xinluzao 25中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU152新陆早37号 Xinluzao 37中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU163新陆早50号 Xinluzao 50中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU176新陆中12 Xinluzhong 12中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU177新陆中13 Xinluzhong 13中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU179新陆中15 Xinluzhong 15中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU180新陆中16 Xinluzhong 16中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU181新陆中17 Xinluzhong 17中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU187新陆中23 Xinluzhong 23中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU193新陆中30 Xinluzhong 30中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU213惠和28号 Huihe 28中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop1
YU270中棉所50 Zhongmiansuo 50中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU275晋中200 Jinzhong 200中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU291鄂棉24 Emian 24中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU292银山4号 Yinshan 4中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU293中棉所12 Zhongmiansuo 12中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU294鄂荆1号 Ejin 1中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU295泗棉3号 Simian 3中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU296鲁棉6号 Lumian 6中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU297鲁棉9号 Lumian 9中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU298斯字棉4B Sizimian 4B美国 America美国 USAPop1
YU299晋棉28号 Jinmian 28中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU300晋棉36号 Jinmian 36中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU301冀棉8号 Jimian 8中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU302冀棉10号 Jimian 10中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU303冀棉11号 Jimian 11中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU304冀棉12号 Jimian 12中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU305冀棉228 Jimian 228中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU306冀合321 Jihe 321中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU307豫棉4号 Yumian 4中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU308豫棉11号 Yumian 11中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU309鄂棉16号 Emian 16中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU310鄂棉17号 Emian 17中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU311鄂棉21号 Emian 21中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU312苏棉4号 Sumian 4中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU313鄂抗棉2号 Ekangmian 2中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU314鄂抗棉3号 Ekangmian 3中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU315鄂抗棉6号 Ekangmian 6中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU317徐州142 Xuzhou 142中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU318苏棉9号 Sumian 9中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU319苏棉12号 Sumian 12中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU320苏抗191 Sukang 191中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU322冈棉2号 Gangmian 2中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU323珂字201 Kezi 201美国 America美国 USAPop1
YU324珂字312 Kezi 312美国 America美国 USAPop1
YU325陕401 Shaan 401中国陕西 Shaanxi, China中国黄河流域棉区 YRRPop1
YU326岱字棉15号 Daizimian 15美国 America美国 USAPop1
YU327岱红岱 Daihongdai美国 America美国 USAPop1
YU328荆1246 Jin 1246中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU329荆楚201 Jinchu 201中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU331八一棉 Bayimian中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU332渤棉1号 Bomian 1中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU333洞庭1号 Dongting 1中国湖南 Hunan, China中国长江流域棉区 YtRRPop1
YU334孝棉1号 Xiaomian 1中国湖北 Hubei, China中国长江流域棉区 YtRRPop1
YU336宛棉3号 Wanmian 3中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU337科棉4号 Kemian 4中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU338南通5号 Nantong 5中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU339赣棉11号 Ganmian 11中国江西 Jiangxi, China中国长江流域棉区 YtRRPop1
YU340赣棉12号 Ganmian 12中国江西 Jiangxi, China中国长江流域棉区 YtRRPop1
YU341湘棉13 Xiangmian 13中国湖南 Hunan, China中国长江流域棉区 YtRRPop1
YU342新棉33B Xinmian 33B美国 America美国 USAPop1
YU343沪棉204 Humian 204中国上海 Shanghai, China中国长江流域棉区 YtRRPop1
YU348鸡脚德字棉 Jijiaodezimian美国 America美国 USAPop1
YU349中棉所2 Zhongmiansuo 2中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU350中棉所3号 Zhongmiansuo 3中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU352中棉所21 Zhongmiansuo 21中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU353中棉所43 Zhongmiansuo 43中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU354中棉所69 Zhongmiansuo 69中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU355中棉所79 Zhongmiansuo 79中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU356中棉所8010 Zhongmiansuo 8010中国河南 Henan, China中国黄河流域棉区 YRRPop1
YU360DP99B DP99B美国 America美国 USAPop1
YU361NC20B NC20B美国 America美国 USAPop1
YU363北农1号 Beinong 1中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU367德字棉531 Dezimian 531中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU368敦棉1号 Dunmian 1中国甘肃 Gansu, China中国西北内陆棉区 NIRPop1
YU371赣棉3号 Ganmian 3中国江西 Jiangxi, China中国长江流域棉区 YtRRPop1
YU372赣棉13 Ganmian 13中国江西 Jiangxi, China中国长江流域棉区 YtRRPop1
YU373赣棉47 Ganmian 47中国江西 Jiangxi, China中国长江流域棉区 YtRRPop1
YU374关农1号 Guannong 1中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop1
YU375光叶岱字棉 Guangyedaizimian美国 America美国 USAPop1
YU376邯棉885 Hanmian 885中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU378冀棉1号 Jimian 1中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU379冀棉19 Jimian 19中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU380冀棉25 Jimian 25中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU382晋棉3号 Jinmian 3中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU384晋棉29 Jinmian 29中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU385晋棉38 Jinmian 38中国山西 Shanxi, China中国黄河流域棉区 YRRPop1
YU387科遗181 Keyi 181中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU388克克1543 Keke 1543前苏联
Former Soviet Union
前苏联 SUPop1
YU391鲁棉研28 Lumianyan 28中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU392鲁棉研32 Lumianyan32中国山东 Shandong, China中国黄河流域棉区 YRRPop1
YU393宁棉1号 Ningmian 1中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU394宁棉12 Ningmian 12中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU395宁棉22 Ningmian 22中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU396农大94-7 Nongda 99-7中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU397农大棉8号 Nongdamian 8中国河北 Hebei, China中国黄河流域棉区 YRRPop1
YU398黔农465 Qiannong 465中国贵州 Guizhou, China中国南方棉区 SCRPop1
YU399蜀棉1号 Sumian 1中国四川 Sichuan, China中国长江流域棉区 YtRRPop1
YU404江苏棉1号 Jiangsumian 1中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU411徐州58 Xuzhou 58中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU412徐州219 Xuzhou 219中国江苏 Jiangsu, China中国长江流域棉区 YtRRPop1
YU030中棉所36 Zhongmiansuo36中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU032渝棉1号 Yumian 1中国重庆
Chongqing, China
中国长江流域棉区 YtRRPop2
YU033辽棉10号 Liaomian 10中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU034辽棉15号 Liaomian 15中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU042中棉所27 Zhongmiansuo 27中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU0519456D 9456D中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU054系9 Xi 9中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU062602 602不详 Unknown不详 UnknownPop2
YU097GK26 GK26不详 Unknown不详 UnknownPop2
YU100中棉所41 Zhongmiansuo 41中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU101鄂抗虫棉1号 Ekangchongmian 1中国湖北 Hubei, China中国长江流域棉区 YtRRPop2
YU118新陆早1号 Xinluzao 1中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU119新陆早2号 Xinluzao 2中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU120新陆早3号 Xinluzao 3中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU121新陆早4号 Xinluzao 4中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU122新陆早5号 Xinluzao 5中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU123新陆早6号 Xinluzao 6中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU124新陆早7号 Xinluzao 7中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU125新陆早8号 Xinluzao 8中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU126新陆早9号 Xinluzao 9中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU128新陆早11 Xinluzao 11中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU130新陆早13号 Xinluzao 13中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU131新陆早15号 Xinluzao 15中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU132新陆早16 Xinluzao 16中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU133新陆早17号 Xinluzao 17中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU135新陆早19 Xinluzao 19中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU136新陆早20 Xinluzao 20中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU139新陆早23 Xinluzao 23中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU140新陆早24号 Xinluzao 24中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU142新陆早26号 Xinluzao 26中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU143新陆早27号 Xinluzao 27中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU144新陆早28号 Xinluzao 28中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU145新陆早29号 Xinluzao 29中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU146新陆早30号Xinluzao 30中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU147新陆早32号 Xinluzao 32中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU148新陆早33号 Xinluzao 33中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU149新陆早34号 Xinluzao 34中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU150新陆早35号 Xinluzao 35中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU151新陆早36号 Xinluzao 36中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU153新陆早38号 Xinluzao 38中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU154新陆早39号 Xinluzao 39中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU155新陆早40号 Xinluzao 40中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU157新陆早42号 Xinluzao 42中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU158新陆早45号 Xinluzao 45中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU159新陆早46号 Xinluzao 46中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU160新陆早47号 Xinluzao 47中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU161新陆早48号 Xinluzao 48中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU162新陆早49号 Xinluzao 49中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU164新陆早51号 Xinluzao 51中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU165新陆中1号 Xinluzhong 1中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU166新陆中2号 Xinluzhong 2中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU167新陆中3号 Xinluzhong 3中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU168新陆中4号 Xinluzhong 4中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU169新陆中5号 Xinluzhong 5中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU170新陆中6号 Xinluzhong 6中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU171新陆中7号 Xinluzhong 7中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU172新陆中8号 Xinluzhong 8中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU174新陆中10 Xinluzhong 10中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU175新陆中11 Xinluzhong 11中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU182新陆中18 Xinluzhong 18中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU183新陆中19 Xinluzhong 19中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU184新陆中20 Xinluzhong 20中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU185新陆中21 Xinluzhong 21中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU186新陆中22 Xinluzhong 22中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU196新陆中34 Xinluzhong 34中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU215金垦1042 Jinken 1042中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU217墨玉1号 Moyu 1中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU220中植棉2号 Zhongzhimian 2中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU232军棉1号 Junmian 1中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU240芽黄 Yahuang不详 Unknown不详 UnknownPop2
YU243辽棉16 Liaomain 16中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU244辽棉17号 Liaomian 17中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU245辽棉18 Liaomian 18中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU246辽棉19号 Liaomian 19中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU250晋棉10号 Jinmian 10中国山西 Shanxi, China中国黄河流域棉区 YRRPop2
YU252晋棉18号 Jinmian 18中国山西 Shanxi, China中国黄河流域棉区 YRRPop2
YU257锦棉2号 jinmian 2中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU259朝阳棉1号 Chaoyangmian 1中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU266黑山棉1号 Heishanmian 1中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU268中棉所37 Zhongmiansuo 37中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU269中棉所45 Zhongmiansuo 45中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU271中棉所58 Zhongmiansuo 58中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU276晋中169 Jinzhong 169中国山西 Shanxi, China中国黄河流域棉区 YRRPop2
YU283晋棉6号 Jinmian 6中国山西 Shanxi, China中国黄河流域棉区 YRRPop2
YU287惠远718 Huiyuan 718中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU288中705 Zhong 705中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU290FY11 FY 11中国新疆 Xinjiang, China中国西北内陆棉区 NIRPop2
YU316鄂岱棉 Edaimain中国湖北 Hubei, China中国长江流域棉区 YtRRPop2
YU321冈棉1号 Gangmian 1中国湖北 Hubei, China中国长江流域棉区 YtRRPop2
YU330一树红 Yishuhong中国河北 Hebei, China中国黄河流域棉区 YRRPop2
YU335科遗2号 Keyi 2中国河北 Hebei, China中国黄河流域棉区 YRRPop2
YU344斯字棉4号 Sizimian 4美国 America美国 USAPop2
YU346泾斯棉 Jingsimain中国陕西 Shaanxi, China中国黄河流域棉区 YRRPop2
YU347鸭鹏棉 Yapengmian中国湖北 Hubei, China中国长江流域棉区 YtRRPop2
YU351中棉所5号 Zhongmiansuo 5中国河南 Henan, China中国黄河流域棉区 YRRPop2
YU358108夫 108 Fu前苏联
Former Soviet Union
前苏联 SUPop2
YU359611波 611 Bo前苏联
Former Soviet Union
前苏联 SUPop2
YU362安农121 Annong 121中国安徽 Anhui, China中国长江流域棉区 YtRRPop2
YU364岱字棉14 Daizimian 14美国 America美国 USAPop2
YU365岱字棉16 Daizimian 16美国 America美国 USAPop2
YU366德夏棉1号 Dexiamian 1中国山东 Shandong, China中国黄河流域棉区 YRRPop2
YU369敦棉2号 Dunmian 2中国甘肃 Gansu, China中国西北内陆棉区 NIRPop2
YU370赣棉2号 Ganmian 2中国江西 Jiangxi, China中国长江流域棉区 YtRRPop2
YU381锦棉5号 Jinmian 5中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU383晋棉25 Jinmian 25中国山西 Shanxi, China中国黄河流域棉区 YRRPop2
YU386珂字棉100 Kezimain 100美国 America美国 USAPop2
YU389辽棉5号 Liaomian 5中国辽宁 Liaoning, China中国北方特早熟棉区 NSEMRPop2
YU400司1470 Si 1470前苏联
Former Soviet Union
前苏联 SUPop2
NIR: northwestern inland region of China; NSEMR: northern specific early maturation region of China; SCR: south China region; SU: Former Soviet Union; USA: American; YRR: Yellow River region of China; YtRR: Yangtze River region of China.

新窗口打开|下载CSV

Table S2
附表2
附表2新疆库尔勒及石河子(2016/2017年)水分处理
Table S2Water Treatment in Korla and Shihezi, Xinjiang (2016/2017)
次数
Times
库尔勒Korla石河子Shihezi
日期
Date
(month/day)
正常
CK
(m3 hm-2)
干旱
Drought
(m3 hm-2)
日期
Date
(month/day)
正常
CK
(m3 hm-2)
干旱
Drought
(m3 hm-2)
16/12423211.56/5525262.5
26/195642826/15525262.5
36/275642826/25525262.5
47/45642827/5525262.5
57/125642827/15525262.5
67/20634.5317.257/25525262.5
77/28705352.5
88/35642828/5525262.5
98/105642828/15525262.5
108/185642828/25450225
118/26564282
129/3493.5246.759/10300150
合计Total6768338449502475

新窗口打开|下载CSV

附图1

新窗口打开|下载原图ZIP|生成PPT
附图12016-2017年新疆石河子和库尔勒棉花全生育期气象数据

Fig. s1Fig. S1 Meteorological data of the whole growth period of cotton in Shihezi and Korla, Xinjiang in 2016-2017



1.2 表型性状调查

自播种后, 以杜雄明等[12]制定的棉花种植资源性状描述规范调查棉花全生育期的18个表型性状。生育期(growth period, GP)从该小区50%的植株子叶平展到50%的植株开始吐絮计算; 每年9月下旬对每小区选择长势一致10株棉花调查株高(plant height, PH)、果枝始节高(first fruit spur height, FFSH)、第一果枝节位(first fruit spur branch number, FFSBN)、果枝数(fruit spur branch number, FSBN)、空果枝数(empty fruit spur branch number, EFSBN)、单株有效铃数(effective boll number, EBN)、外围铃数(peripheral boll number, PBN)等7项指标。吐絮后每个小区分别收获上、中、下部共30铃进行室内考种, 分别测定单铃重(boll weight, BW)、籽指(seed index, SI)、衣指(lint index, LI)及衣分(lint percentage, LP)等4项指标, 并估算理论籽棉产量(theoretical seed cotton yield, TSCY)=实际收获株数×单株有效铃数×单铃重。每个重复选取14 g左右皮棉测定纤维品质性状, 包括上半部纤维长度(fiber upper half mean length, FUHML)、纤维比强度(fiber strength, FS)、纤维整齐度(fiber uniformity, FU)、马克隆值(micronaire value, MV)及纤维伸长率(fiber elongation, FE)。在新疆农垦科学院棉花研究所测定纤维品质, 仪器型号为HFT9000, 检测温度为(20±2)℃, 相对湿度为(65±2)%。

1.3 SSR标记及基因型鉴定

参照Paterson等[13]发表的CTAB法提取DNA, SSR试验操作程序和PCR参照张军等[14]方法, 采用毛细管电泳分析仪Fragment Analyzer-XL960 SSR/Tilling分析PCR产物, PCR扩增产物经6%聚丙烯酰胺凝胶电泳, 银染显色后照相。

本试验所使用SSR标记来源四倍体棉花遗传图谱[15], 平均每8~10 cM选取1个标记, 并进一步结合钱能等[16]、Song等[17]、薛艳等[18]、Sun等[19]、艾先涛等[20]的研究结果, 从中选取557对标记对自然群体进行筛选, 得到的298对具有多态性的标记。选用12份地理来源差异大的材料(1: 标杂A父本; 2: 新陆早47号; 3: 15-23; 4: 169-57; 5: 新陆早48号; 6: 111-117; 7: 石K14; 8: 闫棉216; 9: 河南抗黄; 10: JF-2; 11: 中植棉2号; 12: 克克1543)对298对SSR标记进行筛选, 将条带差异大, 清晰易读的标记留下备用, 共得到214对多态性标记。SSR序列来自CMD (Cottonmaker Database)数据库(http://www.cottonmarker.org/), 由生工生物工程股份有限公司(上海)合成。对电泳结果使用ProSize2.0软件查看, 采用0、1统计法, 依据读胶视图中Ladder判断样品不同位点片段大小, 同一位点, 有条带记为“1”, 无条带记为“0”, 用“a”、“b”、“c”、“d” (对应片段大小由大到小)区别一个标记在材料中的多个多态性位点。

1.4 数据分析

采用R语言中Lme4包[21]的最佳线性无偏预测(Best Linear Unbiased Prediction; BLUP)分析2年2点的表型数据, 通过H2 = σ2g / [σ2g + σ2ll/nl + σ2ly/ny + σ2r/(nl*ny)]计算广义遗传力[22], 其中σ2g为基因型方差, σ2ll为地点方差, σ2ly为年份方差, σ2r为随机误差, nl为地点重复次数, ny为年份重复次数。材料间组内表型的离散程度用变异系数(coefficient of variation, CV)表示, 通过公式CV=标准偏差/均值进行计算; 材料的抗旱能力用各指标的抗旱系数(drought resistance coefficient, DRC)表示, 并以BLUP分析后的表型数据为基础, 通过公式DRC=处理组BLUP值/对照组BLUP值×100%计算[23,24]。18个正常灌水与干旱条件下的表型值通过软件IBM SPSS Statistics 22.0 (http://www.ibm.com/analytics/us/en/ technology/spss/spss.html)进行单因素方差分析(ANOVA); 同时利用该软件对18个性状的DRC值进行了相关性分析及正态性检验。

使用POWERMARKER 3.25软件[25]计算多态性标记的基因多样性指数与多态性信息含量(PIC)。群体结构通过Structure 2.3软件[26]计算, 群组数K值设为1~9。独立运算5次, 将MCMC开始时的不作数迭代设为50,000次, 再将不作数迭代后的MCMC设为500,000次, 其余参数默认, 利用Structure harvester分析计算后的数据[27], 作图并得到最佳K[28]。借助软件spagedi 1.4 [29]分析亲缘关系, 得到亲缘关系矩阵。利用Tassel 5.0软件[30], 以群体结构(Q)和亲缘关系(K)为协变量的混合线性模型MLM进行性状与标记之间的关联分析[31], 得到在P<0.01 [8]时的各标记位点及对表型变异的贡献率(R2)。借助软件Electronic PCR (e-PCR)与第3代棉花基因组序列进行序列比对, 得到各标记在基因组上的具体位置[32,33]。从CottonQTLdb (http://www2.cottonqtldb.org:8081/traits)下载查找已发表QTL [34,35,36]

2 结果与分析

2.1 表型性状数据分析

在正常灌水和干旱处理下分别考察群体材料包括生育期、株高、果枝始节高、第一果枝始节位、果枝数、空果枝数、单株有效铃数、外围铃数、单铃重、衣分、籽指、衣分、理论籽棉产量、上半部纤维长度、纤维整齐度、马克隆值、纤维比强度、纤维伸长率等18个性状, 通过BLUP分析分别获得它们在不同环境下的预测表型值, 并计算得到每个性状在不同处理下的变异系数和广义遗传力。表1展示了18个性状在2种条件下的均值(mean)、最大值(max.)、最小值(min.)、标准偏差(SD)、变异系数(CV)以及广义遗传力(H2)。对正常灌水和干旱处理数据分析表明, 一些农艺性状受干旱处理影响较大。比如正常条件下, 生育期的变化范围为129.515~141.447 d, 均值135.433 d; 而在干旱条件下, 生育期的变化范围为128.001~138.175 d, 均值132.843 d。正常情况下, 株高为53.809~74.726 cm (均值65.876 cm); 而干旱处理下, 株高为42.913~72.811 cm (均值60.371 cm)。在正常条件下, 果枝始节高的范围为13.573~27.115 cm (均值20.999 cm); 在干旱处理下, 果枝始节高的范围为13.238~26.303 cm (均值20.032 cm)。生育期、株高、果枝始节高的均值分别降低1.909%、8.357%和4.604%。

Table 1
表1
表12种处理下18个性状BLUP分析后的表型变异描述统计表
Table 1Descriptive statistics about phenotypic variations for 18 traits under two treatments by BLUP analysis
性状
Trait
对照
CK
方差分析
ANOVA
干旱
Drought
均值
Mean
最大值Max.最小值Min.标准偏差
SD
变异系数CV(%)遗传力(H2)P
P-value
均值
Mean
最大值
Max.
最小值
Min.
标准偏差
SD
变异系数CV (%)遗传力(H2)
生育期 GP (d)135.433141.447129.5152.4811.8320.5661.921E-26**132.847138.175128.0012.2321.6800.548
株高 PH (cm)65.87674.72653.8093.5265.3530.5362.021E-37**60.37172.81142.9134.5257.4960.572
果枝始节高 FFSH (cm)20.99927.11513.5732.29410.9240.6769.859E-06**20.03226.30313.2382.19610.9630.670
第一果枝节位 FFSBN5.9866.9355.1590.2674.4530.3192.067E-03**6.0456.2505.7360.0881.4590.112
果枝数 FSBN7.6748.2466.9690.2313.0040.2140.5297.6877.9847.1890.1161.5080.106
空果枝数 EFSBN2.5043.6761.7140.36114.4340.3611.580E-13**2.7283.7822.2580.2378.6910.241
单株有效铃数 EBN6.3777.5155.3780.4006.2780.4708.657E-16**6.0596.9575.0080.3956.5190.481
外围铃数 PBN1.1662.1440.7730.19616.8320.2865.132E-24**1.0011.3780.7710.11411.3590.185
单铃重 BW (g)7.1638.7435.4090.4035.6320.5900.8907.1698.1916.0040.3675.1150.555
衣分 LP (%)39.03842.63532.4801.7164.3960.6214.718E-05**39.94159.45032.4882.7346.8460.644
籽指 SI (g)11.12614.0439.6380.7756.9640.7110.09811.00014.3289.3520.8117.3750.714
衣指 LI (g)7.1028.3135.3180.5537.7920.7721.880E-03**7.2698.6585.6300.5587.6830.753
理论籽棉产量TSCY (kg hm-2)7473.9088357.3646848.882292.4333.9130.3071.100E-25**7111.9248282.3596234.227378.0115.3150.390
上半部纤维长度FUHML (mm)28.80831.50325.7130.9703.3660.7255.650E-08**28.28530.87725.8800.9983.5280.702
纤维整齐度 FU (%)84.61785.76081.8230.6290.7430.5420.61984.64686.16782.5700.5930.7000.514
马克隆值 MV4.1444.8793.4680.2245.4040.6344.489E-36**4.4375.0563.8170.2184.9130.602
纤维比强度 FS (cN tex-1)28.42232.70025.4881.2844.5160.6537.062E-03**28.07632.20325.4121.3714.8850.683
纤维伸长率 FE (%)6.7216.9576.5700.0701.0380.4765.178E-22**6.6516.8356.4660.0731.0900.529
***分别表示在P < 0.05和P < 0.01水平显著。
GP: growth period; PH: plant height; FFSH: first fruit spur height; FFSBN: first fruit spur branch number; FSBN: fruit spur branch number; EFSBN: empty fruit spur branch number; EBN: effective boll number; PBN: peripheral boll number; BW: boll weight; SI: seed index; LI: lint index; LP: lint percentage; TSCY: theoretical seed cotton yield; FUHML: fiber upper half mean length; FS: fiber strength; FU: fiber uniformity; MV: micronaire value; FE: fiber elongation. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively.

新窗口打开|下载CSV

纤维品质也受到水分亏缺的不利影响。比如上半部纤维长度均值由28.808 mm降至28.285 mm; 纤维比强度均值也由28.422 cN tex-1降至28.076 cN tex-1; 马克隆值从4.144上升为4.437。理论籽棉产量在正常条件下为6848.882~8357.364 kg hm-2, 干旱条件下6234.227~8282.359 kg hm-2, 平均值由7473.908 kg hm-2降至7111.924 kg hm-2, 降低幅度为4.843%。

为了确定干旱处理是否对棉花的生长发育造成影响, 本研究利用软件IBM SPSS Statistics 22.0对2年2点BLUP分析后的表型数据进行分析, 结果表明, 干旱处理显著影响了大部分表型性状, 包括生育期及株型性状(生育期、株高、果枝始节高、第一果枝节位)、产量性状(空果枝数、单株有效铃数、外围铃数、衣指、衣分、理论籽棉产量)以及纤维品质性状(上半部纤维长度、纤维比强度、马克隆值、纤维伸长率)。但果枝数、单铃重、籽指以及纤维整齐度未达到显著性(表1)。

正常灌水条件下, 18个性状的变异系数为0.743%~16.832%; 干旱胁迫下, 变异系数在0.700%~11.359%。果枝始节高(CVc=10.924%; CVd= 10.963%)、空果枝数(CVc=14.434%; CVd=8.691%)以及外围铃数(CVc=16.832%; CVd=11.359%)的变异系数在2种条件下均为最高; 而纤维整齐度(CVc= 0.743%; CVd=0.700%)、纤维伸长率(CVc=1.038%; CVd=1.090%)及生育期(CVc=1.832%; CVd=1.680%)的变异系数均小于2%。

正常灌水条件下, 18个性状的广义遗传率在0.214~0.772, 干旱胁迫条件下的广义遗传力变化介于0.106~0.753, 其中2种条件下均在0.600以上的有7种性状, 包括衣分(H2c=0.621; H2d=0.644)、籽指(H2c=0.711; H2d=0.714)、衣指(H2c=0.772; H2d=0.753)、上半部纤维长度(H2c=0.725; H2d=0.702)、马克隆值(H2c=0.634; H2d=0.602)、纤维比强度(H2c=0.653; H2d=0.683)和果枝始节高(H2c=0.676; H2d=0.670), 说明这些性状较稳定。

2.2 干旱系数相关性分析及正态性检验

借助软件IBM SPSS Statistics 22.0分析了18个性状的干旱系数之间的相关性系数。各性状干旱系数之间的相关性反映了性状之间的相互联系, 可能会受到相似的遗传因子的调控。18个性状的相关性分析共产生153对相关系数, 范围为-0.433至0.904。其中有56对性状之间存在显著(P<0.05)或极显著(P<0.01)的相关(表2)。生育期、株高以及果枝始节高之间都存在着极显著的正相关。产量相关性状之间单株有效铃数与外围铃数、籽指与衣指、理论籽棉产量与衣指、理论籽棉产量与单铃重、理论籽棉产量与单株有效铃数、理论籽棉产量与外围铃数、理论籽棉产量与果枝数、果枝数与单株有效铃数均存在极显著的正相关。5个纤维品质性状之间, 上半部纤维长度与纤维整齐度、上半部纤维长度与纤维比强度、上半部纤维长度与纤维伸长率、纤维比强度与纤维整齐度和纤维比强度与纤维比强度均表现出极显著的正相关, 纤维比强度与马克隆值表现出极显著的负相关。

Table 2
表2
表218个性状干旱系数(DRC)之间的相关性分析
Table 2Phenotypic correlation coefficients among the DRCs of 18 traits
性状
Traits
生育期
GP
株高
PH
果枝始节高
FFSH
第一果枝节位
FFSBN
果枝数
FSBN
空果枝数
EFSBN
单株有效铃数
EBN
外围铃数
PBN
单铃重
BW
衣分
LP
籽指
SI
衣指
LI
理论籽棉产量
TSCY
上半部纤维长度
FUHML
纤维整齐度
FU
马克隆值
MV
纤维比强度
FS
PH0.271**
FFSH0.250**0.319**
FFSBN0.0870.0360.212**
FSBN-0.1100.282**-0.153-0.269**
EFSBN0.035-0.0020.0090.028-0.278**
EBN0.0040.292**-0.185**-0.0650.490**-0.433**
PBN0.174*0.238**-0.0070.192**0.147*-0.274**0.335**
BW-0.095-0.0550.027-0.068-0.007-0.031-0.007-0.093
LP-0.0470.098-0.002-0.0330.0490.143*0.0540.0370.039
SI-0.023-0.062-0.040-0.1260.033-0.1020.006-0.182**0.296**-0.223**
LI-0.146*-0.088-0.076-0.209**0.002-0.0500.033-0.1020.490**0.0680.477**
TSCY-0.0530.274**-0.188**-0.0960.431**-0.323**0.904**0.274**0.324**0.1000.0860.215**
FUHML0.164*0.146*-0.004-0.0720.080-0.0880.237**0.188**0.026-0.0540.171*0.0970.228**
FU0.1120.202**0.168*0.0280.0090.014-0.0010.0250.035-0.0290.0960.0680.0020.270**
MV-0.264**-0.223**-0.131-0.0970.037-0.031-0.027-0.257**0.426**0.0250.200**0.497**0.104-0.1300.042
FS0.0150.038-0.045-0.0550.000-0.0360.0760.243**-0.031-0.111-0.007-0.0970.0660.571**0.247**-0.264**
FE0.068-0.026-0.184**-0.0390.088-0.0160.0610.294**-0.017-0.066-0.081-0.0400.1070.433**-0.030-0.1320.624**
***分别表示在P < 0.05和P < 0.01显著水平上相关。缩写同表1
* and ** indicate significant differences at P < 0.05 and P < 0.01, respectively. Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

为了检测18个性状是否符合正态分布, 本研究利用IBM SPSS Statistics 22.0对表型数据进行正态性检验(附表3), 得到各性状的偏度系数、峰度系数及标准误, 结合U检测及柯尔莫哥洛夫-斯米诺夫(Kolmogorov-Smirnov, K-S)检验法表明, 仅有果枝数不符合正态分布, 其他性状均符合正态分布, 可以进行关联分析。

Table s3
附表3
附表3正态性检验
Table s3Normality test
性状
Trait
偏度
Skewness
偏度标准误
Skewness error
偏度U值
Skewness U value
峰度
Kurtosis
峰度标准误
Kurtosis error
峰度U值
Kurtosis U value
K-S检验
Kolmogorov-Smirnov test
生育期 GP0.2250.1651.3640.5680.3291.7260.200
株高 PH0.2040.1651.2360.8140.3292.4740.096
果枝始节高 FFSH0.1140.1650.6910.4970.3291.5110.200
第一果枝节位 FFSBN0.2900.1651.7580.4870.3291.4800.200
果枝数 FSBN0.4360.1652.6420.4710.3291.4320.009
空果枝数 EFSBN0.2990.1651.8120.9580.3292.9120.200
单株有效铃数 EBN0.2290.1651.3880.2760.3290.8390.200
外围铃数 PBN0.2080.1651.2610.5060.3291.5380.200
衣分 LP-0.2940.166-1.7750.6180.3301.8740.200
单铃重 BW0.1990.1651.2060.6150.3291.8690.200
籽指 SI0.1140.1650.6910.2180.3290.6630.200
衣指 LI0.2710.1651.6420.2780.3290.8450.200
理论籽棉产量 TSCY0.1970.1651.194-0.2690.329-0.8180.200
上半部纤维长度 FUHML0.1790.1651.0850.1040.3290.3160.200
纤维整齐度 FU0.2600.1651.576-0.2750.329-0.8360.200
马克隆值 MV0.4030.1652.4421.3100.3293.9820.200
纤维比强度 FS-0.0310.165-0.188-0.1580.329-0.4800.200
纤维伸长率 FE0.1890.165cail45-0.2930.329-0.8910.200
GP: growth period; PH: plant height; FFSH: first fruit spur height; FFSBN: first fruit spur branch number; FSBN: fruit spur branch number; EFSBN: empty fruit spur branch number; EBN: effective boll number; PBN: peripheral boll number; BW: boll weight; SI: seed index; LI: lint index; LP: lint percentage; TSCY: theoretical seed cotton yield; FUHML: fiber upper half mean length; FS: fiber strength; FU: fiber uniformity; MV: micronaire value; FE: fiber elongation;

新窗口打开|下载CSV

2.3 基因型数据及群体结构分析

在全基因组范围内共选取557个SSR标记对自然群体进行检测, 得到的298对具有多态性的标记。选取地理来源相距较远的12个材料, 从298对SSR标记中筛选出214对重复性好、条带清晰稳定的多态性标记用于此群体的遗传多样性分析, 占总体的38.420%, 平均每条染色体有8.231个标记。部分标记的筛选及群体扩增条带如下(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1标记筛选与扩增展示

A: 部分标记的筛选; B: 标记NAU3377在部分材料中的扩增结果。1~12: 12份地理来源差异大的材料; p1~p27: 217份自然群体中部分材料; M: marker。
Fig. 1Marker screening and amplification display

A: screening of partial markers; B: amplification products of marker NAU3377 in some accessions. 1-12: 12 accessions with extremely different geographical origins; p1-p27: some varieties from 217 natural populations; M: marker.


用筛选出的多态性好的214对标记对217份供试材料进行扩增, 共检测出393个等位变异, 平均每条标记约有1.836个等位基因, 变异范围为1~4个; 通过软件POWERMARKER V3.25计算得到214对SSR标记的基因多样性指数与PIC值(附表4), 其中214对SSR标记的基因多样性指数平均值为0.402, 范围为0.072~0.631, PIC值平均为0.329, 范围为0.070~0.560 (图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2214个标记位点的基因多样性(A)与多态性信息含量(B)频率分布图

Fig. 2Gene diversity (A) and PIC frequency (B) profiles of 214 marker sites



Table s4
附表4
附表4基因多样性与多态性信息含量
Table s4Gene diversity and polymorphism information content
标记
Marker
染色体
Chromosome
位置
Position
基因多样性
Gene diversity
多态性信息含量
PIC
NAU2083A0127809680.4850.380
NAU2437aA011176109730.4130.353
NAU2437bA011176109730.5070.411
NAU2437cA011176109730.5050.409
NAU3911A01Unknown0.4520.362
NAU5163aA011101269850.4420.356
NAU5163bA011101269850.3990.329
NAU7195A011013627420.5160.401
NAU2265aA021077061330.5150.408
NAU2265bA021077061330.5190.410
NAU437aA021004279710.5100.405
NAU437bA021004279710.5030.401
NAU5499aA0226358090.4850.380
NAU5499bA0226358090.5010.389
NAU1071bA031066377390.5170.401
NAU1167aA0343913850.4950.385
NAU1167bA0343913850.3550.301
NAU1167cA0343913850.3900.324
NAU1167dA0343913850.4850.380
NAU3016aA0340067530.3250.292
NAU3016bA0340067530.4950.407
NAU3016cA0340067530.2250.212
NAU3639aA03238099750.5290.419
NAU3639bA03238099750.5300.420
NAU483aA031100239370.3360.299
NAU483bA031100239370.3240.290
NAU6104A0313503570.1540.146
BNL0530A04772143360.5330.472
BNL3089aA0415403300.3050.266
BNL3089bA0415403300.5090.393
NAU7182A04835814540.1710.162
NAU2701A04Unknown0.0800.079
BNL3452aA0544480240.4600.354
BNL3452bA0544480240.3010.255
CIR062aA05220562000.4430.349
CIR062bA05220562000.4580.357
DPL641aA0529416520.4340.354
DPL641bA0529416520.4340.354
DPL641cA0529416520.1700.161
DPL641dA0529416520.0890.087
JESPR065aA05981497210.3550.301
JESPR065bA05981497210.2870.253
JESPR065cA05981497210.2810.249
NAU1042aA05155358480.5140.395
NAU1042bA05155358480.5070.392
NAU1156aA05213254790.5290.419
NAU1156bA05213254790.5300.420
NAU2121aA051056670710.4830.379
NAU2121bA051056670710.5140.395
NAU2957A05343705490.2710.234
NAU3036aA051077481820.3800.318
NAU3036bA051077481820.4870.381
NAU3529aA05320115900.4370.342
NAU3529bA05320115900.3920.315
NAU6094aA051033820790.5090.393
NAU6094bA051033820790.5030.389
NAU6966A051080242710.2990.262
NAU797aA05155359210.5170.401
NAU797bA05155359210.4980.391
NAU934aA051070023920.3850.321
NAU934bA051070023920.2620.234
NAU1200aA05670924960.5350.426
NAU1200bA05670924960.4270.362
NAU4057aA051056668310.4490.360
NAU4057bA051056668310.3400.291
BNL3650aA061165393210.4890.435
BNL3650bA061165393210.2360.215
BNL3650cA061165393210.4930.438
CIR280A0665806220.4480.373
NAU2679aA06676976370.4160.340
NAU2679bA06676976370.3500.298
NAU3206aA061205170700.4070.335
NAU3206bA061205170700.4160.340
NAU3427A061237926890.3390.282
NAU7121aA0678099360.1680.155
NAU7121bA0678099360.1900.174
NAU874aA061123652040.5220.408
NAU874bA061123652040.4640.376
HAU1355aA0680678520.5060.391
HAU1355bA0680678520.4700.372
HAU1355cA0680678520.2280.208
NAU1043aA0755744960.5210.407
NAU1043bA0755744960.5190.406
NAU1043cA0755744960.2440.223
NAU1362aA07219146540.3800.318
NAU1362bA07219146540.4850.380
NAU1362cA07219146540.5140.395
NAU845aA0790829640.4640.369
NAU845bA0790829640.4670.370
NAU1085aA07175171220.5010.410
NAU1085bA07175171220.5380.431
BNL3257aA08754714500.4520.362
BNL3257bA08754714500.4670.370
BNL1231aA08Unknown0.5050.391
BNL1231bA08Unknown0.4800.377
NAU1369aA081161204790.4520.365
NAU1369bA081161204790.4640.372
NAU3201aA081119544810.2840.257
NAU3201bA081119544810.1550.149
NAU6761A081219884080.2380.221
NAU5357aA081178661330.1630.155
NAU5357bA081178661330.0980.095
NAU5368aA081178662020.4670.370
NAU5368bA081178662020.0800.079
BNL3173aA09816215330.3550.301
BNL3173bA09816215330.4830.379
NAU2354aA09811128180.3050.266
NAU2354bA09811128180.3450.294
NAU2723A09810848580.4350.352
NAU3052aA09708931200.4670.370
NAU3052bA09708931200.3800.318
NAU3414aA09787438090.5130.395
NAU3414bA09787438090.5110.394
NAU462A09771679560.5090.393
NAU859aA09535967350.5000.438
NAU859bA09535967350.4250.383
BNL2960aA101049652930.4450.361
BNL2960bA101049652930.4340.354
HAU2147aA101140514710.3370.294
HAU2147bA101140514710.5130.403
NAU2317aA101358870.4550.364
NAU2317bA101358870.5130.395
STV031aA1016055170.4450.361
STV031bA1016055170.4140.342
BNL3442aA1139770350.5110.394
BNL3442bA1139770350.5140.395
BNL3442cA1139770350.1920.178
BNL3442dA1139770350.5010.389
BNL3594aA111116693740.4420.356
BNL3594bA111116693740.3290.283
BNL3594cA111116693740.4850.380
DPL209A111148194620.4670.381
NAU1162aA11189515580.5520.455
NAU1162bA11189515580.5520.455
NAU2092aA11Unknown0.3400.291
NAU2092bA11Unknown0.4390.354
NAU2809A111072675390.2280.208
NAU3390aA111188094080.3710.320
NAU3390bA111188094080.3710.320
NAU5428aA111193244480.5510.465
NAU5428bA111193244480.4850.422
NAU980aA111989800.4980.387
NAU980bA111989800.4640.369
BNL598aA121027465690.2570.234
BNL598bA121027465690.1310.126
HAU1434aA12826616020.2970.266
HAU1434bA12826616020.3150.280
NAU1274aA1270994210.5260.414
NAU1274bA1270994210.5260.414
NAU2671aA121033064650.4160.347
NAU2671bA121033064650.4840.387
NAU2672aA121033044920.4030.332
NAU2672bA121033044920.4240.345
NAU3519aA121073586130.5140.395
NAU3519bA121073586130.4870.381
NAU3778aA121051724570.4760.379
NAU3778bA121051724570.4730.377
NAU4047A1214832630.4550.364
NAU3522aA121062035590.5080.392
NAU3522bA121062035590.5010.389
NAU3522cA121062035590.3230.279
BNL1421A1361314490.5190.406
BNL2449aA13333366220.4730.373
BNL2449bA13333366220.2930.258
JESPR153aA13822668610.4220.347
JESPR153bA13822668610.5130.399
JESPR153cA13822668610.2290.210
JESPR153dA13822668610.4480.363
NAU1141aA13768541660.1300.125
NAU2285A131074202320.1220.117
NAU3074aA13Unknown0.5280.422
NAU3074bA13Unknown0.5110.413
NAU3127A13137495980.2420.218
NAU3468aA13971601310.3490.321
NAU3468bA13971601310.5160.443
NAU3653aA13Unknown0.4750.375
NAU3653bA13Unknown0.5090.393
NAU3653cA13Unknown0.4910.383
NAU4045aA131026791220.5010.389
NAU4045bA131026791220.4160.340
NAU4045cA131026791220.3340.287
NAU3254aD01610382470.5060.395
NAU3254bD01610382470.5170.401
NAU3736aD01558929890.5010.389
NAU3736bD01558929890.4520.362
NAU3736cD01558929890.5130.395
CIR307aD01559385660.5730.486
CIR307bD01559385660.4630.412
CIR307cD01559385660.5670.482
NAU1103aD01Unknown0.5170.401
NAU1103bD01Unknown0.5160.400
NAU2165aD01285206860.4970.386
NAU2165bD01285206860.4780.376
NAU4073aD0175927610.5040.390
NAU4073bD0175927610.1990.184
NAU3820aD02675227200.5180.401
NAU3820bD02675227200.5080.396
CIR246aD0210346330.5580.470
CIR246bD0210346330.5530.467
HAU1741aD02607913780.4660.392
HAU1741bD02607913780.4730.397
NAU1070aD02643729440.5260.414
NAU1070bD02643729440.5230.412
NAU1070cD02643729440.5070.403
NAU2312D02646478550.4780.380
NAU2336aD02607913520.4460.358
NAU2336bD02607913520.4390.354
NAU2960D02688475120.3590.309
NAU3308aD02207237950.4160.340
NAU3308bD02207237950.4070.335
NAU5467D0245472610.5010.389
NAU1190aD02522876110.1850.172
NAU1190bD02522876110.2420.218
NAU1190cD02522876110.4460.358
NAU1028aD0342081170.3500.305
NAU1028bD0342081170.4220.354
BNL2496aD03497694850.5070.392
BNL2496bD03497694850.5080.392
NAU2691aD03515410760.4800.377
NAU2691bD03515410760.0890.087
NAU2859aD037399460.4880.386
NAU2859bD037399460.5030.394
NAU5233aD03488285760.4700.379
NAU5233bD03488285760.3840.326
NAU5260aD03497694360.5210.415
NAU5260bD03497694360.5210.415
NAU3995aD03488180330.4900.387
NAU3995bD03488180330.3620.309
NAU3995cD03488180330.4010.334
NAU3995dD03488180330.4980.391
NAU2162D04527487940.4020.343
NAU2477D04527487940.4230.334
NAU5099D04146278570.5110.402
NAU6109aD0479896660.4970.386
NAU6109bD0479896660.5050.391
BNL3875aD05199698520.1620.152
BNL3875bD05199698520.5130.395
BNL3875cD05199698520.5110.394
HAU1385aD05258370760.5150.400
HAU1385bD05258370760.4980.391
HAU139D0511455540.1540.146
HAU1952aD05171581690.3460.304
HAU1952bD05171581690.2520.233
NAU1102aD05571447060.4910.383
NAU1102bD05571447060.4620.367
NAU1230aD05142134710.5390.432
NAU1230bD05142134710.5390.432
NAU1255aD05142135430.5130.395
NAU1255bD05142135430.5080.392
NAU2560aD0531995350.4780.376
NAU3092aD0518311910.0800.079
NAU3092bD0518311910.1060.102
NAU3095aD05624079010.5820.498
NAU3095bD05624079010.5830.499
NAU3110aD05571447580.4880.386
NAU3110bD05571447580.5020.393
NAU5005aD05199697270.5150.408
NAU5005bD05199697270.5260.414
NAU911aD05236858670.2480.224
NAU911bD05236858670.1140.110
NAU911cD05236858670.1460.139
HAU979D05177961380.1920.178
JESPR181D05103250760.3230.279
NAU2274aD05280998250.5030.389
NAU2274bD05280998250.5010.389
HAU1384D05258371760.5180.402
NAU4907aD05554475070.3770.319
NAU4907bD05554475070.3960.331
DPL238aD0645858910.4890.382
DPL238bD0645858910.4890.382
HAU2022aD0617659340.5130.395
HAU2022bD0617659340.5120.394
NAU2119D06186785300.2950.261
NAU3031aD06655812730.1230.119
NAU3031bD06655812730.2790.254
NAU3031cD06655812730.3170.283
NAU5463aD0693345930.4980.387
NAU5463bD0693345930.1920.178
BNL1122aD07300989410.5050.395
BNL1122bD07300989410.4520.365
BNL1395aD07300989490.4450.361
BNL1395bD07300989490.4140.342
HAU3101aD0747850090.5270.422
HAU3101bD0747850090.5270.422
NAU2078aD0789392700.3450.294
NAU2078bD0789392700.4520.362
NAU2152aD07Unknown0.3340.278
NAU2152bD07Unknown0.3180.267
NAU2680D07546091160.1060.102
NAU2931aD0771494950.4780.380
NAU2931bD0771494950.4980.391
NAU2984aD0735485710.2870.253
NAU2984bD0735485710.4800.377
NAU3053aD0739345390.2930.258
NAU3053bD0739345390.2750.244
NAU3424aD07563432100.3180.295
NAU3424bD07563432100.3040.283
DPL176aD08558978480.2390.224
DPL176bD08558978480.3130.283
BNL1521aD08569570040.5130.395
BNL1521bD08569570040.5070.392
BNL3255aD08Unknown0.2750.244
BNL3255bD08Unknown0.3230.279
BNL3474aD08443147530.1460.139
BNL3474bD08443147530.4750.375
BNL3474cD08443147530.4750.375
BNL3474dD08443147530.5120.394
HAU1846aD08523498620.2560.231
HAU1846bD08523498620.4480.363
NAU1302D08595019570.2930.258
NAU1350D0858815410.2090.195
NAU478aD08605632560.4970.386
NAU478bD08605632560.4930.384
NAU478cD08605632560.0720.070
NAU5335aD08356898510.4100.339
NAU5335bD08356898510.1550.147
NAU1125aD08330464190.2640.239
NAU1125bD08330464190.1630.155
NAU2631aD08356898360.2290.210
NAU2631bD08356898360.2290.210
NAU5379D08232387720.1830.168
BNL3140aD09410189830.4490.360
BNL3140bD09410189830.5120.394
NAU2873aD09507153790.4950.385
NAU2873bD09507153790.4980.387
NAU2954aD09446716990.4490.360
NAU2954bD09446716990.3170.275
NAU3100aD0916091290.3300.286
NAU3100bD0916091290.3300.286
NAU3277aD09446716390.4380.357
NAU3277bD09446716390.4640.372
NAU5189aD09498055690.4930.384
NAU5189bD09498055690.4910.383
NAU5508aD09361791070.4610.371
NAU5508bD09361791070.0720.070
NAU923D09426081510.5010.400
NAU3603D09521946000.4240.345
NAU1375aD0992232430.5010.416
NAU1375bD0992232430.4790.403
BNL1161D10167729540.2550.229
BNL3948aD10216650700.5120.394
BNL3948bD10216650700.5090.393
NAU1169aD10656854160.2070.190
NAU1169bD10656854160.1300.125
NAU3368aD10579249830.1470.141
NAU3368bD10579249830.2500.229
NAU3404aD10541478370.4950.385
NAU3404bD10541478370.4950.385
NAU3992D10Unknown0.2810.249
NAU4921aD10656853340.2430.221
NAU4921bD10656853340.2000.186
BNL3997aD11262313760.4090.345
BNL3997bD11262313760.4460.368
NAU1366D1154520940.3570.305
NAU2016aD11Unknown0.5070.403
NAU2016bD11Unknown0.5100.405
NAU3377aD113790870.0720.070
NAU3377bD113790870.1920.178
NAU3377cD113790870.2810.249
NAU3377dD113790870.2140.196
NAU3493aD11619681360.6190.549
NAU3493bD11619681360.6310.560
NAU4855D11186185580.0800.076
BNL3976aD11174636470.2230.208
BNL3976bD11174636470.2780.252
BNL2495aD12517842710.4670.370
BNL2495bD12517842710.4580.365
CIR170aD125002200.4010.362
CIR170bD125002200.4010.362
CIR183aD12Unknown0.5170.401
CIR183bD12Unknown0.4010.334
HAU1292aD12441258950.2630.237
HAU1292bD12441258950.2290.210
NAU3881aD12385894230.3900.324
NAU3881bD12385894230.4580.365
NAU3881cD12385894230.1920.178
NAU4926aD1259801820.4980.409
NAU4926bD1259801820.4010.347
NAU4926cD1259801820.4410.374
NAU4926dD1259801820.3130.283
BNL3280D13412637130.1060.102
BNL3558D1356432120.1210.113
NAU2443aD13485727340.2630.237
NAU2443bD13485727340.2290.210
NAU2443cD13485727340.4760.379
NAU3589aD13554055500.2880.256
NAU3589bD13554055500.2820.251
NAU3861aD13600043050.5090.393
NAU3861bD13600043050.4120.337
NAU3948aD1353761650.3570.305
NAU3948bD1353761650.3360.290
NAU5262aD13599907970.5320.425
NAU5262bD13599907970.5050.409

新窗口打开|下载CSV

借助生物信息软件Structure V2.3软件分析217个材料的群体结构。模拟亚群数量设为K, 亚群数量取1~9, 得到5次重复的结果后, 利用Structure harvester进行分析, 统计在不同K值时的ln P(D), 绘制ln P(D)的趋势图。由于无法判断K的取值, 因此采用Evanno等的方法, 通过ΔK来确定K值。在K=2时ΔK达到最大, 由此将棉花材料划分为2个亚群(图3-A, B)。绘制材料的群体结构图(图3-C), 其中Pop1 (Population 1)有108材料, Pop2 (Population 2)有109材料, 并且与地理来源无明显对应关系, 各材料亚群分布与地理来源见附表1

图3

新窗口打开|下载原图ZIP|生成PPT
图3217份材料基于群体结构分析的K值与ln P(D)值和?K值变化图及群体结构图

A: K值与ln P(D)值的变化图; B: K值与?K值的变化图; C: 217份材料的群体结构图。
Fig. 3ln P(D) and ?K based on population structure analysis and population structure for 217 upland cotton accessions

A: magnitude of ln P(D) as a function of K; B: magnitude of ?K as a function of K; C: population structure of 217 upland cotton accessions.


2.4 关联分析

材料的抗旱能力用各指标的抗旱系数(DRC)表示, 借助软件Tassel 5.0并采用混合线性模型MLM(Q+K)对各性状的抗旱系数进行关联分析。在P<0.01的显著性阈值共关联到76个位点(表3)。我们首先对广义遗传率较高的纤维比强度、上半部纤维长度、衣分、马克隆值、果枝始节高、籽指、衣指的考察发现, 与纤维比强度关联到的位点有7个(NAU2152b、NAU2152a、JESPR181、NAU859a、NAU3589b、NAU3529a、NAU1362c), 表型变异解释率范围为3.020%~5.425%; 上半部纤维长度关联到5个位点, 分别是NAU1042b、NAU797a、HAU1355c、NAU5260b、NAU3277a, 表型变异解释率为3.332%~4.233%; 有14个位点(NAU3100b、NAU2016b、NAU2016a、CIR280、NAU1375b、NAU1156a、NAU3016a、NAU1156b、JESPR065b、HAU1434b、HAU2147b、NAU3100a、NAU1028a、BNL3976b)同时与衣分相关联, 表型变异解释率为3.049%~4.739%; 马克隆值作为衡量纤维品质的一个重要指标, 也关联到3个显著性位点(NAU5499a、NAU6104、JESPR065b), 变异解释率为3.592%~ 3.838%; 果枝始节高关联到5个显著性位点(NAU3948b、NAU3948a、HAU1355a、NAU3308b、NAU3522a), 其表型变异解释率为3.208%~7.218%。对于遗传力较高的籽指与衣指, 未检测到显著性的位点。对于第一果枝节位、果枝数、单株有效铃数、空果枝数等11个低广义遗传率的性状一共关联到42个显著性位点。

Table 3
表3
表3表型性状抗旱系数与标记关联分析结果
Table 3Correlation analysis of drought resistance coefficient and markers for phenotypic traits
表型
Trait
标记
Marker
PR2性状
Trait
标记
Marker
PR2
纤维比强度
FS
NAU2152b05.425株高
PH
CIR28006.320
NAU2152a0.0014.785NAU3377c0.0034.327
JESPR1810.0043.683CIR246b0.0034.520
NAU859a0.0053.707NAU4926c0.0053.879
NAU3589b0.0073.167NAU3881a0.0063.616
NAU3529a0.0083.045NAU859b0.0073.741
NAU1362c0.0093.020NAU3995a0.0093.327
上半部纤维长度
FUHML
NAU1042b0.0044.233第一果枝节位
FFSBN
NAU911c0.0014.894
NAU797a0.0073.628JESPR153c0.0024.486
HAU1355c0.0053.704NAU1274b0.0043.951
NAU5260b0.0063.716NAU6109b0.0063.608
NAU3277a0.0083.332BNL1122a0.0063.526
NAU2274a0.0083.331
衣分
LP
NAU3100b0.0024.379NAU1375b0.0103.201
NAU2016b0.0024.232
NAU2016a0.0034.137果枝数NAU3522b0.0024.754
CIR2800.0033.983NAU3522a0.0034.152
NAU1375b0.0053.672NAU3031b0.0044.017
NAU1156a0.0063.523BNL1122a0.0073.461
NAU3016a0.0083.292
NAU1156b0.0083.262空果枝
EFSBN
NAU5189a0.0014.684
JESPR065b0.0083.239NAU1167a0.0033.931
HAU1434b0.0083.229NAU4926b0.0063.564
HAU2147b0.0083.171
NAU3100a0.0093.140理论籽棉产量
TSCY
NAU4073a0.0043.913
BNL3976b0.0103.071NAU2016a0.0093.269
NAU1028a0.0103.049
单株有效铃数
EBN
NAU4926b0.0063.653
马克隆值
MV
NAU5499a0.0043.838NAU2078b0.0083.325
NAU61040.0053.595
JESPR065b0.0053.592单铃重
BW
NAU610405.791
NAU1156b0.0034.174
果枝始节高
FFSH
NAU3948b07.218NAU1156a0.0053.827
NAU3948a0.0014.854NAU478b0.0073.439
HAU1355a0.0024.758NAU478a0.0093.200
NAU3308b0.0083.337
NAU3522a0.0093.208纤维伸长率
FE
BNL3875b0.0033.880
CIR183b0.0033.755
外围铃数
PBN
NAU61040.0034.151NAU5428b0.0044.076
NAU1028a0.0043.965JESPR1810.0043.613
NAU5428b0.0053.950NAU2317a0.0063.258
NAU3377a0.0073.170
生育期GPJESPR065b0.0044.058NAU5005b0.0092.931
NAU4926c0.0102.970
缩写同表1。Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

有多种性状同时与同一标记相关联, 由表4可知, 共发现13个标记在2种及2种以上性状同时检测到, 例如标记JESPR181能被纤维比强度、纤维伸长率和外围铃数3个性状同时检测到, 标记JESPR065b同时与性状生育期、马克隆值、衣分相关联。

Table 4
表4
表4多效应标记位点
Table 4Markers associated with multiple-effect traits
标记
Marker
染色体
Chromosome
位置
Position (bp)
性状
Trait
NAU6104A031,350,357马克隆值MV, 单铃重BW, 外围铃数 PBN
NAU1156aA0521,325,479单铃重 BW, 衣分 LP
JESPR065bA0598,149,579生育期 GP, 马克隆值 MV, 衣分 LP
CIR280A066,580,622株高 PH, 衣分 LP
HAU1355A068,067,852果枝始节高 FFSH, 上半部纤维长度 FUHML
NAU859A0953,596,735纤维比强度 FS, 株高 PH
NAU3377cD11379,087纤维伸长率 FE, 株高 PH
NAU5428bA11119,324,448纤维伸长率 FE, 外围铃数 PBN
NAU3522aA12106,203,559果枝数 FSBN, 果枝始节高 FFSH
JESPR181D0510,325,076纤维比强度 FS, 纤维伸长率 FE
BNL1122aD0730,098,941第一果枝节位 FFSBN, 果枝数 FSBN
NAU1375bD099,223,243衣分 LP, 第一果枝节位 FFSBN
NAU4926cD125,980,182株高 PH, 纤维伸长率 FE
NAU4926bD125,980,182空果枝数 EFSBN, 单株有效铃数 EBN
缩写同表1。Abbreviations are the same as those given in Table 1.

新窗口打开|下载CSV

3 讨论

3.1 表型数据分析

在关联分析中, 表型确定最关键, 良好地表型数据有利于关联分析的准确性, 特别是对于抗旱性这一数量性状, 表型数据更是起决定性作用[7]。目前在植物抗旱领域研究中, 尤其是大田抗旱性的研究, 如何减少环境因素的影响, 获取准确有效的表型数据一直是个难题。本研究中我们在棉花生育期同步获取新疆石河子和库尔勒两地气象数据(附图1), 两地的月均温在不同年份差异不大, 在棉花全生育期降雨量上存在一定差异(石河子2016: 174.000 mm; 石河子2017: 127.300 mm; 库尔勒2016: 136.600 mm; 库尔勒2017: 70.800 mm), 但新疆地区属于干旱少雨地区, 且日蒸发量较高[37,38], 降雨对试验的影响较小, 且研究中我们对多种表型数据进行了精准测定, 在后期分析前也对数据进行人工矫正, 剔除了由于操作失误等原因造成的误差, 而且在最终的表型数据处理上采用最佳线性无偏预测来综合多年多点的表型值进一步降低环境因素的影响, 结果也表明, 有些性状的广义遗传力较高, 年度间重复性较好。我们对18种表型数据进行了人工采集及统计分析, 但在植物生长发育过程中存在很多人工无法获取和采集的信息, 研究开发更多表型的获取方式, 比如搭建高通量表型组自动分析平台, 通过使用数字成像和近红外光谱等技术自动无损的获得植物对干旱胁迫反应的准确表型数据, 是解决表型鉴定困难的重要途径[7]

由于近年气候变暖, 年降雨量少, 水资源缺乏, 新疆的干旱问题愈发严重。棉花的产量、纤维品质等性状是基因型和环境因素的共同作用[39,40,41]。干旱胁迫会影响棉花的整个生长发育过程。在本研究中, 株高受到干旱胁迫的显著影响, 变异系数从正常情况下的5.353%扩大到7.496%; 而重要机采指标果枝始节高则在正常与干旱情况下均表现较高的变异(CVc=10.924%; CVd=10.963%), 表明该群体本身在这一性状具有较高的变异。尽管生育期与纤维伸长率的变异系数都小于2%。但是这2项指标仍受到干旱胁迫的严重影响(P<0.01)。而果枝数、铃重、籽指和纤维整齐度4种性状受干旱胁迫的影响不显著(P>0.01)。此外, 本研究表明, 纤维品质性状(上半部纤维长度、纤维整齐度、马克隆值、纤维比强度、纤维伸长率)在多年不同条件下表现出较高的遗传力, 这与前人的研究结果相似[10,42]。而且采用HFT9000棉花纤维测定仪测定纤维品质, 避免了人工测定误差, 更具有可靠性以及准确性。

3.2 关联分析

传统育种方法主要依赖于育种家对植株表型的选择, 育种周期长, 效率低; 棉花抗旱性受微效多基因控制, 极易受环境影响, 因此借助分子标记从而找到与抗旱性状紧密连锁的位点, 并应用到育种实践中, 可加快育种进程。Zheng等[43]通过对F2:3群体苗期耐旱性状的定位, 共鉴定到16个重要的QTL, 包括5个与株高相关、1个与叶数相关、3个与叶绿素相关、3个丙二醛相关和4个脯氨酸相关。Li等[42]通过对517份陆地棉种质资源进行重测序, 确定了与抗旱系数相关的33个QTL以及与综合抗旱指数关联的6个QTL, 并进一步结合RNA-seq的数据确定6个候选基因。本研究利用多年多环境的表型数据进行关联分析, 在P<0.01的显著性阈值下共检测到76个显著性位点, 各位点对表型变异的解释率为 2.931%~7.218%。将18个性状关联到的QTL数量与变异系数、遗传力等的综合分析发现, 株高、单株有效铃数、衣分, 上半部纤维长度、马克隆值、纤维比强度及纤维伸长率等7个指标遗传力较高, 受到干旱胁迫的显著影响(P<0.01), 并且关联到QTL的数量占总体的70%, 因此我们认为, 在以后的抗旱性研究中应对这几个性状重点关注。

为了筛选出对分子标记辅助选择育种有用的QTL位点, 本研究将GWAS鉴定到的QTL与前人报道的QTL进行比较, 并通过软件e-PCR锚定到参考基因组发现, 纤维比强度、纤维伸长率、衣分和株高这4个性状所关联到的QTL在前人研究中有报道。在这4个性状中, 与纤维比强度相关的标记为NAU2152b, 该标记位点和已报道的QTL q-FS-c11-2q-FS-A11-1a十分接近, P值为4.510×10-4, 表型变异解释率为5.425%; 与纤维伸长率相关联的标记CIR183b, P值为0.003, 表型变异解释率为3.755%, 该标记位点与已报道QTL q-FEc22-2qFE-c22-1距离相近; 与衣分相关的标记JESPR065b被发现与已报道QTL qLP-A5的位置相近, 该标记位点P值为0.008, 表型变异解释率为3.239%; 发现与株高相关的标记CIR246附近有4个已报道的QTL, 分别是qPH-D2-2qPH-14(F2:3)、PH8.wPH2.y, 该标记位点表型变异解释率为4.520% [34,35,36]。这4个SSR标记在棉花中控制重要的农艺性状, 还可能参与棉花干旱逆境的响应, 是作为分子标记辅助选择育种的潜在基因位点。本研究也为有效解决育种进展缓慢以及育种进程中优异基因丢失提供参考依据。

3.3 QTL的一因多效性

本研究出现QTL的一因多效性也值得关注, 在之前的研究中就出现了在植物同一染色体区段的QTL可能控制不同条件下的同一表型的相关报道。Frova等[44]发现, 在水分胁迫条件下玉米2号染色体上m28标记同时在穗长、穗重、穗粒重、穗粒数等性状中被检测到, m66也在穗重、穗粒重、穗粒数等性状下被检测到。吴迷等[45]发现, InDel标记HAU_ID_D07-09同时与5个性状(上半部纤维长度、纤维比强度、纤维伸长率、纤维整齐度、短纤维率)相关联, 以及标记HAU_ID_D12-10同时与4个性状(上半部纤维长度、纤维比强度、纤维整齐度、短纤维率)相关联。本研究中也检测到13个多效性标记, 推其原因, 多效性可能是因为这些性状相关性较高, 且由同一QTL所控制。

4 结论

217份陆地棉资源群体被分为2个群体, 在P<0.01的显著性阈值下共关联到76个与干旱相关的位点, 表型变异解释率范围为2.931%~7.218%, 其中广义遗传率较高的纤维比强度关联到7个与干旱相关的标记位点; 上半部纤维长度检测到5个与干旱相关的标记位点; 衣分也关联到14个与干旱相关的标记位点。这些位点可为棉花抗旱遗传改良提供理论基础, 并用于后期棉花抗旱性状的分子标记辅助选择育种。

附图和附表 请见网络版: 1) 本刊网站http://zwxb. chinacrops.org/; 2) 中国知网http://www.cnki.net/; 3) 万方数据http://c.wanfangdata.com.cn/Periodical- zuowxb.aspx

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Passioura J B. Drought and drought tolerance
Plant Growth Regul, 1996,20:79-83.

[本文引用: 1]

Passioura J. The drought environment: physical, biological and agricultural perspectives
J Exp Bot, 2007,58:113-117.

DOI:10.1093/jxb/erl212URLPMID:17122406 [本文引用: 1]
'Drought' has many meanings in relation to crop production. These range from: statistical (say, the lowest decile of annual rainfall) to a meteorologist; through yield being limited by too little water to an agronomist; to sudden severe water deficits to many molecular biologists. To a farmer, the corresponding management issues, respectively, are risk management (how best to manage a meteorologically drought-prone farm over several years), how best to match cultivar and agronomic operations to the developing growing season, and how best to minimize possible major damage to (say) floral fertility induced by severe water deficits during flowering. All these definitions and the issues they imply are relevant to improving crop production when water is limiting. How can scientists best help? The answers depend on the scales (temporal and spatial) being addressed. Agronomists and breeders, interacting, can help improve components of seasonal water balance in the field, for example, minimizing evaporative losses from the soil surface by better matching the development of a crop to its environment. Physiologists, biochemists, and molecular biologists can help by identifying ways of improving the competence of particular organs. A promising target is floral infertility resulting from water deficits, which results from lesions in tissue, and cellular and molecular processes. Choosing problems whose solutions will have implications in the field and be attractive to farmers requires knowledge of what is important in the field.

Levi A, Paterson A H, Barak V, Yakir D, Wang B H, Chee P W, Saranga Y. Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits
Mol Breed, 2008,23:179-195.

[本文引用: 1]

Xiao Y L, Yu C Y, Lei J G, Cruz Q D D, Yabes J M, Tabanao D A. Association mapping for drought tolerance of rice (Oryza sativa L.) at vegetative stage
Agric Sci Technol, 2012,13:1385-1394.

[本文引用: 1]

Savage M J, Ritchie J T, Bland W L, Dugas W A. Lower limit of soil water availability
Agron J, 1996,88:644-651.

[本文引用: 1]

Cook C G, Elzik K M. Fruiting and lint yield of cotton cultivars under irrigated and nonirrigated conditions
Field Crops Res, 1993,33:411-421.

[本文引用: 1]

Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era
Front Physiol, 2012,3:347.

DOI:10.3389/fphys.2012.00347URLPMID:23049510 [本文引用: 3]
Improving crops yield under water-limited conditions is the most daunting challenge faced by breeders. To this end, accurate, relevant phenotyping plays an increasingly pivotal role for the selection of drought-resilient genotypes and, more in general, for a meaningful dissection of the quantitative genetic landscape that underscores the adaptive response of crops to drought. A major and universally recognized obstacle to a more effective translation of the results produced by drought-related studies into improved cultivars is the difficulty in properly phenotyping in a high-throughput fashion in order to identify the quantitative trait loci that govern yield and related traits across different water regimes. This review provides basic principles and a broad set of references useful for the management of phenotyping practices for the study and genetic dissection of drought tolerance and, ultimately, for the release of drought-tolerant cultivars.

桑晓慧, 赵云雷, 王红梅, 陈伟, 龚海燕, 赵佩, 崔艳利. 陆地棉抗旱性与SSR分子标记的关联分析
棉花学报, 2017,29:241-252.

[本文引用: 2]

Sang X H, Zhao Y L, Wang H M, Chen W, Gong H Y, Zhao P, Cui Y L. Association analysis of drought tolerance and SSR markers in upland cotton
Cotton Sci, 2017,29:241-252 (in Chinese with English abstract).

[本文引用: 2]

Baytar A A, Peynircio?lu C, Sezener V, Basal H, Frary A, Do?anlar S. Genome-wide association mapping of yield components and drought tolerance-related traits in cotton
Mol Breed, 2018,38:74.

[本文引用: 1]

Hou S, Zhu G Z, Li Y, Li W X, Fu J, Niu E, Li L C, Zhang D Y, Guo W Z. Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.)
Front Plant Sci, 2018,9:1276.

DOI:10.3389/fpls.2018.01276URLPMID:30233620 [本文引用: 3]
Cotton is an important industrial crop worldwide and upland cotton (Gossypium hirsutum L.) is most widely cultivated in the world. Due to ever-increasing water deficit, drought stress brings a major threat to cotton production. Thus, it is important to reveal the genetic basis under drought stress and develop drought tolerant cotton cultivars. To address this issue, in present study, 319 upland cotton accessions were genotyped by 55,060 single nucleotide polymorphisms (SNPs) from high-density CottonSNP80K array and phenotyped nine drought tolerance related traits. The two datasets were used to identify quantitative trait nucleotides (QTNs) for the above nine traits using multi-locus random-SNP-effect mixed linear model method. As a result, a total of 20 QTNs distributed on 16 chromosomes were found to be significantly associated with six drought tolerance related traits. Of the 1,326 genes around the 20 QTNs, 205 were induced after drought stress treatment, and 46 were further mapped to Gene ontology (GO) term

Ulloa M, Santiago L M D, Hulse-Kemp A M, Stelly D M, Burke J J. Enhancing upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection
Mol Genet Genomics, 2020,295:155-176.

[本文引用: 2]

杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 8-32.
[本文引用: 1]

Du X M, Zhou Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. pp 8-32(in Chinese).
[本文引用: 1]

Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis
Plant Mol Biol Rep, 1993,11:122-127.

[本文引用: 1]

张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测
棉花学报, 2000,12:267-269.

[本文引用: 1]

Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining
Cotton Sci, 2000,12:267-269 (in Chinese with English abstract).

[本文引用: 1]

Zhao L, Lyu Y, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information
BMC Genomics, 2012,13:539.

[本文引用: 1]

钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文,
江苏南京, 2009.

[本文引用: 1]

Qian N. Genetic Diversity and Association of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University
Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract).

[本文引用: 1]

Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton
Plant Sci, 2009,177:317-323.

[本文引用: 1]

薛艳, 张新宇, 沙红, 李雪源, 孙杰, 李保成. 新疆早熟棉品种SSR指纹图谱构建与品种鉴别
棉花学报, 2010,22:360-366.

[本文引用: 1]

Xue Y, Zhang X Y, Sha H, Li X Y, Sun J, Li B C. Construction of fingerprinting map based on SSR and identification of cultivars for earliness cultivars in upland cotton in Xinjiang
Cotton Sci, 2010,22:360-366 (in Chinese with English abstract).

[本文引用: 1]

Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton
Mol Breed, 2012,30:569-582.

[本文引用: 1]

艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种 SSR 遗传多样性分析
作物学报, 2014,40:369-379.

[本文引用: 1]

Ai X T, Liang Y J, Sha H, Wang J Z, Zheng J Y, Tu E X J, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers
Acta Agron Sin, 2014,40:369-379 (in Chinese with English abstract).

[本文引用: 1]

Bates D, Machler M, Bolker B M, Walker S C. Fitting linear mixed-effects models using lme4
J Stat Softw, 2015,67:1-48.

[本文引用: 1]

Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations
Crit Rev Plant Sci, 1991,10:235-322.

[本文引用: 1]

兰巨生. 农作物综合抗旱性评价方法的研究
西北农业学报, 1998,7(3):85-87.

[本文引用: 1]

Lan J S. Comparison of evaluating methods for agronomic drought resistance in crops
Acta Agric Boreali-Occident Sin, 1998,7(3):85-87 (in Chinese with English abstract).

[本文引用: 1]

冯方剑, 宋敏, 陈全家, 姚正培, 李杨阳, 刘艳, 王兴安, 曲延英. 棉花苗期抗旱相关指标的主成分分析及综合评价
新疆农业大学学报, 2011,34:211-217.

[本文引用: 1]

Feng F J, Song M, Chen Q J, Yao P Z, Li Y Y, Liu Y, Wang X A, Qu Y Y. Analysis and comprehensive evaluation on principal component of relative indices of drought resistance at the seedling stage of cotton
J Xinjiang Agric Univ, 2011,34:211-217.

[本文引用: 1]

Liu K, Muse S. PowerMarker: an integrated analysis environment for genetic marker analysis
Bioinformatics, 2005,21:2128-2129.

[本文引用: 1]

Hubisz M J, Daniel F, Matthew S, Pritchard J. Inferring weak population structure with the assistance of sample group information
Mol Ecol Resour, 2010,9:1322-1332.

DOI:10.1111/j.1755-0998.2009.02591.xURLPMID:21564903 [本文引用: 1]
Genetic clustering algorithms require a certain amount of data to produce informative results. In the common situation that individuals are sampled at several locations, we show how sample group information can be used to achieve better results when the amount of data is limited. New models are developed for the structure program, both for the cases of admixture and no admixture. These models work by modifying the prior distribution for each individual's population assignment. The new prior distributions allow the proportion of individuals assigned to a particular cluster to vary by location. The models are tested on simulated data, and illustrated using microsatellite data from the CEPH Human Genome Diversity Panel. We demonstrate that the new models allow structure to be detected at lower levels of divergence, or with less data, than the original structure models or principal components methods, and that they are not biased towards detecting structure when it is not present. These models are implemented in a new version of structure which is freely available online at http://pritch.bsd.uchicago.edu/structure.html.

Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method
Conserv Genet Resour, 2012,4:359-361.

[本文引用: 1]

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study
Mol Ecol, 2010,14:2611-2620.

URLPMID:15969739 [本文引用: 1]

Hardy O J, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels
Mol Ecol Resour, 2010,2:618-620.

[本文引用: 1]

Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples
Bioinformatics, 2007,23:2633-2635.

[本文引用: 1]

Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits inG. hirsutum L. variety germplasm
Genetica, 2009,136:401-417.

URLPMID:19067183 [本文引用: 1]

Schuler G D. Sequence mapping by electronic PCR
Genome Res, 1997,7:541-550.

DOI:10.1101/gr.7.5.541URLPMID:9149949 [本文引用: 1]
The highly specific and sensitive PCR provides the basis for sequence-tagged sites (STSs), unique landmarks that have been used widely in the construction of genetic and physical maps of the human genome. Electronic PCR (e-PCR) refers to the process of recovering these unique sites in DNA sequences by searching for subsequences that closely match the PCR primers and have the correct order, orientation, and spacing that they could plausibly prime the amplification of a PCR product of the correct molecular weight. A software tool was developed to provide an efficient implementation of this search strategy and allow the sort of en masse searching that is required for modern genome analysis. Some sample searches were performed to demonstrate a number of factors that can affect the likelihood of obtaining a match. Analysis of one large sequence database record revealed the presence of several microsatellite and gene-based markers and allowed the exact base-pair distances among them to be calculated. This example provides a demonstration of how e-PCR can be used to integrate the growing body of genomic sequence data with existing maps, reveal relationships among markers that existed previously on different maps, and correlate genetic distances with physical distances.

Wang M J, Tu L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L Y, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z H, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
Nat Genet, 2019,51:224-229.

DOI:10.1038/s41588-018-0282-xURLPMID:30510239 [本文引用: 1]
Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete(1-4). Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3-79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes(1,3), these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.

Said J I, Knapka J A, Song M Z, Zhang J F. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison betweenGossypium hirsutum and G. hirsutum × G. barbadense populations
Mol Genet Genomics, 2015,290:1615-1625.

DOI:10.1007/s00438-015-1021-yURLPMID:25758743 [本文引用: 2]
KEY MESSAGE: A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum x G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum x G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

Said J I, Lin Z X, Zhang X L, Song M Z, Zhang J F. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton
BMC Genomics, 2013,14:776.

DOI:10.1186/1471-2164-14-776URLPMID:24215677 [本文引用: 2]
BACKGROUND: The study of quantitative trait loci (QTL) in cotton (Gossypium spp.) is focused on traits of agricultural significance. Previous studies have identified a plethora of QTL attributed to fiber quality, disease and pest resistance, branch number, seed quality and yield and yield related traits, drought tolerance, and morphological traits. However, results among these studies differed due to the use of different genetic populations, markers and marker densities, and testing environments. Since two previous meta-QTL analyses were performed on fiber traits, a number of papers on QTL mapping of fiber quality, yield traits, morphological traits, and disease resistance have been published. To obtain a better insight into the genome-wide distribution of QTL and to identify consistent QTL for marker assisted breeding in cotton, an updated comparative QTL analysis is needed. RESULTS: In this study, a total of 1,223 QTL from 42 different QTL studies in Gossypium were surveyed and mapped using Biomercator V3 based on the Gossypium consensus map from the Cotton Marker Database. A meta-analysis was first performed using manual inference and confirmed by Biomercator V3 to identify possible QTL clusters and hotspots. QTL clusters are composed of QTL of various traits which are concentrated in a specific region on a chromosome, whereas hotspots are composed of only one trait type. QTL were not evenly distributed along the cotton genome and were concentrated in specific regions on each chromosome. QTL hotspots for fiber quality traits were found in the same regions as the clusters, indicating that clusters may also form hotspots. CONCLUSIONS: Putative QTL clusters were identified via meta-analysis and will be useful for breeding programs and future studies involving Gossypium QTL. The presence of QTL clusters and hotspots indicates consensus regions across cultivated tetraploid Gossypium species, environments, and populations which contain large numbers of QTL, and in some cases multiple QTL associated with the same trait termed a hotspot. This study combines two previous meta-analysis studies and adds all other currently available QTL studies, making it the most comprehensive meta-analysis study in cotton to date.

Said J I, Song M Z, Wang H T, Lin Z H, Zhang X L, Fang D D, Zhang J F. A comparative meta-analysis of QTL between intraspecificGossypium hirsutum and interspecific G. hirsutum × G. barbadense populations
Mol Genet Genomics, 2015,290:1003-1025.

DOI:10.1007/s00438-014-0963-9URLPMID:25501533 [本文引用: 2]
KEY MESSAGE: Based on 1075 and 1059 QTL from intraspecific Upland and interspecific Upland x Pima populations, respectively, the identification of QTL clusters and hotspots provides a useful resource for cotton breeding. Mapping of quantitative trait loci (QTL) is a pre-requisite of marker-assisted selection for crop yield and quality. Recent meta-analysis of QTL in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of QTL for various traits called clusters and specific trait QTL called hotspots or meta-QTL (mQTL). However, the meta-analysis included all population types of Gossypium mixing both intraspecific G. hirsutum and interspecific G. hirsutum x G. barbadense populations. This study used 1,075 QTL from 58 publications on intraspecific G. hirsutum and 1,059 QTL from 30 publications on G. hirsutum x G. barbadense populations to perform a comprehensive comparative analysis of QTL clusters and hotspots between the two populations for yield, fiber and seed quality, and biotic and abiotic stress tolerance. QTL hotspots were further analyzed for mQTL within the hotspots using Biomercator V3 software. The ratio of QTL between the two population types was proportional yet differences in hotspot type and placement were observed between the two population types. However, on some chromosomes QTL clusters and hotspots were similar between the two populations. This shows that there are some universal QTL regions in the cultivated tetraploid cotton which remain consistent and some regions which differ between population types. This study for the first time elucidates the similarities and differences in QTL clusters and hotspots between intraspecific and interspecific populations, providing an important resource to cotton breeding programs in marker-assisted selection .

唐凯, 王柏林, 姜海波, 何新林. 新疆石河子市近51年蒸发量变化特征分析
水电能源科学, 2016,34(11):17-21.

[本文引用: 1]

Tang K, Wang B L, Jiang H B, He X L. Variation characteristics of evaporation in Shihezi of Xinjiang in recent 51 years
Water Resour Power, 2016,34(11):17-21 (in Chinese with English abstract).

[本文引用: 1]

文强, 韩炜. 天山南北坡近46年蒸发量变化及相关因素对比分析——以呼图壁和库尔勒为例
伊犁师范学院学报: 自然科学版, 2019,13(4):43-50.

[本文引用: 1]

Wen Q, Han W. Changes in evaporation over the last 46 years of the Tianshan Mountains and comparative analysis of related Factors—Take Hutubi and Korla for example
J Yili Normal Univ (Nat Sci Edn) 2019,13(4):43-50 (in Chinese with English abstract).

[本文引用: 1]

Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interactions affecting cotton fiber quality
Theor Appl Genet, 2003,106:384-396.

DOI:10.1007/s00122-002-1025-yURLPMID:12589538 [本文引用: 1]
Cotton is unusual among major crops in that large acreages are grown under both irrigated and rainfed conditions, making genotype x environment interactions of even greater importance than usual in designing crop-improvement strategies. We describe the impact of well-watered versus water-limited growth conditions on the genetic control of fiber quality, a complex suite of traits that collectively determine the utility of cotton. Fiber length, length uniformity, elongation, strength, fineness, and color (yellowness) were influenced by 6, 7, 9, 21, 25 and 11 QTLs (respectively) that could be detected in one or more treatments. The genetic control of cotton fiber quality was markedly affected both by general differences between growing seasons (

Campbell B T, Jones M A. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials
Euphytica, 2005,144:69-78.

[本文引用: 1]

Farias F J C, Carvalho L P, Silva Filho J L, Teodoro P E. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso
Genet Mol Res, 2016,15:1-8.

[本文引用: 1]

Li B Q, Tian Q, Wang X W, Han B, Liu L, Kong X H, Si A J, Wang J, Lin Z X, Zhang X L, Yu Y, Yang X Y. Phenotypic plasticity and genetic variation of cotton yield and its related traits under water-limited conditions
Crop J, 2020,8:966-976.

[本文引用: 2]

Zheng J Y, Oluoch G, Riaz Khan M K, Wang X X, Cai X Y, Zhou Z L, Wang C Y, Wang Y H, Li X Y, Liu X Y, Wang K B. Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross betweenGossypium tomentosum and Gossypium hirsutum
Genet Mol Res, 2016. doi: 10.4238/gmr.15038477.

[本文引用: 1]

Frova C, Krajewski P, Fonzo N D, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers: I. Yield components
Theor Appl Genet, 1999,99:280-288.

[本文引用: 1]

吴迷, 汪念, 沈超, 黄聪, 温天旺, 林忠旭. 基于重测序的陆地棉InDel标记开发与评价
作物学报, 2019,45:196-203.

[本文引用: 1]

Wu M, Wang N, Shen C, Huang C, Wen T W, Lin Z X. Deve lopment and evaluation of InDel markers in cotton based on whole-genome re-sequencing data
Acta Agron Sin, 2019,45:196-203 (in Chinese with English abstract).

[本文引用: 1]

相关话题/新疆 棉花 材料 遗传 数据