删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

生物炭的结构及其理化特性研究回顾与展望

本站小编 Free考研考试/2021-12-26

张伟明,, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福,*沈阳农业大学农学院/辽宁省生物炭工程技术研究中心, 辽宁沈阳 110866

Review of biochar structure and physicochemical properties

ZHANG Wei-Ming,, XIU Li-Qun, WU Di, SUN Yuan-Yuan, GU Wen-Qi, ZHANG Hong-Gui, MENG Jun, CHEN Wen-Fu,*College of Agriculture, Shenyang Agricultural University / Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, Liaoning, China

通讯作者: * 陈温福, E-mail: wfchen5512@126.com

收稿日期:2020-03-17接受日期:2020-08-19网络出版日期:2021-01-12
基金资助:国家重点研发计划项目“稻田生物炭基培肥产品的研制与施用技术”.2016YFD0300904-4
“生物炭基复合肥料研制与示范”.2017YFD0200802-02
辽宁省高校重大科技创新平台(生物炭工程技术研究中心)项目
院士专项基金和国家水稻产业技术体系项目.CARS01-46


Received:2020-03-17Accepted:2020-08-19Online:2021-01-12
Fund supported: National Key Research and Development Program of China “the Development and Application of Biochar-based Fertilizer in Rice Soil Fertility”.2016YFD0300904-4
State Key Special Program of Biochar-Fertilizer Technology Research and Industrialization Demonstration.2017YFD0200802-02
Liaoning Province Major Science and Technology Platform for University (Biochar Engineering and Technical Research Center)
Special Fund for Academicians, and the National Rice Industrial Technology System.CARS01-46

作者简介 About authors
E-mail: biochar_zwm@syau.edu.cn










摘要
作为新兴技术, 生物炭技术及其应用在近年发展迅速, 但由于来源、材质、炭化工艺等存在较大差异, 导致生物炭特性及应用效果千差万别, 研究结果难以比对甚至相悖, 在一定程度上阻碍了生物炭研究与应用的发展。为此, 本文从制约生物炭功效发挥的关键因素, 即生物炭的结构及理化特性入手, 系统梳理了近年有关生物炭的定义、形成、结构、元素及其主要理化特性和调控技术等方面的研究进展, 总结分析了生物炭结构及其理化特性的共性、差异性特征及规律, 厘清了有关生物炭特性及功能的基本观点、现状和共识。认为, 生物炭的结构及其理化特性是影响生物炭作用、功能及效果的最主要因素, 决定了生物炭的应用领域、范围、量级、目标和方向, 采用改性或优化调控技术是发挥生物炭功效优势、潜力与价值的关键。并从资源与环境的“循环、可持续”发展角度, 结合生物炭研究与应用实际, 探讨了未来有关生物炭理化特性研究的基本原则和方向, 旨在为生物炭基础科学研究与应用技术发展提供基础和参考。
关键词: 生物炭;结构;理化特性;研究进展

Abstract
As a new emerging technology, biochar and its applications have been rapidly developed in recent years. However, due to large differences in carbonization materials and processes, it is difficult to compare or even contrast the results of biochar application studies, thus hindering the development of biochar applications to some extent. For this reason, our paper focuses on the key factors restricted the function of biochar, namely, the structure as well as physical and chemical properties of biochar, and then systematically presents the main research advances in recent years from the following perspectives of biochar such as definition, formation, structure, elemental composition, and other main physical-chemical properties, and property controlling-technologies. The paper analyses and summarizes the common and differential characteristics of biochar structure and physical and chemical properties and clarifies the relevant basic perspectives, statuses, trends, and consensus on the structure and properties of biochar. The structure and fundamental physical and chemical properties of biochar are believed to be the most important factors affecting the roles, function, and effects of biochar. They also determine the application field, scope, amount, objective, and direction of biochar. Therefore, the modification technology or optimal regulation technique is the key to develop the efficacy advantage, potential and values of biochar. By further combining the research and application of biochar, the basic principles and development directions of biochar physicochemical property research in the future focusing on the physical and chemical properties of biochar are evaluated from cycle and sustainable development of resources and material perspectives. This paper aims to provide the basis and reference for the development of basic scientific science and application technology studies on biochar.
Keywords:biochar;structure;physicochemical properties;advances


PDF (2839KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18. doi:10.3724/SP.J.1006.2021.02021
ZHANG Wei-Ming, XIU Li-Qun, WU Di, SUN Yuan-Yuan, GU Wen-Qi, ZHANG Hong-Gui, MENG Jun, CHEN Wen-Fu. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 2021, 47(1): 1-18. doi:10.3724/SP.J.1006.2021.02021


生物炭(Biochar)是近年新兴的研究热点, 国内外相关研究发展迅速。我国的生物炭研究, 自2005年开始迅速升温, 特别是陈温福院士于2011年在《中国工程科学》上发表的“生物炭应用技术研究”一文, 系统阐述了生物炭的性质及应用, 极大推动了我国生物炭基础研究与应用技术的发展。时至今日, 国内外科学家在农业、环境、能源等诸多领域开展了卓有成效的科学探索与应用研究工作, 取得了一系列重要研究进展和成果, 可谓“百花齐放、百家争鸣”。

然而, 在众多科学研究结果中, 我们也发现了一些基本事实, 即不同研究结果之间差异较大且很难进行有效的共性比对, 甚至截然相反或相悖, 对基础研究和实践应用的指导意义和价值十分有限。分析发现, 造成研究结果的差异性主要与原料来源、材质, 炭化工艺条件以及应用对象、剂量、方法等有关。此外, 由于研究、使用者的研究背景、出发点、目标不同, 对生物炭的概念、来源、形成及特性等缺乏系统、准确认知, 也导致其主观上对不同生物炭研究及应用结果产生混淆或误解。因此, 十分有必要对生物炭的概念、来源、形成、结构、特性、功能及其调控技术等进行系统梳理和总结分析, 为生物炭研究与应用提供科学参考。

生物炭理化特性是开展生物炭研究与应用的重要基础, 也是最为关键的一环, 决定了生物炭功效及其应用“出口”, 是生物炭发挥作用的“源泉”。目前由于原材料来源、材质、炭化工艺及制备技术、使用方法等方面的差异, 使得生物炭基础科学与应用技术研究呈现“多元化、复杂化、碎片化”特征, 在不同领域、学科均有涉及, 其研究结果或结论也有着巨大差异性。特别是, 目前有关生物炭结构及理化特性研究多处于“散、杂、乱”状态, 缺少系统、有效的共性分析和比较研究。迄今, 亦鲜见针对生物炭结构及其理化特性的系统研究和总结分析。本文在系统梳理有关生物炭的结构及理化特性研究基础上, 分别从生物炭概念、来源、形成、结构、主要理化特性及其调控技术等方面, 对相关主要研究进展进行了归纳、总结和比较分析, 厘清了有关共性认知、研究结果及结论, 并结合生物炭研究与应用实际, 从资源与环境“和谐共生、循环利用、永续发展”视角, 对未来有关生物炭理化特性研究的基本原则、方向及主要问题等进行了展望, 以期为生物炭基础研究与应用发展提供基础和参考。

1 生物炭的概念

生物炭/生物质炭, 作为“旧物新识”的一种“新”事物, 追溯其产生历史, 其实早在我国两千多年前的唐代, 就有《卖炭翁》诗云“伐薪烧炭南山中……”, 生动再现了当时的制炭场景。随着人们对制炭技术、用途等方面的不断探索与实践, 不同材质、形态的“炭”层出不穷而又性质各异, 推动了炭化技术及其应用研究发展, 同时也使一些研究、使用者对生物炭概念、使用等产生了一些分歧、混淆或误解。

生物炭/生物质炭, 其译文源于英文词——“Biochar”, 最早用于区分生物质与化石燃料所形成的活性炭材料[1]。在2006年, 美国康奈尔大学Lehman教授丰富了“Biochar”一词的含义, 将“Biochar”定义为生物质衍生黑炭, 即一种和木炭概念相近的材料, 可用于土壤碳库封存、改善土壤物理与生物学特性, 以及促进植物生长的土壤改良剂[2]。在早期的生物炭相关研究中, 由于其制炭工艺与木炭相近, 因而在国外研究中出现了“Charcoal”和“Biochar”混用的情况, Charcoal其含义多指现在的“Biochar” [3,4]。随着生物炭研究的深入, 生物炭概念也逐渐清晰, 在2013年生物炭国际倡导组织(International Biochar Initiative, IBI)将生物炭定义(简述)为, 生物质在限氧环境条件下通过热化学转化获得的固体材料[5]

由于不同原料、炭化温度及工艺等条件下制备的生物炭材料, 在结构及性质上差异很大, 使其在应用对象、目标、范围、功效等方面存在显著差异, 导致一些分歧产生。目前, 在生物炭原料来源、炭化条件、理化特性等方面的定性、定量界定条件还存在不同观点, 争议来源主要为: 1)关于制炭原材料来源, 动物体及污泥等非植物源生物质是否列入其中;2)在炭化工艺条件方面, 高温(>700℃以上)快速裂解, 是否属于常规炭化工艺方式;3)制备技术方面, 采用非传统或多途径复合、多技术融合生产的改性生物炭或其他衍生性炭材料, 是否列为常规生物炭的一种。上述定义、内涵、界定条件等目前尚无统一定论, 随着炭化工艺、制备技术的不断改进与创新, 不同原理、技术及方法获得的生物炭千差万别, 也使得生物炭概念、定义等呈现“多元化、复杂化”趋势[6,7,8]。从目前多数研究来看, 基于生物炭来源及应用实际, 从废弃生物质资源循环利用角度, 一般认为生物炭来源于农、林等废弃生物质, 在一定炭化温度条件下(<700℃), 在限氧或缺氧条件下热解形成的富碳固体产物[9]

目前, 尽管对生物炭概念、定义等方面的理解、认知等还存在一些不同观点, 但随着生物炭技术的创新与发展, 特别是多学科交叉、先进技术的不断涌现, 生物炭结构及其理化特性研究将不断推向深入, 届时生物炭概念、定义等将得到逐步统一、完善和发展。

2 生物炭的形成过程

生物炭, 是由生物质经热裂解反应过程后而形成的一种产物[10,11,12]。在热裂解过程中, 生物质会通过分子内、分子间的重排作用反应而形成由芳香多环等结构形成生物炭, 以及生物油、混合气等物质[13,14]

不同材质生物质的炭化形成过程存在差异。一般情况下, 制炭原料可分为木质和非木质纤维素类生物质[15,16]。其中, 木质纤维素类生物质主要来源于植物类废弃物[17,18], 其主要成分为纤维素、半纤维素、木质素等[19,20,21]。而非木质纤维素类生物质则主要包括动物粪便、一部分植物及其衍生物等[16], 其主要成分为蛋白质、脂类、糖类、无机物以及部分木质素、纤维素[22]。一般情况下, 木质纤维素类生物质在200~260℃时开始发生热裂解反应, 半纤维素的分支聚合物和短侧链先分解为低聚糖, 其后重新排列形成1,4-醚-D-木糖[23], 1,4-醚-D-木糖在经过脱水、脱羧、芳构化及分子内缩合等过程后形成炭, 或分解形成低分子量的生物油及混合气[24]。在300℃左右纤维素开始分解, 先解聚成低聚糖, 随后糖苷键断裂生成D-吡喃葡萄糖, 在分子内重排形成左旋葡萄糖聚糖[25], 其中一部分左旋葡聚糖经过脱羧、芳构化、分子内缩合等过程后形成炭, 另一部分在经重排、脱水过程后形成羟甲基糠醛, 进一步形成生物油及混合气[24]。在400℃时木质素开始大量分解为自由基, 并通过自由基取代、加成、碳碳偶合等过程后形成生物炭、生物油和混合气[26,27]。在超过500℃时, 生物炭孔隙内的聚合物、挥发性化合物会发生再聚合反应, 形成次生炭或经过重组产生分子量较高的焦油[28,29,30]。而非木质纤维素类生物质, 在200℃左右开始发生热解反应, 蛋白质、脂类、碳水化合物等有机物的低键能键(如氢键、氢氧化钙键)发生断裂[16], 键断裂随温度升高而增强, 主要热解过程发生在300~600℃, 最终热解形成生物炭、生物油及混合气[16,31]。一般情况下, 由于非木质纤维素类生物质中的蛋白质、脂类以及核酸中含有大量氮、磷和氧, 使其热解行为更为复杂而多变[32]

在生物质热解炭化过程中, 完成了由“生物质—炭”的物质形态转变, 形成了极其丰富的多微孔碳架结构, 以及不同种类的表面官能团、有机小分子及矿物盐等[33], 为其作为吸附、载体等功能材料奠定了重要基础, 使其可在农业、环境、能源等领域广泛应用[34]

3 生物炭的结构

3.1 表面及内部结构表征

生物炭的结构, 主要由生物质原有结构在经过失水、活性物质挥发、断裂、崩塌等一系列热解炭化过程后重构形成[35], 其“骨架”结构由稳定的芳香族化合物和矿物组成[4,36], 孔隙结构则由芳香族化合物和其他功能基团组成[37,38]。生物炭的孔隙表征, 参照国际纯粹与应用化学联合会(International Union of Pure and Applied Chemistry, IUPAC)的活性炭孔隙分类可分为微孔(< 2 nm)、中孔(2~50 nm)、大孔(> 50 nm), 生物炭中的孔隙多以微孔为主[39]。生物炭的结构表征与其炭化温度条件有关, 随着炭化温度升高, 生物炭的非晶态碳结构逐步转化为石墨微晶态结构, 晶体尺寸扩大、结构更加有序[40] (图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同炭化温度下的生物炭结构表征示意图[4]

A: 生物炭结构中芳香族碳增加, 主要以无定型碳为主。B: 生物炭结构中涡轮层状芳香碳增加。C: 生物炭结构趋于石墨化。
Fig. 1Biochar structure representation under different carbonization temperature[4]

A: the aromatic carbon in biochar structure is increased, mainly part is amorphous carbon. B: the sheets of turbostratic aromatic carbon in biochar structure is increased. C: the biochar structure becomes graphitic.


3.2 生物炭结构形成的主要影响因素

制炭原料与炭化温度, 是生物炭结构形成的主要影响因素[41]。不同生物质原料在结构、内含物等方面存在本质差异, 导致其在炭化后的结晶度、交联和分支等结构特征上差异显著[42,43]。木质素含量高的生物质(如竹子、椰子壳等)在炭化后的大孔结构增多, 而纤维素含量高的生物质(如植物外壳)在炭化后形成的结构多以微孔为主[44], 这也使纤维素类生物炭的表面积(112~642 m2 g-1), 一般高于非纤维素类生物炭(3.32~94.2 m2 g-1)[45,46,47]

炭化温度条件, 也是影响生物炭结构的重要因素。在热解炭化过程中, 随着炭化温度升高, 生物炭中的挥发性物质逐渐热解分离、挥发, 形成更多新孔隙和不规则、粗糙的炭粒蚀刻表面[48,49]。当炭化温度高于700℃时, 生物炭表面微孔结构开始出现破坏, 超过800℃时生物炭的多孔碳架结构表现不稳定, 坍塌现象发生[50,51]。炭化停留时间, 也可在一定程度上影响生物炭的结构。当炭化温度为500~700℃、停留时间在2 h以内时, 生物炭的孔隙度随停留时间延长而增大, 但当超过2 h后则表现为负效应[52]。一般情况下, 慢速热解炭化更有利于生物炭的多微孔形成[23], 而在快速热解炭化过程中, 由于未完全热解的类焦油等物质可能会滞留、堵塞生物炭孔隙, 不利于生物炭的多微孔结构形成[53]

生物炭的多微孔结构是其发挥作用的重要基础, 不同原料、炭化工艺条件下制备的生物炭结构表征、特性差异明显, 实际应用中可根据不同场景、目的及应用目标的需求, 通过材质定向筛选、炭化工艺定向调控等措施获得具有一定预期结构特征的生物炭, 从而充分发挥生物炭“构—效”优势及其作用潜力。

4 生物炭的主要理化特性

4.1 酸碱性

生物炭一般呈碱性, 但也有酸性表现, 其pH变幅范围在3~13[54,55]。一般情况下, 原料中的灰分含量越多, 其制备的生物炭pH越高[56]。在材质上, 由于非纤维素类生物质制备的生物炭具有较高灰分含量, 因此, 一般非纤维素类生物炭pH高于纤维素类生物炭[57,58]。而在相同炭化工艺条件下, 不同材质生物炭的pH表现为禽畜粪便>草本植物>木本植物[56,59]

一般认为, 生物炭pH随炭化温度升高而提高[55]。在较高炭化温度条件下, 会加速酸性官能团的分解如-COOH、-OH等, 使生物炭pH提高[46,60]。研究发现, 当温度由200℃升高到800℃时, 生物炭的酸性官能团由4.17 mm μg-1下降至0.22 mm μg-1、碱性官能团由0.15 mm μg-1升高到3.55 mm μg-1, 而pH则由7.37提高至12.40 [61]。较高炭化温度也有利于促进灰分中碱金属(Na、K)或碱土金属(Ca、Mg)等离子化合物的形成, 如KOH、NaOH、MgCO3、CaCO3等, 从而提高生物炭pH [60]。此外, 炭化停留时间亦可在一定程度上影响生物炭pH, 表现为炭化停留时间越长而pH越高[62,63], 但加热升温速率对生物炭pH的影响不大[64]

生物炭的酸碱性, 是影响其特性及功能的重要指标之一。从目前研究来看, 由于原料、炭化工艺及制备技术等不同, 生物炭pH变化范围较广, 基本覆盖了“酸性、中性、碱性”不同状态。在实际生产和应用过程中, 可通过炭化工艺调控、改性等技术方法获得一定酸碱范围的生物炭材料, 根据使用目的、目标科学施用。

4.2 比表面积

生物炭丰富的多微孔结构, 使其具有较大的比表面积[65,66,67]。生物炭的比表面积, 与其制炭原料、炭化温度等有关。一般情况下, 纤维素类生物质因其具有丰富的内部孔隙, 炭化后形成的生物炭会保留原有生物质细微孔隙结构, 比表面积大幅提高, 而非纤维素类生物质的孔隙结构相对较少, 因此炭化后的生物炭比表面积小于纤维素类生物炭[68]

炭化温度, 是影响生物炭比表面积的重要因素之一。当炭化温度在400℃以下时, 生物质在炭化过程中形成的孔隙率降低, 可能与生物质中挥发性物质的热解分离和挥发不完全等有关[69,70]。随着炭化温度升高, 生物质分离、释放出更多挥发性物质, 孔隙更多、比表面积增大[24,71-73]。但是, 在高于800℃时, 生物炭中的多孔结构会发生部分坍塌, 从而堵塞孔隙, 使孔径变小[74,75]。灰分含量也会影响生物炭的比表面积, 一般情况下随着炭化温度升高, 生物炭的灰分含量增加, 会堵塞部分生物炭孔隙, 从而使其比表面积降低[76]

比表面积大, 是生物炭作为载体和吸附功能材料的重要基础特性之一。在生物炭制备过程中, 比表面积大小可通过改性、调控工艺流程等进行一定程度的定向调控。

4.3 元素组成

生物炭主要由C、O、H、N、K、Ca、Na、Mg等元素组成[66,77]。其中, C元素主要为芳香环形式的固定碳, 而碱金属(K、Na等)、碱土金属(Ca、Mg)等则以碳酸盐、磷酸盐或氧化物形式存在于灰分中[60,78]。生物炭中的元素种类、含量, 主要与原材料有关[79,80]。研究认为, 纤维素类生物炭中的C含量高于非纤维素类生物炭, 木材、竹类生物炭的C含量较高[60,81]。而在其他元素中, 纤维素类生物炭中的K含量相对较高[77,82-84], 非纤维素类生物炭中的Ca、Mg、N、P等元素高于纤维素类生物炭[85]。炭化温度, 也是影响生物炭元素含量及组成的重要因素。一般情况下, 生物炭中的C、碱金属及其矿化物含量随炭化温度升高而提高, 而N、H、O等元素含量则随炭化温度升高而降低[77,86-88]

4.3.1 元素形态及有效性 生物炭中的C, 主要为芳香族碳, 以芳香环、不规则叠层堆积存在, 使生物炭具有稳定性高、抗分解能力强特性[4,89-90]。生物炭还含有一定有机碳, 主要为未完全碳化的生物质和脂肪酸、醇类、酚类、酯类化合物, 以及类黄腐酸、胡敏酸等物质组分, 一般在新制备生物炭、低温热解炭化形成的生物炭以及非纤维素类生物炭中的含量相对较高[54,62-91]。生物炭中的N、P、K及其他无机盐离子等元素, 可作为植物、微生物等生命体养分的来源之一[92], 但不同生物炭的养分元素含量、有效性等存在差异, 一般富含养分原料制备的生物炭, 其含有的营养元素相对较高, 反之亦然[93]

生物炭中的元素有效性, 与生物炭的新鲜程度、pH、炭化温度等条件有关[94]。一般情况下, 新制备的生物炭可释放更多N、P、K等养分元素, 而陈化的生物炭在养分释放量、速度等方面相对弱一些[95,96,97]。生物炭pH也会影响其元素有效性, 当pH在2~7之间时, 生物炭释放PO43-和NH4+随pH提高而降低, 而K+含量则保持相对稳定[53], 而当pH从8.9降至4.5时, 生物炭中的Ca、Mg元素释放量会增加[98]。此外, 炭化温度亦会影响生物炭中的元素状态, 随着炭化温度提高, 生物炭中的碱金属等矿物组分趋于结晶态, 使其水溶性降低[78,99-100]。当热解温度由300℃升至600℃时, 生物炭中的可溶性PO43-由430 mg kg-1下降到70 mg kg-1 [101]

4.3.2 潜在有害元素 生物炭中的元素, 绝大部分对土壤、植物及环境等有益或无害, 但受制炭原料的材质、内含物及其炭化过程等因素影响, 某些情况下还可能含有一定潜在有害元素或物质研究表明, 生物炭中的潜在有害物质主要包括有机污染物和重金属两大类[102]

第一类: 有机污染物。生物炭中的有机污染物主要包括多环芳烃(polycyclic aromatic hydrocarbons, PAHs)、多氯二苯并二噁英(polychlorinated dibenzo dioxins, PCDDs)、多氯二苯并呋喃(polychlorinated dibenzo furans, PCDFs), 以及一些挥发性有机化合物、二甲苯酚、甲酚、丙烯醛、甲醛等[102], 这些物质主要在热解炭化过程中产生, 过量可能对土壤、微生物、植物等健康构成风险[103,104]。研究发现, 生物炭中的多环芳烃主要与原料中的木质素、纤维素和半纤维素含量有关[105], 一般情况下木质素含量高的原材料在炭化后的多环芳烃含量较低, 如木质生物炭的多环芳烃低于秸秆类生物炭[106]。不同种类生物炭的有机污染物含量差异显著, 多环芳烃(PAHs)含量从< 0.1 mg kg-1到>10,000 mg kg-1表现不等[107], 生物炭国际倡导组织(IBI)建议生物炭的多环芳烃含量应控制在6~20 mg kg-1 [5]。不同炭化温度, 也会影响生物炭的潜在污染物含量及形态。一般情况下, 低温制备的生物炭含有较高浓度的低分子量多环芳烃, 而在高温下制备的生物炭, 其高分子量多环芳烃的浓度相对较高[108]。炭化过程中, 可通过输入O2和CO2作为载气来降低PAH含量[107], 而在炭化后可通过在厌氧环境中冷却生物炭亦有助于降低其多环芳烃含量[107]

第二类: 重金属。生物炭中的重金属元素, 主要包括Cd、Cu、Cr、Ni、Pb、Zn、Hg等[102], 其含量与原材料密切相关, 一般认为非纤维素类材质制备的生物炭, 其重金属含量高于纤维类生物炭[16]。在炭化过程中, 生物炭中残留的重金属形态相对稳定, 但其直接毒性、生物有效性比炭化前降低[16], 炭化温度越高, 生物炭中的重金属含量越高[109]、生物活性越低[109,110]。生物炭国际倡导组织(IBI)经过风险评估后, 对生物炭中的有害元素含量上限提出了明确建议(表1) [111]

Table 1
表1
表1生物炭中有害元素含量上限阈值[111]
Table 1Maximum allowed thresholds of the toxic elements in biochar[111]
有害元素
Toxic element
含量
Content (mg kg-1)
砷Arsenic13-100
镉Cadmium1.4-39.0
铜Copper143-6000
铬Chromium93-1200
镍Nickel47-420
铅Lead121-300
锌Zinc416-7400
汞Mercury1-17
钼Molybdenum5-75
钴Cobalt34-100

新窗口打开|下载CSV

生物炭中的潜在有害元素含量及其有效性, 若在安全范围内对土壤、作物及环境的影响很小, 但在超限投入条件下可能对生态环境安全造成一定风险。因此, 在规模化、工程化实施过程中, 要严格筛选、控制原料来源, 或采用如在炭化前添加磷酸二氢钙或沸石来降低原材料中重金属的生物利用度[112]等一些预处理措施来降低其重金属含量, 最大限度降低生物炭中的潜在有害元素风险, 使其在安全、可控范围内。同时, 通过调控炭化工艺条件及参数, 尽可能减少生物炭中的污染物及有害元素残留, 降低其生态环境安全风险。

生物炭的元素组成、含量及形态, 是生物炭的重要特性及其功效发挥的“源泉”。主要体现在: 1)释放N、P、K、Ca、Mg等大量及中微量元素, 为土壤提供一定外源养分, 促进植物生长[113];2)生物炭的重要组分——灰分, 除含有一定碱金属物质外, 可在吸附金属元素等过程中发挥关键作用[114]

4.4 表面化学性质

4.4.1 表面官能团 生物质中的纤维素、半纤维素、蛋白质、脂肪等, 经热解炭化后在生物炭表面及内部形成大量羧基、羰基、内脂基及羟基、酮基等多种类型官能团, 其中大多为含氧官能团或碱性官能团, 使生物炭具有良好的吸附、亲水/疏水, 以及缓冲酸碱、促进离子交换等特性[38,115-116]

生物炭的表面官能团与制炭原料、炭化温度条件密切相关[46]。不同原材料中, 非纤维素类生物炭比纤维素类生物炭含有更多的N、S官能团[117]。在不同炭化温度条件下, 生物炭官能团的数量、密度随炭化温度升高而下降[92]。在185~200℃时, 生物炭表面官能团种类不会发生明显变化[46,118], 而当温度达到300℃时, 羧基、羰基含量则快速上升至最高点, 此后随炭化温度升高而降低[72]。至400~550℃时, 生物炭的脂肪族官能团随温度升高而逐渐消失[70,118], 当温度达到600℃时, 烷基碳官能团消失[46]

4.4.2 阳离子交换量 阳离子交换量(cation exchange capacity, CEC), 是决定生物炭表面化学特性的基础指标, 也是衡量其离子交换、吸附性能的重要指标之一[119]。生物炭的阳离子交换量与制炭原料、炭化温度等有关[120]。研究发现, 非纤维素类生物炭的CEC比纤维素类生物炭高, 而原料发酵后制备的生物炭CEC要高于未发酵原料制备的生物炭[121,122], 不同原料炭化后形成的官能团数量不同, 导致其阳离子交换量存在差异[66]。在不同炭化温度条件下, 较低温度制备的生物炭表面含有更多含氧官能团, CEC较高, 而在较高温度下制备的生物炭, 其含氧官能团被破坏, 表面负电荷减少, CEC降低[121,122,123,124]。此外, 生物炭中的K、Ca、Mg等碱金属增加, 生物炭“激发”的土壤微生物活动增强, 也可能使生物炭CEC提高[78,125]

4.5 吸附性

生物炭极其丰富的多微孔结构、大比表面积, 使生物炭具有强吸附力。生物炭的吸附性能与其多微孔结构、比表面积、表面官能团等有关, 亦受到生产工艺、热解炭化温度、酸碱环境条件等诸多因素影响[126], 不同介质中决定生物炭吸附性的因子多、吸附过程较为复杂[127]。生物炭所具有的吸附性, 使其可广泛用于重金属、有机污染物、有害气体等不同介质中的污染物防控, 并可作为吸附剂、载体或基质等功能材料广泛应用于农业、环境、化工等领域, 应用潜力、空间巨大[97,40]。目前, 关于生物炭吸附性的研究较多, 涉及领域多、范围广, 有关介质、吸附条件、作用因子、吸附过程等较为繁杂, 在此不再赘述。以下仅就生物炭在农业、环境等领域应用的基本吸附原理、过程等作以简述。

环境领域。作为吸附功能材料, 利用生物炭进行重金属污染修复的研究较为常见, 其基本吸附过程如图2-a所示, 主要包括静电吸引、离子交换、物理吸附、表面络合和/或沉淀等过程[87]。生物炭对重金属的吸附作用, 主要源于生物炭表面所含有的丰富含氧基团对重金属的强吸附作用[87], 而生物炭的矿物成分在吸附过程中也具有至关重要的作用, 不仅可为重金属吸附提供结合位点[114], 而且可通过提高生物炭pH, 降低有效态重金属离子活性、促进重金属沉淀, 从而减少土壤中重金属浸出、降低重金属生物有效性[128]。与此同时, 生物炭极其丰富的多微孔结构也会增强其对重金属离子的吸附、拦截, 从而降低重金属离子活性及其移动性, 并可能使重金属形态发生改变[129]

图2

新窗口打开|下载原图ZIP|生成PPT
图2生物炭对重金属(a)和有机污染物(b)吸附模型[87]

Fig. 2Summary of mechanisms for heavy metals (a) and organic contaminants (b) adsorption on biochars[87]



农业领域。现实农业生产中, 过量化肥、农药施用等造成的面源污染日益突出, 已成为制约农业“低碳、绿色、可持续”发展的“瓶颈”。研究表明, 生物炭对降低农药等有机污染物残留, 减少土壤中过量化肥养分流失等农业面源污染问题具有重要作用[130]。生物炭对有机污染物的吸附作用如图2-b所示, 主要包括静电作用、疏水作用、氢键、π-π作用、孔隙填充等作用过程。生物炭对有机污染物的吸附, 主要源于生物炭中未炭化部分生物质的分配作用和炭化部分的吸附作用[87], 其中非炭化部分的分配作用是一个线性、非竞争性的吸附过程[127], 而炭化部分的吸附作用具有非线性等温线、共存吸附质间竞争的特性。生物炭对有机污染物的吸附作用过程不同, 主要与在相对较低炭化温度条件下(<700℃), 部分生物质未完全碳化[100,131], 使生物炭含有炭化/未炭化部分有关。在实际应用过程中, 生物炭对有机污染物的吸附一般为多种吸附作用过程的耦联、结合, 较为复杂[87]。在农业生产中, 生物炭可作为基质、载体或吸附剂材料, 用于吸附或固持N、P、K等养分离子, 减少土壤养分流失, 水体“富营养化”污染净化, 以及提高作物养分利用效率等[97], 其吸附作用与生物炭多微孔构造、表面官能团、比表面积及离子交换性能等有关[97,132]

4.6 疏水/持水性

生物炭特殊的结构和理化特性使其具有一定疏水/持水性(图3)[133]。生物炭具有疏水性, 与其在炭化过程中的表面含氧官能团减少有关[8]。而生物炭具有持水性, 主要源于其丰富的多微孔结构增加了对水的吸附力[134]。生物炭持水性能主要取决于其疏水/持水性在水分吸附上的抵消、平衡或叠加作用[119]

图3

新窗口打开|下载原图ZIP|生成PPT
图3生物炭的疏水性(a)和持水性(b)[133]

Fig. 3Hydrophobicity (a) and water holding capacity (b) of biochar[133]



生物炭的疏水性是其作为非溶性吸附质的重要基础, 其性能大小可通过测定其含O、N官能团数量来表征, 含O、N官能团数量越低、疏水性越强[8]。生物炭的疏水性与炭化温度密切相关, 炭化温度越高、疏水性越强, 与生物炭表面极性官能团减少、芳香性增加有关[45,50,135]。生物炭的持水性则与其多孔构造及不同炭化温度下的孔隙连通性有关[119], 在低温炭化条件下, 生物炭的孔径较小、互连性较低, 产生的焦油成分易堵塞孔隙, 导致其持水性能下降[136], 而在高温炭化条件下, 生物炭的多微孔结构及数量增加、孔隙连通性增强, 对水分的物理容纳和吸附力增强, 使其持水性能提高[119,137]

4.7 稳定性

生物炭含有较高的C, 具有稳定的芳香族碳结构, 使其具有较高稳定性[138]。生物炭结构中的芳环凝聚程度, 影响生物炭功能的稳定性和持久性, 而非芳香族结构/官能团则有利于形成簇状结构, 也对生物炭稳定性产生一定影响[37]。生物炭的稳定性, 通常采用H/C、O/C表征[139]。低H/C和O/C比, 表明生物炭具有较高熔融芳香环结构、稳定性较强, 反之亦然[140]。一般认为, 生物炭的O/C摩尔比小于0.2被认为是最稳定的, 具有超千年的半衰期, O/C比在0.2~0.6之间的生物炭半衰期在100~1000年之间, 而O/C比大于0.6的生物炭半衰期小于100年[141]

原料类型、炭化温度是影响生物炭稳定性的主要因素[37]。在制备原料中, 木质素是最稳定的成分, 其次是纤维素和半纤维素[142], 原料中的木质素含量越高, 炭化形成的芳香族C含量越高, 生物炭的稳定性越强[90]。因此, 木质纤维素类生物炭比非木质纤维素类生物炭更稳定, 抗生物降解的能力更强[40]。原料中的金属、金属化合物或矿物等组分会在一定程度上降低生物炭的稳定性[143], 但一些碱金属、碱土金属及硅等元素会增强生物炭的稳定性, 如生物炭中的非晶硅与C相互作用形成稳定的Si-C, 从而防止C被氧化, 使生物炭稳定性增强[144]。此外, 原料尺寸也会在一定程度上影响生物炭的稳定性, 一般大颗粒/尺寸原料制备的生物炭稳定性高于小颗粒/尺寸原料制备的生物炭[145,146], 其主要原因在于大颗粒/尺寸原料在热解炭化时, 气相与固相物质之间的接触时间更长, 聚合形成更多的碳, 从而使生物炭固定碳含量提高、稳定性增强[139]。热解炭化温度, 则决定生物炭的芳香性及芳香凝聚度, 生物炭中的大部分不稳定组分会随着炭化温度升高而逐渐消失, 熔融芳香环结构增加, 不稳定的非芳香环结构、大小及数量呈下降趋势[37]。此外, 加热速率也会对生物炭稳定性产生一定影响, 加热速率慢利于增强生物炭稳定性[147]

综上, 生物炭的原料来源丰富, 不以消耗不可再生资源和损害生态环境为代价, 具有“低成本、可再生、可持续”的突出优势, 且制备过程“低碳、环保”, 利于促进资源与环境的“循环、永续”发展;生物炭的“富碳”多微孔结构使其可作为载体、基质等“构架性”功能材料, 从而发挥稳定的“结构重建”或“构相改良”作用, 而生物炭呈碱性、含碳量高、比表面积大、吸附力强, 富含多种养分、表面官能团等多种特性, 则使其可在固碳减排、改土培肥、防控污染、节肥增效、促长增产等方面发挥综合性“叠加”效应, 其“多向、多效”增益及“累积、持续”性功效作用突出;生物炭独特的来源、结构、特性及功效优势, 使其有别于其他同类材料, 具有显著经济、生态和社会效益, 发展潜力和应用空间巨大。

5 生物炭理化特性调控技术进展

生物炭的理化特性, 是其功效发挥的“根源”, 重要性不言而喻。国内外研究者从不同学科、领域和研究背景出发, 采用不同技术与方法, 针对生物炭理化特性调控技术开展了积极、有益的科学探索, 取得了一定研究进展[148]。目前, 主要的调控技术途径: 1)在“前、中、后”炭化过程中添加外源物质, 使其与原料或炭化产物发生理化反应, 进而改变生物炭表面或内部结构及特性, 从而获得某些具有特定性质或功能的生物炭材料;2)通过调控、优化炭化工艺及制备方法, 对生物炭结构及理化性质进行调控, 使生物炭构相、特性发生某些定向或优化改变, 从而达到预期应用目的和目标。在实际运用过程中, 一般多采用上述两种或二者相结合的技术途径。

5.1 外源介质添加改性技术

生物炭具有良好的多微孔、吸附性及稳定性, 但在某些特定用途、目标条件下还不能满足现实需求。因此, 一些研究者尝试在炭化过程中, 通过添加氧化剂、磁化物等外源介质, 使其与生物炭发生一些物理-化学反应, 重塑炭表面、内部某些结构及特性, 使之达到目标特性最优化[149,150]。目前, 主要有磁化改性、氧化剂改性、涂层/浸渍改性等调控技术。

5.1.1 磁化改性 在污水净化、重金属污染修复等环保领域, 生物炭的使用需求和应用空间巨大。但是, 由于生物炭质轻、密度低, 不易与水等介质分离[154], 使生物炭的应用空间和量级受限。因此, 一些研究者通过将生物炭与磁性介质结合, 在外磁场控制下实现污水固、液分离[151,152,153], 取得了一定效果和进展。一般情况下, 磁性介质多采用铁或铁氧化物, 如铁(0)、γ-Fe2O3、Fe3O4、CoFe2O4[148]。改性后的磁化生物炭, 阳离子交换量、孔隙数量等大幅提高, 对污染物的吸附、去除能力明显增强[155,156]。研究发现, 磁化改性生物炭对水体中的重金属离子、有机污染物等具有较强吸附作用, 其整体吸附性能高于非磁化生物炭[148,155]。磁化改性技术的应用, 进一步扩展了生物炭的应用空间, 实用性、易用性提高。

5.1.2 氧化剂改性 氧化剂改性, 一般采用化学氧化剂为介质, 使其与生物炭发生氧化反应, 改变生物炭的结构、酸碱性、官能团、比表面积等特性, 增强其吸附等性能, 从而提高生物炭对土壤、水体中污染物的吸附、去除效率[157]。一般情况下, 氧化剂改性多采用过氧化氢、强酸或强碱类化学剂。

过氧化氢改性, 其优点是成本低, 可避免与其他元素产生干扰, 适于土壤改良、水体净化等应用场景[148]。研究发现, 采用过氧化氢处理的改性生物炭, 其表面含氧官能团数量大幅增加、吸附能力明显提高[158,159]。强酸类氧化剂改性, 一般采用硫酸、硝酸等化学试剂为介质。研究表明, 当炭化温度达到700℃时, 以硫酸为介质氧化处理后的改性生物炭, 其比表面积显著提高, 是未活化改性前的250倍以上[160]。采用硝酸改性, 会造成生物炭的结构性坍塌和pH降低、比表面积减小, 但会增加生物炭的表面酸性基团数量, 提高其表面亲水性[148,161]。强碱类氧化剂改性, 一般采用氢氧化钠、氢氧化钾等化学剂。研究发现, 采用氢氧化钠改性, 会显著提高生物炭的表面积和微孔体积, 提高其对重金属离子的吸附能力[162,163,164]。而采用氢氧化钾改性, 生物炭的微孔数量、吸附性能也有一定程度提高[165,166]

5.1.3 涂层/浸渍改性 一般指在炭化前或炭化后, 采用涂层或浸渍方法, 将外源金属氧化物、有机试剂、纳米材料等介质与生物炭进行物理或化学反应耦合, 从而使生物炭比表面积、多孔性、表面官能团、阳离子交换量等特性改变的方法[148,167]

采用金属氧化物涂层改性, 可在不同程度上提高改性生物炭的吸附能力[168,169], 当浸有金属离子的生物质在炭化后, 其所含有的金属离子形成金属氧化物或氢氧化物, 成为负载金属的炭基复合材料[148]。研究发现, 与未改性生物炭相比, 钴涂层改性生物炭具有更高的表面积、孔体积, 对铬离子的吸附量显著增加[169], 而采用MgCl2-6H2O和AlCl3- 6H2O与生物炭复合制备的炭基复合材料, 对磷的最大吸附量提高了5~50倍[170]。此外, 有研究采用聚乙烯亚胺和戊二醛与生物炭复合, 发现改性后的生物炭含氧官能团数量明显增加, 对Cd6+的吸附性能明显提高, 最大吸附量是未改性生物炭的18.87倍[171]。而采用乙二胺、三甲胺等有机试剂作为介质, 改性后的生物炭孔隙结构更为发达、表面基团数量明显增加, 对硝酸盐的吸附、去除效能提高[172]

近年来, 纳米材料的技术开发与应用得到了专家、****的广泛关注。但由于纳米材料颗粒小, 易团聚、氧化, 在一定程度上限制了其应用[173,174]。但如果将纳米材料通过预涂(炭化前)和浸渍(炭化后)等过程负载于生物炭表面, 制备成功能性炭基纳米复合材料, 可提供更多高亲和力吸附位点, 从而有效发挥纳米材料的优势, 改善生物炭的多孔结构及比表面积、官能团、热稳定性等特性(图4)[175]。研究认为, 采用预涂、浸渍等处理方法, 将纳米材料与生物炭结合, 可弥补高温热解后生物炭表面官能团减少等“缺陷”, 实现“纳米-生物炭”功能复合, 充分发挥纳米材料与生物炭材料的双重功效优势, 提高其对污染物的吸附、去除效能[176]。目前, 采用涂层/浸渍改性的纳米/高分子复合材料主要为石墨烯、碳纳米管、壳聚糖等, 具有良好的应用潜力和发展空间。

图4

新窗口打开|下载原图ZIP|生成PPT
图4生物炭基纳米复合材料的合成制备过程[175]

Fig. 4Schematic diagram of synthesizing biochar-based nano-composites[175]



5.2 炭化工艺调控技术

炭化工艺及制备方法, 决定了生物炭的结构及主要理化特性。通过改进、优化和创新生物质炭化工艺及其制备方法, 实现对生物炭结构及特性的总体性、批量化调控, 是工程化、规模化开发生物炭功能材料及产品的必由之路。目前, 炭化工艺调控技术主要有气体活化、微波炭化、球磨、紫外辐照等。

5.2.1 气体活化 气体活化, 一般指在一定炭化温度条件下, 采用水蒸气、二氧化碳等进行活化改性的方法[148]。通过气体活化技术, 可将常规生物炭改性为结构更为丰富、比表面积更大的活性生物炭材料[177]。研究发现, 在700℃条件下采用蒸汽活化的生物炭比未活化生物炭的表面积提高了一倍[178], 吸附性能显著提升。

气体活化改性生物炭, 多用于水体净化、污染物处理等领域[179,180,181]。研究发现, 经特定蒸汽流量活化后的生物炭, 对铜离子的吸附率可达93% [181], 对汞离子也表现良好吸附性[182]。另有研究表明, 与未活化生物炭相比, 蒸汽活化生物炭可提高其对土壤氮、磷等养分离子的固持能力, 减少养分流失[183]。气体活化改性是一种简单、有效的改性技术方法, 但由于生物炭非均质性强, 反应温度、活化程度等条件难以精确控制, 因而可能造成对生物炭活化不均、局部过热等问题, 影响生物炭的活化质量及其功能作用, 在工业化生产中尚需进行深入的工艺与技术创新[184]

5.2.2 微波炭化 微波, 是一种频率在300兆赫至300千兆赫之间的高频电磁波, 可迅速穿透生物质并将能量传递给反应物官能团[185]。采用微波改性方法制备的生物炭, 在官能团数量、比表面积及稳定性等方面优于传统热解方法制备的生物炭[186,187]。研究表明, 微波改性生物炭可提高其对重金属污染物的吸附、去除效率[188,189,190]。另有研究通过在微波制炭过程中添加特定化学物质, 使生物炭与特定反应物在微波条件下发生物理-化学反应, 也取得了良好试验效果[191]。未来, 在精细化、多元化应用目标趋动下, 在微波裂解过程中添加化学改性剂或其他特性材料, 已成为一种发展趋势[148]

5.2.3 球磨制炭 球磨制炭, 一般指采用球磨仪对生物炭材料进行机械球磨, 降低其固体颗粒粒度, 从而改变生物炭结构, 提高生物炭整体性能的方法[192]。球磨后的生物炭颗粒大小可达纳米级, 比表面积、吸附性能显著提高, 去除有机、无机污染物性能表现与碳纳米管相当[193]。由于球磨生物炭的颗粒更小, 使其比表面积更大, 利于增加对有机、无机离子的潜在吸附位, 使球磨生物炭具有优异的整体吸附性能[194,195]。经球磨优化条件下制备的生物炭, 其表面积增加60~194 m2 g-1, 吸附性能显著提高[196]

但是, 由于球磨生物炭在水中的分散性强、不易控制, 在一定程度上限制了其在环保等领域的应用。此外, 由于球磨生物炭的颗粒较轻, 易发生地表径流侵蚀和场外输送, 因而可能造成潜在的生态安全风险。研究表明, 随着生物炭粒径减小, 生物炭迁移量明显增加[197]。生物炭胶体粒子的移动, 可能导致农药及其他污染物沿土壤剖面发生非现场迁移, 从而增加地下水的潜在环境安全风险[198]。目前, 在球磨生物炭的结构及特性研究方面, 已取得一定研究进展, 但受机械水平、产能及应用条件、范围、生态安全性等因素影响, 距“工程化、规模化”开发与应用还有一定距离。

5.2.4 紫外辐照 紫外辐照, 一般指采用一定波段的紫外光进行辐照改性的方法。紫外光辐照改性生物炭, 其比表面积、含氧官能团数量明显提高, 对Pb2+、Cd2+金属离子的吸附能力明显增强, 最大吸附量显著提升[199,200]。紫外辐照改性方法, 操作简单、环保、安全, 为生物炭改性技术发展提供了新途径。但是, 由于实施紫外辐照的条件、容量和规模等因素制约, 使其在“规模化、工程化”及“精准性、稳定性”等方面, 还存在一定局限性。

生物炭结构及理化特性, 决定了其作为载体、基质或吸附剂等功能材料的“适用、实用和经济性”, 采用新材料、新工艺、新方法对生物炭构相及其理化特性进行“定性、定量化”调控, 是一种必然趋势。目前, 生物炭改性技术已成为生物炭领域的研究热点之一, 正由单一技术转向“1+N”复合技术, 由原始、传统工艺转向“精准化、智能化、自动化”现代新工艺, 是目前改性技术的发展趋势, 生物炭改性技术的创新发展与应用有望为生物炭基础研究与应用提供新方向、新途径、新突破。

6 研究展望

时至今日, 生物炭在农业、环境、能源等领域所展现的重要功能、潜在价值与贡献, 已得到全球专家、****的广泛关注和研究认可。我国在陈温福院士等一批科学家的倡导和努力下, 在生物炭制备工艺、基础研究、应用技术、产品开发及产业化等方面所取得的研究进展与成果, 已处于国际前列。生物炭研究“方兴未艾”, 已步入“快车道”, 多领域、多学科先进技术的创新与发展, 必将推动生物炭研究与应用向“大范围、宽领域”、“综合性、交叉性”和“定制化、多元化”方向快速发展。开展生物炭特性及其应用研究, 在以下几个方面值得关注:

6.1 研究方向

(1) 面向我国农业发展国情, 结合区域农业发展特征, 突破“低成本、高效、环保”炭化工艺瓶颈, 发展“小、中、大”兼具、“炭、油、气”联产, 适合不同农林废弃物来源的炭化生产系统, 建立“分散-集中”式、多向覆盖的炭化生产网络, 依靠科技创新扩大产能、降低生产与流通成本, 使炭化工艺技术、装备与产品真正“落地、触底”, 真正“可用、能用、适用”。

(2) 基于农、林废弃物“循环、高效”利用, 聚焦农业、环境等领域“老、大、难”生产现实问题, 采用原创或交叉、集成创新技术, 深入挖掘生物炭“构-效”与“质-效”作用潜力及优势, 重点开发利于自然生态系统“平衡、稳定、永续”发展, 真正“低碳、生态、高效”的普适、多元、高值化系列炭基功能材料及产品。

(3) 建立“科学、系统、规范”的生物炭生产、测定与应用指标评价体系, 使生物炭研究与应用结果科学、准确, 有依据、可比较;创建基于不同来源、材质、工艺等条件下的生物炭理化特性与应用数据库, 使生物炭研究与应用“可查、可溯、可依”, 为相关研究、使用者提供有效参考;制定生物炭材料、产品及其应用等相关技术标准, 规范生物炭来源、生产、制备及应用等各环节, 破解生物炭制备、应用及市场乱象, 促进生物炭产业“健康、稳定、有序”发展。

(4) 生物炭研究与应用的“多领域融合、多学科交叉、多功能复合”, 生物炭材料及其产品的“特色化、功能化、定制化”, 是其未来发展的趋势和方向;未来, 生物炭基材料及产品很可能以“低碳、绿色、环保”等综合功效优势, 替代部分传统农业与环保投入品, 以“零资源损耗、低成本投入”, 获得“多效、稳定、可持续”收益, 实现经济、生态和社会效益最大化, 为农业、资源与环境的“循环、可持续”发展提供“趋动力”。

6.2 展望

目前, 生物炭理化特性及应用研究已取得一定进展, 但目前全球大多数研究仍处于实验室或模拟、小规模试验条件下, 距“批量化、规模化、工程化”应用和实施还存在较大差距。在基础研究方面, 不同来源、材质、炭化工艺条件下生物炭的“构-效”与“质-效”的定性、定量化关系, 炭基复合、载体功能材料制备及其应用的物理-化学反应过程、调控途径及作用原理、机制, 炭基功能材料的“可定制化”载体构建, 生物炭基材料及其产品应用的“长期性、安全性、可持续性”评估与预测等等, 还有诸多科学、技术问题亟待研究探索;在炭化工艺、装备及产品研制方面, 不同原料来源的“低成本、广适、环保”型炭化新工艺, 生物质炭化及其产品制备、生物炭改性条件的“精准、定量”化控制, 炭化副产物的“低成本、零污染、高效”回收与再利用, 改性生物炭的“稳定性、可控性、安全性”等方面, 尚需开展系统、深入的研究探索与实践;纳米等创新技术发展, 为炭基多功能、复合材料开发提供了新方向, 在炭基复合、介质材料的筛选、开发与应用, 复合技术的“精准、定量化”控制, 以及炭基多功能、复合材料与产品的“批量化、规模化”生产与应用等方面还有较大提升空间;打破传统技术的“单一性”桎梏, 融合多领域、多学科交叉技术, 探索“生物炭+”技术模式, 是未来突破未来生物炭特性与功能局限, 研发新一代“复合性、功能化、高效型”炭基材料及产品的发展重要方向;“多元化、功能化、定制化”是未来生物炭改性技术及其产品开发的发展趋势, 有望在解决农业、环境等领域突出问题中发挥重要支撑性作用。

科学需要理性, 更应该理性对待科学。作为新生事物, 有关于生物炭的定义、结构、功效及其应用等方面还存在不同观点。但不可否认的是, 生物炭在农业、环境等领域应用确有着良好的综合效益及重要作用潜力、价值与贡献, 其独特的来源、结构、特性及功效是其他材料所不具备的, 也得到了全世界科学家的普遍关注和一致研究认可。当前, 我国正处于农业与经济、社会发展的战略转型期, 生物炭无疑为解决农林废弃物综合利用难题, 促进资源与环境“循环、永续”发展, 提供了重要、可行性新途径, 为保障国家粮食安全、提升耕地质量, 促进“三农”发展提供有效技术支撑。相信, 未来在国内外专家、****的共同努力下, 生物炭的研究与应用发展及其产业化实施, 必将为人类面对气候变化, 破解“沃土、碧水、蓝天”可持续发展问题与矛盾, 打造“绿水、青山”, 作出应有的重要贡献。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Bapat H, Manahan S E, Larsen D W. An activated carbon product prepared from milo (Sorghum vulgare) grain for use in hazardous waste gasification by ChemChar concurrent flow gasification
Chemosphere, 1999,39:23-32.

DOI:10.1016/S0045-6535(98)00585-2URL [本文引用: 1]

Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems: a review
Mitig Adapt Strat Gl, 2006,11:403-427.

DOI:10.1007/s11027-005-9006-5URL [本文引用: 1]

Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review
Biol Fert Soils, 2002,35:219-230.

DOI:10.1007/s00374-002-0466-4URL [本文引用: 1]

Lehmann J, Joseph S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd edn
London: Earthscan from Routledge, 2015. pp 1-1214.

[本文引用: 5]

International Biochar Initiative (IBI). International Biochar Initiative—Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards) Version 2.0
International Biochar Initiative: Westerville, OH, USA, 2014.

[本文引用: 2]

Zhang Z K, Zhu Z Y, Shen B X, Liu L N. Insights into biochar and hydrochar production and applications: a review
Energy, 2019,171:581-598.

DOI:10.1016/j.energy.2019.01.035URL [本文引用: 1]

Li S, Harris S, Anandhi A, Chen G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses
J Clean Prod, 2019,215:890-902.

DOI:10.1016/j.jclepro.2019.01.106URL [本文引用: 1]

Masebinu S O, Akinlabi E T, Muzenda E, Aboyade A O. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion
Renew Sust Energ Rev, 2019,103:291-307.

DOI:10.1016/j.rser.2018.12.048URL [本文引用: 3]

陈温福, 张伟明, 孟军, 徐正进. 生物炭应用技术研究
中国工程科学, 2011,13(2):83-89.

[本文引用: 1]

Chen W F, Zhang W M, Meng J, Xu Z J. Researches on biochar application technology
Eng Sci, 2011,13(2):83-89 (in Chinese with English abstract).

[本文引用: 1]

Azargohar R, Jacobson K L, Powell E E, Dalai A K. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass
J Anal Appl Pyrol, 2013,104:330-340.

DOI:10.1016/j.jaap.2013.06.016URL [本文引用: 1]

Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization
Bioresour Technol, 1992,42:219-231.

DOI:10.1016/0960-8524(92)90025-SURL [本文引用: 1]

Zhang L H, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass
Energ Convers Manage, 2010,51:969-982.

DOI:10.1016/j.enconman.2009.11.038URL [本文引用: 1]
AbstractEnergy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.]]>

McGrath T E, Chan W G, Hajaligol M R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolys is of cellulose
J Anal Appl Pyrol, 2003,66:51-70.

[本文引用: 1]

Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: a review
Renew Sust Energ Rev, 2017,77:59-69.

[本文引用: 1]

Rangabhashiyam S, Balasubramanian P. The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application: a review
Ind Crop Prod, 2019,128:405-423.

[本文引用: 1]

Li D C, Jiang H. The thermochemical conversion of non-lignocellulosic biomass to form biochar: a review on characterizations and mechanism elucidation
Biores Technol, 2017,246:57-68.

[本文引用: 6]

Vaibhav D, Thallada B. A comprehensive review on the pyrolysis of lignocellulosic biomass
Renew Energy, 2017,129:695-716.

[本文引用: 1]

Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
Chem Rev, 2006,106:4044-4098.

DOI:10.1021/cr068360dURLPMID:16967928 [本文引用: 1]

Yu J, Paterson N, Blamey J, Millan M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass
Fuel, 2017,191:140-149.

DOI:10.1016/j.fuel.2016.11.057URL [本文引用: 1]

Sonil N, Javeed M, Sivamohan N R, Janusz A K, Ajay K D. Pathways of lignocellulosic biomass conversion to renewable fuels
Biomass Convers Bior, 2014,4:157-191.

[本文引用: 1]

Gallezot P. Conversion of biomass to selected chemical products
Chem Soc Rev, 2012,41:1538-1558.

DOI:10.1039/c1cs15147aURLPMID:21909591 [本文引用: 1]
This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

Toor S S, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies
Energy, 2011,36:2328-2342.

DOI:10.1016/j.energy.2011.03.013URL [本文引用: 1]
This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermo-chemical process, which produces a liquid product, often called bio-oil or bi-crude. During the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In spite of the potential for hydrothermal production of renewable fuels, only a few hydrothermal technologies have so far gone beyond lab- or bench-scale. (C) 2011 Elsevier Ltd.

Shen D K, Gu S, Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR
J Anal Appl Pyrol, 2010,87:199-206.

DOI:10.1016/j.jaap.2009.12.001URL [本文引用: 2]

Liu W J, Jiang H, Yu H Q. Development of biochar-based functional materials: toward a sustainable platform carbon material
Chem Rev, 2015,115:12251-12285.

URLPMID:26495747 [本文引用: 3]

Li S, Lyons-Hart J, Banyasz J, Shafer K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis
Fuel, 2001,80:1809-1817.

DOI:10.1016/S0016-2361(01)00064-3URL [本文引用: 1]

Cao X F, Sun S N, Sun R C. Application of biochar-based catalysts in biomass upgrading: a review
Rsc Adv, 2017,7:48793-48805.

DOI:10.1039/C7RA09307AURL [本文引用: 1]

Kosa M, Ben H, Theliander H, Ragauskas A J. Pyrolysis oils from CO2 precipitated Kraft lignin
Green Chem, 2011,13:3196.

DOI:10.1039/c1gc15818jURL [本文引用: 1]

Zhang J, Nolte M W, Shanks B H. Investigation of primary reactions and secondary effects from the pyrolysis of different celluloses. ACS sustain
Chem Eng, 2014,2:2820-2830.

[本文引用: 1]

Morf P, Hasler P, Nussbaumer T. Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips
Fuel, 2002,81:843-853.

DOI:10.1016/S0016-2361(01)00216-2URL [本文引用: 1]
AbstractThe change of mass and composition of biomass tar due to homogeneous secondary reactions was experimentally studied by means of a lab reactor system that allows the spatially separated production and conversion of biomass tar. A tarry pyrolysis gas was continuously produced by pyrolysis of wood chips (fir and spruce, 10–40 mm diameter) under fixed-bed biomass gasification conditions. Homogeneous secondary tar reactions without the external supply of oxidising agents were studied in a tubular flow reactor operated at temperatures from 500 to 1000 °C and with space times below 0.2 s. Extensive chemical analysis of wet chemical tar samples provided quantitative data about the mass and composition of biomass tar during homogeneous conversion. These data were used to study the kinetics of the conversion of gravimetric tar and the formation of PAH compounds, like naphthalene.It is shown that, under the reaction conditions chosen for the experiments, homogeneous secondary tar reactions become important at temperatures higher than 650 °C, which is indicated by the increasing concentrations of the gases CO, CH4, and H2 in the pyrolysis gas. The gravimetric tar yield decreases with increasing reactor temperatures during homogeneous tar conversion. The highest conversion reached in the experiments was 88% at a reference temperature of 990 °C and isothermal space time of 0.12 s. Hydrogen is a good indicator for reactions that convert the primary tar into aromatics, especially PAH. Soot appears to be a major product from homogeneous secondary tar reactions.]]>

Wei L, Xu S, Zhang L, Zhang H, Liu C, Zhu H, Liu S. Characteristics of fast pyrolysis of biomass in a free fall reactor
Fuel Process Technol, 2006,87:863-871.

DOI:10.1016/j.fuproc.2006.06.002URL [本文引用: 1]

Tsai W T, Lee M K, Chang J H, Su T Y, Chang Y M. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis
Bioresour Technol, 2009,100:2650-2654.

DOI:10.1016/j.biortech.2008.11.023URLPMID:19136255 [本文引用: 1]
In this study, gas chromatography-mass spectrometry (GC-MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 degrees C/min ranging from 25 to 500 degrees C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography-thermal conductivity detector (GC-TCD).

Pokorna E, Postelmans N, Jenicek P, Schreurs S, Carleer R, Yperman J. Study of bio-oils and solids from flash pyrolysis of sewage sludges
Fuel, 2009,88:1344-1350.

DOI:10.1016/j.fuel.2009.02.020URL [本文引用: 1]
AbstractThe aim of this study was to evaluate the production of pyrolysis oil from three types of sewage sludges. The flash pyrolysis was performed at 500 °C, the maximum oil yield was 43.1%, and the water content in bio-oils obtained from secondary sludges was relatively low – 10.3% and 17.0%. GC–MS results showed that pyrolytic bio-oils of studied sludges dominantly contained fatty acids and nitrogenous compounds with potential added value.Obtained solids had high ash content and low calorific value which make them unattractive for use in incineration. FT–IR results showed that solids gave similar IR features as notified alumino silicates; utilization of these solids as adsorbents could be a potential valorization.]]>

Shaheen S M, Niazi N K N, Hassan N E E, Bibi I, Wang H L, Tsang D C W, Ok Y S, Bolan N, Rinklebe J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review
Int Mater Rev, 2019,64:216-247.

DOI:10.1080/09506608.2018.1473096URL [本文引用: 1]

Chen W F, Meng J, Han X R, Lan Y, Zhang W M. Past, present, and future of biochar
Biochar, 2019,1:75-87.

DOI:10.1007/s42773-019-00008-3URL [本文引用: 1]

Liu Y X, Lonappan L, Brar S K, Yang S M. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review
Sci Total Environ, 2018,645:60-70.

DOI:10.1016/j.scitotenv.2018.07.099URLPMID:30015119 [本文引用: 1]
Extensive and inefficient use of pesticides over the last several decades resulted in serious soil and water contamination by imposing severe toxic effects on living organisms. Soil remediation using environment-friendly amendments to counteract the presence of pesticides in soil seems to be one suitable approach to solve this problem. Biochar has emerged as a promising material for adsorbing and thus decreasing the bioavailability of pesticides in polluted soils, due to its high porosity, surface area, pH, abundant functional groups, and highly aromatic structure, mainly depending on the feedstock and pyrolysis temperature. However, biochar effects and mechanisms on the sorption and desorption of pesticides in the soil are poorly understood. Either high or low pyrolysis temperature has both positive and negative effects on sorption of pesticides in soil, one by larger surface area and the other by a large number of functional groups. Therefore, a clear understanding of these effects and mechanisms are necessary to engineer biochar production with desirable properties. This review critically evaluates the role of biochar in sorption, desorption, and degradation of pesticides in the soil, along with dominant properties of biochar including porosity and surface area, pH, surface functional groups, carbon content and aromatic structure, and mineralogical composition. Moreover, an insight into future research directions has been provided by evaluating the bioavailability of pesticide residues in the soil, effect of other contaminants on pesticide removal by biochar in soils, effect of pesticide properties on its behavior in biochar-amended soils, combined effect of biochar and soil microorganisms on pesticide degradation, and large-scale application of biochar in agricultural soils for multifunction.

Warnock D D, Lehmann J, Kuyper T W, Rillig M C. Mycorrhizal responses to biochar in soil-concepts and mechanisms
Plant Soil, 2007,300:9-20.

DOI:10.1007/s11104-007-9391-5URL [本文引用: 1]
Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing to sustainable plant production, ecosystem restoration, and soil carbon sequestration and hence mitigation of global climate change. As both biochar and mycorrhizal associations are subject to management, understanding and exploiting interactions between them could be advantageous. Here we focus on biochar effects on mycorrhizal associations. After reviewing the experimental evidence for such effects, we critically examine hypotheses pertaining to four mechanisms by which biochar could influence mycorrhizal abundance and/or functioning. These mechanisms are (in decreasing order of currently available evidence supporting them): (a) alteration of soil physico-chemical properties; (b) indirect effects on mycorrhizae through effects on other soil microbes; (c) plant–fungus signaling interference and detoxification of allelochemicals on biochar; and (d) provision of refugia from fungal grazers. We provide a roadmap for research aimed at testing these mechanistic hypotheses.]]>

Leng L J, Huang H J. An overview of the effect of pyrolysis process parameters on biochar stability
Bioresour Technol, 2018,270:627-642.

DOI:10.1016/j.biortech.2018.09.030URLPMID:30220436 [本文引用: 4]
Biochar produced from biomass pyrolysis is becoming a powerful tool for carbon sequestration and greenhouse gas (GHG) emission reduction. Biochar C recalcitrance or biochar stability is the decisive property determining its carbon sequestration potential. The effect of pyrolysis process parameters on biochar stability is becoming a frontier of biochar study. This review discussed comprehensively how and why biomass compositions and physicochemical properties and biomass processing conditions such as pyrolysis temperature and reaction residence time affect the stability of biochar. The review found that relative high temperature (400-700 degrees C), long reaction residence time, slow heating rate, high pressure, the presence of some minerals and biomass feedstock of high-lignin content with large particle size are preferable to biochar stability. However, challenges exist to mediate the trade-offs between biochar stability and other potential wins. Strategies were then proposed to promote the utilization of biochar as a climate change mitigation tool.

Qambrani N A, Rahman M M, Wonc S, Shima S, Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review
Renew Sust Energ Rev, 2017,79:255-273.

DOI:10.1016/j.rser.2017.05.057URL [本文引用: 2]

袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展
生态环境学报, 2011,20:779-785.

[本文引用: 1]

Yuan J H, Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions
Soil Environ Sci, 2011,20:779-785 (in Chinese with English abstract).

[本文引用: 1]

Chen Y Q, Yang H P, Wang X H, Zhang S H, Chen H P. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature
Biores Technol, 2012,107:411-418.

DOI:10.1016/j.biortech.2011.10.074URL [本文引用: 3]

Shaaban M, Zwieten L V, Bashir S, Younas A, Nú?ez-Delgado A, Chhajro M A, Kubar K A, Ali U, Rana M S, Mehmood M A, Hu R G. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution
J Environ Manage, 228:429-440.

URLPMID:30243078 [本文引用: 1]

Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis
Fuel, 2007,86:1781-1788.

DOI:10.1016/j.fuel.2006.12.013URL [本文引用: 1]

Keiluweit M, Nico P S, Johnson M G, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar)
Environ Sci Technol, 2010,44:1247-1253.

DOI:10.1021/es9031419URLPMID:20099810 [本文引用: 1]
Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (

Joseph S D, Downie A, Crosky A, Lehmann J, Munroe P. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility: a review of the materials science
Rend Circ Mat Palermo Suppl, 2007,48:101-106.

[本文引用: 1]

Cantrell K B, Hunt P G, Uchimiya M, Novak J M, Ro K S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
Bioresour. Technol, 2012,107:419-428.

URLPMID:22237173 [本文引用: 2]

Li H, Dong X, da Silva E B, de Oliveira L M, Chen Y, Ma L Q. Mechanisms of metal sorption by biochars: biochar characteristics and modifications
Chemosphere, 2017,178:466-478.

URLPMID:28342995 [本文引用: 5]

Liu Y X, Yao S, Wang Y Y, Lu H H, Brar S K, Yang S M. Bio- and hydrochars from rice straw and pig manure: inter-comparison
Bioresour Technol, 2017,235:332-337.

DOI:10.1016/j.biortech.2017.03.103URLPMID:28376384 [本文引用: 1]
Conversion of rice straw (RS) and pig manure (PM) into chars is a promising disposal/recycling option. Herein, pyrolysis and hydrothermal carbonization were used to produce bio- and hydrochars from RS and PM, affording lower biochar (300-700 degrees C) and hydrochar (180-300 degrees C) yields at higher temperatures within the specified range. The C contents and C/N ratios of RS chars were higher than those of PM ones, with the opposite trend observed for yield and ash content. C and ash contents increased with increasing temperature, whereas H/C, O/C, and (O+N)/C ratios decreased. The lower H/C ratio of biochars compared to that of hydrochars indicated greater stability of the former. KCl was the main inorganic fraction in RS biochars, whereas quartz was dominant in PM biochars, and albite in PM hydrochars. Thus, RS is more suitable for carbon sequestration, while PM is more suitable for use as a soil amendment substrate.

Halim S A, Swithenbank J. Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology
J Anal Appl Pyrol, 2016,122:64-75.

DOI:10.1016/j.jaap.2016.10.021URL [本文引用: 1]

Uzunova S, Angelova D, Anchev B, Uzunov I, Gigova A. Changes in structure of solid pyrolysis residue during slow pyrolysis of rice husk
Bulg Chem Commun, 2014,46:184-191.

URL [本文引用: 1]
The char's structure was set out by the mercury porosimetry and Brunauer-Emmett-Teller method. The phase composition of the solid residue after pyrolysis and carbon/silica ratio therein has been determined by thermal analysis (TG/DTA/MS) and XRD. The morphology of the materials has been studied using scanning electron microscopy.It was established that the slow pyrolysis in the investigated temperature range results in a solid residue with predominantly macro-porous structure and pore size distribution between 50 and 200 mu m. The sample obtained at 480 degrees C is characterized by the largest total pore volume and the largest average pore diameter. With increasing the pyrolysis temperature C:SiO2 ratio in the solid pyrolysis residue decreased from 1.38 to 0.85 and specific surface area increased from 7.0 up to 440.0 m(2) g(-1).]]>

Chun Y, Sheng G G, Chiou C T, Xing B S. Compositions and sorptive properties of crop residue-derived chars
Environ Sci Technol, 2004,38:4649-4655.

DOI:10.1021/es035034wURLPMID:15461175 [本文引用: 2]
300 m2/g), little organic matter (20% oxygen). The char samples exhibited a significant range of surface acidity/basicity because of their different surface polar-group contents, as characterized by the Boehm titration data and the NMR and FTIR spectra. The NOC sorption by high-temperature chars occurred almost exclusively by surface adsorption on carbonized surfaces, whereas the sorption by low-temperature chars resulted from the surface adsorption and the concurrent smaller partition into the residual organic-matter phase. The chars appeared to have a higher surface affinity for a polar solute (nitrobenzene) than for a nonpolar solute (benzene), the difference being related to the surface acidity/basicity of the char samples.]]>

黄华, 王雅雄, 唐景春, 朱文英. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能
环境科学, 2014,35:1884-1890.

[本文引用: 1]

Huang H, Wang Y X, Tang J C, Zhu W Y. Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene
Environ Sci, 2014,35:1884-1890 (in Chinese with English abstract).

[本文引用: 1]

Zhang J, Liu J, Liu R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate
Bioresour Technol, 2015,176:288-291.

DOI:10.1016/j.biortech.2014.11.011URLPMID:25435066 [本文引用: 1]
In this study, the effects of pyrolysis temperature and heating time on the yield and physicochemical and morphological properties of biochar obtained from straw and lignosulfonate were investigated. As pyrolysis temperature increased, pH, ash content, carbon stability, and total content of carbon increased while biochar yield, volatile matter, total content of hydrogen, oxygen, nitrogen and sulfur decreased. The data from scanning electron microscope image and nuclear magnetic resonance spectra indicated an increase in porosity and aromaticity of biochar produced at a high temperature. The results showed that feedstock types could also influence characteristics of the biochar with absence of significant effect on properties of biochar for heating time.

Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R. Recent advances in utilization of biochar
Renew Sust Energ Rev, 2015,42:1055-1064.

DOI:10.1016/j.rser.2014.10.074URL [本文引用: 2]

张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响
作物学报, 2013,39:1445-1451.

DOI:10.3724/SP.J.1006.2013.01445URL [本文引用: 2]
为明确生物炭对水稻根系与产量的效应,探明生物炭在水稻生产上应用的潜力与价值。采用盆栽试验研究了生物炭对超级粳稻不同生育期根系生长、形态特征及生理特性的影响。结果表明,土壤中施入生物炭能增加水稻生育前期根系的主根长、根体积和根鲜重,提高水稻根系总吸收面积和活跃吸收面积。在水稻生育后期,生物炭在一定程度上延缓根系衰老。根系伤流速率、根系活力和可溶性蛋白在整个生育期内均高于对照,同时维持了较为适宜的根冠比,根系生理功能增强;生物炭处理的水稻产量增加,表现为每穴穗数、每穗粒数、结实率提高,比对照平均增产25.28%。以每千克干土加20 g生物炭处理的产量最高,比对照提高了33.21%。生物炭处理对水稻根系形态特征的优化与生理功能的增强具有一定的促进作用。]]>
Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effect of biochar on root morphological and physiological characteristics and yield in rice
Acta Agron Sin, 2013,39:1445-1451 (in Chinese with English abstract).

[本文引用: 2]

UC Davis Biochar Database, 2015. http://biochar.ucdavis.edu/download/ (accessed 2016-12-25).
URL [本文引用: 2]

Lehmann J. Bio-energy in the black
Front Ecol Environ, 2007,5:381-387.

DOI:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2URL [本文引用: 2]

Novak J M, Lima I, Xing B, Gaskin J W, Steiner C, Das K C, Ahmedna M, Rehrah D, Watts D W, Busscher W J, Schomberg H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand
Ann Environ Sci, 2009,3:195-206.

[本文引用: 1]

Spokas K A, Novak J M, Stewart C E, Cantrell K B, Uchimiya M, DuSaire M G, Ro K S. Qualitative analysis of volatile organic compounds on biochar
Chemosphere, 2011,85:869-882

DOI:10.1016/j.chemosphere.2011.06.108URL [本文引用: 1]
350 degrees C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects. Published by Elsevier Ltd.]]>

Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol
Soil Use Manage, 2011,27:110-115.

DOI:10.1111/j.1475-2743.2010.00317.xURL [本文引用: 1]
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non-leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non-legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.

Xu X Y, Zhao Y H, Sima J, Zhao L, Ma?ek O, Cao X D. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review
Bioresour Technol, 2017,101:887-899.

[本文引用: 4]

Al-Wabel M, Al-Omran A, El-Naggar A H, Nadeem M, Usman A R A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes
Bioresour Technol, 2013,131:374-379.

DOI:10.1016/j.biortech.2012.12.165URLPMID:23376202 [本文引用: 1]
Conocarpus wastes were pyrolyzed at different temperatures (200-800 degrees C) to investigate their impact on characteristics and chemical composition of biochars. As pyrolysis temperature increased, ash content, pH, electrical conductivity, basic functional groups, carbon stability, and total content of C, N, P, K, Ca, and Mg increased while biochar yield, total content of O, H and S, unstable form of organic C and acidic functional groups decreased. The ratios of O/C, H/C, (O + N)/C, and (O + N + S)/C tended to decrease with temperature. The data of Fourier transformation infrared indicate an increase in aromaticity and a decrease in polarity of biochar produced at a high temperature. With pyrolysis temperature, cellulose loss and crystalline mineral components increased, as indicated by X-ray diffraction analysis and scanning electron microscope images. Results suggest that biochar pyrolized at high temperature may possess a higher carbon sequestration potential when applied to the soil compared to that obtained at low temperature.

Wang Y, Hu Y, Zhao X, Wang S, Xing G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times
Energ Fuel, 2013,27:5890-5899.

DOI:10.1021/ef400972zURL [本文引用: 2]

Conti R, Rombolà A G, Modelli A, Torri C, Fabbri D. Evaluation of the thermal and environmental stability of switchgrass biochars by Py-GC-MS
J Anal Appl Pyrol, 2014,110:239-247.

DOI:10.1016/j.jaap.2014.09.010URL [本文引用: 1]

Angin D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake
Bioresour Technol, 2013,128:593-597.

DOI:10.1016/j.biortech.2012.10.150URLPMID:23211485 [本文引用: 1]
Biochar is carbon-rich product generated from biomass through pyrolysis. In this study, the effects of pyrolysis temperature and heating rate on the yield and physicochemical and morphological properties of biochars obtained from safflower seed press cake were investigated. The results showed that the biochar yield and quality depend principally on the applied temperature where pyrolysis at 600 degrees C leaves a biochar with higher fixed carbon content (80.70%) and percentage carbon (73.75%), and higher heating value (30.27 MJ kg(-1)) in comparison with the original feedstock (SPC) and low volatile matter content (9.80%). The biochars had low surface areas (1.89-4.23 m(2)/g) and contained predominantly aromatic compounds. The biochar could be used for the production of activated carbon, in fuel applications, and water purification processes.

Tan Z X, Lin C S K, Ji X Y, Raineyd T J. Returning biochar to fields: a review
Appl Soil Ecol, 2017,116:1-11.

DOI:10.1016/j.apsoil.2017.03.017URL [本文引用: 1]

Lehmann J, Pereira D S, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological a throsol and a ferralsol of central amazonia: fertilizer, and charcoal amendments
Plant Soil, 2003,249:343-357.

DOI:10.1023/A:1022833116184URL [本文引用: 3]
Soil fertility and leaching losses of nutrients were compared between a Fimic Anthrosol and a Xanthic Ferralsol from Central Amazônia. The Anthrosol was a relict soil from pre-Columbian settlements with high organic C containing large proportions of black carbon. It was further tested whether charcoal additions among other organic and inorganic applications could produce similarly fertile soils as these archaeological Anthrosols. In the first experiment, cowpea (Vigna unguiculata (L.) Walp.) was planted in pots, while in the second experiment lysimeters were used to quantify water and nutrient leaching from soil cropped to rice (Oryza sativa L.). The Anthrosol showed significantly higher P, Ca, Mn, and Zn availability than the Ferralsol increasing biomass production of both cowpea and rice by 38–45% without fertilization (P]]>

周劲松, 闫平, 张伟明, 郑福余, 程效义, 陈温福. 生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响
作物学报, 2017,43:72-81.

DOI:10.3724/SP.J.1006.2017.00072URL [本文引用: 1]
在黑龙江省早春水稻旱育苗背景下,研究稻田土壤育苗基质中添加生物炭对秧苗根系形态建成与解剖结构的影响,以明确生物炭在东北冷凉地区水稻生产上的应用潜力和价值。以东北稻田土壤为育苗基质,添加0、5.0%、10.0%、15.0%、20.0% (w/w)的生物炭,进行保护地旱育水稻秧苗。出苗后30 d,测定秧苗根系形态建成和解剖结构等性状,分析生物炭对水稻秧苗根系发育的影响。结果表明,在稻田土壤育苗基质中添加5.0%生物炭时,水稻秧苗根系长度、根系表面积和根系体积等明显增加;生物炭添加量为10.0%时,各项根系形态指标达到最高值;生物炭添加量超过10.0%时,根系形态指标下降。根长、根表面积和根体积增加的原因主要来自于细根增加。同时,添加5.0%生物炭时,根半径、根截面积、根表皮厚度、根皮层厚度、皮层腔面积、根导管数量及导管面积等性状指标也相应增加。生物炭添加量为5.0%~10.0%时,根解剖结构各项性状指标达到最大值。当生物炭添加量超过10.0%时,根系解剖结构性状指标也有下降趋势。根系增粗主要源于根表皮及皮层发育良好。在东北冷凉地区进行保护地水稻旱育苗,基质中添加适量生物炭(5.0%~10.0%)有利于秧苗根系的伸长及增粗,形成发达根系,提高秧苗素质。
Zhou J S, Yan P, Zhang W M, Zheng F Y, Cheng X Y, Chen W F. Effect of biochar on root morphogenesis and anatomical structure of rice cultivated in cold region of northeast China
Acta Agron Sin, 2017,43:72-81 (in Chinese with English abstract).

[本文引用: 1]

Yavari S, Malakahmad A, Sapari N B. Biochar efficiency in pesticides sorption as a function of production variables: a review
Environ Sci Pollut R, 2015,22:13824-13841.

DOI:10.1007/s11356-015-5114-2URL [本文引用: 1]

Oliveira F R, Patel A K, Jaisi D P, Adhikaric S, Lu H, Khanala S K. Environmental application of biochar: current status and perspectives
Bioresour Technol, 2017,246:110-122.

DOI:10.1016/j.biortech.2017.08.122URLPMID:28863990 [本文引用: 1]
In recent years, there has been a significant interest on biochar for various environmental applications, e.g., pollutants removal, carbon sequestration, and soil amelioration. Biochar has several unique properties, which makes it an efficient, cost-effective and environmentally-friendly material for diverse contaminants removal. The variability in physicochemical properties (e.g., surface area, microporosity, and pH) provides an avenue for biochar to maximize its efficacy to targeted applications. This review aims to highlight the vital role of surface architecture of biochar in different environmental applications. Particularly, it provides a critical review of current research updates related to the pollutants interaction with surface functional groups of biochars and the effect of the parameters variability on biochar attributes pertinent to specific pollutants removal, involved mechanisms, and competence for these removals. Moreover, future research directions of biochar research are also discussed.

Chen Y Q, Zhang X, Chen W, Yang H P, Chen H P. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance
Bioresour Technol, 2017,246:101-109.

URLPMID:28893501 [本文引用: 2]

Zhao B, O‘Connor D, Zhang J, Peng T, Shen Z, Tsang D C W, Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar
J Clean Prod, 2018,174:977-987.

DOI:10.1016/j.jclepro.2017.11.013URL [本文引用: 1]

Kim K H, Kim J, Cho T, Choi J W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)
Bioresour Technol, 2012,118:158-62.

DOI:10.1016/j.biortech.2012.04.094URLPMID:22705519 [本文引用: 1]
The aim of this study was to investigate the influence of pyrolysis temperature on the physicochemical properties and structure of biochar. Biochar was produced by fast pyrolysis of pitch pine (Pinus rigida) using a fluidized bed reactor at different pyrolysis temperatures (300, 400 and 500 degrees C). The produced biochars were characterized by elemental analysis, Brunauer-Emmett-Teller (BET) surface area, particle size distributions, field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, solid-state (13)C nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). The yield of biochar decreased sharply from 60.7% to 14.4%, based on the oven-dried biomass weight, when the pyrolysis temperature rose from 300 degrees C to 500 degrees C. In addition, biochars were further carbonized with an increase in pyrolysis temperature and the char's remaining carbons were rearranged in stable form. The experimental results suggested that the biochar obtained at 400 and 500 degrees C was composed of a highly ordered aromatic carbon structure.

Yao Y, Gao B, Chen H, Jiang L J, Inyang M, Zimmerman A R, Cao X D, Yang L Y, Xue Y W, Li H. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation
J Hazard Mater, 2012,209:408-413.

DOI:10.1016/j.jhazmat.2012.01.046URLPMID:22321858 [本文引用: 1]
Reclaimed water irrigation can satisfy increasing water demand, but it may also introduce pharmaceutical contaminants into the soil and groundwater environment. In this work, a range of laboratory experiments were conducted to test whether biochar can be amended in soils to enhance removal of sulfamethoxazole (SMX) from reclaimed water. Eight types of biochar were tested in laboratory sorption experiments yielding solid-water distribution coefficients (K(d)) of 2-104 L/kg. Two types of biochar with relatively high K(d) were used in column leaching experiments to assess their effect on reclaimed water SMX transport through soils. Only about 2-14% of the SMX was transported through biochar-amended soils, while 60% was found in the leachate of the unamended soils. Toxicity characteristic leaching experiments confirmed that the mobility and bioavailability of SMX in biochar-amended soils were lower than that of unamended soils. However, biochar with high accumulations of SMX was still found to inhibit the growth of the bacteria compared to biochar with less SMX which showed no effects. Thus, biochar with very high pharmaceutical sorption abilities may find use as a low-cost alternative sorbent for treating wastewater plant effluent, but should be used with caution as an amendment to soils irrigated with reclaimed water or waste water.

Burhenne L, Damiani M, Aicher T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis
Fuel, 2013,107:836-847.

DOI:10.1016/j.fuel.2013.01.033URL [本文引用: 1]
It could be seen that higher water content led to a higher yield of condensable products and a lower amount of char. At a pyrolysis temperature of 500 degrees C the CO-content of the product gas did increase significantly with increasing water content. Moreover, initial water content had no significant effect on the microscopic structure of wood chars.The specific char surface area did increase with increasing initial water content up to the fiber saturation point. It was also observed that the specific char surface area was strongly influenced by the pyrolysis temperature. When the pyrolysis temperature increased from 500 to 800 degrees C, the BET surface area became at least 200 times smaller and the average size of micropores became about 10 times smaller. Most likely, pyrolysis at 800 degrees C induced more secondary reactions that were responsible for the occlusion of the micropores within the char [1].Finally, it was found that reactivity in CO2 significantly decreased with increasing pyrolysis temperature. However, initial wood water content did not have a significant effect on char reactivity in CO2. (c) 2013 Elsevier Ltd.]]>

Fu P, Hu S, Xiang J, Sun L S, Li P S, Zhang J Y, Zheng C G. Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions
Energy Fuel, 2009,23:4605-4611.

DOI:10.1021/ef900268yURL [本文引用: 1]

Chen Y, Zhang X, Chen W, Yang H, Chen H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance
Bioresour Technol, 2017,246:101-109.

URLPMID:28893501 [本文引用: 1]

Zhang H, Voroney R, Price G. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations
Soil Biol Biochem, 2015,83:19-28.

DOI:10.1016/j.soilbio.2015.01.006URL [本文引用: 3]

Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
Bioresour Technol, 2010,101:5222-5228.

URLPMID:20206509 [本文引用: 3]

谢祖彬, 刘琦, 许燕萍, 朱春悟. 生物炭研究进展及其研究方向
土壤, 2011,43:857-861.

[本文引用: 1]

Xie Z B, Liu Q, Xu Y P, Zhu C W. Advances and perspectives of biochar research
Soil, 2011,43:857-861 (in Chinese with English abstract).

[本文引用: 1]

陈静文, 张迪, 吴敏, 王朋. 两类生物炭的元素组分分析及其热稳定性
环境化学, 2014,33:417-422.

[本文引用: 1]

Chen J W, Zhang D, Wu M, Wang P. Elemental composition and thermal stability of two different biochars
Environ Chem, 2014,33:417-422 (in Chinese with English abstract).

[本文引用: 1]

Zornoza R, Moreno-Barriga F, Acosta J A, Mu?oz M A, Faz A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments
Chemosphere, 2016,144:122-130.

DOI:10.1016/j.chemosphere.2015.08.046URL [本文引用: 1]

Hossain M, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar
J Environ Manage, 2011,92:223-228.

DOI:10.1016/j.jenvman.2010.09.008URL [本文引用: 1]
The important challenge for effective management of wastewater sludge materials in an environmentally and economically acceptable way can be addressed through pyrolytic conversion of the sludge to biochar and agricultural applications of the biochar The aim of this work is to investigate the influence of pyrolysis temperature on production of wastewater sludge biochar and evaluate the properties required for agronomic applications Wastewater sludge collected from an urban wastewater treatment plant was pyrolysed in a laboratory scale reactor It was found that by increasing the pyrolysis temperature (over the range from 300 C to 700 C) the yield of biochar decreased Biochar produced at low temperature was acidic whereas at high temperature it was alkaline in nature The concentration of nitrogen was found to decrease while micronutrients increased with increasing temperature Concentrations of trace metals present in wastewater sludge varied with temperature and were found to primarily enriched in the biochar (C) 2010 Elsevier Ltd All nghts reserved

Chen T, Zhang Y X, Wang H T, Lu W J, Zhou Z Y, Zhang Y C, Ren L L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge
Bioresour Technol, 2014,164:47-54.

DOI:10.1016/j.biortech.2014.04.048URLPMID:24835918
To investigate systematically the influence of pyrolysis temperature on properties and heavy metal adsorption potential of municipal sludge biochar, biophysical dried sludge was pyrolyzed under temperature varying from 500 degrees C to 900 degrees C. The biochar yield decreased with the increase in pyrolysis temperature, while the ash content retained mostly, thus transforming the biochars into alkaline. The structure became porous as the temperature increased, and the concentrations of surface functional group elements remained low. Despite the comparatively high content of heavy metal in the biochar, the leaching toxicity of biochars was no more than 20% of the Chinese standard. In the batch experiments of cadmium(II) adsorption, the removal capacity of biochars improved under higher temperature, especially at 800 degrees C and 900 degrees C even one order of magnitude higher than that of the commercial activated carbon. For both energy recovery and heavy metal removal, the optimal pyrolysis temperature is 900 degrees C.

Subedi R, Taupe N, Pelissetti S, Petruzzelli L, Bertora C, Leahy J, Grignani C. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type
J Environ Manag, 2016,166:73-83.

DOI:10.1016/j.jenvman.2015.10.007URL [本文引用: 1]

Zhao L, Cao X D, Masek O, Zimmerman A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures
J Hazard Mater, 2013,256/257:1-9.

DOI:10.1016/j.jhazmat.2013.04.015URL [本文引用: 1]

Ahmad M, Lee S S, Dou X, Mohan D, Sung J K, Yang J E, Ok Y S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water
Bioresour Technol, 2012,118:536-544.

DOI:10.1016/j.biortech.2012.05.042URLPMID:22721877 [本文引用: 1]
Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 degrees C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 degrees C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 degrees C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water.

Tan X F, Liu Y G, Zeng G M, Wang X, Hu X J, Gu Y L, Yang Z Z. Application of biochar for the removal of pollutants from aqueous solutions
Chemosphere, 2015,125:70-85.

DOI:10.1016/j.chemosphere.2014.12.058URLPMID:25618190 [本文引用: 6]
In recent years, many studies have been devoted to investigate the application of biochar for pollutants removal from aqueous solutions. Biochar exhibits a great potential to efficiently tackle water contaminants considering the wide availability of feedstock, low-cost and favorable physical/chemical surface characteristics. This review provides an overview of biochar production technologies, biochar properties, and recent advances in the removal of heavy metals, organic pollutants and other inorganic pollutants using biochar. Experimental studies related to the adsorption behaviors of biochar toward various contaminants, key affecting factors and the underlying mechanisms proposed to explain the adsorption behaviors, have been comprehensively reviewed. Furthermore, research gaps and uncertainties that exist in the use of biochar as an adsorbent are identified. Further research needs for biochar and potential areas for future application of biochars are also proposed.

Zhang J, Wang Q. Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia-nitrogen capture
J Clean Prod, 2016,112:3927-3934.

DOI:10.1016/j.jclepro.2015.07.096URL [本文引用: 1]

张旭东, 梁超, 诸葛玉平, 姜勇, 解宏图, 何红波, 王晶. 黑碳在土壤有机碳生物地球化学循环中的作用
土壤通报, 2003,34:349-355.

[本文引用: 1]

Zhang X D, Liang C, Zhu-Ge Y P, Jiang Y, Jie H T, He H B, Wang J. Roles of black carbon in the biogeochemical cycles of soil organic carbon
Chin J Soil Sci, 2003,34:349-355 (in Chinese with English abstract).

[本文引用: 1]

Ameloot N, Graber E R, Verheijen F G A, Neve S D. Interactions between biochar stability and soil organisms: review and research needs
Eur J Soil Sci, 2013,64:379-390.

DOI:10.1111/ejss.12064URL [本文引用: 2]
The stability of biochar in soils is the cornerstone of the burgeoning worldwide interest in the potential of the pyrolysis/biochar platform for carbon (C) sequestration. While biochar is more recalcitrant in soil than the original organic feedstock, an increasing number of studies report greater C-mineralization in soils amended with biochar than in unamended soils. Soil organisms are believed to play a central role in this process. In this review, the variety of interactions that occur between soil micro-, meso- and macroorganisms and biochar stability are assessed. In addition, different factors reported to influence biochar stability, such as biochar physico-chemical characteristics, soil type, soil organic carbon (SOC) content and agricultural management practices are evaluated. A meta-analysis of data in the literature revealed that biochar-C mineralization rates decreased with increasing pyrolysis temperature, biochar-C content and time. Enhanced release of CO2 after biochar addition to soil may result from (i) priming of native SOC pools, (ii) biodegradation of biochar components from direct or indirect stimulation of soil organisms by biochar or (iii) abiotic release of biochar-C (from carbonates or chemi-sorbed CO2). Observed biphasic mineralization rates suggest rapid mineralization of labile biochar compounds by microorganisms, with stable aromatic components decomposed at a slower rate. Comparatively little information is available on the impact of soil fauna on biochar stability in soil, although they may decrease biochar particle size and enhance its dispersion in the soil. Elucidating the impacts of soil fauna directly and indirectly on biochar stability is a top research priority.

Huff M D, Kumar S, Lee J W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis
J Environ Manage, 2014,146:303-308.

DOI:10.1016/j.jenvman.2014.07.016URLPMID:25190598 [本文引用: 1]
Biochars were produced from pinewood, peanut shell, and bamboo biomass through hydrothermal conversion (HTC) at 300 degrees C and comparatively by slow pyrolysis over a temperature range of 300, 400, and 500 degrees C. These biochars were characterized by FT-IR, cation exchange capacity (CEC) assay, methylene blue adsorption, as well as proximate and elemental analysis. The experimental results demonstrated higher retained oxygen content in biochars produced at lower pyrolysis temperatures and through HTC, which also correlated to the higher CEC of respective biochars. Furthermore, all types of biochar studied herein were capable of adsorption of methylene blue from solution and the adsorption did not appear to strongly correlate with CEC, indicating that the methylene blue adsorption appears to be dependent more upon the non-electrostatic molecular interactions such as the likely dispersive pi-pi interactions between the graphene-like sheets of the biochar with the aromatic ring structure of the dye, than the electrostatic CEC. A direct comparison of hydrothermal and pyrolysis converted biochars reveals that biochars produced through HTC have much higher CEC than the biochars produced by slow pyrolysis. Analysis by FT-IR reveals a higher retention of oxygen functional groups in HTC biochars; additionally, there is an apparent trend of increasing aromaticity of the pyrolysis biochars when produced at higher temperatures. The CEC value of the HTC biochar appears correlated with its oxygen functional group content as indicated by the FT-IR measurements and its O:C ratio.

Gul S, Whalen J K, Thomas B W, Sachdeva V, Deng H. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions
Agric Ecosyst Environ, 2015,206:46-59.

DOI:10.1016/j.agee.2015.03.015URL [本文引用: 2]

Gul S, Whalen J K. Biochemical cycling of nitrogen and phosphorus in biochar-amended Soils
Soil Biol Biochem, 2016,103:1-15.

DOI:10.1016/j.soilbio.2016.08.001URL [本文引用: 1]

Spokas K A, Novak J M, Venterea R T. Biochar’s role as an alternative N fertilizer: ammonia capture
Plant Soil, 2012,350:35-42.

DOI:10.1007/s11104-011-0930-8URL [本文引用: 1]

Mukherjee A, Zimmerman A R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures
Geoderma, 2013,193:122-130.

DOI:10.1016/j.geoderma.2012.10.002URL [本文引用: 1]
Biochar has shown promise as a soil amendment that increases carbon sequestration and fertility, but its effects on dissolved organic carbon (DOC), nitrogen (N) and phosphorus (P) cycling and loss is not well understood. Here, nutrient release from a variety of new and aged biochars, pure and mixed with soils, is examined using batch extraction and column leaching. In successive batch extractions of biochar, cumulative losses were about 0.1-2, 0.5-8 and 5-100% of the total C, N and P initially present, respectively, with greater releases from biochars made at lower temperature and from grass. Ammonium was usually the most abundant N form in leachates but nitrate was also abundant in some biochars, while organic N and P represented as much as 61% and 93% of the total N and P lost, respectively. Release of DOC, N and P into water was correlated with biochar volatile matter content and acid functional group density. However, P release via Mehlich-1 extraction was more strongly related to ash content, suggesting a mineral-associated P fraction. Columns with soil/biochar mixtures showed evidence of both soil nutrient sorption by biochar and biochar nutrient sorption by soil, depending upon biochar and soil type. This study demonstrates that biochars contain a range of nutrient forms with different release rates, explaining biochar's variable effect on soil fertility with soil and crop type and over time. (c) 2012 Elsevier B.V.

Zheng H, Wang Z Y, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B S. Characteristics and nutrient values of biochars produced from giant reed at different temperatures
Bioresour Technol, 2013,130:463-471.

DOI:10.1016/j.biortech.2012.12.044URLPMID:23313694 [本文引用: 1]
To investigate the effect of pyrolysis temperature on properties and nutrient values, biochars were produced from giant reed (Arundo donax L.) at 300-600 degrees C and their properties such as elemental and mineral compositions, release of N, P and K, and adsorption of N and P were determined. With increasing temperatures, more N was lost and residual N was transformed into heterocyclic-N, whereas no P and K losses were observed. P was transformed to less soluble minerals, resulting in a reduction in available-P in high-temperature biochars. A pH of5 favored release of NH(4)(+), PO(4)(3-) and K(+) into water. Low-temperature biochars ( 400 degrees C) showed appreciable NH(4)(+) adsorption (2102mgkg(-1)). These results indicate that low-temperatures may be optimal for producing biochar from giant reed to improve the nutrient availability.

Ding Y, Liu Y G, Liu S B, Li Z W, Tan X F, Huang X X, Zeng G M, Zhou L, Zheng B H. Biochar to improve soil fertility. A review
Agron Sustain Dev, 2016,36:36.

DOI:10.1007/s13593-016-0372-zURL [本文引用: 4]

Silber A, Levkovitch I, Graber E R. PH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
Environ Sci Technol, 2010,44:9318-9323.

DOI:10.1021/es101283dURLPMID:21090742 [本文引用: 1]
Surface charge and pH-dependent nutrient release properties of cornstraw biochar were examined to elucidate its potential agronomic benefits. Kinetics of element release was characterized by rapid H(+) consumption and rapid, pH-dependent P, Ca, and Mg release, followed by zero-order H(+) consumption and mineral dissolution reactions. Initial K release was not pH-dependent, nor was it followed by a zero-order reaction at any pH. Rapid and constant rate P releases were significant, having the potential to substitute substantial proportions of P fertilizer. K releases were also significant and may replace conventional K fertilizers, however, not long-term plant demand. The cation exchange capacity (CEC) of the biochar leached with a mild acidic solution increased linearly from 179 to 888 mmol(c) (kg C)(-1) over a pH range of 4-8, while the anion exchange capacity of 154 mmol(c) (kg C)(-1) was constant over the same pH range. Since native soil organic constituents have much higher CEC values (average 2800 mmol(c) (kg C)(-1) at pH 7), improved soil fertility as a result of enhanced cation retention by the biochar probably will be favorable only in sandy and low organic matter soils, unless surface oxidation during aging significantly increases its CEC.

Cao X D, Ma L Q, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine
Environ Sci Technol, 2009,43:3285-3291.

DOI:10.1021/es803092kURLPMID:19534148 [本文引用: 1]
Biochar (BC) produced from agricultural crop residues has proven effective in sorbing organic contaminants. This study evaluated the ability of dairy-manure derived biochar to sorb heavy metal Pb and organic contaminant atrazine. Two biochar samples were prepared by heating dairy manure at low temperature of 200 degrees C (BC200) and 350 degrees C (BC350). The untreated manure (BC25) and a commercial activated C (AC) were included as controls. Sorption of Pb by biochar followed a dual Langmuir-Langmuir model, attributing to Pb precipitation (84-87%) and surface sorption (13-16%). Chemical speciation, X-ray diffraction, and infrared spectroscopy indicated that Pb was precipitated as beta-Pb9(PO4)6 in BC25 and BC200 treatment, and as Pb3(CO3)2(OH)2 in BC350. Lead sorption by AC obeyed a single Langmuir model, attributing mainly to surface sorption probably via coordination of Pb d-electron to C==C (pi-electron) and --0--Pb bonds. The biochar was 6 times more effective in Pb sorption than AC, with BC200 being the most effective (up to 680 mmol Pb kg(-1)). The biochar also effectively sorbed atrazine where atrazine was partitioned into its organic phase, whereas atrazine uptake by AC occurred via surface sorption. When Pb and atrazine coexisted, little competition occurred between the two for sorption on biochar, while strong competition was observed on AC. Results from this study indicated that dairy manure can be converted into value-added biochar as effective sorbent for metal and/or organic contaminants.

Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures
Bioresour Technol, 2011,102:3488-3497.

DOI:10.1016/j.biortech.2010.11.018URLPMID:21112777 [本文引用: 2]
The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700 degrees C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700 degrees C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars.

Wang Z Y, Liu G C, Zheng H, Li F M, Ngo H H, Guo W S, Liu C, Chen L, Xing B S. Investigating the mechanisms of biochar’s removal of lead from solution
Bioresour Technol, 2015 177:308-317.

DOI:10.1016/j.biortech.2014.11.077URLPMID:25496953 [本文引用: 1]
The objective of this study was to investigate the relationship between Pb(2+) adsorption and physicochemical properties of biochars produced at different pyrolytic temperatures. Ten biochars were prepared from peanut shell (PS) and Chinese medicine material residue (MR) at 300-600 degrees C. Adsorption kinetics and isotherms were determined, and the untreated and Pb(2+)-loaded biochars were analyzed by FTIR, SEM-EDX and XRD. Functional groups complexation, Pb(2+)-pi interaction and precipitation with minerals jointly contributed to Pb(2+) adsorption on these biochars. New mineral precipitates (e.g., Pb2(SO4)O and Pb4(CO3)2(SO4)(OH)2) formed during Pb(2+) sorption. For high-temperature biochars (500 degrees C), Pb(2+) sorption via complexation reduced, but the contribution of Pb(2+)-pi interaction was enhanced. Dramatic reduction of Pb(2+) sorption on demineralized biochars indicated the dominant role of minerals. These results are useful for screening effective biochars as engineered sorbents to remove or immobilize Pb(2+) in polluted water and soil.

Hussain M, Farooq M, Nawaz A, Al-Sadi A M, Solaiman Z M, Alghamdi S S, Ammara U, Ok Y S, Siddique K H M. Biochar for crop production: potential benefits and risks
J Soil Sediment, 2017,17:685-716.

DOI:10.1007/s11368-016-1360-2URL [本文引用: 3]

Lyu H, He Y, Tang J, Hecker M, Liu Q, Jones P D, Codling G, Giesy J P. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment
Environ Pollut, 2016,218:1-7.

DOI:10.1016/j.envpol.2016.08.014URLPMID:27537986 [本文引用: 1]
Biochars have increasingly been used as adsorbents for organic and inorganic contaminants in soils. However, during the carbonization process of pyrolysis, contaminants, including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dioxins and furans (PCDD/DF) can be generated. In this study, biochars made from sawdust, were prepared at various temperatures ranging from 250 to 700 degrees C. The Microtox((R)) and rat hepatoma cell line H4IIE-luc assays were used to characterize the general toxic and effects, mediated through the aryl hydrocarbon receptor (AhR), or dioxin-like potencies of organic extracts of biochars. The greatest total concentrations of PAHs (8.6 x 10(2) mug kg(-1)) and PCDD/DF (6.1 x 10(2) pg g(-1)) were found in biochar generated at 400 degrees C and 300 degrees C, respectively. Results of the H4IIE-luc assay, which gives total concentrations of 2,3,7,8-TCDD equivalents (TEQH4IIE-luc), indicated that total potencies of aryl hydrocarbon receptor (AhR) agonists were in decreasing order: 300 degrees C > 250 degrees C > 400 degrees C > 500 degrees C > 700 degrees C. The 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQchem) calculated as the sum of products of 16 PAHs and 17 PCDD/DF congers multiplied by their respective relative potencies (RePs) was less than that of TEQH4IIE-luc determined by use of the bioanalytical method, with the H4IIE-luc assay, which measures the total dioxin-like potency of a mixtures. The ratio of TEQchem/TEQH4IIE-luc was in the range of 0.7%-3.8%. Thus, a rather small proportion of the AhR-mediated potencies extracted from biochars were identified by instrumental analyses. Results of the Microtox test showed similar tendencies as those of the H4IIE-luc test, and a linear correlation between EC50 of Microtox test and EC20 of H4IIE-luc test was found. The results demonstrated that biochars produced at higher pyrolysis temperatures (>400 degrees C) were less toxic and had lower potencies of AhR-mediated effects, which may be more suitable for soil application.

Kookana R S, Sarmah A K, Van Zwieten L, Krull E, Singh B. Biochar application to soil: agronomic and environmental benefits and unintended consequences
Adv Agron, 2011,112:103-143.

DOI:10.1016/B978-0-12-385538-1.00003-2URL [本文引用: 1]
Biochar is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, renewable energy, waste mitigation, and as a soil amendment. The published reviews on biochar application to soil have so far focused mainly on the agronomic benefits, and have paid little attention to the potential unintended effects. The purpose of this chapter is to provide a balanced perspective on the agronomic and environmental impacts of biochar amendment to soil. The chapter highlights the physical and chemical characteristics of biochar, which can impact on the sorption, hence efficacy and biodegradation, of pesticides. As a consequence, weed control in biochar-amended soils may prove more difficult as preemergent herbicides may be less effective. Since biochars are often prepared from a variety of feedstocks (including waste materials), the potential introduction of contaminants needs to be considered before land application. Metal contaminants, in particular, have been shown to impact on plant growth, and soil microbial and faunal communities. Biochar has also been shown to influence a range of soil chemical properties, and rapid changes to nutrient availability, pH, and electrical conductivity need to be carefully considered to avoid unintended consequences for productivity. This chapter highlights some key areas of research which need to be completed to ensure a safe and sustainable use of biochar. In particular, understanding characteristics of biochars to avoid ecotoxicological impacts, understanding the effects of biochar on nutrient and contaminant behavior and transport, the effects of aging and the influence of feedstock and pyrolysis conditions on key properties are some of the areas that require attention.

McGrath T E, Wooten J B, Chan W G, Hajaligol M R. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation
Food Chem Toxicol, 2007,45:1039-1050.

DOI:10.1016/j.fct.2006.12.010URLPMID:17303297 [本文引用: 1]
The formation of condensed ring polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of ground tobacco in helium over the temperature range of 350-600 degrees C was investigated. PAH yields in the ng/g range were detected and the maximum yields of all PAHs studied including benzo[a]pyrene (B[a]P) and benzo[a]anthracene (B[a]A) occurred between 500 and 550 degrees C. The pathway to PAH formation in the 350-600 degrees C temperature range is believed to proceed via a carbonization process where the residual solid (char) undergoes a chemical transformation and rearrangement to give a more condensed polycyclic aromatic structure that upon further heating evolves PAH moieties. Extraction of tobacco with water led to a two fold increase in the yields of most PAHs studied. The extraction process removed low temperature non-PAH-forming components, such as alkaloids, organic acids and inorganic salts, and concentrated instead (on a per unit weight basis) tobacco components such as cell wall bio-polymers and lipids. Hexane extraction of the tobacco removed lipophilic components, previously identified as the main source of PAH precursors, but no change in PAH yields was observed from the hexane-extracted tobacco. Tobacco cell wall components such as cellulose, hemicellulose, and lignin are identified as major low temperature PAH precursors. A link between the formation of a low temperature char that evolves PAHs upon heating is established and the observed ng/g yields of PAHs from tobacco highlights a low temperature solid phase formation mechanism that may be operable in a burning cigarette.

Buss W, Graham M, MacKinnon G, Ma?ek O. Strategies for producing biochars with minimum PAH contamination
J Anal Appl Pyrol, 2016,119:24-30.

DOI:10.1016/j.jaap.2016.04.001URL [本文引用: 1]

Wang C, Wang Y, Herath H. Polycyclic aromatic hydrocarbons (PAHs) in biochar—their formation, occurrence and analysis: a review
Org Geochem, 2017,114:1-11.

DOI:10.1016/j.orggeochem.2017.09.001URL [本文引用: 3]

Brown R A, Kercher A K, Nguyen T H, Nagle D C, Ball W P. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents
Org Geochem, 2006,37:321-333.

DOI:10.1016/j.orggeochem.2005.10.008URL [本文引用: 1]

Huang H, Yao W, Lia R, Ali A, Du J, Guo D, Xiao R, Guo Z, Zhang Z, Awasthi M K. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue
Bioresour Technol, 2018,249:487-493.

DOI:10.1016/j.biortech.2017.10.020URLPMID:29073559 [本文引用: 2]
This study aimed to evaluate the chemical forms, behavior and environmental risk of heavy metal (HMs) Zn, Pb and Cd in phytoremediation residue (PMR) pyrolyzed at 350 degrees C, 550 degrees C and 750 degrees C, respectively. The behavior of HMs variation during the PMR pyrolysis process was analyzed and the potential HMs environmental risk of phytoremediation residue biochars (PMB) was assessed which was seldom investigated before. The results showed that the pyrolysis temperature increase decreased the soluble/exchangeable HMs fraction and alleviated the HMs bioavailability. When the temperature was over 550 degrees C, the adsorbed Zn(II), Pb(II) and Cd(II) were turned into oxides forms and concentrated in PMB with more stable forms exhibiting lower risk assessment code and potential ecological risk index. The ecotoxicity test showed higher pyrolysis temperature favored the reduction of PMB ecotoxicity. It is suggested that pyrolysis temperature above 550 degrees C may be suitable for thermal treatment of PMR with acceptable environmental risk.

Wang X, Li C, Li Z, Yu G, Wang Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge
Ecotox Environ Safe, 2019,168:45-52.

DOI:10.1016/j.ecoenv.2018.10.022URL [本文引用: 1]

Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil (aka IBI Biochar Standards) Version 2.1, 2015. pp 14-15.
[本文引用: 3]

Liu Z, Wang L, Xiao H, Guo X, Urbanovich O, Nagorskaya L, Li X. A review on control factors of pyrolysis technology for plants containing heavy metals
Ecotox Environ Safe, 2020,191:110181.

DOI:10.1016/j.ecoenv.2020.110181URL [本文引用: 1]

陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景
中国农业科学, 2013,46:3324-3333.

DOI:10.3864/j.issn.0578-1752.2013.16.003URL [本文引用: 1]
生物炭以其良好的解剖结构和理化性质,广泛的材料来源和广阔的产业化发展前景,成为当今农业、能源与环境等领域的研究热点。本文综合分析、评述了生物炭在土壤、作物、农田生态系统等领域应用的主要研究进展及其未来保障中国粮食安全的重要意义,从低碳、循环、可持续视角,客观、辩证地探讨了生物炭在农业上的应用价值及其产业化发展前景。生物炭在修复土壤障碍,提升耕地生产性能和作物生产能力,促进农业可持续发展和保障国家粮食安全等方面具有重要现实意义和应用价值,本文结合中国国情,提出了进一步深入研究与开发生物炭产业的方向与建议,旨在为中国生物炭产业的健康发展提供参考。
Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture
Sci Agric Sin, 2013,46:3324-3333 (in Chinese with English abstract).

[本文引用: 1]

Xu X Y, Cao X D, Zhao L, Wang H L, Yu H R, Gao B. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar
Environ Sci Pollut R, 2013,20:358-368.

DOI:10.1007/s11356-012-0873-5URL [本文引用: 2]
Biochar was produced from dairy manure (DM) at two temperatures: 200A degrees C and 350A degrees C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0-5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g(-1), respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g(-1), respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO (4) (3-) or CO (3) (2-) originating in biochar, with less to the surface complexation through -OH groups or delocalized pi electrons. At the initial metal concentration of 5 mM, 80-100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic -OH complexation. Among the precipitation, 20-30 % of the precipitation occurred as metal phosphate and 70-80 % as metal carbonate. For DM350, 75-100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic -OH site or delocalized pi electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.]]>

Zhu L, Lei H W, Wang L, Yadavalli G, Zhang X S, Wei Y, Liu Y P, Yan D, Chen S L, Ahring B. Biochar of corn stover: microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics
J Anal Appl Pyrol, 2015,115:149-156.

DOI:10.1016/j.jaap.2015.07.012URL [本文引用: 1]

Antonherrero R, Garciadelgado C, Alonsoizquierdo M, Garciarodriguez G, Cuevas J, Eymar E. Comparative adsorption of tetracyclines on biochars and stevensite: looking for the most effective adsorbent
Appl Clay Sci, 2018,160:162-172.

DOI:10.1016/j.clay.2017.12.023URL [本文引用: 1]

Koutcheiko S, Monreal C M, Kodama H, McCracken T, Kotlyar L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure
Bioresour Technol, 2007,98:2459-2464.

DOI:10.1016/j.biortech.2006.09.038URLPMID:17098423 [本文引用: 1]
Physico-chemical properties of a bioorganic char were modified by pyrolysis in the presence of NaOH, and with subsequent physical activation of carbonaceous species with CO2 a value-added activated carbon was fabricated. Bioorganic char is produced as a co-product during the production of bio-fuel from the pyrolysis of chicken litter. Untreated char contains approximately 37 wt% of C and approximately 43-45 wt% of inorganic minerals containing K, Ca, Fe, P, Cu, Mg, and Si. Carbonization and chemical activation of the char at 600 degrees C in the presence of NaOH in forming gas (4% H2 balanced with Ar) produced mainly demineralized activated carbon having BET (Brunauer, Emmett, and Teller) surface area of 486 m2/g and average pore size of 2.8 nm. Further physical activation with CO2 at 800 degrees C for 30 min resulted in activated carbon with BET surface area of 788 m2/g and average pore size of 2.2 nm. The mineral content was 10 wt%. X-ray photoelectron spectroscopy (XPS) indicated that the latter activation process reduced the pyrrolic- and/or pyridonic-N, increased pyridinic-N and formed quaternary-N at the expense of pyrrolic- and/or pyridonic-N found in the untreated char.

Fu P, Hu S, Xiang J, Sun L S, Su S, An S M. Study on the gas evolution and char structural change during pyrolysis of cotton stalk
J Anal Appl Pyrol, 2012,97:130-136.

DOI:10.1016/j.jaap.2012.05.012URL [本文引用: 2]

Weber K, Quicker P. Properties of biochar
Fuel, 2018,217:240-261.

DOI:10.1016/j.fuel.2017.12.054URL [本文引用: 4]

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J M, Oneill B, Skjemstad J O, Thies J E, Luizao F J, Petersen J B, Neves E G. Black carbon increases cation exchange capacity in soils
Soil Sci Soc Am J, 2006,70:1719-1730.

DOI:10.2136/sssaj2005.0383URL [本文引用: 1]

Lee J W, Kidder M, Evans B R. Characterization of biochars produced from corn stovers for soil amendment
Environ Sci Technol, 2010,44:7970-7974.

DOI:10.1021/es101337xURLPMID:20836548 [本文引用: 2]
Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 degrees C and gasification at 700 degrees C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.

Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman A R. Biochar from anaerobically digested sugarcane bagasse
Bioresour Technol, 2010,101:8868-8872.

DOI:10.1016/j.biortech.2010.06.088URLPMID:20634061 [本文引用: 2]
This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes.

Suliman W, Harsh J B, Fortuna A, Garciaperez M, Abulail N I. Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns
Environ Sci Technol, 2017,51:5071-5081.

URLPMID:28358986 [本文引用: 1]

Mukherjee A, Zimmerman A R, Harris W. Surface chemistry variations among a series of laboratory-produced biochars
Geoderma, 2011,163:247-255.

DOI:10.1016/j.geoderma.2011.04.021URL [本文引用: 1]
While the idea that adding pyrogenic carbon (referred to as 'biochar' when used as a soil amendment) will enhance soil fertility and carbon sequestration has gained widespread attention, understanding of its chemical and physical characteristics and the methods most appropriate to determine them have lagged behind. This type of information is needed to optimize the properties of biochar for specific purposes such as nutrient retention, pH amelioration or contaminant remediation. A number of surface properties of a range of biochar types were examined to better understand how these properties were related to biochar production conditions, as well as to each other. Among biochars made from oak (Quercus lobata), pine (Pious taeda) and grass (Tripsacum floridanum) at 250 degrees C in air and 400 and 650 degrees C under N(2), micropore surface area (measured by CO(2) sorptometry) increased with production temperature as volatile matter (VM) decreased, indicating that VM was released from pore-infillings. The CEC, determined using K(+) exchange, was about 10 cmol(c) kg(-1) for 400 and 650 degrees C chars and did not show any pH dependency, whereas 250 degrees C biochar CECs were pH-dependant and rose to as much as 70 cmol(c) kg(-1) at pH 7. Measurements of surface charge on biochar particles indicated a zeta potential of -9 to -4 mV at neutral pH and an iso-electric point of pH 2-3. However, a colloidal or dissolved biochar component was 4-5 times more electronegative. Total acid functional group concentration ranged 4.4-8.1 mmol g(-1) (measured by Boehm titration), decreased with production temperature, and was directly related to VM content. Together, these findings suggest that the VM component of biochar carries its acidity, negative charge, and thus, complexation ability. However, not all acid functional groups exchanged cations as the number of cation exchanging sites (CEC) was about 10 times less than the number of acid functional groups present on biochar surfaces and varied with biomass type. These findings suggest that lower temperature biochars will be better used to increase soil CEC while high temperature biochars will raise soil pH. Although no anion exchange capacity was measured in the biochars, they may sorb phosphate and nitrate by divalent cation bridging. (C) 2011 Elsevier B.V.

Yu K L, Lau B F, Show P L, Ong H C, Ling T C, Chen W, Ng E P, Chang J. Recent developments on algal biochar production and characterization
Bioresour Technol, 2017,246:2-11.

DOI:10.1016/j.biortech.2017.08.009URLPMID:28844690 [本文引用: 1]
Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.

Li L C, Zou D S, Xiao Z H, Zeng X Y, Zhang L Q, Jiang L D, Wang A D, Ge D B, Zhang G L, Liu F. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use
J Clean Prod, 2019,210:1324-1342.

DOI:10.1016/j.jclepro.2018.11.087URL [本文引用: 1]

Lian F, Xing B S. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk
Environ Sci Technol, 2017,51:13517-13532.

DOI:10.1021/acs.est.7b02528URLPMID:29116778 [本文引用: 2]
Black carbon (BC) is ubiquitous in the environments and participates in various biogeochemical processes. Both positive and negative effects of BC (especially biochar) on the ecosystem have been identified, which are mainly derived from its diverse physicochemical properties. Nevertheless, few studies systematically examined the linkage between the evolution of BC molecular structure with the resulted BC properties, environmental functions as well as potential risk, which is critical for understanding the BC environmental behavior and utilization as a multifunctional product. Thus, this review highlights the molecular structure evolution of BC during pyrolysis and the impact of BC physicochemical properties on its sorption behavior, stability, and potential risk in terrestrial and aqueous ecosystems. Given the wide application of BC and its important role in biogeochemical processes, future research should focus on the following: (1) establishing methodology to more precisely predict and design BC properties on the basis of pyrolysis and phase transformation of biomass; (2) developing an assessment system to evaluate the long-term effect of BC on stabilization and bioavailability of contaminants, agrochemicals, and nutrient elements in soils; and (3) elucidating the interaction mechanisms of BC with plant roots, microorganisms, and soil components.

Wang H Y, Gao B, Fang J, Ok Y S, Xue Y W, Yang K, Cao X D. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead
Ecol Eng, 2018,121:124-129.

DOI:10.1016/j.ecoleng.2017.06.029URL [本文引用: 1]

Khare P, Dilshad U, Rout P K, Yadav V, Jain S. Plant refuses driven biochar: application as metal adsorbent from acidic solutions
Arab J Chem, 2013,10(S2):S3054-S3063.

DOI:10.1016/j.arabjc.2013.11.047URL [本文引用: 1]

陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望
农业环境科学学报, 2014,33:821-828.

[本文引用: 1]

Chen W F, Zhang W M, Meng J. Biochar and agro-ecological environment: review and prospect
J Agro-Environ Sci, 2014,33:821-828 (in Chinese with English abstract).

[本文引用: 1]

Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
Environ Sci Technol, 2008,42:5137-5143.

DOI:10.1021/es8002684URLPMID:18754360 [本文引用: 1]
The combined adsorption and partition effects of biochars with varying fractions of noncarbonized organic matter have not been clearly defined. Biochars, produced by pyrolysis of pine needles at different temperatures (100-700 degrees C, referred as P100-P700), were characterized by elemental analysis, BET-N2 surface areas and FTIR. Sorption isotherms of naphthalene, nitrobenzene, and m-dinitrobenzene from water to the biochars were compared. Sorption parameters (N and logKf) are linearly related to sorbent aromaticities, which increase with the pyrolytic temperature. Sorption mechanisms of biochars are evolved from partitioning-dominant at low pyrolytic temperatures to adsorption-dominant at higher pyrolytic temperatures. The quantitative contributions of adsorption and partition are determined by the relative carbonized and noncarbonized fractions and their surface and bulk properties. The partition of P100-P300 biochars originates from an amorphous aliphatic fraction, which is enhanced with a reduction of the substrate polarity; for P400-P600, the partition occurs with a condensed aromatic core that diminishes with a further reduction of the polarity. Simultaneously, the adsorption component exhibits a transition from a polarity-selective (P200-P400) to a porosity-selective (P500-P600) process, and displays no selectivity with P700 and AC in which the adsorptive saturation capacities are comparable to predicted values based on the monolayer surface coverage of molecule.

El-Naggar A, Lee S S, Rinklebe J, Farooq M, Song H, Sarmah A K, Zimmerman A R, Ahmad M, Shaheen S M, Ok Y S. Biochar application to low fertility soils: a review of current status, and future prospects
Geoderma, 2019,337:836-554.

[本文引用: 1]

Bruun E W. Application of fast pyrolysis biochar to a loamy soil-effects on carbon and nitrogen dynamics and potential for carbon sequestration
PhD thesis. Technical Univ. of Denmark, 2800 Kgs. Lyngby, 2011.

[本文引用: 3]

Gray M, Johnson M G, Dragila M I, Kleber M. Water uptake in biochars: the roles of porosity and hydrophobicity
Biomass Bioenerg, 2014,61:196-205.

DOI:10.1016/j.biombioe.2013.12.010URL [本文引用: 1]
We assessed the effects of porosity and hydrophobicity on water uptake by biochars. Biochars were produced from two feedstocks (hazelnut shells and Douglas fir chips) at three production temperatures (370 degrees C, 500 degrees C, and 620 degrees C). To distinguish the effects of porosity from the effects of hydrophobicity, we compared uptake of water to uptake of ethanol (which is completely wetting and not affected by hydrophobic materials). For both feedstocks, low temperature biochars took up less water than high temperature biochars but the same amount of ethanol, suggesting that differences in water uptake based on production temperature reflect differences in surface hydrophobicity, not porosity. Conversely, Douglas fir biochars took up more water than hazelnut shell biochars due to greater porosity. Thus, designing biochars for water holding applications requires two considerations: (a) creating sufficient porosity through feedstock selection, and (b) determining a production temperature that reduces hydrophobicity to an acceptable level. (C) 2013 Elsevier Ltd.

Fang Q, Chen B, Lin Y, Guan Y. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups
Environ Sci Technol, 2014,48:279-288.

DOI:10.1021/es403711yURLPMID:24289306 [本文引用: 1]
The pH-dependent adsorption of perchlorate (ClO4(-)) by wood-derived biochars produced at 200-700 degrees C (referred as FB200-FB700) was investigated to probe the anion retention mechanisms of biochars and to identify the interactions of water and biochar. ClO4(-) adsorption was controlled by the surface polarities and structural compositions of the organic components of biochars, rather than their inorganic mineral components. FB500-FB700 biochars with low polarity and high aromaticity displayed a superior ClO4(-) adsorption capacity, but which was affected by solution pH. Besides electrostatic interaction, hydrogen bonding to oxygen-containing groups on biochars was proposed the dominant force for perchlorate adsorption, which led to the maximum adsorption occurring near pHIEP, where surface charge equals zero. The dissociation of these surface oxygen-containing groups was monitored by zeta potential curves, which indicated that the H-bonds donors on biochar surface for ClO4(-) binding were changed from -COOH (ClO4(-)...HOOC-) and -OH (ClO4(-)...HO-) to -OH alone with an increase in pH. The H-bond force was strengthened by the condensed aromatic surfaces, since high temperature biochars provided a hydrophobic microenvironment to accommodate weakly hydrated perchlorate and facilitated the H-bonds for ClO4(-) binding to functional groups by the large pi subunit of their aromatic substrate. Lastly, the batch and column tests of ClO4(-) adsorption showed that biochars like FB700 are effective adsorbents for anion pollutant removal via H-bonding interaction.

Das O, Sarmah A K. The love-hate relationship of pyrolysis biochar and water: a perspective
Sci Total Environ, 2015,512/513:682-685.

DOI:10.1016/j.scitotenv.2015.01.061URL [本文引用: 1]

Zhang J, You C. Water holding capacity and absorption properties of wood chars
Energ Fuel, 2013,27:2643-2648.

DOI:10.1021/ef4000769URL [本文引用: 1]
The application of biomass char as a kind of soil amendment has an important role in soil water holding capacity (WHC), which has a close relationship with its own surface area, total pore volume, and porosity structure. In this research, the WHC and absorption properties of the chars were investigated. Two kinds of wood (poplar and pine) were pyrolyzed at both 450 and 550 degrees C to produce the chars for the experiments. The Boehm titration was used to measure the concentration of the functional groups. The surface area was determined through the Brunauer-Emmett-Teller (BET) method, while the morphological characteristic of the chars was studied by scanning electron microscopy (SEM). Furthermore, the total pore volume, average pore diameter, and porosity structure of the chars were measured by a mercury porosimeter. On the basis of the pore size distribution of the chars, the definition of the Soil Science Society of America was used as the classification standard. The results showed that there was a significant positive correlation between the WHC of the chars and the total pore volume. However, there was no obvious relationship between the surface area and the WHC of the wood chars. The water absorption rate (WAR) of chars was affected by both the total pore volume and the average pore diameter. The classification of the pore size was needed to further explain the differences of the WAR of the chars. The large pores can not only hold the water in it but also act as the passages to the small pores. The relatively small pore volume of mesopores seriously affected the WAR of the chars.

Wiedemeier D B, Abiven S, Hockaday W C, Keiluweit M, Kleber M, Masiello C A, McBeath A V, Nico P S, Pyle L A, Schneider M P W, Smernik R J, Wiesenberg G L B, Schmidt M W I. Aromaticity and degree of aromatic condensation of char
Org Geochem, 2015,78:135-143.

DOI:10.1016/j.orggeochem.2014.10.002URL [本文引用: 1]

Manyà J J, Ortigosa M A, Laguarta S, Manso J A. Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar
Fuel, 2014,133:163-172.

DOI:10.1016/j.fuel.2014.05.019URL [本文引用: 2]
This study examines the effect of three key operating factors ( peak temperature, particle size and pressure) on the potential stability of the biochar produced by slow pyrolysis of vine shoots. The following response variables were considered as key indicators of the potential stability of biochar in soils: the fixed-carbon yield, the fraction of aromatic carbon, and the molar H: C and O:C ratios. Slow pyrolysis tests were conducted in a laboratory-scale fixed-bed unit and planned according to a 2-level factorial design. The behavior of the product gas yield and composition at the outlet of the secondary cracking reactor ( a fixed-bed of activated alumina particles at 700 degrees C) was also evaluated as a function of the three factors. The results from the statistical tests revealed that the particle size is the most significant factor in determining the potential stability of biochars. Using larger particles of biomass and, in a lesser extent, operating at higher peak temperatures leads to the production of more stable materials. Unexpectedly, the absolute pressure only plays a significantly positive role in decreasing the tar content in the producer gas at the outlet of a secondary cracking reactor. (C) 2014 Elsevier Ltd.

Kuhlbusch T A J. Method for determining black carbon in vegetation fire residues
Environ Sci Technol, 1995,29:2695-2702.

DOI:10.1021/es00010a034URLPMID:22191973 [本文引用: 1]

Spokas K. Review of the stability of biochar in soils: predictability of O:C molar ratios
Carbon Manage, 2010,1:289-303.

DOI:10.4155/cmt.10.32URL [本文引用: 1]

Li W, Dang Q, Brown R C, Laird D, Wright M M. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy
Bioresour Technol, 2017,241:959-968.

DOI:10.1016/j.biortech.2017.06.049URLPMID:28637163 [本文引用: 1]
This study evaluated the impact of biomass properties on the pyrolysis product yields, economic and environmental performance for the pyrolysis-biochar-bioenergy platform. We developed and applied a fast pyrolysis, feedstock-sensitive, regression-based chemical process model to 346 different feedstocks, which were grouped into five types: woody, stalk/cob/ear, grass/plant, organic residue/product and husk/shell/pit. The results show that biomass ash content of 0.3-7.7wt% increases biochar yield from 0.13 to 0.16kg/kg of biomass, and decreases biofuel yields from 87.3 to 40.7 gallons per tonne. Higher O/C ratio (0.88-1.12) in biomass decreases biochar yield and increases biofuel yields within the same ash content level. Higher ash content of biomass increases minimum fuel selling price (MFSP), while higher O/C ratio of biomass decreases MFSP within the same ash content level. The impact of ash and O/C ratio of biomass on GHG emissions are not consistent for all feedstocks.

Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
Environ Sci Technol, 2012,46:11770-11778.

DOI:10.1021/es302545bURLPMID:23013285 [本文引用: 1]
The stability of biochar carbon (C) is the major determinant of its value for long-term C sequestration in soil. A long-term (5 year) laboratory experiment was conducted under controlled conditions using 11 biochars made from five C3 biomass feedstocks (Eucalyptus saligna wood and leaves, papermill sludge, poultry litter, cow manure) at 400 and/or 550 degrees C. The biochars were incubated in a vertisol containing organic C from a predominantly C4-vegetation source, and total CO(2)-C and associated delta(13)C were periodically measured. Between 0.5% and 8.9% of the biochar C was mineralized over 5 years. The C in manure-based biochars mineralized faster than that in plant-based biochars, and C in 400 degrees C biochars mineralized faster than that in corresponding 550 degrees C biochars. The estimated mean residence time (MRT) of C in biochars varied between 90 and 1600 years. These are conservative estimates because they represent MRT of relatively labile and intermediate-stability biochar C components. Furthermore, biochar C MRT is likely to be higher under field conditions of lower moisture, lower temperatures or nutrient availability constraints. Strong relationships of biochar C stability with the initial proportion of nonaromatic C and degree of aromatic C condensation in biochar support the use of these properties to predict biochar C stability in soil.

Han L F, Ro K S, Wang Y, Sun K, Sun H R, Libra J A, Xing B S. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition
Sci Total Environ, 2018,616/617:335-344.

DOI:10.1016/j.scitotenv.2017.11.014URL [本文引用: 1]

Chen J, Li S, Liang C, Xu Q, Li Y, Qin H, Fuhrmann J J. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate
Sci Total Environ, 2017,574:24-33.

DOI:10.1016/j.scitotenv.2016.08.190URLPMID:27621090 [本文引用: 1]

Sigua G C, Novak J M, Watts D W, Cantrell K B, Shumaker P D, Sz?gi A A, Johnson M G. Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar
Chemosphere, 2014,103:313-321.

DOI:10.1016/j.chemosphere.2013.12.024URLPMID:24397887 [本文引用: 1]
2 mm). The amount of CO2 evolved varied significantly between soils (pSS>SG>/=PC; Coxville: PC>SG>SS>PL). The average net CO2-C evolved from the Coxville soils (385 mg kg(-1)) was about threefold more than the CO2-C evolved from the Norfolk soils (123 mg kg(-1)). Our results suggest different particle sizes and sources of biochar as well as soil type influence biochar stability.]]>

Crombie K, Ma?ek O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration
GCB Bioenergy, 2015,7:349-361.

DOI:10.1111/gcbb.2015.7.issue-2URL [本文引用: 1]

Wang B, Gao B, Fang J. Recent advances in engineered biochar productions and applications
Crit Rev Env Sci Tec, 2017,47:2158-2207.

DOI:10.1080/10643389.2017.1418580URL [本文引用: 9]

Wang T, Liu X Q, Men Q Y, Ma C C, Liu Y, Ma W, Liu Z, Wei M B, Li C X, Yan Y S. Surface plasmon resonance effect of Ag nanoparticles for improving the photocatalytic performance of biochar quantum-dot/Bi4Ti3O12 nanosheets
Chin J Catal, 2019,40:886-894.

DOI:10.1016/S1872-2067(19)63330-9URL [本文引用: 1]

左卫元, 仝海娟, 史兵方, 陈盛余, 段艳, 廖安平. 生物炭/锰氧化物复合材料对苯甲酸的吸附研究
无机盐工业, 2018,50(8):57-61.

[本文引用: 1]

Zhuo W Y, Tong H G, Shi B F, Chen S Y, Duan Y, Liao A P. Adsorption effect of biochar/manganese oxide composite material on benzoic acid
Inorg Chem Ind, 2018,50(8):57-61 (in Chinese with English abstract).

[本文引用: 1]

Hu X, Ding Z, Zimmerman A R, Wang S, Gao B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis
Water Res, 2015,68:206-216.

DOI:10.1016/j.watres.2014.10.009URLPMID:25462729 [本文引用: 1]
Iron (Fe)-impregnated biochar, prepared through a novel method that directly hydrolyzes iron salt onto hickory biochar, was investigated for its performance as a low-cost arsenic (As) sorbent. Although iron impregnation decreased the specific surface areas of the biochar, the impregnated biochar showed much better sorption of aqueous As (maximum sorption capacity of 2.16 mg g(-)(1)) than the pristine biochar (no/little As sorption capacity). Scanning electron microscope equipped with an energy dispersive spectrometer and X-ray diffraction analysis indicated the presence of crystalline Fe hydroxide in the impregnated biochar but no crystal forms of arsenic were found in the post-sorption biochar samples. However, large shifts in the binding energy of Fe(2)p, As(3)d, O(1)s and C(1)s region on the following As sorption indicated a change in chemical speciation from As(V) to As(III) and Fe(II) to Fe(III) and strong As interaction with oxygen-containing function groups of the Fe-impregnated biochar. These findings suggest that the As sorption on the Fe-impregnated biochar is mainly controlled by the chemisorption mechanism. Columns packed with Fe-impregnated biochar showed good As retention, and was regenerated with 0.05 mol L(-)(1) NaHCO(3) solution. These findings indicate that Fe-impregnated biochar can be used as a low-cost filter material to remove arsenic from aqueous solutions.

Thines K R, Abdullah E C, Mubarak N M, Ruthiraan M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application
Renew Sust Energ Rev, 2017 67:257-276.

[本文引用: 1]

Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal
Bioresour Technol, 2013,130:457-462.

DOI:10.1016/j.biortech.2012.11.132URLPMID:23313693 [本文引用: 1]
A magnetic biochar based adsorbent with colloidal or nanosized gamma-Fe(2)O(3) particles embedded in porous biochar matrix was fabricated via thermal pyrolysis of FeCl(3) treated biomass. The synthesized samples were studied systematically by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, selected-area electron diffraction pattern, scanning electron microscopy, energy-dispersive X-ray analysis, superconducting quantum interference device, and batch sorption measurements. The characterization analyses showed that large quantity of gamma-Fe(2)O(3) particles with size between hundreds of nanometers and several micrometers tightly grow within the porous biochar matrix. Biochar/gamma-Fe(2)O(3) composite exhibited excellent ferromagnetic property with a saturation magnetization of 69.2emu/g. Batch sorption experimental results showed that the composite has strong sorption ability to aqueous arsenic. Because of its excellent ferromagnetic properties, the arsenic-laden biochar/gamma-Fe(2)O(3) composite could be easily separated from the solution by a magnet at the end of the sorption experiment.

吕宏虹, 宫艳艳, 唐景春, 黄耀, 高凯. 生物炭及其复合材料的制备与应用研究进展
农业环境科学学报, 2015,34:1429-1440.

[本文引用: 1]

Lyu H H, Gong Y Y, Tang J C, Huang Y, Gao K. Advances in preparation and applications of biochar and its composites
J Agro-Environ Sci, 2015,34:1429-1440 (in Chinese with English abstract).

[本文引用: 1]

Chen B, Chen Z, Lyu S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
Bioresour Technol, 2011,102:716-723.

DOI:10.1016/j.biortech.2010.08.067URLPMID:20863698 [本文引用: 2]
Biochar derived from agricultural biomass waste is increasingly recognized as a multifunctional material for agricultural and environmental applications. Three novel magnetic biochars (MOP250, MOP400, MOP700) were prepared by chemical co-precipitation of Fe3+/Fe2+ on orange peel powder and subsequently pyrolyzing under different temperatures (250, 400 and 700 degrees C), which resulted in iron oxide magnetite formation and biochar preparation in one-step. The MOP400 was comprised of nano-size magnetite particles and amorphous biochar, and thus exhibited hybrid sorption capability to efficiently remove organic pollutants and phosphate from water. For organic pollutants, MOP400 demonstrated the highest sorption capability, and even much larger than the companion non-magnetic biochar (OP400). For phosphate, magnetic biochars, especially MOP250, demonstrated much higher sorption capability than the companion non-magnetic biochars. No significantly competitive effect between organic pollutant and phosphate was observed. These suggest that the magnetic biochar is a potential sorbent to remove organic contaminants and phosphate simultaneously from wastewater.

Trakal L, Veselsk V, Safak I, Vtkov M, Chalov S, Komarek M. Lead and cadmium sorption mechanisms on magnetically modified biochars
Bioresour Technol, 2016,203:318-324.

DOI:10.1016/j.biortech.2015.12.056URLPMID:26748045 [本文引用: 1]
This paper discusses Cd(II) and Pb(II) sorption efficiency of biochars modified by impregnation with magnetic particles. All selected biochar characteristics were significantly affected after the modification. More specifically, the cation exchange capacity increased after the modification, except for grape stalk biochar. However, the changes in the pH value, PZC, and BET surface after modification process were less pronounced. The metal loading rate was also significantly improved, especially for Cd(II) sorption on/in nut shield and plum stone biochars (10- and 16-times increase, respectively). The results indicated that cation exchange (as a metal sorption mechanism) was strengthened after Fe oxide impregnation, which limited the desorbed amount of tested metals. In contrast, the magnetization of grape stalk biochar reduced Pb(II) sorption in comparison with that of pristine biochar. Magnetic modification is, therefore, more efficient for biochars with well-developed structure and for more mobile metals, such as Cd(II).

Uchimiya M, Bannon D I, Wartelle L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil
J Agric Food Chem, 2012,60:1798-1809.

DOI:10.1021/jf2047898URLPMID:22280497 [本文引用: 1]

Huff M D, Lee J W. Biochar-surface oxygenation with hydrogen peroxide
J Environ Manage, 2016,165:17-21.

DOI:10.1016/j.jenvman.2015.08.046URLPMID:26402867 [本文引用: 1]
Biochar was produced from pinewood biomass by pyrolysis at a highest treatment temperature (HTT) of 400 degrees C. This biochar was then treated with varying concentrations of H2O2 solution (1, 3, 10, 20, 30% w/w) for a partial oxygenation study. The biochar samples, both treated and untreated, were then tested with a cation exchange capacity (CEC) assay, Fourier Transformed Infrared Resonance (FT-IR), elemental analysis, field water-retention capacity assay, pH assay, and analyzed for their capacity to remove methylene blue from solution. The results demonstrated that higher H2O2 concentration treatments led to higher CEC due to the addition of acidic oxygen functional groups on the surface of the biochar, which also corresponds to the resultant lowering of the pH of the biochar with respect to the H2O2 treatment. Furthermore, it was shown that the biochar methylene blue adsorption decreased with higher H2O2 concentration treatments. This is believed to be due to the addition of oxygen groups onto the aromatic ring structure of the biochar which in turn weakens the overall dispersive forces of pi-pi interactions that are mainly responsible for the adsorption of the dye onto the surface of the biochar. Elemental analysis revealed that there was no general augmentation of the elemental composition of the biochar samples through the treatment with H2O2, which suggests that the bulk property of biochar remains unchanged through the treatment.

Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman A R, Ro K S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
Chem Eng J, 2012, 200-202:673-680.

DOI:10.1016/j.cej.2012.06.116URL [本文引用: 1]

Vithanage M, Rajapaksha A U, Zhang M, Thiele-Bruhn S, Lee S S, Ok Y S. Acid-activated biochar increased sulfamethazine retention in soils
Environ Sci Pollut R, 2015,22:2175-2186.

DOI:10.1007/s11356-014-3434-2URL [本文引用: 1]

Hadjittofi L, Prodromou M, Pashalidis I. Activated biochar derived from cactus fibres: preparation, characterization and application on Cu(II) removal from aqueous solutions
Bioresour Technol, 2014,159:460-464.

URLPMID:24718356 [本文引用: 1]

Ding Z, Hu X, Wan Y, Wang S, Gao B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali- modified biochar: Batch and column tests
J Ind Eng Chem, 2016,33:239-245.

[本文引用: 1]

Fan Y, Wang B, Yuan S, Wu X, Chen J, Wang L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal
Bioresour Technol, 2010,101:7661-7664.

DOI:10.1016/j.biortech.2010.04.046URLPMID:20457515 [本文引用: 1]
This study described the adsorption of chloramphenicol (CAP) in wastewater on the renewable bioresource of bamboo charcoal (BC). Results showed that CAP adsorption on BC (Ln q(e)=1.272 Ln C(e)+1.971) and H(2)SO(4) modified BC (Ln q(e)=1.851 Ln C(e)+0.659) were very slight, and on NaOH modified BC was significantly increased (Ln q(e)=0.344 Ln C(e)+6.490). The adsorbents were characterized by N(2) adsorption-desorption, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It is revealed that BC and modified BC had very small surface areas of less than 1 m(2) g(-1), H(2)SO(4) treatment led to minimal variation in surface functional groups, and NaOH treatment increased the percentage of surface graphitic carbon and other oxygen-containing groups. The increased adsorption of CAP on NaOH modified BC was mainly ascribed to the enhancement of the pi-pi interaction between the adsorbent and adsorbate.

Li B, Yang L, Wang C Q, Zhang Q P, Liu Q C, Li Y D, Xiao R. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes
Chemosphere, 2017,175:332-340.

DOI:10.1016/j.chemosphere.2017.02.061URLPMID:28235742 [本文引用: 1]
In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO4 impregnation of biochar (BC-MnOx) and FeCl3 magnetic treatment of biochar (BC-FeOx), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnOx provided the highest sorption capacity (81.10 mg g(-1)). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnOx material was the highest (14.46 g (mg.h)(-1)). Therefore, biochar modification methods involving KMnO4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions.

Dehkhoda A M, Ellis N, Gyenge E. Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions
Micropor Mesopor Mat, 2016,224:217-228.

DOI:10.1016/j.micromeso.2015.11.041URL [本文引用: 1]

Regmi P, Moscoso J L G, Kumar S, Cao X Y, Mao J D, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process
J Environ Manage, 2012,109:61-69.

DOI:10.1016/j.jenvman.2012.04.047URLPMID:22687632 [本文引用: 1]
Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g).

Ahmed M B, Zhou J L, Ngo H H, Guo W S, Chen M F. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
Bioresour Technol, 2016,214:836-851.

DOI:10.1016/j.biortech.2016.05.057URLPMID:27241534 [本文引用: 1]
Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data.

Samsuri A W, Sadegh-Zadeh F, She-Bardan B J. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk
J Environ Chem Eng, 2013,1:981-988.

DOI:10.1016/j.jece.2013.08.009URL [本文引用: 1]

Wang Y, Wang X J, Liu M, Wang X, Wu Z, Yang L Z, Xia S Q, Zhao J F. Cr(VI) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating
Ind Crops Prod, 2012,39:81-88.

DOI:10.1016/j.indcrop.2012.02.015URL [本文引用: 2]

Zhang M, Gao B, Yao Y, Inyang M. Phosphate removal ability of biochar/MgAl-LDHultra-fine composites prepared by liquid-phase deposition
Chemosphere, 2013,92:1042-1047.

URLPMID:23545188 [本文引用: 1]

Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution
Bioresour Techn, 2014,169:403-408.

DOI:10.1016/j.biortech.2014.07.014URL [本文引用: 1]

Divband Hafshejani L, Hooshmand A, Naseri A A, Mohammadia A S, Abbasib F, Bhatnagarc A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar
Ecolog Engin, 2016,95:101-111.

DOI:10.1016/j.ecoleng.2016.06.035URL [本文引用: 1]

Zhu S S, Huang X C, Wang D W, Wang L, Ma F. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential
Chemosphere, 2018,207:50-59.

URLPMID:29772424 [本文引用: 1]

朱丹丹, 周启星. 功能纳米材料在重金属污染水体修复中的应用研究进展
农业环境科学学报, 2018,37:1551-1564.

[本文引用: 1]

Zhu D D, Zhou Q X. A review on the removal of heavy metals from water using nanomaterials
J Agro-Environ Sci, 2018,37:1551-1564 (in Chinese with English abstract).

[本文引用: 1]

Tan X F, Liu Y G, Gu Y L, Xu Y, Zeng G M, Hu X J, Liu S B, Wang X, Liu S M, Li J. Biochar-based nano-composites for the decontamination of wastewater: a review
Bioresour Technol, 2016,212:318-333

DOI:10.1016/j.biortech.2016.04.093URLPMID:27131871 [本文引用: 3]
Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.

蒲生彦, 贺玲玲, 刘世宾. 生物炭复合材料在废水处理中的应用研究进展
工业水处理, 2019,39(9):1-8.

[本文引用: 1]

Pu S Y, He L L, Liu S B. Review on the preparation of biochar composites and its applications in wastewater treatment
Ind Water Treat, 2019,39(9):1-8 (in Chinese with English abstract).

[本文引用: 1]

Rajapaksha A U, Chen S S, Tsang D C W, Zhang M, Vithanage M, Mandal S, Gao B, Bolan N S, Ok Y S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
Chemosphere, 2016,148:276-291.

DOI:10.1016/j.chemosphere.2016.01.043URLPMID:26820777 [本文引用: 1]
The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation.

Rajapaksha A U, Vithanage M, Ahmad M, Seo D C, Cho J S, Lee S E, Lee S S, Ok Y S. Enhanced sulfamethazine removal by steam-activated invasive plant derived biochar
J Hazard Mater, 2015,290:43-50.

DOI:10.1016/j.jhazmat.2015.02.046URLPMID:25734533 [本文引用: 1]
Recent investigations have shown frequent detection of pharmaceuticals in soils and waters posing potential risks to human and ecological health. Here, we report the enhanced removal of sulfamethazine (SMT) from water by physically activated biochar. Specifically, we investigated the effects of steam-activated biochars synthesized from an invasive plant (Sicyos angulatus L.) on the sorption of SMT in water. The properties and sorption capacities of steam-activated biochars were compared with those of conventional non-activated slow pyrolyzed biochars. Sorption exhibited pronounced pH dependence, which was consistent with SMT speciation and biochar charge properties. A linear relationship was observed between sorption parameters and biochar properties such as molar elemental ratios, surface area, and pore volumes. The isotherms data were well described by the Freundlich and Temkin models suggesting favorable chemisorption processes and electrostatic interactions between SMT and biochar. The steam-activated biochar produced at 700 degrees C showed the highest sorption capacity (37.7 mg g(-1)) at pH 3, with a 55% increase in sorption capacity compared to that of non-activated biochar produced at the same temperature. Therefore, steam activation could potentially enhance the sorption capacities of biochars compared to conventional pyrolysis.

Zhang C S, Liu L, Zhao M H, Rong H W, Xu Y. The environmental characteristics and applications of biochar
Environ Sci Pollut R, 2018,25:21525-21534.

DOI:10.1007/s11356-018-2521-1URL [本文引用: 1]

Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K. N2O and CH4 emission from soil amended with steam-activated biochar
J Plant Nutr Soil Sc, 2014,177:34-38.

DOI:10.1002/jpln.201300495URL [本文引用: 1]
Steam-activation increased CH4 emission of stover biochar but decreased it for wood biochar by 14%(-)70%. Biochar generally increased CH4 emission but reduced N2O emission by 10%-41%. Emission of N2O was 17% lower for maize-stover biochar compared to Eucalyptus-wood biochar, and 3% lower for 350 degrees C compared to 550 degrees C pyrolysis temperature. Emission of CH4 was 21% higher for activated stover biochar compared to Eucalyptus-wood biochar and 10% lower for 350 degrees C compared to 550 degrees C pyrolysis temperature. No difference in net CO2 equivalent was observed among biochar grades.

Lima I M, Marshall W E. Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons
Chem Technol Biot, 2005,80:1054-1061.

[本文引用: 2]

De M, Azargohar R, Dalai A K, Shewchuk S R. Mercury removal by bio-char based modified activated carbons
Fuel, 2013,103:570-578.

DOI:10.1016/j.fuel.2012.08.011URL [本文引用: 1]

Borchard N, Wolf A, Laabs V, Aeckersberg R, Scherer H, Moeller A, Amelung W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching: a greenhouse experiment
Soil Use Manage, 2012,28:177-184.

DOI:10.1111/sum.2012.28.issue-2URL [本文引用: 1]

Foo K Y, Hameed B H. Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation
Biomass Bioenergy, 2011,35:3257-3261.

DOI:10.1016/j.biombioe.2011.04.023URL [本文引用: 1]

樊兴君, 尤进茂, 谭干祖, 俞贤达, 焦天权. 微波促进有机化学反应研究进展
化学进展, 1998, (3):51-61.

[本文引用: 1]

Fan X J, You J M, Tan G Z, Yu X D, Jiao T Q. Progress in microwave-organic reaction enhancement chemistry
Prog Chem, 1998, (3):51-61.

[本文引用: 1]

Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity
J Anal Appl Pyrol, 2009,86:161-167.

DOI:10.1016/j.jaap.2009.05.006URL [本文引用: 1]

Mohamed B A, Ellis N, Kim C S, Bi X, Emam A E R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water holding capacity and fertility of sandy soil
Sci Total Environ, 2016,566/567:387-397.

DOI:10.1016/j.scitotenv.2016.04.169URL [本文引用: 1]

Du Z, Zheng T, Wang P, Hao L, Wang Y. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water
Bioresour Technol, 2016,201:41-49.

DOI:10.1016/j.biortech.2015.11.009URLPMID:26630582 [本文引用: 1]
A low-cost and recyclable biosorbent derived from jute fiber was developed for high efficient adsorption of Pb(II), Cd(II) and Cu(II) from water. The jute fiber was rapidly pretreated and grafted with metal binding groups (COOH) under microwave heating (MH). The adsorption behavior of carboxyl-modified jute fiber under MH treatment (CMJFMH) toward heavy metal ions followed Langmuir isotherm model (R(2)>0.99) with remarkably high adsorption capacity (157.21, 88.98 and 43.98mg/g for Pb(II), Cd(II) and Cu(II), respectively). Also, CMJFMH showed fast removal ability for heavy metals in a highly significant correlation with pseudo second-order kinetics model. Besides, CMJFMH can be easily regenerated with EDTA-2Na solution and reused up to at least four times with equivalent high adsorption capacity. Overall, cheap and abundant production, rapid and facile preparation, fast and efficient adsorption of heavy metals and high regeneration ability can make the CMJFMH a preferred biosorbent for heavy metal removal from water.

Shen B, Li G, Wang F, Wang Y, He C, Zhang M, Singh S. Elemental mercury removal by the modified bio-char from medicinal residues
Chem Eng J, 2015,272:28-37.

DOI:10.1016/j.cej.2015.03.006URL [本文引用: 1]

Li G, Shen B, Li F, Tian L, Singh S, Wang F. Elemental mercury removal using biochar pyrolyzed from municipal solid waste
Fuel Process Technol, 2015,133:43-50.

DOI:10.1016/j.fuproc.2014.12.042URL [本文引用: 1]

Menendez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge
Water Res, 2002,36:3261-3264.

DOI:10.1016/s0043-1354(02)00017-9URLPMID:12188123 [本文引用: 1]
This paper describes a new method for pyrolyzing sewage sludge using a microwave furnace. It was found that if just the raw wet sludge is treated in the microwave, only drying of the sample takes place. However, if the sludge is mixed with a small amount of a suitable microwave absorber (such as the char produced in the pyrolysis itself) temperatures of up to 900 degrees C can be achieved, so that pyrolysis takes place rather than drying. Microwave treatments were also compared with those carried out in a conventional electric furnace, as well as the characteristics of their respective carbonaceous solid residues.

Lyu H, Gao B, He F, Ding C, Tang J, Crittenden J C. Ball-milled carbon nanomaterials for energy and environmental applications
ACS Sustain Chem Eng, 2017,5:9568-9585.

DOI:10.1021/acssuschemeng.7b02170URL [本文引用: 1]

Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Yu G, Winglee J, Wiesner M R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling
J Hazard Mater, 2016,305:156-163.

URLPMID:26685062 [本文引用: 1]

Cai H, Xu L, Chen G, Peng C, Ke F, Liu Z, Li D, Zhang Z, Wan X. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball mill
Appl Surf Sci, 2016,375:74-84.

DOI:10.1016/j.apsusc.2016.03.005URL [本文引用: 1]

Lyu H, Gao B, He F, Zimmerman A, Ding C, Huang H, Tang J. Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms
Environ Poll, 2018,233:54-63.

DOI:10.1016/j.envpol.2017.10.037URL [本文引用: 1]

Peterson S C, Jackson M A, Kim S, Palmquist D E. Increasing biochar surface area: optimization of ball milling parameters
Powder Technol, 2012,228:115-120.

DOI:10.1016/j.powtec.2012.05.005URL [本文引用: 1]

Wang D, Zhang W, Hao X, Zhou D. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size
Environ Sci Technol, 2013,47:821-828.

URLPMID:23249307 [本文引用: 1]

Chen M, Wang D, Yang F, Xu X, Xu N, Cao X. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions
Environ Pollut, 2017,230:540-549.

DOI:10.1016/j.envpol.2017.06.101URLPMID:28709053 [本文引用: 1]
Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl2), and natural organic matter (0-10 mg L(-1) humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained ( approximately 57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts.

陈健康. 紫外辐射改性碳材料对水中重金属的吸附研究
重庆大学硕士学位论文, 重庆, 2014.

[本文引用: 1]

Chen J K. The Study of Adsorption Heavy Metals from Aqueous Solution Using Ultraviolet Radiation Modified Carbon Materials
MS Thesis of Chongqing University, Chongqing, China, 2014 (in Chinese with English abstract).

[本文引用: 1]

李桥, 高屿涛, 姜蔚, 雍毅. 紫外辐照改性生物炭对土壤中Cd的稳定化效果
环境工程学报, 2017,11:5708-5714.

[本文引用: 1]

Li Q, Gao Y T, Jiang W, Yong Y. Stabilization of Cd contaminated soil by ultraviolet irradiation modified biochar
Chin J Environ Engin, 2017,11:5708-5714 (in Chinese with English abstract).

[本文引用: 1]

相关话题/生物 结构 技术 材料 理化

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛樸亜閵忊剝绀嬮柡浣瑰姍瀹曞崬鈻庡Ο鎭嶆氨绱撻崒姘偓鐑芥嚄閼稿灚鍙忛梺鍨儑缁犻箖鏌嶈閸撶喖寮婚垾宕囨殕闁逞屽墴瀹曚即寮借閺嗭附绻濇繝鍌涳紞婵℃煡绠栭弻锝夊閳轰胶浠梺鐑╂櫓閸ㄨ泛顕g拠娴嬫婵﹫绲芥禍楣冩煥濠靛棗鏆欏┑鈥炽偢閺屽秷顧侀柛鎾存皑閹广垽宕煎┑鎰婵犵數濮甸懝楣冨础閹惰姤鐓熼柡鍐ㄦ处椤忕姵銇勯弮鈧ú鐔奉潖閾忓湱纾兼俊顖氭惈琚濋梻浣告啞閹歌鐣濋幖浣哥畺闁汇垻枪缁秹鏌涚仦鍓х煂闁挎稒绻冪换娑欐綇閸撗吷戦悷婊勬緲閸燁垳绮嬪澶嬪€锋い鎺戝€婚惁鍫ユ⒑闂堟盯鐛滅紒韫矙閹繝骞囬悧鍫㈠幈闂佸搫鍟犻崑鎾绘煟濡ゅ啫鈻堟鐐插暣閸ㄩ箖寮妷锔锯偓濠氭⒑鐟欏嫬鍔ゆい鏇ㄥ弮瀹曘垺绂掔€n偀鎷洪梺鑽ゅ枛閸嬪﹪宕甸悢鍏肩厱濠电姴鍟版晶鍨殽閻愬樊鍎旈柡浣稿暣閸┾偓妞ゆ帒瀚崑鍌炴煛閸ャ儱鐏柣鎾寸懇閺岀喎鈻撻崹顔界亪濡炪倧绲介妶鎼佸蓟濞戞瑧绡€闁稿本绮堢划鐢告⒑闁稓鈹掗柛鏂跨焸閿濈偛饪伴崼婵嗚€垮┑掳鍊愰崑鎾绘煃闁垮娴慨濠呮缁辨帒螣鐠囪尙顣查梻渚€娼ч悧濠囧箖閸屾凹鍤曞┑鐘宠壘閻忓磭鈧娲栧ú锕€鈻撻弴銏$厽閹兼惌鍨崇粔鐢告煕閹惧顬奸柍顏嗘暬濮婅櫣鎷犻幓鎺濆妷濡炪倖姊归悧鐘茬暦閹剁瓔鏁嬮柍褜鍓欓悾鐑藉箮閼恒儲娅滈梺鍛婁緱閸ㄥ崬鈻撴ィ鍐┾拺闁革富鍘奸崝瀣煕閳轰胶澧曞畝锝呮健閸╋繝宕掑Ο鍦泿闂備胶鎳撻幖顐⑽涘Δ浣侯洸闁诡垎灞惧瘜闂侀潧鐗嗘鍛婃櫠椤旀垝绻嗘い鎰剁悼缁犳挻銇勯銏㈢闁圭厧婀遍幉鎾礋椤愩倕閰遍梻鍌欑濠€杈╁垝椤栨粍鏆滈柍鍝勬噹缁€澶婎熆鐠鸿櫣鐏辩痪鎯с偢閺岋綁骞囬棃娑橆潽缂備焦鍎肩亸娆戞閹烘挸绶為悗锝庡亜閸炲姊虹拠鈥虫灍闁稿孩濞婇崺鐐哄箣閻橆偄浜鹃柨婵嗙凹缁ㄨ姤銇勯弮鈧崝鏍崲濞戞瑦缍囬柛鎾楀惙鎴︽⒑閻戔晛澧叉繛鑼枛閻涱喖螖閸涱厼宓嗛梺缁樺姀閺呮粓寮埀顒勬⒒娴h櫣甯涢柛鏃€鐗曞玻鍨枎閹炬潙鈧爼鏌ㄩ弴鐐测偓褰掑吹閺囥垺鐓忛柛顐g箥濡插綊鏌i幘瀵告创闁诡喗顨婇弫鎰償濠靛牆鍤梻浣告贡濞呫垻绱炴笟鈧璇差吋閸偅顎囬梻浣告啞閹稿鎮疯閸掓帞鎷犲顔兼倯婵犮垼娉涢敃锕傛晬閻斿吋鈷掑〒姘搐婢ь喚绱掓径濠庡殶缂侇喖顭烽幃鈺冩嫚閼碱剦鍟囨繝鐢靛剳缂嶅棝宕滃▎鎾村€舵い蹇撶墛閻撴洘绻涢崱妤冪缂佺姷绮〃銉╂倷鐎电ǹ鈪归柤鎸庡姈閵囧嫰骞掗崱妞惧濠电姷顣介埀顒冨皺閻瑩鏌$仦鐣屝ч柡灞诲妿閳ь剨缍嗘禍鐐村瀹€鍕€垫繛鍫濈仢閺嬫盯鏌i弽褋鍋㈡鐐插暙閳诲酣骞樺畷鍥崜闂備浇顫夐幆宀勫储閹间礁纾婚柟鐐灱閸亪鏌涢弴妤佹珒缂併劌顭峰娲传閸曨偀鍋撹ぐ鎺濇晞婵炲棗绮鹃悢鐓庣劦妞ゆ帒瀚埛鎴︽煕濠靛棗顏柣鎺曟硶缁辨帞绱掑Ο鑲╃暤闂佷紮绲块崗妯讳繆閹间礁鐓涘┑鐘插暞濞呮牗绻濆▓鍨灍闁挎洦鍋嗗濠冦偅閸愨晛鈧敻鏌eΔ鈧悧鍛崲閸℃稒鐓忛柛顐g箖閹兼劙宕幖浣光拺缂佸顑欓崕鎰版煟閳哄﹤鐏犻柣锝囧厴椤㈡稑鈽夊鍡楁闂備礁鎼ˇ浼村垂瑜版帩鏁婂鑸靛姈閳锋垿鏌涘☉姗堟敾濠㈣泛瀚伴弻娑樜熼崷顓犵厯閻庤娲橀崹鐢革綖濠婂牆鐒垫い鎺戝閽冪喓鈧箍鍎遍ˇ顖炴偂濞戞◤褰掓晲閸涱喖鏆堥梺璇茬箲閹告悂鍩為幋锔藉€烽柟缁樺笚閸婎垰鈹戦埥鍡椾簻闁哥噥鍋婇敐鐐剁疀閹句焦妞介、鏃堝礋椤忓棛鍊為梻鍌欑閹测€趁洪弽顓熷€舵慨妯夸含閹冲懘姊婚崒姘偓鐑芥嚄閸撲礁鍨濇い鏍亼閳ь剙鍟村畷銊╁级閹寸姵鐒鹃梻浣告惈椤︿即宕洪崼銉ュ惞闁哄洢鍨洪悡娆戠磽娴e顏堝锤婵犲啩绻嗛柟缁樺笧婢ф盯鏌熸笟鍨妞ゎ偅绮撳畷鍗炍旈埀顒傜不閸濆嫧鏀介柣鎰皺婢ф棃鏌涘Δ鈧崯鍧楋綖韫囨拋娲敂閸滀焦顥堟繝鐢靛仦閻n亪宕愰弽顓熷剮妞ゆ牗姘ㄩ弳锕傛煏婵炵偓娅撻柡浣哥Ч閺屾洟宕煎┑鍥ф灎濠碘槅鍋勯崲鏌ュ煘閹达附鍋愰柛顭戝亝濮e嫰姊虹粙娆惧剳濠电偐鍋撳Δ鐘靛仦閹瑰洭銆侀弮鍫濆耿婵°倕鍟伴悺姗€姊绘担绋挎倯缂佷焦鎸冲鎻掆槈閵忕姴鐎┑鐘绘涧濞层劎绮绘ィ鍐╃厱闁斥晛鍙愰幋鐘辩剨妞ゆ挾浼濊ぐ鎺撳殐闁宠桨璁查弸鍛存⒑閸濆嫮娼ら柛鈩冪懅閺夋悂姊洪悷鏉库挃妞ゃ儲鍔楀☉鐢稿焵椤掑倻纾藉ù锝呮惈娴滈箖鏌涙惔銏犫枙濠碘€崇埣楠炴牗鎷呴崫銉ф毇闁荤喐绮庢晶妤冩暜閹烘鍊峰┑鐘插暔娴滄粓鐓崶銊﹀碍妞ゅ浚鍋呴幈銊╂晲閸愩劎浠剧紓浣虹帛缁诲牓宕哄☉銏犵劦妞ゆ帒瀚粈瀣亜閹烘垵浜炴俊鎻掔秺濮婄粯鎷呴崨濠冨創闂佹椿鍘奸ˇ杈╂閻愬鐟归柍褜鍓欓锝夘敃閿曗偓缁犳盯鏌℃径濠勪虎缂佹劖绋戦—鍐Χ閸℃ê鏆楅梺鍝ュ枑閿曘垽宕洪埄鍐懝闁搞儯鍔岄惁婊堟⒒娓氣偓濞佳囨偋閸℃﹩娈介柛娑橈功椤╁弶绻濋棃娑氬ⅱ缁炬儳銈搁幃褰掑炊閵娿儳绁峰銈呮禋閸樹粙銆冮妷鈺傚€烽柡澶嬪灩娴煎矂鎮楃憴鍕闁哥姵鐗犻妴浣糕槈濮楀棙鍍靛銈嗗姂閸婃宕愰悙鐑樷拻闁稿本鐟чˇ锕傛煙濞村鍋撶搾浣规そ閺佸啴宕掑杈╁炊闂備礁婀遍崕銈夈€冮崨顖氼棜濠电姵纰嶉悡娆撴煙鐟欏嫬濮﹂柛銈嗙懇濮婅櫣鎲楅妶鍛亾閺嶃劎鈹嶅┑鐘叉搐鍥撮梺鍛婃处閸n噣宕ぐ鎺撯拺鐟滅増甯楅弫杈ㄤ繆閻愯埖顥夋い顐㈢箰鐓ゆい蹇撳缁愭稒绻濋悽闈浶㈤悗姘煎櫍閹箖鎮介崨濠勫幗闁瑰吋鐣崹褰掑吹椤掑嫭鐓曟繛鍡楃箰閺嗘瑩鏌i敐鍥у幋妤犵偞甯掕灃闁逞屽墯閸庮偊姊绘担绋挎毐闁圭⒈鍋婂畷鎰節濮橆剙鍋嶉梻渚囧墮缁夌敻鍩涢幋锔解拻闁割偆鍠曢崕鎰喐閻楀牆绗掔痪鐐缁绘稑顔忛鑽ゅ嚬闂佺ǹ顑呴崐鍧楀蓟閵堝悿鍦偓锝庡亝濠㈡帡姊虹粙娆惧剱闁规悂绠栭獮澶愬箻椤旇偐顦板銈嗗笒閸婄敻寮鍥╃=闁稿本鑹鹃埀顒€鎽滅划鏂跨暦閸ヮ煈鍋ㄥ┑顔角归崺鏍磻濡眹浜滈柡鍥殔娴滈箖鎮楃憴鍕闁绘牕銈搁妴浣肝旀担鐟邦€撻梻鍌楀亾闁归偊鍠氱粔鍧楁⒒閸屾艾鈧绮堟担鍦彾濠电姴娲ょ壕璇层€掑锝呬壕閻庤娲滈、濠囧Φ閹版澘绠抽柡鍌濇硶閵堬附绻濆閿嬫緲閳ь剚娲熼獮濠呯疀濞戞ḿ鍘遍梺鍦劋閸ゆ俺銇愰幒鎾存珳闂佸壊鍋嗛崳銉︾閳哄懏鐓熼柕蹇婃櫅閻忥繝鏌i埡濠傜仸鐎殿喖顭锋俊鎼佸Ψ椤旇棄鍏婇梻浣烘嚀閸氣偓缂佲偓娴e湱顩查柣鎰靛墰缁犻箖鏌涢锝囩畼濞寸姰鍨介弻锛勨偓锝庡亞濞叉挳鏌″畝瀣М鐎殿喖鈧噥妲归梺绋款儍閸ㄤ粙寮婚敐鍛闁告鍋為悵婵嬫倵濞堝灝鏋欑紒顔界懇閵嗕礁顫滈埀顒勫箖濞嗘挻鍋ㄩ柛顭戝亝缁额偅绻濈喊澶岀?闁稿鍨垮畷鎰板冀椤愶絾娈伴梺鍦劋椤у倿宕堕浣哄姸閻庡箍鍎遍幊鎾诲春閻愮儤鈷戞慨鐟版搐閻忊晠鏌熺拠褏绡€鐎规洘鍨块崺鍕礃椤忓棛妲囧┑鐘垫暩婵挳宕愰幖浣告辈闁绘柨鍚嬮悡鐔肩叓閸ャ劎鈼ラ柟鏌ョ畺閺岋紕浠﹂崜褎鍒涘Δ鐘靛仦鐢繝鐛Ο铏规殾闁搞儮鏅滈崳顖炴⒒閸屾瑧顦﹂柣銈呮喘椤㈡俺顦归柡灞斤躬閺佹劖寰勭仦鐣屻偊婵犳鍠楅妵娑㈠磻閹剧粯鐓欓柣鎾虫捣缁夌儤銇勯姀鈩冪闁轰礁绉归幃褔宕煎┑鍡樻嚈婵犳鍠栭敃锔惧垝椤栨粎绠旈柣鏃傚帶閻掑灚銇勯幒鍡椾壕鐎光偓閿濆牆鍔垫い锔芥尦閺岀喖鐛崹顔句紙閻庤娲栭妶鍛婁繆閻戣棄唯鐟滄繄妲愰鈧缁樻媴閸涘﹥鍎撶紓浣割儎缁舵艾鐣烽姀锛勯檮缂佸鍎昏闁荤喐绮庢晶妤冩暜濡ゅ懏鍋傞柡鍥ュ灪閻撴瑥霉閻撳海鎽犳繛鎳峰洦鐓涢悗锝庡墮閺嬫盯鏌″畝瀣М妤犵偞锕㈠畷姗€宕f径瀣靛晪闂傚倷绀侀幖顐﹀嫉椤掑倻鐭欓柟杈剧畱閻撴﹢鏌熸潏鍓х暠妤犵偑鍨烘穱濠囧Χ閸滃啯顣奸梺璇″櫙缂嶄礁顫忕紒妯肩懝闁逞屽墴閸┾偓妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛埣椤㈡盯鎮欑€电ǹ骞嶆俊鐐€栧濠氬储瑜旈崺鈧い鎺嗗亾婵炵》绻濋幃浼搭敋閳ь剙鐣烽崡鐐╂婵☆垳鈷堝Σ鐗堜繆閻愵亜鈧牕煤閺嶎厼绠犻煫鍥ㄧ☉閻ょ偓绻濋棃娑卞剱闁抽攱鍨块弻鐔虹矙閸噮鍔夊銈冨劚濡盯骞冮灏栨瀻闁规儳顕崢鐢告⒒娴e摜浠㈡い鎴濇婵¢潧鈹戦崶銊ュ伎婵犵數濮撮崯顖炲Φ濠靛牃鍋撶憴鍕8闁告柨绉堕幑銏犫攽鐎n亞顦伴梺闈涒康鐎靛苯岣块弮鍫熲拻闁稿本鐟ч崝宥夋倵缁楁稑鍘炬ウ璺ㄧ杸婵炴垶岣块敍鐔兼⒑閸︻厾甯涢悽顖楁櫊瀹曢潧螖閸涱喚鍘遍梺鍝勬储閸斿矂鎮橀悩鐢电<闁逞屽墰閳ь剨缍嗛崑浣圭濠婂牊鐓涚€广儱鍟俊鍧楁煏閸℃ê娴柡灞剧☉椤粓鍩€椤掍胶顩查悹杞拌濞兼牗绻涘顔荤盎闁圭鍩栭妵鍕箻鐠鸿桨绮ф繝銏n潐濞叉牠鍩為幋锔藉€烽柟缁樺笚閸婎垶姊洪懡銈呮毐闁哄懏鐩幃楣冩倻缁涘鏅濋梺鎶芥敱绾板秴顪冩禒瀣ㄢ偓渚€寮崼婵嗙獩濡炪倖鐗楅懝鍓х不閵夈儮鏀介柨娑樺娴滃ジ鏌涙繝鍐ⅹ妞ゎ偄绻楅妵鎰板箳閹存繂娈ゅ┑鐘垫暩婵數鍠婂澶婂惞闁逞屽墴濮婃椽宕烽鈧崷顓涘亾閸偄绗掗柍缁樻尰缁傛帞鈧綆鍋嗛崢浠嬫⒑瑜版帒浜伴柛鎾寸懅閻ヮ亣顦归柡灞剧洴閹晝绮电涵鍛亾閸ф鐓涚€光偓閳ь剟宕伴弽顓溾偓浣糕枎閹炬緞鈺呮煏婢舵盯妾柟顔界懇濮婄粯鎷呯粙鑳煘濠电偠顕滅粻鎾荤嵁閸儱惟闁靛鍠楀娲⒑缁洖澧叉い銊ユ噽缁鎮烽柇锔藉瘜闂侀潧鐗嗛幊鎰不閹殿喚纾界€广儱鎷戝銉︺亜椤愩垻绠茬紒缁樼箓椤繈顢楅崒锔惧簥濠电姷鏁搁崑娑樜涘▎鎾虫槬闁割偅鎯婇敐澶樻晪闁逞屽墮椤繘鎼圭憴鍕幑闂佸憡绮堢粈浣糕枔濠靛牏纾藉ù锝堟鐢稓绱掔拠鑼ⅵ闁诡喕鍗抽、姘跺焵椤掑嫮宓侀柛銉墮缁狙囨煕椤垵鏋﹂柍褜鍓欓悘婵嬪煘閹达附鍊烽柡澶嬪灩娴犲摜鈧厜鍋撻柨婵嗘噺閸嬨儵鎸婂┑瀣厪濠电偟鍋撳▍鍡涙煕鐎Q冨⒉缂佺粯绻冪换婵嬪磼濮橆厽顔嶉梺杞扮閻楁捇寮婚敃鈧灒闁绘挸瀛╅悗楣冩⒑闁稓鈹掗柛鏂跨焷閻忔帡姊洪崜鑼帥闁哥姵宀稿畷銏ゎ敃閿旇В鎷洪梺瑙勫劶婵倝寮柆宥嗙厱闁靛ǹ鍎抽崺锝嗩殽閻愯尙澧﹀┑鈩冩倐閸╋繝宕掑顐ゆ暰闂傚倷鑳剁划顖炪€冮崨瀛樺亱濠电姴娲ょ粻鏍ㄧ箾閸℃ɑ灏伴柍閿嬪灩缁辨挻鎷呮慨鎴簽缁厼顫濋婵堢畾闂佺粯鍔栨竟鍡涙儗濞嗘垟鍋撳▓鍨灕妞ゆ泦鍥х叀濠㈣埖鍔曢~鍛存煟濡崵澧ら柡鍛█瀵寮撮姀鐘诲敹濠电娀娼уú銈呪枍閿濆洨纾藉ù锝夘棑鐠愪即鏌涢悩宕囧⒌闁炽儲妫冨畷姗€顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樿崵鐣洪柟顔筋殜瀹曟寰勬繝浣割棜闂傚倷绀佺紞濠偽涢崸妤佲挃鐎广儱顦悞鍨亜閹达絾纭舵い锔奸檮閵囧嫰顢曢敐鍥╃厜闂佺硶鏂侀崑鎾愁渻閵堝棗绗掗悗姘煎墰缁寮介鐔哄帾闂婎偄娲㈤崕宕囧閸ф鐓熼柣鏃€妞垮ḿ鎰版煏閸パ冾伃鐎殿喕绮欐俊姝岊槼闁告帗鐩鐑樻姜閹殿喖濡界紓渚囧枟閹告悂锝炶箛鏃傜瘈婵﹩鍓涢敍婊冣攽閻愬弶顥為柛鈺佺墕鍗辨い鏇楀亾婵﹨娅e☉鐢稿椽娴e憡鐤傜紓鍌欐祰妞寸ǹ煤濠婂牆绀嗛柟鐑樺灍閺嬪酣鏌熼幆褏锛嶆い鎾存そ濮婃椽骞愭惔銏╂⒖婵犳鍠撻崐鏇㈠煝瀹ュ鐐婃い鎺嶈閹锋椽姊婚崒姘卞闁告劘宕靛Σ鎰版晸閻樺磭鍘卞┑鐐村灥瀹曨剟鎮樻潏銊ょ箚闁告瑥顦伴崐鎰叏婵犲嫮甯涢柟宄版噽閹叉挳宕熼鈥虫憢闂傚倷鑳舵灙閻庡灚甯″畷鍦崉閾忚娈惧┑鐘绘涧濞层劎寮ч埀顒勬⒑閸涘﹤濮﹀ù婊嗘硾鐓ょ紒瀣氨閺€浠嬫煟濡鍤嬬€规悶鍎甸弻锝呂旈埀顒勬晝椤忓牆绠栭柍銉︽灱閺嬪酣鏌熼幆褜鍤熼柛妯虹仛缁绘稒娼忛崜褍鍩岄梺鍝ュ櫏閸ㄥ爼骞冮悽鍓叉晜闁告侗鍨抽鏇㈡⒑閸涘﹣绶遍柛妯圭矙瀹曠敻宕堕浣哄幐閻庡厜鍋撻悗锝庡墰琚g紓鍌欒兌婵數绮欓幒鏃€宕叉繝闈涱儏缁€鍐煃閸濆嫬鏆欑紒鍙夊劤閳规垿鏁嶉崟顐℃澀闂佺ǹ锕ラ崹鍨暦濠靛洨绡€闁搞儜鍜冪吹闂備焦鐪归崹缁樼仚缂備胶濮甸悧妤冩崲濞戙垹骞㈡俊銈勮兌椤╀即姊洪崫銉ユ瀻闁瑰啿绻樻俊鐢稿礋椤栨氨鐫勯梺绋挎湰閼圭偓绂掑Ο鑽ょ瘈闁靛繈鍨洪崵鈧柣搴㈢▓閺呮繈骞戦姀鐘斀闁糕€崇箲閻忎線姊洪崜鑼帥闁哥姵顨婇幃姗€宕奸妷锔规嫼闂佸湱枪鐎涒晝澹曢幖浣圭厱閹兼番鍔嬮幉楣冩煃閵夛附顥堢€规洘锕㈤、娆撴寠婢跺本顎嶆繝鐢靛О閸ㄧ厧鈻斿☉銏犲珘妞ゆ巻鍋撻柍缁樻崌楠炲棜顦柡鈧禒瀣闁规儼妫勭壕褰掓煛閸ャ儱鐏╃紒鐘靛█閻擃偊宕堕妸褉妲堢紒鐐劤椤兘寮诲☉妯兼殕闁逞屽墴瀹曟垵鈽夊鍙樼瑝闂侀潻瀵岄崢鍓у閸忕浜滈柡鍐ㄥ€哥敮鍫曟偨椤栨ê濮傞柡灞剧〒閳ь剨缍嗛崑鍛暦鐏炵虎娈介柣鎰皺鏁堝Δ鐘靛仦閸旀牠骞嗛弮鍫熸櫖闁告洦浜炵粈澶娾攽閻樻剚鍟忛柛鐘崇墵閺佸啴鏁傞幆褍鐏婂銈嗙墱閸嬫稓绮婚鐐寸厱婵炴垵宕悘锟犳煕閻樺弶顥㈤柡灞剧洴瀵挳濡搁妷銈囨殫闂備礁鎲$换鍐€冩繝鍌ゆ綎缂備焦蓱婵挳鎮峰▎蹇擃仼濞寸姭鏅犲娲川婵犲啰鍙嗙紓浣虹帛閿氶柣锝囧厴楠炲鏁冮埀顒傜不濞戞瑣浜滈柟鎹愭硾椤庡本绻涢崣澶嬪€愭慨濠囩細閵囨劙骞掗幙鍕惞缂傚倷娴囬鎰崲濠靛棭鍤曟い鎰剁畱绾惧ジ鏌i幇顒夊殶闁告ê宕—鍐Χ閸℃衼缂備焦鐓$粻鏍х暦閺囥垹鍗抽柕蹇ョ磿閸欏棝姊洪崫鍕窛闁稿鐩崺鈧い鎺嗗亾缂傚秴锕獮鍐灳閺傘儲鐎婚梺瑙勫劤椤曨參宕㈤棃娑掓斀闁绘劘灏欐晶鏇㈡煟韫囨梻绠炵€殿喚枪閳藉鈻庡鍕泿闂備焦瀵х换鍌炲箠瀹€鍕;闁靛繈鍊栭悡娑氣偓鍏夊亾閻庯綆鍓涢惁鍫ユ倵鐟欏嫭纾搁柛鏃€鍨块妴浣糕枎閹炬潙鐧勬繝銏f硾濡绂嶆ィ鍐╃厵闁规鍠栭。濂告煟閹惧娲撮柟顔斤耿閹瑦锛愬┑鍡橆唲濠电姵顔栭崰鏍磹閸ф钃熼柣鏃傗拡閺佸﹪鏌涘┑鍡楊仱闁稿鎸搁埞鎴﹀幢濞嗘劖顔曢梻浣告贡閸庛倝宕归悢鑲猴綁宕奸悢绋垮伎濠德板€愰崑鎾翠繆椤愶絾鈷掓俊鍙夊姍閺佹捇鏁撻敓锟�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂傚倸娲らˇ鐢稿蓟閵娿儮鏀介柛鈾€鏅滄晥濠电偛鐡ㄩ崵搴ㄥ磹濠靛钃熼柕鍫濐槸缁狙囨煙缁嬪潡顎楀ù鐘虫尦閹鈻撻崹顔界亪闂佺粯鐗滈崢褔鎮鹃悜鑺ュ亗閹兼惌鍠楅崓闈涱渻閵堝棙灏甸柛鐘虫崄閵囨劙宕ㄧ€涙ǚ鎷绘繛杈剧秬椤宕戦悩缁樼厱闁哄倽娉曡倴闂佺懓绠嶉崹钘夌暦濮椻偓椤㈡瑩宕叉径娑氱暤闁哄本鐩鎾Ω閵壯傚摋闂備礁鎲¢崝蹇涘磻閹剧繝绻嗛柣鎰典簻閳ь剚鐗犲畷婵嬫晝閳ь剟鈥﹂崸妤€鐒垫い鎺戝€荤壕鍏笺亜閺冨倸甯舵い锝呯-缁辨帗娼忛妸锕€闉嶉梺鐟板槻閹虫﹢鐛幘璇茬鐎广儱鎷嬪Λ婊冣攽閻樺灚鏆╁┑顔诲嵆瀹曡绺界粙鎸庢К闂佸搫绋侀崢鑲╃矆婢舵劖鐓涚€广儱楠搁獮妤呮煕鐎n亜鈧湱鎹㈠☉銏犵闁绘劘灏欓崝浼存⒑缁嬫鍎愰柟鐟版喘閹即顢氶埀顒€鐣疯ぐ鎺濇晩闁绘挸瀵掑ḿ娑欑節瀵伴攱婢橀埀顒侇殕閹便劑鎮界粙璺ㄧ暫闂佺ǹ鐬奸崑鐐哄磻濡眹浜滈柡鍥殔娴滈箖鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冮姀銈呬紶闁告洦鍋嗛悿鍕⒒閸屾艾鈧娆㈠顑肩細鐟滃酣鎮樺▎鎾粹拺缂佸娼¢崣鍕瑰⿰鍐煟鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粌澧界槐鎾诲磼濮樻瘷銏ゆ煥閺囥劋閭柟顔诲嵆椤㈡岸鍩€椤掆偓閻i攱绺界粙璇俱劑鏌曟径濠勫哺闁哄懐濞€瀵寮撮悢椋庣獮婵犵數濮撮崯顖氱暦閹惰姤鈷戦柛婵勫劚鏍¢梺缁橆殕濞茬喖骞冮悙顒夋Ч閹艰揪绲块悡鎾绘煟閻樺弶宸濋柛瀣尭铻為柛鎰靛枛閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁瑰瓨绻嶆禒鑲╃磽娴e搫校婵$偘绮欏濠氭晲婢跺⿴娼婇梺缁樏崯鍧楀汲閸儲鈷戠紓浣股戠亸鐢告煕閻樺磭澧甸柟顕嗙節椤㈡洟鏁冮埀顒勬倷婵犲洦鐓忓┑鐘茬箳閻i亶鏌¢崱姗嗘畼缂佽鲸鎸婚幏鍛村传閸曟埊绻濋弻娑樜旀担绯曟灆濡ょ姷鍋涢崯顐ョ亙闂侀€炲苯澧撮柛鈹垮劜瀵板嫰骞囬鍌ゅ敽闂備浇顫夐崕鎶筋敋椤撀颁汗閻庯綆鍋傜换鍡涙煏閸繃鎼愰崯鎼佹⒑缁嬫鍎愰柣鈺婂灦楠炲啳顦规鐐瘁缚缁辨瑩鎮╅悽鐢垫毎闂傚倷绀佺紞濠偽涚捄銊х焼濞达絽鎲¢弳婊堟⒒娴d警鏀板鐟扮墦楠炴捇顢旈崱妤冪瓘婵炲濮撮鍛村礄閻樺磭绠鹃柟瀵稿仜閻掑綊鏌涚€n偅灏甸柟鍙夋尦瀹曠喖顢楅崒銈喰氱紓鍌氬€搁崐鍝ョ矓閹绢喗鏅濇い蹇撶墕杩濇繛杈剧悼绾爼寮告惔銊︾厵闁诡垎鍜冪礊闂佷紮缍佺粻鏍箖瀹勬壋鍫柛鎰碘偓顖樺€楃槐鎺撴綇閵婏箑纰嶅銈庡亝缁诲牓骞婂⿰鍛瀳婵☆垵顕ч鐑樼節閻㈤潧浠╅柟娲讳簽瀵板﹪宕稿Δ浣镐槐闂佸搫鍟悧鍡涘触鐟欏嫮绠鹃柛鈩兠悘鈺冪棯閹规劕浜圭紒杈ㄦ尰閹峰懏鎱ㄩ幋顓濈凹闁逛究鍔戝畷鍫曨敆娓氬洦鈷栧┑鐘灱濞夋盯顢栭崱娑樼煑闊洦姊归崣蹇斾繆閵堝倸浜惧┑鈽嗗亝椤ㄥ﹪鎮伴鍢夌喎效閸ワ妇鐩庨梻浣哥枃濡椼劎绮堟担铏规/鐟滄棃寮婚弴銏犵倞鐟滃秹顢旈鍌滅<闁绘ê纾ú瀛橆殽閻愮榿缂氶柟鐟板缁楃喖顢涘☉娆戞闂傚倸鍊搁崐宄懊归崶顬盯宕熼姘辨焾婵炴潙鍚嬪ḿ娆戠玻濡ゅ懏鐓涚€广儱楠搁獮鏍煢閸愵亜鏋涢柡宀嬬節瀹曞爼鍩℃担鍦簴缂傚倷鑳舵繛鈧紒鐘崇墵瀵鈽夐埗鈹惧亾閿曞倸绠f繝闈涙川娴滎亜鈹戦悩鎰佸晱闁哥姵鐗犺棟妞ゆ牜鍋涢悡姗€鏌熸潏鍓х暠闁绘帗妞介弻娑㈠箛閳轰礁顬嬬紓浣疯兌閸忔ê顫忛搹鍦<婵妫欓悾鐑芥⒑閸︻厽鍤€婵炲眰鍊濋、姘舵晲婢跺﹤寮烽棅顐㈡祫缁查箖鍩㈡径宀€纾介柛灞剧懆閸忓苯鈹戦鐐毈闁诡垰瀚伴、娑㈡倷閸欏鈧剟姊洪崷顓烆暭婵犮垺锚椤斿繐鈹戦崶銉ょ盎闂佸湱鍎ら崹鐢稿焵椤掑喚鍤欓柍缁樻瀹曞綊顢欑憴鍕澑闂備焦瀵х粙鎴犫偓姘煎墯缁傚秵绺介崨濠勫幈婵犵數濮撮崯顖滅矆閸愨斂浜滈柕濠忕到閸斻儳绱掗悩宕団槈闁宠棄顦灒缁炬澘宕弫鎼佹⒒閸屾瑦绁版繛澶嬫礋瀹曟娊鏁冮崒姘鳖唵闂佽法鍣﹂幏锟�
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閹烘鐓ラ柡鍥朵簻椤╊剛绱掗鐣屾噯缂佺姵鐩顕€宕掑⿰鍛潓闂傚倷绶氬ḿ褎顨ヨ箛鏇炵筏闁告挆鍕幑闂佺粯鍔﹂崗娆愮濠婂牊鐓欓悗娑欋缚缁犳牠鏌涢悩绛硅€块柡灞炬礋瀹曞崬螖娴e憡鐣绘俊銈囧Х閸嬬偤骞戦崶顒傚祦闁瑰瓨鎯婇弮鍫濈劦妞ゆ帒鍊荤粈濠傗攽閻樺弶鎼愮紒鐘崇墵閺屽秵娼幍顔跨獥闂佸摜鍠庨幊蹇涘Φ閸曨垰绫嶉柛灞捐壘娴犳ɑ绻濋姀銏″殌闁绘绻掑Σ鎰板箻鐠囪尙锛滃┑鐐叉鐢晠宕ぐ鎺撯拺缂佸顑欓崕鎰版煙閸涘﹥鍊愰柍銉閹瑰嫰濡搁敃鈧壕顖炴⒑閸涘﹦绠撻悗姘槻鍗遍柣銏犳啞閳锋垹绱掔€n偒鍎ラ柛搴㈠姍閺岀喖鎮烽悧鍫熸倷闂佷紮绲介崲鑼剁亙婵炶揪绲介幗婊呯玻閻愬绡€闁汇垽娼у皬缂備讲鍋撳〒姘e亾閽樼喐鎱ㄥΟ鍨厫闁抽攱甯¢弻娑氫沪閸撗勫櫘缂備焦鍔栧Λ鍐蓟瀹ュ牜妾ㄩ梺鍛婃尰閻╊垰鐣烽幋婵冩闁靛繆鈧櫕顓烘俊鐐€栭悧妤冪矙閹烘垟鏋嶉柣妯款梿瑜版帗鍋傞幖杈剧稻閹插ジ姊虹紒妯诲鞍婵炶尙鍠栧濠氭偄閸忕厧鈧粯淇婇婵愬殭缁炬澘绉剁槐鎾存媴楠炲じ绨介梺鎼炲劘閸斿酣宕㈤崹顐$箚闁绘劕妯婇崕蹇撐旈悩鐧诲綊鎮洪鐔剁箚闁绘劦浜滈埀顒佺墵瀵濡歌瀹曞弶鎱ㄥ璇蹭壕闂侀潧妫旂粈渚€鍩㈡惔銊ョ鐎规洖娴傚Σ顖炴⒒娴h櫣甯涢柟绋挎憸閼洪亶宕奸弴鐐碉紱闂佸湱鍋撳鍧楀极瀹ュ鐓熼柟閭﹀枦钘熼梺褰掝棑缁垳鎹㈠☉娆愮秶闁告挆鍛呮艾顪冮妶搴′簻妞わ箓娼ч悾鐑藉箣閿旇棄浜圭紓鍌欑劍宀e潡宕㈤柆宥嗙厵闁稿繐鍚嬮崕妤呮煕閻樺磭澧甸柟顔斤耿閺佸倿鏌ㄩ姘闁荤喐鐟ョ€氼厾绮堥崘顏嗙<閻犲洦褰冮埀顒€娼¢獮鍐箚瑜夐弨浠嬫倵閿濆簼绨芥い锔芥緲椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲☉銏犵闁告劑鍔岀粻鐟邦渻閵堝簼绨婚柛鐔风摠娣囧﹪宕奸弴鐐茶€垮┑掳鍊愰崑鎾淬亜椤愩垺鍤囨慨濠冩そ閹兘寮堕幐搴㈢槪婵犵數鍋涘Ο濠囧储婵傚壊鏁嬮柨婵嗩槸鎯熼梺鍐叉惈閸婄ǹ鈻撻悢鍏尖拺闂傚牊渚楀褏绱掗懠璺轰汗闁奸缚椴哥换婵嗩潩椤撴稒瀚奸梻浣告啞缁诲倻鈧凹鍓熷鍐测枎閹邦喚顔曢梺鍝勵槹閸ㄧ敻鍩€椤掑伋褰掓偝婵犳艾閿ゆ俊銈勭劍濞呮牠姊洪崨濠冨闁告挻鐟╁鎼佸箣閿旇В鎷虹紓鍌欑劍閿曗晛鈻撻弮鍫熺厽婵°倐鍋撴俊顐g〒閸掓帡顢橀姀鐘殿唺濠德板€撻懗鍫曞储閹间焦鈷戦柛娑橈攻绾剧敻鏌¢崨顔炬创鐎规洘绻堥弫鍐磼濞戞艾骞愰梺璇茬箳閸嬬喓娑甸崼鏇炵;闁规崘顕х粻娑樏归敐鍛暈闁稿⿴鍨跺铏规兜閸涱厺姹楅柣鐐寸◤閸庣敻宕洪埀顒併亜閹烘垵鏆欓柣銊︽そ閺岋繝宕卞鍡樼杹濠殿喖锕︾划顖炲箯閸涘瓨鎯為柣鐔稿椤愬ジ姊哄Ч鍥х労闁搞劏浜弫顕€鏁撻悩鍙夌€梺鍛婂姦閸犳牕鏁梻浣哥枃濡椼劎寰婃總鍛婃櫇闁稿本绋撻崢閬嶆⒑閸濆嫭鍌ㄩ柛鏂跨焸瀵悂濡舵径瀣幗闂侀潧鐗嗛崐鍛婄妤e啯鈷掗柛灞剧懄缁佺増銇勯銏╂Ц闁伙絽鍢茶灒閻炴稈鍓濋悘鍐ㄢ攽閻愭潙鐏嶉柟绋款儔閹粓鎸婃径灞藉Е婵$偑鍊栫敮鎺斺偓姘煎弮閸╂盯骞掗幊銊ョ秺閺佹劙宕奸悤浣峰摋闂佹眹鍩勯崹閬嶆儎椤栫偛钃熼柣鏂款殠濞间即鎮橀悙鑸殿棄闁诡垳鍋熺槐鎾寸瑹閸パ勭亶闂佽崵鍟块弲鐘绘偘椤旈敮鍋撻敐搴℃灍闁哄懏绮撻弻娑滅疀閹垮啯笑婵炲瓨绮撶粻鏍蓟閵娾晛绫嶉柛灞剧煯婢规洟鎮楃憴鍕妞わ妇鏁诲濠氬即閻旇櫣鐦堥棅顐㈡处濞叉粓寮抽悩鐢电<闁告挆鍡橆€楅梺鎼炲姀濞夋盯锝炶箛娑欐優闁革富鍘鹃敍婊冣攽閳藉棗鐏i柍宄扮墦瀵娊鍨鹃弬銉︽杸闂佺粯鍔栬ぐ鍐箖閹达附鐓熼柣鏇炲€搁々顒勬煃瑜滈崜鐔丰缚瑜旀俊鍫曞箹娴e搫绁﹂梺鎼炲労閸撴岸宕戠€n喗鐓曟い鎰剁悼椤f煡鎮楀顑惧仮婵﹦绮幏鍛村川婵犲倹娈樼紓鍌欐祰椤曆囧磹婵犳艾鐒垫い鎺嶇閸ゎ剟鏌涘▎蹇撴殺婵☆偁鍨藉铏圭磼濡墎绱扮紓渚囧櫘閸ㄥ爼骞冮敓鐘插嵆闁靛骏绱曢崢钘夆攽閳藉棗鐏犻柟纰卞亰瀵娊宕¢悙鈺傛杸濡炪倖姊婚埛鍫澪熼埀顒勬⒑閸濆嫮鐏遍柛鐘崇墵閹即顢氶埀顒€鐣疯ぐ鎺濇晩闁告瑣鍎查崑鍛存⒒閸屾瑧顦﹂柣銈呮搐铻為柛鏇ㄥ瀬閸ヮ剦鏁嶉柣鎰皺閸樻椽鏌熼崗鑲╂殬闁稿﹥顨婇幃鍧楀焵椤掑嫭鈷戦柛婵嗗瀹告繂鈹戦鐓庢Щ闁伙絽鐏氶幏鍛寲閺囩喐鏉搁梻浣虹帛钃辨い鏃€鐗犲鎶筋敍濞戞绠氶梺鍦帛鐢宕甸崶鈹惧亾鐟欏嫭绀夋い顐㈩槺閳ь剟娼ч妶绋款嚕閸洖绠i柣娆屽亾闁哥喎娲︽穱濠囨倷椤忓嫧鍋撻弽顓炵闁硅揪绠戠壕瑙勪繆閵堝懎鏆曢柣鎺戯躬閺岋綁濮€閵忊晜姣岄梺绋款儐閹瑰洭鎮伴鈧畷褰掝敊閻撳寒娼涘┑鐘殿暯濡插懘宕戦崨顖滅煓闁圭偓鍓氶崵鏇犳喐閺冨牆鏄ラ柍褜鍓氶妵鍕箳閹存績鍋撻懡銈咁棜濠靛倸鎲¢悡鏇㈡煙閻愵剦娈旈柛鐘冲哺瀵娊顢橀姀鈾€鎷洪梺鍦瑰锔界珶濡眹浜滄い鎾偓鍐插Х濡炪倧闄勬繛濠囧蓟閿濆绠奸柛鏇ㄥ幘閻﹀牓鎮楀▓鍨灈妞ゎ厾鍏橀獮鍐閵堝棙鍎梺闈╁瘜閸橀箖宕㈤鐐粹拻濞达絿枪椤ュ繘鏌i幘宕囧ⅵ鐎规洘婢樿灃闁逞屽墲椤i箖姊虹憴鍕棆濠⒀勵殜閸╂盯骞嬪婵嗙秺瀹曟鎳栭埡鍌氭珮闂備浇顕栭崰鏍Χ閹间礁钃熸繛鎴炵矌閻も偓闂佸搫鍟幑渚€鍩€椤掆偓濞硷繝寮婚敐鍛闁告鍋為悵婵單旈悩闈涗沪閻㈩垱甯熼悘鍐⒑闁偛鑻晶鎵磼椤旂⒈鐓奸柡浣瑰姈瀵板嫮鈧綆鍓欓獮鎰版⒒娴e憡鍟為柛鏂炲懎绶ら柤鎭掑劤椤╂彃螖閿濆懎鏆為柍閿嬪灴閺屾稑鈹戦崱妤婁患闂侀€炲苯澧伴柡浣筋嚙閻g兘骞嬮敃鈧粻鑽ょ磽娴i姘跺箯婵犳碍鈷戠紒瀣濠€浼存煟閻旀繂娉氶崶顒佹櫆闁告挆鍜冪闯闁诲骸绠嶉崕閬嶅箯閹达妇鍙曟い鎺戝€甸崑鎾舵喆閸曨剛顦ㄩ梺鎼炲妼婢у酣骞戦姀鐘斀閻庯綆浜為崐鐐烘偡濠婂啰绠婚挊婵囥亜閹捐泛浜归柡鈧懞銉d簻闁哄啠鍋撻柡瀣煼閹虫捇骞愭惔娑楃盎闂侀潧鐗嗛幊搴ㄥ焵椤掆偓閻忔繈顢氶敐澶樻晝闁挎繂娲ㄩ惁鍫ユ⒑閹肩偛鍔橀柛鏂块叄瀹曘垽骞栨担鍏夋嫼闂佺鍋愰崑娑㈠礉濡ゅ懏鐓涢柛娑卞枤閳洜绱掗崒姘毙ラ柕鍥ㄥ姍楠炴帡骞樼捄鍝勭闂傚倷绶氶埀顒傚仜閼活垱鏅堕婊呯<闁稿本绋戠粭褔鏌嶈閸撱劎绱為崱娑樼;闁糕剝绋戦崒銊ッ归悩宸剱闁抽攱鍨归幉鎼佹偋閸繄鐟ㄦ繛瀛樼矆閸楁娊寮诲☉銏犵闁哄鍨甸幗鐢告⒑缁洘鏉洪柛銊ㄦ椤曪綁骞橀纰辨綂闂佹寧绋戠€氼剟鐛崼銉︹拻濞撴埃鍋撴繛浣冲洦鍋嬮柛鈩冾樅濞差亜围濠㈣泛锕ら崵鎴︽煙閸忚偐鏆橀柛鏂跨Ч閹繝宕橀钘変画濠电偛妫楃换鎰邦敂閳哄懏鐓熼煫鍥ㄦ尵閹界娀鏌曢崶褍顏┑顔瑰亾闂佹寧绋戠€氀兾i崼婵愭富闁靛牆楠告禍婵堢磼鐠囪尙澧︽鐐插暣閸╁嫰宕橀埡浣稿Τ闂備線娼х换鍡涘疾濞戙垹鐤炬繛鍡樺灩绾句粙鏌涚仦鎹愬闁逞屽墯閹倸鐣烽幇顒傛殝闁瑰啿锕ょ紞濠傜暦閸洖惟鐟滄粌煤缁嬫娓婚柕鍫濇缁楁帡鎮楀鐓庡濠㈣娲樼换婵嗩潩椤撶姴甯鹃梻浣稿閸嬪懐鎹㈠鍛傦綁骞栨担鍦幐闂佸憡娲嶉弲娑㈠礉閿曞倹鐓涢悘鐐垫櫕鍟稿銇卞倻绐旈柡灞剧洴楠炴﹢寮堕幋婵囨嚈濠电姷顣槐鏇㈠极鐠囪尙鏆﹂柣鏃傗拡閺佸秵鎱ㄥ鈧涵鎼佸船濞差亝鈷掑ù锝囧劋閸も偓闂佸鏉垮闁瑰箍鍨归濂稿幢濞嗘ɑ绁┑掳鍊х徊浠嬪疮椤栫偛鐓曢柟瀵稿Х绾捐棄霉閿濆牆浜楅柟瀵稿С閻掑﹥銇勯幘璺盒ョ痪鎹愬亹缁辨挻鎷呴惂绋垮彆闂佸吋濯藉▔鏇㈠焵椤掍緡鍟忛柛鐘崇洴椤㈡俺顦归柛鈹垮劜瀵板嫰骞囬澶嬬秱闂備胶绮敃銏犪缚瑜庨幈銊╁醇閺囩啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厱闁哄啠鍋撴い銊ワ工閻g兘骞嬮敃鈧粻鑽ょ磽娴e顏呯婵傚憡鈷戦柛鎾村絻娴滄繃绻涢崣澶涜€块柛鈺傜洴楠炲鏁傞悾灞藉箞婵犵數濞€濞佳兾涘Δ鍜佹晜妞ゅ繐鐗婇悡銉︾箾閹寸偟鎳勯柍閿嬪笧缁辨帗娼忛妸銉﹁癁濡ょ姷鍋為幑鍥嵁閹烘绠婚柛蹇撴噺濡﹪姊婚崒娆掑厡缁绢厼鐖煎顒佺瑹閳ь剙鐣烽幋锕€绠婚柟棰佺劍鐎靛矂姊洪棃娑氬婵☆偅顨堢划顓㈠箳濡や胶鍘遍梺缁樏悿鍥ㄧ珶濡櫣鏆嗛柨婵嗘噺閸嬨儲顨ラ悙鍙夊枠妞ゃ垺锕㈤幃鈺佲枔閸喗娅楁繝鐢靛Х閺佹悂宕戦悙鍐岀細婵炲棙鎼╅弫鍕煕閳╁啨浠滈柡瀣Ч閺屾盯濡烽姀鈩冪彇缂佺偓鍎抽妶绋款嚕閸洖閱囨慨姗嗗幗閻濇梹绻涚€电ǹ顎撳┑鈥虫川濡叉劙骞掗幊铏瀹曟﹢濡搁敂鍙ラ偗闂傚倷鑳剁涵鍫曞棘娓氣偓瀹曟垿骞橀幇浣瑰瘜闂侀潧鐗嗗Λ妤冪箔閹烘鍊垫慨妯煎帶婢ц尙绱掔紒妯垮闁宠鍨块幃娆撴嚋闂堟稒閿紓鍌欐祰鐏忣亜鈻旈弴鐐╂闁汇垹鐏氬畷澶娒归敐鍡樼┛缂傚秳绀侀悾閿嬬附缁嬭銊╂煥閺冣偓閸庡磭鏁ィ鍐┾拻濠电姴楠告禍婊勭箾鐏炲倸鈧稒鏅跺┑瀣拺缂佸顑欓崕鎰版煙閻熺増鎼愭い鏇秮椤㈡宕熼瀣ㄥ姂閺屾洘寰勯崼婵冨亾閺団懞澶婎潩閼哥鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁靛ǹ鍎遍幃鎴︽煙娓氬灝濮傚┑陇鍩栧鍕偓锝庝簷缁ㄧ敻姊绘担鍛婂暈闁告棑绠撳畷浼村冀椤愩倖锛忛悷婊勬瀵鏁愭径濠勭杸闂佺粯顨呴悧濠囨煥椤撶儐娓婚柕鍫濈箳閸掍即鏌涘顒夊剶濠碉紕鏁诲畷鐔碱敍濞戞瑦鐝栭梻渚€鈧偛鑻晶瀵糕偓瑙勬礃閻撯€愁嚕婵犳艾唯闁冲灈鏅涙禍楣冩煥閺冨倸浜剧€规洖顦甸弻鏇熺節韫囨洜鏆犻梺鍝勵儏閸婂灝顫忓ú顏勫窛濠电姴鍟ˇ鈺呮⒑閸涘﹥灏伴柣鈺婂灥濡喖姊洪棃娑辨Т闁哄懏绮撻崺娑㈠箣閿旇棄鈧敻鏌涢敂璇插箹妞ゅ骸鏈换娑㈠礂閻撳骸顫掗梺鍝勬湰閻╊垱淇婇幖浣肝ㄩ柨鏇楀亾濞寸姵鎸冲娲濞戞瑯妫涚紓浣插亾濞撴埃鍋撻柛鈹垮灪閹棃濡搁妷褜鍟嬮梻浣告惈椤︿即宕归崹顐ょ彾闁圭儤鎸风换鍡涙煟閹板吀绨婚柍褜鍓氶悧鐘茬暦濠靛鏅濋柛灞炬皑閿涙盯姊虹粙鎸庢拱缂侇喖绻戦幈銊╁箮閼恒儳鍙冨┑鈽嗗灟鐠€锕€螣閸儲鐓熼柡鍌涘椤ャ垽鏌熼鐓庢Щ闁宠姘︾粻娑㈠箼閸愌呮/缂傚倸鍊风拋鏌ュ磻閹剧粯鍊甸柨婵嗛娴滄牕霉濠婂嫮鐭掗柡灞炬礉缁犳稒绻濋崘鐐秷闂備礁鍚嬪妯横缚閿熺姴钃熼柣鏃傗拡閺佸﹪鎮峰▎蹇擃仾闁绘繃宀搁幃妤冩喆閸曨剛顦ㄥ銈冨妼閿曘倝鎮鹃悜绛嬫晝闁挎洍鍋撻崬顖炴偡濠婂啴鍙勭€规洑鍗抽獮鎺懳旀担鍙夊闂備胶枪閺堫剟鎳濇ィ鍐ㄧ劦妞ゆ帒瀚峰Λ鎴犵磼椤旇偐澧涚紒妤冨枛閸┾偓妞ゆ帒瀚畵渚€鏌″搴″季闁轰礁鍟撮弻鏇㈠醇濠靛洤绐涢梺缁樻尰閹歌崵鎹㈠☉銏犵闁哄鍨归崝浼存⒑缁嬫鍎愰柟鐟版喘瀵鎮㈢喊杈ㄦ櫓闂佸搫鍊堕崐娑㈠焵椤掍礁顕滄い銊e劦閹瑩宕f径濠冪亷闂備浇顕栭崯顐﹀炊瑜旈崬璺衡攽閻樼粯娑ч柟铏姍瀵偅銈i崘鈹炬嫽闂佺ǹ鏈悷褔藝閿斿墽纾界€广儱鎷戝銉ョ暆閿濆牆鍔垫い锕€婀遍埀顒冾潐濞诧箓宕圭捄铏规殾缂佸顕抽弮鈧幏鍛存⒐閹邦喚绉挎繝鐢靛У椤旀牠宕板Δ浣轰粴闂備胶纭堕弲婊堟偋閻樿鏄ユ繛鎴欏灩缁狅綁鏌ㄩ弮鍌涙珪闁告ê宕埞鎴︽倷閺夋垹浠搁梺鎸庢处閸嬪﹤顕i妸褎瀚氱€瑰壊鍠氶崬鐢告煟閻樺弶鎯堥柟纰卞亰椤㈡棃顢橀姀锛勫幐闁诲繒鍋涙晶浠嬪Υ閹烘鐓冪憸婊堝礈閵娧呯闁糕剝岣块々鍙夌節闂堟稓鎳佸鑸靛姇椤懘骞掗搹顐ゎ洸婵犲﹤鐗婇悡蹇涚叓閸ャ儱鍔ょ痪鎯х仢椤儻顦撮柡浣规倐閸┾偓妞ゆ帒鍠氬ḿ鎰箾閸欏鐭掔€规洑鍗冲浠嬵敇濠ф儳浜惧ù锝堝€介弮鍫濆窛妞ゆ挾濯寸槐鍙夌節閻㈤潧孝闁挎洏鍊栭〃銉╁箹娴e摜鏌у銈嗘尪閸ㄦ椽鍩涢幒鎳ㄥ綊鏁愰崶鈺傛啒闂佹悶鍊栭悷锔炬崲濞戞埃鍋撻悽鐧诲綊宕㈢€电硶鍋撳▓鍨珮闁稿锕ら悾鐑藉Ω閿斿墽鐦堥梺鍛婃处娴滅偛鈻旀繝鍥ㄢ拻濞达絿鐡旈崵娆撴倵濞戞帗娅囩紒顔界懇楠炴帡寮埀顒€鐣烽弻銉︾厱妞ゆ劧绲跨粻銉︾箾閸忚偐澧甸柡灞熷棛鐤€闁瑰墽顥愮涵鈧紓浣哄亾閸庢娊宕ョ€n喖绠為柕濞垮剻閺冨牆鐒垫い鎺嗗亾閾荤偞绻涢崱妯诲鞍闁稿鏅犻弻娑㈠箻閼艰泛鍘$紒鐐礃濡嫰婀侀梺鎸庣箓閻楀﹪顢旈悩缁樺仺妞ゆ牗绋撳ú鎾煙椤旇崵鐭欐い銏$☉閳藉螣閼测晜鍣梺璇叉唉椤骞愰崫銉㈠亾濮橆厽绶叉い顐㈢箰鐓ゆい蹇撳瀹撳秴顪冮妶鍡樺暗闁稿孩鍔欏鎶筋敇閻愨晜鏂€闂佺粯锕╅崰鏍倶椤忓嫮鏆嗛柨婵嗘噺閸嬨儵鏌熼鍛珝妤犵偛妫滈¨渚€鏌涘顒夊剰妞ゎ叀娉曢幑鍕瑹椤栨艾澹嬮梻浣告啞閿氱€规洦鍓熼垾鏃堝礃椤斿槈褔鏌涢埄鍐炬當鐞涜偐绱撻崒娆愮グ閻忓浚浜滈埢鏃堝即閻樻彃鐏婇柣鐘叉搐瀵剟鎮㈠▽绉嗗洤鐐婇柨鏂垮⒔濞夊潡姊婚崒娆愮グ妞ゎ偄顦靛畷鏇㈠箮閼恒儱浠遍梺闈浥堥弲娑欘攰婵犵數濞€濞佳兠洪敃鍌氱煑闊洦鎸撮弨浠嬫煟濡搫绾ч柛锝囧劋閵囧嫯绠涢弴鐐愩儳绱掓潏銊ョ瑲婵炵厧绻樻俊鎼佸Ψ瑜忛幊鍡涙⒑閸欍儳涓茬紓宥勭窔閹繝顢曢敃鈧悙濠傤渻鐎n亪顎楁い鏇憾濮婄粯绗熼崶褍瀛i梺鎼炲妼閻栫厧顕f繝姘亜缁炬媽椴搁弲鈺呮⒑濞茶寮鹃柛瀣笚缁傚秹顢旈崼鐔告珳闂佺粯鍔栫粊鎾绩娴犲鐓曟い鎰╁€曢弸搴g棯缂併垹鐏︽慨濠冩そ楠炲棜顦寸紒鐘靛缁绘繈鍩€椤掑嫭鐒肩€广儱鎳忔潏鍫熺箾鐎电ǹ甯堕柣掳鍔戦崺娑㈠箳閹炽劌缍婇弫鎰板炊閵娿儲鐣俊鐐€栧ú妯煎垝鎼达絾顫曢柟鐑樻⒐鐎氭岸鏌熺紒妯哄潑闁稿鎹囬幊妤咁敍濞戣鲸锛堝┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆浜愮紓姘箾閸℃ɑ灏伴柛瀣€块弻锟犲炊閵夈儳浠鹃梺缁樻尰閻熲晠寮婚敐澶婄闁诲繑妞挎禍顏堝箖濮椻偓閹垽宕楅懖鈺佸笚闁荤喐绮嶇划鎾崇暦濠婂喚娼╅弶鍫涘妽濞堜即姊洪崷顓炲妺妞ゃ劍鍔楃槐鐐哄冀閵娧呯槇闂傚倸鐗婃笟妤呭磿濞戙垺鐓涘ù锝呮啞椤ユ粓妫佹径鎰叆婵犻潧妫涙晶杈ㄧ箾閸忕厧濮嶉柡灞剧⊕缁绘繈宕掑顓夆晠姊虹€圭媭娼愰柛銊ユ健楠炲啫鈻庨幘鏉戞濡炪倖甯婇悞锕傚窗閺嶎偆纾介柛灞剧懅鐠愪即鏌涢悩宕囧⒈缂侇喗妫冨畷濂稿即閻愭鍞归梻渚€娼х换鍫ュ磹閺囥垺鐓侀柛銉墯閻撳繐顭跨捄铏瑰闁告柣鍎甸弻鐔兼嚍閵夛妇顦板┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂鍊归~宥夋⒑鐠囨彃顒㈤柛鎴n潐缁傚秴饪伴崼婵堝幒婵炲濮撮鎰板极閸岀偞鐓曟い鎰╁€曢弸搴∶归悪鈧崹璺侯潖濞差亜绠归柣鎰絻婵矂姊洪崨濠冪叆闁活剛鍘ч銉︾節閸曨厾锛滃┑鈽嗗灦閺呰尙鑺辩拠宸富闁靛牆妫楅崸濠囨煕鐎n偅灏伴柕鍥у楠炲鈹戦崶褎鐣婚梻浣虹《閺呮繈宕戦妶澶屽祦閻庯綆鍠楅弲婊堟煢濡警妲撮柛瀣崌閹粓鎳為妷褍骞堟繝鐢靛仜濡霉濮橆儵鐔煎醇閻斿墎绠氬銈嗗姧缁蹭粙鎮樼€涙ɑ鍙忓┑鐘插暞閵囨繃顨ラ悙瀵稿⒌闁诡喗鐟╅獮鎾诲箳濠靛牃鍋撴潏鈺冪=闁稿本鐟х拹浼存煕閻樻剚娈滈柟顔惧厴閸╋繝宕ㄩ闂寸钵婵$偑鍊栧ú宥夊磻閹惧灈鍋撶憴鍕闁挎洏鍨烘穱濠囧箹娴e壊娼婇梺鎸庣☉鐎氀囧磻閹惧绡€婵﹩鍘搁幏娲⒑閼姐倕鏋戝鐟版楠炴鎮╃紒妯煎幐闁诲繒鍋犻褎淇婇悾宀€纾奸柛灞炬皑鏍¢梺闈涚墳缂嶄礁鐣峰鈧崺锟犲礃閵娿儳顔戦梻鍌氬€风欢姘缚瑜忛幑銏ゅ醇閵夈儱鐎┑鐐叉▕娴滄粌效閺屻儲鐓冮柛婵嗗閸f椽鏌i幘宕囩闁哄本鐩崺鍕礃閻愵剦鍚呴梻鍌氣看閸擄箓宕滈悢鐓庤摕闁炽儱纾弳鍡涙倵閿濆骸澧伴柨娑氬枛濮婃椽鏌呴悙鑼跺濠⒀冨⒔缁辨挸顓奸崨顕呮&閻庤娲橀崹鍨暦閸楃倣鐔虹磼濡厧濞囬梻鍌欑婢瑰﹪鎮¢崼銉ョ;闁告稒娼欓惌妤呯叓閸ャ劍灏ㄩ柡鈧禒瀣厽婵☆垰鎼痪褔鏌涢敐鍥у妺闁靛洤瀚粻娑㈠即閻愭劑鍎崇槐鎺撴綇閵娿儳鐟插┑鐐靛帶缁绘ɑ淇婇幖浣肝ㄧ憸蹇涘箠閸℃稒鈷戦柛娆嶅劤娑撹尙绱撳鍕獢鐎殿喗妲掗ˇ鍓佺磼閻樺磭鈽夐柍钘夘樀楠炴帡骞嬪⿰鍐炬濠电姷鏁搁崑鐐哄垂閸洘鍋℃い鏍仜閺嬩線鏌涢妷顔煎闁抽攱甯¢弻娑氫沪閸撗勫櫗缂備椒鑳舵晶妤佺┍婵犲浂鏁冮柕蹇曞娴煎啴鎮楃憴鍕闁搞劍濞婇崺鈧い鎺嶈兌閳洖鐣濋敐鍛仴闁靛棗鎳樺濠氬Ψ閿旀儳骞堟俊鐐€栭崝褏寰婇崜褏鐭嗛柍褜鍓熷娲寠婢跺﹥娈堕梺鍝ュУ閻楃姴顕f繝姘櫜濠㈣泛锕ラˉ婵嬫⒑閸撹尙鍘涢柛鐘愁殜瀹曟劙顢涢悙绮规嫼缂備礁顑嗛娆撳磿濞戞◤鐟扳堪閸曨厾鐤勬繝纰夌磿閺佽鐣烽悢纰辨晬婵﹩鍓欓弫銈夋⒒娓氣偓濞佳嗗櫣闂佸憡娲﹂崑鍛存偟閿濆鈷掗柛灞剧懄缁佺増銇勯弴鐔哄⒌鐎规洝顫夌€佃偐鈧稒锚娴滈亶妫呴銏″婵炲弶锕㈤敐鐐哄即閵忥紕鍘甸梺璇″瀻閸涱喗鍠栧┑鐘愁問閸ㄥ崬岣垮▎鎾寸畳闂備胶绮敋婵☆垰锕畷鏇$疀濞戞瑧鍘甸梺浼欑到閺堫剟寮抽鍕厸鐎光偓鐎n剛袦婵犳鍠掗崑鎾绘⒑鐎圭姵銆冮柤瀹犲煐缁傛帒顫濋懜纰樻嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犳い鏍仦閻撴洟鏌熼悙顒佺稇闁告繆娅i埀顒冾潐濞叉粓寮拠宸殨闁圭虎鍠楅崑鍕磽閸垹啸闁烩晛閰e缁樻媴閸涘﹥鍎撳┑鐐额嚋缁犳捇濡撮崘顔煎窛妞ゆ梻铏庡ú鍛婁繆閵堝繒鍒伴柛鐕佸灦閸╂盯骞嬮悩鐢碉紲濡炪倖鐗楃粙鎺旂矆閸愵喗鐓涘璺猴功缁夋椽鏌$仦鍓с€掗柍褜鍓ㄧ紞鍡涘磻閸涱垯鐒婃い鎾跺枂娴滄粍銇勮箛鎾愁仼闁哄棴绲介埞鎴﹀灳瀹曞洤鐓熼悗瑙勬礀瀹曨剝鐏冮梺鍛婂姦娴滄繈宕抽鐐粹拻濞达絿鐡旈崵娆撴倵濞戞帗娅婄€规洘鐟ㄩ妵鎰板箳閹寸姷鍘梻浣告啞閸旀垿宕濇惔銊ユ辈闁挎洖鍊归悡娆撳级閸儳鐣烘俊缁㈠櫍閺岋繝宕ㄩ钘夆偓鎰版煛瀹€瀣埌閾伙綁鏌ц箛鏇燁仧缂佽京鍋ゅ娲川婵犲嫭鍣у┑鈽嗗亝缁诲倿锝炶箛鎾佹椽顢旈崟顏嗙倞闂備礁鎲″ú锕傚磻閸涱厸鏋旀い鎾卞灪閳锋垹绱掔€n亜鐨$€规悶鍎甸弻鐔烘嫚瑜忕壕璺ㄧ磼椤旂⒈鍎忔い鎾炽偢瀹曢亶骞囬璺ㄥ嚬闂傚倷绀侀幉锟犲礉韫囨稑鐤炬繝闈涱儏閸屻劑鏌熼梻瀵稿妽闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ユ繝鈷€鍕祷闁伙絾绻堥弫鎰板川椤旈棿娣梻浣筋嚃閸ㄤ即鎳熼鐐村仼婵犻潧顑呯粈瀣亜閹烘垵鈧悂鐛澶嬧拻濞达絽鎲¢崯鐐烘煟閻旀潙鍔﹂挊婵喢归崗鍏肩稇缁炬儳缍婇弻鐔煎箥椤旂⒈鏆梺缁樻尰閻燂箓濡甸崟顖氭閻犲洦褰冮‖鍫濃攽閻愯尙婀撮柛濠冪箞瀵崵鈧綆鍠栭悙濠囨煏婵炑冩噽濡插洭姊婚崒姘偓鎼佹偋婵犲嫮鐭欓柟鎯х摠濞呯娀姊洪鈧粔鐢告偂閺囥垹绠归弶鍫濆⒔绾惧潡鏌i幒鎾村€愰柡灞糕偓宕囨殕閻庯綆鍓涜摫闂備浇顕栭崹鍗炍涢崘鈺€绻嗛柤绋跨仛閸庣喖鏌曡箛瀣伄閸熸悂姊婚崒姘偓宄懊归崶顒婄稏濠㈣埖鍔曠粻鏍煕瀹€鈧崐娑欏緞閹邦剛顔掗梺鍝勫€堕崕鏌ユ倵婵犳碍鈷戦梻鍫熺〒缁犲啿鈹戦锝呭箹瀹€锝呮健閸╋繝宕ㄩ闂村寲婵犵數鍋涘Ο濠冪閻愬灚顫曞ù鐓庣摠閻撴瑩鏌ら幁鎺戝姕缂佲偓閳ь剟姊虹€圭媭娼愰柛銊ユ健楠炲啫鈻庨幘宕囬獓闂佺懓顕慨鎶藉箟妤e啯鈷掑ù锝囧劋閸も偓闂佸摜鍠庨悘婵堝弲濡炪倖鎸堕崹褰掑及閵夆晜鐓冪憸婊堝礈濮樿泛桅闁告洦鍨扮粻鎶芥煙閹碱厼鐏犲┑顔界洴濮婄儤瀵煎▎鎴濆煂闂佽绻戝畝鎼佸Υ閸愵喖唯闁冲搫鍊搁埀顒勵棑閳ь剛鎳撴竟濠囧窗閺嶎厼绀堝ù鐓庣摠閳锋垿鎮楅崷顓烆€屾繛鍏煎姍閺屾盯濡搁妷褌铏庨梺浼欑悼閸忔ê鐣锋總绋垮嵆闁绘劙娼ч獮鎰攽閻愯埖褰х紓宥佸亾婵犳鍠撻崐妤呭焵椤掍礁鍤柛鎾跺枎椤繑绻濆顒傦紲濠殿喗锕╅崗姗€宕戦幘璇茬濞达絽鎽滈敍娆愪繆閻愬樊鍎忔繛瀵稿厴閹矂宕卞灏栧亾閹烘埈娼╅柨婵嗘噸婢规洘淇婇妶鍥ラ柛瀣洴钘濋柣銏⑶归弸渚€鏌熼崜褏甯涢柛瀣姍閺屾盯骞囬鈧痪褔鏌i妶鍛仼闁宠鍨堕獮濠囨煕婵炑冩噹缁躲倕霉閻樺樊鍎忛柣銈庡枟閵囧嫰骞囬埡浣插亾濡や胶鈻旂€广儱顦伴悡鐔镐繆椤栨侗鍎ラ柛銈嗙懅缁辨帡鎮╂笟顖涚秷缂備胶绮惄顖炲极閹邦厽鍎熼柍銉﹀墯濞艰鈹戦悩娈挎殰缂佽鲸娲熷鏌ヮ敃閵堝棭娼熼梺鍦劋椤ㄥ棝宕戦幇鐗堢厱闁归偊鍓欑痪褔鎮归崶鈺佷粶闁宠鍨块、娆戞兜瀹勬澘顫犵紓鍌欑贰閸n噣宕归崼鏇犲祦闊洦绋戝婵囥亜閺嶃劎鐭岄柣鎾存崌濮婃椽宕烽鈧憴鍕垫闁归棿绀侀悞鍨亜閹烘埈妲搁柣蹇ョ悼缁辨帗娼忛妸锕€闉嶉梺鐟板槻閹冲繘藝閻楀牊鍎熼柍銉﹀墯閻庢挳姊婚崒娆戭槮婵犫偓鏉堛劎浠氶梻浣告憸閸犲骸岣块敓鐘偓浣割潩閼稿灚娅滄繝銏f硾閿曪箓顢欏畝鍕拺闁荤喓澧楅幆鍫熶繆椤愶絿鎳囬柨婵堝仜椤撳ジ宕ㄩ鍛澑闂備胶绮摫闁荤喆鍎抽埀顒佸嚬閸撶喎鐣峰┑瀣ч柛銉e妼閺嬫垿姊虹紒姗嗘當闁绘锕俊闈涒攽閸ャ劌寮挎繝鐢靛Т閸嬪棝鎮¢懖鈹惧亾鐟欏嫭绀冮悽顖涘浮閿濈偛鈹戠€e灚鏅為梺鑺ッˇ顔界珶閺囩喍绻嗛柣鎰▕閸庡繘鎮楀☉鎺撴珚妞ゃ垺娲熼幊鐐哄Ψ閿曗偓瀵灝鈹戦埥鍡楃仭閻庣瑳鍛厹濡わ絽鍟悡鐔兼煙閻戞ê鐏╁ù鐘崇洴閺屾洟宕惰椤忣厽顨ラ悙鏉戞诞妤犵偛顑呴埞鎴﹀礃閵娿倕顥氶梻浣告啞缁嬫垿鏁冮敃鍌樷偓鍛存煥鐎n剛鐦堟繝鐢靛Т閸婄粯鏅跺☉銏$厽闁规崘娉涙牎缂備胶绮惄顖炲箠閻樼绱f繝闈涙椤斿嫰姊绘担绛嬪殭濡ょ姴绻掗幑銏犫攽鐎n亣鎽曢梺璺ㄥ枔婵潙顔忓┑鍥ヤ簻闁规崘娉涘瓭闂佺粯鎸鹃崰搴ㄢ€旈崘顔嘉ч柛鎰╁妿娴犻箖姊洪悜鈺傛珦闁搞劌鐖奸悰顕€宕橀妸銏$€婚梺鐟扮摠缁诲倿鎮樻繝鍥ㄧ厽闁绘柨鎽滈幊鍐倵濮樼厧澧存い銏℃閵囨劙骞掗幘顖涘闂備胶枪閺堫剟鎮疯钘濋柨鏇炲€归悡鏇熸叏濮楀棗澧婚柛搴㈠姉缁辨帡宕掑姣欙絿绱掗崒娑樼闁逞屽墾缂嶅棙绂嶉悙鐑樻櫖闁绘柨鍚嬮埛鎺戙€掑顒佹悙濠⒀屽枤缁辨帗寰勭€n偄鍞夐梺璇″櫙缁绘繂顕i幘顔藉€烽柍鍝勫€归弶鎼佹⒒娴e懙褰掑嫉椤掑倻鐭欓柟鎯у娑撳秹鏌熼崜褏甯涢柣鎾冲暣閹嘲鈻庤箛鎿冧患闂佽绻戦幐鎶藉蓟閻旂⒈鏁婇悷娆忓閻濇岸鎮楃憴鍕缂傚秴锕妴渚€寮撮姀鈩冩珳闂佺硶鍓濋悷锕傦綖閺嶎厽鈷掗柛灞捐壘閳ь剛鍏橀幊妤呮嚋閻㈠吀绮村┑锛勫亼閸婃牠宕归棃娴㈡椽顢橀悙鍨闂佺懓鐡ㄧ缓鎯i崼鐔剁箚妞ゆ牗绮岀敮鍓佺磼閻樺灚鏆慨濠冩そ瀹曟粓鎳犻鈧敮銉╂⒑閸濄儱校閻㈩垪鈧剚鍤曢柛娑橈攻閸庣喖鏌曟繝蹇擃洭闁告ḿ鏁诲铏规嫚閳ュ磭鈧鏌涘☉鍗炴灓闁逞屽墻閸o綁骞冪捄渚僵妞ゆ挾濮烽悿鍕攽椤旂》榫氭繛鍜冪秮楠炲繘鎮╃拠鑼唽闂佸湱鍎ら崹鍫曟儊閿濆洨纾介柛灞捐壘閳ь剙鎽滅划鏃堝级閹宠櫕绋戦埞鎴﹀幢濞嗘劖顔曢梻浣告惈椤︽娊顢氶幎钘夌睄闁割偅绻傜粣娑橆渻閵堝棙灏甸柛瀣仱瀹曟洟顢旈崼鐔叉嫼闁荤姴娲╃亸娆戠不閹惰姤鐓曢悗锝庡墮鏍$紓浣虹帛閻╊垰鐣烽崼鏇ㄦ晢闁逞屽墰閻氭儳顓兼径瀣幈濡炪倖鍔戦崐鏇㈠几閹寸偟绠鹃柛娑卞枤閻帗鎱ㄦ繝鍐┿仢鐎规洏鍔嶇换婵囨媴閾忓湱鐣抽梻鍌欑閹测剝鐏欏┑鈽嗗亜鐎氫即宕洪姀銈呯婵炶尙绮弲锝夋⒑缂佹ǘ缂氶柡浣规倐閺佸秴鈹戦崶鈺冾啎闁哄鐗嗘晶浠嬪礆娴煎瓨鐓欑痪鏉垮船娴滄粓鏌¢崱蹇旀珚婵﹦绮幏鍛村川婵犲啫鏋戝┑鐘愁問閸犳岸寮繝姘畺鐟滄棃骞冮埡渚囧晠妞ゆ柨鍚嬮鍨攽閻樺灚鏆╁┑顔炬暩閸犲﹤顓兼径濠勶紱闂佸憡娲﹂崹閬嶆偂閻斿吋鐓欓柟瑙勫姈閻濐亪鏌熼惂鍝ョМ闁哄矉缍侀弫鎰緞瀹€鈧弳顐⑩攽椤旂》榫氭繛鍜冪悼濡叉劙骞掗幋顓熷缓闂佺硶鍓濆玻鍧楀汲閵夆晜鈷掑ù锝堟鐢稒銇勯妸銉︻棤闁告帗甯掗悾婵嬪礃椤忓啰缍嶉梻鍌氬€风粈渚€骞夐垾瓒佹椽鏁冮崒姘€梻渚囧墮缁夋挳鎮¢弴銏$厵閺夊牓绠栧顕€鏌涚€e墎绉柡灞剧洴婵$兘顢欓懡銈囨晨闂備焦鐪归崝蹇撯枍閿濆洦顫曢柟鐑橆殕閸嬫劙姊婚崼鐔衡槈濠德ゆ缁辨挻鎷呴搹鐟扮闂佺儵鏅╅崹浼存偩閻戣棄惟闁冲搫锕ラ弲鈺呮⒑娴兼瑧鍒伴柣顓炵墕鍗遍柛顐f礃閳锋帒霉閿濆洤鍔嬮柛銈傚亾缂傚倷鑳舵慨瀵哥矓閻熸壆鏆︾痪顓炴噷娴滃綊鏌熼悜妯虹仼闁告ɑ鎸冲娲偡闁箑娈舵繝娈垮櫘閸欏啫鐣烽幋锕€绠荤紓浣股戝▍婊堟煙閻撳海鎽犵紒璇插閹嫭鎯旈妸锔规嫼闁荤姴娲﹁ぐ鍐儊閵娾晜鐓曟俊顖涗航閸嬨垽鏌嶉妷锔筋棃鐎规洘锕㈤、娆撳床婢诡垰娲﹂悡鏇㈡煃閳轰礁鏋ゆ繛鍫熸⒒閹即鎳栭埡鍐紳闂佺ǹ鏈悷锔剧矈閹殿喒鍋撳▓鍨灍闁规悂绠栧畷姘跺箳閹存梹鐎婚棅顐㈡祫缁茶棄鈻撻妸鈺傗拺闁告稑锕ゆ慨鍥┾偓娈垮櫘閸撶喎顕i鈧畷鐓庘攽閸偅袨濠碉紕鍋戦崐鏇犳崲閹邦儵娑氣偓闈涙啞椤洟鏌涢幇顓犮偞闁衡偓娴犲鐓熼柟閭﹀灠閻撴劗鎲搁幎濠傛噽绾惧ジ鏌涘▎蹇fЦ缂佲偓閸愵喗鐓忛柛銉e妼婵秶鈧娲橀敃銏ゅ春閿熺姴绀冮柣鎰靛墴閺佹粓姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐村灦閼圭偓鎱ㄩ鍕厓鐟滄粓宕滈悢濂夋綎婵炲樊浜濋ˉ鍫熺箾閹存瑥鐏€规洦浜炵槐鎾存媴閽樺澶勭紓渚囧枟閻熲晠鐛崘顔芥櫢闁绘ǹ灏欓悿鈧梻浣虹帛椤ㄥ懘鎮ц箛娑樺偍闂侇剙绉甸埛鎴︽煕濠靛棗顏╅柡鍡楋躬閺屾稓鈧綆鍋呭畷宀勬煛瀹€瀣埌閾绘牠鏌涢幇鈺佸Ψ闁哄鎳庤灃闁绘﹢娼ф禒婊堟煕閻斿憡灏︾€殿噮鍋婇獮妯肩磼濡桨姹楅梻浣告啞閸旀ê顕i幘鎯板С濠电姵纰嶉埛鎺懨归敐鍛殘闁革富鍘藉畷鍙変繆閵堝懏鍣圭痪鎯ь煼閺岀喖鎮ч崼鐔哄嚒闂佺ǹ琚崝鎴﹀蓟閻旂厧绀堢憸蹇曟暜濞戙垺鐓曢悗锛卞啫鈷夌紓浣虹帛缁诲啰鎹㈠┑瀣<婵﹢妫跨槐鎴︽⒒娴h銇熼柛妯兼櫕閺侇噣鎮欓崫鍕姦濡炪倖甯掗崰姘缚閹邦厾绠鹃柛娆忣槳缂傛岸鏌涢幒鎾崇瑨闁伙絾绻堝畷鐔碱敃閵堝懎绠抽梻浣烘嚀閸氬鎮鹃鍫濈鐎光偓閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭椤愩垺澶勯柟绋款煼钘熼柣妯肩帛閻撶喖鏌ㄥ┑鍡橆棞闁告柣鍊濋弻宥囨喆閸曨偆浼岄梺璇″枟閻熴儵顢欒箛娑辨晩闁稿繒鈷堥崯鈧┑鐘垫暩婵敻顢欓弽顓炵獥婵°倕鎳庣粻浼存煙鐠轰警娼熼柍褜鍏涚欢姘嚕娴犲鏁囬柣鎰蔼閳ь剙鐏濋埞鎴︽倷閺夋垹浠搁梺鑽ゅ枂閸庤尙绮嬪鍛傛棃宕ㄩ瑙勫闂備礁鎲$换鍌溾偓姘煎弮瀹曟帡濡搁埡鍌滃幈闂侀潧饪甸梽鍕Φ濠靛鐓欐い鏇炴缁♀偓閻庤娲橀敃銏ゃ€佸▎鎾村仼閻忕偠妫勭粻鐐测攽閻樺灚鏆╁┑鐐╁亾濠电偘鍖犻崗鐐☉铻栭柛婊€鐒﹂弲婊堟⒑閸愬弶鎯堥柟鍐茬箻閹繝宕橀鍛瀾濠电姴锕ら悧鍡欑矆閸喓绡€闂傚牊渚楅崕娑㈡煛娴e壊鍎戦柟鍙夌摃缁犳稑鈽夊Ο鑲╁幀闂備礁鎲$粙鎴︽偤閵娾晛鐓曢柟杈鹃檮閻撴洟鏌ㄩ弮鍥跺殭鐎殿喓鍔嶆穱濠囨倷椤掍礁鈧劙鏌$仦鍓ф创闁诡喒鏅犻獮鍥ㄦ媴閸︻厽婢掗梻鍌欐祰椤曟牠宕伴幒妤€鐒垫い鎺嶇劍閻忚鲸淇婇幓鎺斿ⅵ闁哄本娲濈粻娑欑箾閹傚闂佸搫鍊堕崕杈ㄧ妤e啯鐓曟い鎰剁稻缁€鍐煟閹捐泛鏋涢柡宀€鍠栭弻鍥晝閳ь剟鎮橀敍鍕/妞ゆ挾鍋涢埛鏃堟煙椤曞懎鏋涙い顐g箞閹虫粎鍠婂Ο璇差伖闂傚倸鍊搁崐鎼佹偋閸愵喖鐤炬繝闈涚墢閻挻銇勯幒宥夋濞存粍绮嶉妵鍕箛閳轰胶鍔村┑鈽嗗灙閸嬫挸鈹戦悩娈挎殰缂佽鲸娲熷顐ゆ嫚閼碱剚娈鹃梺缁樻⒒閳峰牓寮澶嬬叆婵犻潧妫欓ˉ鐐寸箾閸涱厽鍠樻慨濠勭帛閹峰懘鎮烽柇锕€娈濈紓鍌欐祰椤曆囧磹閸濄儱寮查梻渚€娼ц墝闁哄懏绮撳畷鎴﹀煛閸涱喚鍘介梺闈涚箳婵敻宕悙鐑樼厓闂佸灝顑呴悘銉╂婢舵劖鐓曢煫鍥ㄨ壘娴滃綊鏌熼崘鍙夊殗闁哄瞼鍠栭、娆戠箔閸濆嫪鍒掗梻浣告惈閺堫剛绮欓弽顐や笉婵炴垯鍨瑰Λ姗€鏌涢埦鈧弲娆撴焽椤栫偞鐓欐い鏇楀亾缂佺姵鐗犻獮鍐ㄢ堪閸喎鐧勬繝銏e煐閸旀洟寮ぐ鎺撯拻濞达絽鎲¢幆鍫熺箾鐏炲倸濮傜€规洘鍨块幃銏ゆ偂鎼粹€充憾闂備礁缍婂Λ鍧楁倿閿曞倸鐓曢柟杈鹃檮閻撴洘绻涢幋鐑囧叕鐎规悶鍎遍埞鎴︻敊閻熼澹曢梻鍌氬€风粈渚€骞栭锕€绠犻煫鍥ㄦ礀閸ㄦ繈鏌熼幑鎰靛殭缂佺姵鑹鹃妴鎺戭潩閿濆懍澹曟俊銈囧Х閸嬬偟鏁幒鏇犱簷濠电偠鎻徊钘夘嚕閸撲讲鍋撳顐ょ煓婵﹦绮幏鍛村川闂堟稓绉虹€殿喚鏁婚、妤呭礋椤掆偓娴狀參姊洪幐搴㈢叆濠⒀傜矙閹矂宕奸妷锔惧幍濠电偛鐗嗛悘婵嬪几閹剧粯鐓曢悗锝庡亝鐏忕敻鏌熼崣澶嬪唉鐎规洜鍠栭、妤呭磼閵堝柊姘舵⒒閸屾瑦绁版い鏇嗗懏宕查柟瀛樼箘閺嗗棝鏌熼梻纾嬪厡鐎规挷绶氶弻娑㈩敃閻樻彃濮庨柟顖滃枛濮婅櫣鈧湱濮甸妴鍐煠鐎圭姴鐓愭い銊e劦瀹曞爼顢楁担鍙夊闂備線娼荤€靛矂宕㈤崗鑲╊浄婵炲樊浜濋悡鏇㈡煛閸屾繃纭剁€涙繂顪冮妶搴濈盎闁哥喐鎸抽獮濠囨倷閸濆嫀銊╂煏閸繃宸濋柣锝夌畺濮婄粯鎷呯粙娆炬闂佺ǹ顑呴幊搴e弲闂佸搫绋侀崢浠嬫偂娓氣偓閺屾盯濡烽敐鍛瀷缂備胶濞€缁犳牠寮婚悢琛″亾閻㈢櫥褰掑礈鏉堛劎绠鹃柛顐ゅ枑缁€瀣煛瀹€瀣М妞ゃ垺娲熸慨鈧柕蹇嬪焺閸熷绻濆▓鍨灈闁挎洩濡囬崚鎺楊敍閻愯尙顔嗛梺鍛婄☉閻°劑骞嗛悙鐑樼厽闁绘梻枪椤ュ銇勯幇顑惧仮婵﹦绮幏鍛村川婵犲倹娈樻繝娈垮枛閿曪箓骞婇幘璺哄疾闂備胶绮Λ渚€宕戦幇顒傛殼濞撴埃鍋撻柡灞糕偓鎰佸悑閹肩补鈧啿顒滈梻浣芥〃缁€渚€宕幘顔艰摕闁靛ň鏅涚猾宥夋煕閵夘喚鍘涙俊顐㈠閳规垿鎮欓懠顒€顤€缂備浇顕ч悧鎾愁嚕婵犳碍鏅插璺侯儏娴滄粓姊洪崨濠勭細闁稿孩鐓″畷瀹狀樄闁哄矉绲鹃幆鏃堝閻樿櫕鍎ч梻浣告啞閺屻劎绮旈崜浣稿灊閻庯綆浜堕崥瀣煕濞戝彉绨婚柣妤佸哺濮婃椽宕滈幓鎺嶇敖闂佸摜濮甸幑鍥х暦閵忋倖鍋ㄩ柛娑樑堥幏铏圭磽閸屾瑧鍔嶉柨姘舵煟韫囥儳鐣甸柡灞诲妼椤繈鎳滈悽闈涘箺闂傚⿴鍋勫ú銈夘敄閸涙潙绀夐柨鏇炲€归悡娑㈡倶閻愬灚娅曢崯绋款渻閵囧崬鍊荤粣鏃堟煛鐏炲墽娲存鐐瘁缚閳ь剟娼ч幉锟犲闯椤斿墽纾藉ù锝嗗灊閸氼偊鏌涚€n剙浠ч柟骞垮灩閳规垹鈧綆浜為敍婊冣攽閻樿宸ラ悗姘煎弮椤㈡瑩寮撮姀鈾€鎷绘繛杈剧悼閸庛倝宕甸埀顒勬⒑鐎癸附婢樻俊鍧楁煙楠炲灝鐏╂い鎾炽偢瀹曘劑鍩¢崘顏嗙崶闂傚倷绶氬ḿ褑澧濋梺鍝勬噺缁捇骞冮敓鐘茬妞ゅ繐鎳庨弸鎴濃攽閻樿宸ラ柣妤€妫涚划鍫ュ醇閵夛妇鍘介梺鍝勫€归娆忊枔閻樼粯鐓曢柕鍫濇缁€鈧梺瀹狀潐閸ㄥ潡骞冮埡鍐e亾閸︻厼孝妞ゃ儲绻堝娲川婵犲孩鐣锋繝鐢靛仜閿曨亜顕f繝姘櫜濠㈣泛锕﹂惈鍕⒑閹肩偛鍔撮柣鎾崇墛缁傛帡鍩℃笟鍥ㄥ瘜闂侀潧鐗嗗Λ娆撳煕閹邦厾绠鹃柤纰卞墮閺嬫稒顨ラ悙鎻掓殭闁伙綇绻濋獮宥夊礃閼碱剙顫梻鍌欑閹诧繝宕濋敃鍌氱劦妞ゆ帒顦悘娑㈡煕婵犲啰绠炵€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁规瓕顕ч悾婵堢矙鐠恒劍娈惧┑鐐叉鐢洦绂嶈ぐ鎺撶厵闁绘垶锚閻忓瓨淇婇銈呭幋婵﹥妞介獮鎰償閿濆洨鏆ら梻浣烘嚀閸㈡煡顢栨径濠勬殾闁汇垻枪閸楁娊鏌曡箛銉х?闁告ḿ鏁诲铏规嫚閳ュ磭浠┑鐘灪鏋い锝呮健濮婄粯鎷呴崨闈涚秺椤㈡牠宕卞☉妯碱槷濠德板€曢崯顖烇綖閺囥垺鐓欓柟顖嗗懏鎲兼繝娈垮灡濞兼瑨鐏冮梺缁橈供閸犳牗淇婇悾灞稿亾閸忓浜鹃梺褰掓?閼宠泛鐣垫笟鈧悡顐﹀炊閵婏箑顎涘┑鐐叉▕娴滃爼寮崒鐐寸厱婵炴垵褰夌花濂告倵濮橆兙鍋㈡慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼缂傚倷绀侀鍡涘垂閸ф鏋侀柛鎰靛枟閺呮繈鏌涚仦鐐殤闁告瑢鍋撴繝鐢靛О閸ㄥジ宕洪弽顓炵闁哄稁鍘介崑鍌炴煏婢跺棙娅嗛柣鎾寸洴閺屾盯濡烽鎯у笒濡炪倕绻愰悧鍡涙倿閸偁浜滈柟鍝勭Ф鐠愮増绻涢崼鐕傝€块柡灞剧洴楠炴帡骞橀搹顐ョ檨婵$偑鍊戦崹娲晝閵忊剝鍙忛柍褜鍓熼弻锝呂熷ú璇叉櫛闂佸摜鍋炲钘夘潖缂佹ɑ濯寸紒娑橆儐缂嶅牓鎮楃憴鍕瀹€锝嗗缁傚秶绮欐惔鎾寸€婚梺鐟邦嚟婵磭绮径濞炬斀妞ゆ梹鏋绘笟娑㈡煕閹垮嫮鐣遍柕鍡樺笚缁绘繂顫濋鐘插妇闂備礁澹婇崑鍛崲閸愵啟澶娾堪閸愶絾鏂€濡炪倖鏌i崝宀勫箠閹邦喖顥氬┑鍌氭啞閻撴盯鎮橀悙棰濆殭闁告柣鍊濋弻锝夋晲閸℃ǜ浠㈤梺鍦归敃顏堝箖閵忋倕绀傞柤娴嬫櫅楠炲牊淇婇悙顏勨偓鏍礉閹达箑纾归柡鍥ュ灩閸戠姷鈧箍鍎卞ú銊у婵傚憡鍋i柛銉戝啰楠囧銈冨劤閸嬨倝寮婚弴銏犵倞鐟滃秹顢旈鐕佹闁绘劕寮堕崰姗€鏌涢埞鎯у⒉闁瑰嘲鎳忓ḿ顏堝箥椤旀枻绱¢梻鍌氬€搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧綊鏌¢崶鈺€绱虫繛宸憾閺佸洭鏌曡箛鏇炐柟鑺ユ礀閳规垿鎮欓弶鎴犱户闂佹悶鍔岀紞濠囧箖閳ユ枼妲堥柕蹇娾偓鏂ュ亾閻㈠憡鐓ユ繝闈涙椤庢顭胯閸楁娊寮婚敐澶嬫櫇闁逞屽墴閹囧箻鐠囪尙鐣哄┑掳鍊曢崯顖炲窗閸℃稒鐓曢柡鍥ュ妼婢т即鏌ㄥ☉娆欒€挎慨濠冩そ瀹曘劍绻濋崘锝嗗闂備焦鎮堕崝灞结缚閳╁啩绻嗛悗娑櫳戞刊瀵哥磼椤栨稒绀冮柣搴☆煼濮婅櫣鎲撮崟顐㈠Б缂佸墽铏庨崣鍐箖閻愵兙鍋呴柛鎰ㄦ櫅娴狀厼鈹戦悩璇у伐闁哥喓澧楅弲銉╂煟鎼淬値娼愭繛娴嬫櫇瀵板﹪宕滆瀹曞弶绻濋棃娑卞剰闁绘劕锕弻鏇熺箾閸喚浠鹃柣搴㈢煯缁瑥顫忕紒妯诲闁告盯娼х紞濠傤嚕閻㈠壊鏁嗛柛鏇ㄥ墮娴狀參姊洪棃娴ュ牓寮插☉姘辩焼闁稿本澹曢崑鎾诲礂婢跺﹣澹曢梻渚€鈧偛鑻晶鐗堜繆閸欏濮嶆鐐村笒铻栧┑鐘插暞濞呮棃姊绘担鍛婂暈濞撴碍顨婂畷銏ゆ倷椤掑偆娴勯梺褰掓?閻掞箓宕愰悽鍛婂仭婵炲棗绻愰顏嗙磼閳ь剟宕橀鍡欙紲闁荤姴娲╃亸娆愭櫠閿旈敮鍋撳▓鍨珮闁稿锕ら悾宄邦潨閳ь剟銆佸▎鎾村殐闁冲搫顑囨惔濠傗攽閻樻剚鍟忛柛鐘愁殜閺佸啴濮€閵忊€冲幑缂備礁顑堥鎶芥晲婢跺娈濋梺姹囧灮閺佹悂鎯侀崼銉︹拺婵懓娲ら悘鍙夌箾娴e啿瀚々閿嬬節婵犲倸顏х紒璇叉閵囧嫰骞囬崜浣瑰仹闂佺懓鍟垮ú銊╁焵椤掑喚娼愭繛鍙夅缚閹广垽宕煎┑鎰闂佸湱铏庨崰妤呭磻閹扮増鐓欏Λ棰佽兌椤︼箑霉閻樿櫕銇濇慨濠勭帛閹峰懘鎼归悷鎵偧闂備礁鎲″褰掋€冩繝鍥ラ柛灞剧〒椤╃兘鎮楅敐搴濈敖闁挎稒鐩铏规喆閸曨偆顦ㄩ悗瑙勬礋濞佳囨偩閸偆鐟归柍褜鍓熷璇测槈閳垛斁鍋撻敃鍌氱婵犻潧娲ㄦ禍顏勨攽閻樻剚鍟忛柛鐘崇墬椤ㄣ儵骞栨担娴嬪亾閺冨牆绀冩い鏂挎瑜旈悡顐﹀炊閵婏妇顦紓浣瑰姈椤ㄥ﹤顫忓ú顏勫窛濠电姴瀛╅悾閿嬬節閻㈤潧浠滈柨鏇ㄤ邯閹即顢氶埀顒€鐣峰鈧、娆撴嚃閳衡偓缁辨粓姊绘担鍛婃儓闁稿﹤鐖煎畷鏇㈠蓟閵夛箑鈧潧鈹戦悩宕囶暡闁抽攱鍨块弻娑㈡晜鐠囨彃绠规繛瀛樼矌閸嬫挾鎹㈠☉銏犵闁兼祴鏅滈崳浼存⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮婚敐鍫㈢杸闁哄啠鍋撻柣銊﹀灴閺岀喖鐛崹顔句患闂佸疇妫勯ˇ鍨叏閳ь剟鏌eΟ娲诲晱闁告艾鎳樺缁樻媴閾忕懓绗¢梺鍛婃⒐濞茬喖骞冨Ο渚僵閻犻缚娅i悰銉モ攽鎺抽崐鏇㈠疮閹殿喖顥氬ù鐘差儐閻撴洟鎮橀悙鏉戠濠㈣锕㈤弻宥堫檨闁告挻鐟х槐鐐寸節閸パ呯枃濠电娀娼уú銏ゅ磻閸涘瓨鐓曢柟鏉垮瀹€娑㈡煕鐎n偅宕岄柡浣稿暣瀹曟帒鈽夊Ο鑽ゆ殸濠碉紕鍋戦崐鏍偋椤撶姴绶ゅΔ锝呭枤閺佷線鏌涢妷顔煎闁抽攱甯掗湁闁挎繂鎳忛崯鐐烘煕閻斿搫浠遍柡宀€鍠栭獮鏍ㄦ媴閾忚姣囬柣搴ゎ潐濞叉垿宕¢崘宸殨闁稿﹦鍣ュ銊╂⒑閹肩偛鈧牕煤閺嶎厼鐓橀柟杈鹃檮閸嬫劗鈧娲栧ù鍌炲汲閿熺姵鈷戠紒瀣儥閸庡繘鎮楀顐㈠祮鐎殿喛顕ч埥澶娾堪閸涱垱婢戦梻浣告惈濞层劑宕戝☉娆戭浄婵せ鍋撴慨濠冩そ瀹曘劍绻濋崘鈺佸壆闂備礁鎲¢幐楣冨窗鎼搭煉缍栭煫鍥ㄦ媼濞差亶鏁傞柛鏇ㄥ亞閻涒晛鈹戦悩鍨毄濠殿喖顕埀顒佸嚬閸犳艾危閹邦厼顕遍悗娑櫱氶幏铏圭磽娴e壊鍎忔繛纭风節椤㈡挸螖閸涱喚鍘介梺闈涚墕閹冲繘宕板鈧弻娑㈠煛娴g懓娈楀┑鈽嗗亜閸燁偊鍩ユ径鎰闁规儳鐡ㄥ鎴︽⒒娴e憡璐¢柛搴涘€栫换娑欑節閸屾粍娈鹃梺褰掑亰閸庣敻寮埀顒勫箯閸涘瓨鍋¢柡澶娿仒缁辩喖姊婚崒娆掑厡缂侇噮鍨跺畷褰掓偂楠烆剚鐩畷鐔碱敇閻戝棙顥$紓鍌氬€烽悞锕€鐜荤捄銊т笉濡わ絽鍟悡娆撴倵濞戞瑡缂氶柟鍐插暣閺岋綀绠涢敐鍕仐闂佸搫鐭夌紞渚€鐛鈧、娑橆潩椤愩埄妫滈梻鍌氬€搁崐鎼佸磹閻戣姤鍊块柨鏃堟暜閸嬫挾绮☉妯诲櫤鐎规洘鐓¢弻娑氫沪缂併垹娈煎┑鐐村灟閸ㄥ湱鐚惧澶嬬厱閻忕偛澧介埥澶愬箹閺夋埊韬慨濠呮閸栨牠寮撮悙娴嬫嫟缂傚倷绀侀鍡欐暜閿熺姴绠栭柨鐔哄У閸嬪嫰鏌涜箛姘汗闁告ḿ鏁婚弻鈩冨緞婵犲嫬顣烘繝鈷€鍛珪缂侇喗鐟х槐鎺懳熼梹鎰泿闂備線娼чˇ顓㈠磿閸濆嫀鐔煎焵椤掆偓铻栭柣姗€娼ф禒婊勪繆椤愶絿绠炴鐐插暣婵偓闁靛牆鎳愰ˇ褔鏌h箛鎾剁闁绘顨堥埀顒佽壘閵堢ǹ顫忔繝姘<婵﹩鍏橀崑鎾诲箹娴g懓浜辨繝鐢靛Т閸熶即鎮风憴鍕箚闁靛牆鍊告禍鎯ь渻閵堝骸澧柨鏇樺姂钘濋柡灞诲劜閻撳啴鎮峰▎蹇擃仼闁诲繑鎸抽弻娑㈠Ω閳哄啰鏆梺鍦帶缂嶅﹪銆侀弴銏狀潊闁冲搫鍊愰悢铏圭=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒€鐣烽幇鏉夸紶闁靛/鍛帬闂備礁婀遍搹搴ㄥ窗濡ゅ懎纾婚柍鍝勬噺閻撱儵鏌i弬鎸庢儓鐎涙繄绱撴担鍝勑為柛搴f暬瀵槒顦剁紒鐘崇洴閺佹劙宕ㄩ鍌氬毈闂傚倷绀侀幖顐λ囨导鏉戠畺闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓i煫鍥ㄦ礃閸も偓缂備焦顨愮换婵嗩潖濞差亜宸濆┑鐘插暊閹峰綊姊虹紒姗嗘畷婵炲弶鐗犻幃铏節濮橆剙鐎銈嗘椤鎮楁繝姘拺闁革富鍘兼禍鐐箾閸忚偐鎳囬柛鈹惧亾濡炪倖宸婚崑鎾绘煟閺嵮佸仮鐎殿喖顭锋俊鎼佸煛娴h櫣娼夐梻浣规偠閸庢椽鎮樺┑瀣缂備焦岣块崢鍗炩攽閻愬弶顥滅紒缁樺笧缁粯瀵肩€涙ḿ鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍濠冾殽閻愬瓨宕屾鐐村笒閳规垿宕ㄩ娑崇础闂傚倸鍊搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧綊鏌熼悧鍫熺凡缁炬儳顭烽弻鐔煎礈瑜忕弧鈧紓浣筋嚙濡繈寮婚敐澶婄疀闁稿繐鎽滈惄搴ㄦ⒑闁偛鑻崢鐢告煕婵犲啰绠撻柣锝囧厴婵偓闁挎稑瀚板顕€姊洪崨濠勨槈闁挎洏鍊濋崺鈧い鎺戝暙閻撴劗绱掔紒妯肩疄婵☆偄鍟埥澶愬础閻愭彃螚缂傚倸鍊搁崐鍝ョ矓閻㈠憡鍋嬫俊銈呭暞瀹曞弶绻濋棃娑欏窛缂佲檧鍋撻梻浣呵归張顒傚垝瀹€鍕┾偓鍌毭洪鍛嫼缂傚倷鐒﹂敋缂佹甯¢弻锝堢疀閺傚灝鎽垫繝纰夌磿閺佽鐣烽悢纰辨晬婵﹢纭搁崬娲⒒娴g儤鍤€闁宦板妿閹广垹顓奸崱妤婂殼闂侀€炲苯澧撮柡宀嬬稻閹棃濡舵惔銏㈢Х闂備浇顫夐幃鍌炈夐幘鏂ユ瀻闁靛繒濯ḿ鈺呮偣濞差亞绱伴柟鑺ユ礀閳规垿鎮欓弶鎴犱户闂佹悶鍔屽﹢杈╁垝鐠囨祴妲堥柕蹇ョ磿閸樻捇鏌℃径灞戒沪濠㈢懓妫濊棟闁挎柨顫曟禍婊堟煏婢跺牆鍔撮柛搴㈡⒐閹便劍绻濋崘鈹夸虎閻庤娲﹂崑濠傜暦閻旂⒈鏁冮柨婵嗘-閸炴煡姊婚崒娆掑厡缂侇噮鍨堕妴鍐川椤撳洦绋戣灃闁告粈鐒﹂弲鈺呮椤愩垺澶勯柟鍛婃尦瀵劍绂掔€n偆鍘遍梺闈涱檧缁蹭粙宕濆▎鎴犵<闁靛ǹ鍎洪悡鍏兼叏婵犲啯銇濈€规洦鍋婂畷鐔碱敃閿濆棭鍞插┑鐘垫暩閸嬫盯鎯囨导鏉戠9婵炴垟鍋撻埀顒€鍊垮畷绋课旀担鍙夊濠电偠鎻紞鈧繛鍜冪悼閺侇喖鈽夊杈╋紲闁荤姴娲╃亸娆愭櫏闁诲氦顫夊ú姗€宕归崜浣瑰床婵犻潧顑呴悙濠勬喐閹达箑绠洪柡鍥ュ灪閳锋垿鏌熺粙鎸庢崳缂佺姵鎸绘穱濠囶敃閿濆洦鍣伴悗瑙勬礃濞茬喖骞冮姀銈呯闁兼祴鏅涚敮妤呮⒒娓氣偓濞佳囁囬銏犵?闂侇剙绉村Ч鏌ユ⒑椤掆偓缁夊鐥閺屾盯顢曢敐鍥╃暫闂佹悶鍊曞ú锕傚箞閵婏妇绡€闁告侗鍣禒鈺冪磽娓氬洤鏋熼柣鐔村劦閸┿垺鎯旈妸銉х暰閻熸粌绉电粩鐔稿緞閹邦厸鎷绘繛杈剧到閹诧紕鎷归敓鐘崇厵闁惧浚鍋呯亸顓㈡偂閵堝棎浜滈柟鎹愭硾閸撻亶鏌涢妶鍡樼闁诡喖缍婂畷鍫曞Ω瑜嬮崑鐐测攽閳╁啫绲婚柣妤佹崌瀵寮撮敍鍕澑闂佸搫娲ㄩ崐顐﹀Ψ閳哄倻鍘介梺闈涚墕閸婂憡绂嶉悙顒傜瘈缁炬澘顦辩壕鍧楁煕鐎n偄鐏寸€规洘鍔欏浠嬵敇閻愭鍞跺┑掳鍊х徊浠嬪疮椤愩倕顥氱紓浣贯缚缁犻箖鏌熺€电ǹ浠ч柟鍐插閺屾稑鈻庤箛鏇狀啋闂佸搫鏈ú婵堢不濞戙垹鍗抽柣鎰姈閻╊垶寮婚敓鐘茬劦妞ゆ帊鑳堕々鐑芥倵閿濆骸浜為柛妯圭矙濮婇缚銇愰幒鎴滃枈闂佹悶鍔嬮崡鎶藉箚閸愵喖浼犻柛鏇犳暩閸炵敻鎮峰⿰鍐惧剶鐎规洝顫夌粋鎺斺偓锝庝海閹芥洖鈹戦悙鏉戠仸闁糕晛鍟村畷鎴﹀箻缂佹ɑ娅滈柟鑲╄ˉ閳ь剝灏欓崙褰掓⒑鐠囪尙绠扮紒缁樺浮瀵偅绻濆顒冩憰闂佺粯妫侀崑鎰暤娓氣偓閺屾盯鈥﹂幋婵囩亾婵炲濮撮妶绋款潖閾忓厜鍋撻崷顓炐fい銉ヮ槹閵囧嫰鏁傜拠鑼桓闂佹寧绻勯崑娑㈠煘閹寸姭鍋撻敐搴′簼婵炲懏绮撳娲川婵犱胶绻侀梺鍛婃尰閻熲晞妫㈠┑顔角归崺鏍煕閹烘嚚褰掓晲閸涱喛纭€濠电姭鍋撳ù鐘差儐閻撴洟鏌曟繝搴e帥闁搞倖鐟╅弻宥囨嫚閼碱儷褍鈹戦敍鍕幋濠碘剝鎮傞弫鎰板礋椤掑倹缍庨梻鍌氬€风粈浣革耿闁秴纾块柕鍫濇处瀹曟煡鏌涢幇闈涙灈闁汇倗鍋撶换娑㈠箣濞嗗繒浠鹃梺鎶芥敱閸ㄥ潡骞冨畡鎵虫瀻闊洦鎼╂禒濂告⒑閸涘﹥鐓熼柛濠冩礋閳ワ箓鎳楅锝喰╂繝鐢靛仦閹告娊寮ㄦ潏鈺冨崥闁绘梻鍘ч崡鎶芥煏韫囧ň鍋撻崗鍛亝闂備浇顕х换鎺楀磻閻斿摜浠氬┑鐐茬摠缁酣宕戦幘姹団偓鍐Ψ閳哄倸鈧兘鏌ょ喊鍗炲幐闁惧繐閰e娲川婵犲啠鎷归梺鑽ゅ暀閸涱噮娼熼梺鍦劋椤ㄥ懘鎮為崹顐犱簻闁瑰搫绉堕崝宥呪攽椤栨稒灏﹂柡灞剧洴閺佸倻鎷犻幓鎺戭劀婵犵數鍋炶ぐ鍐箟閳╁啰鈹嶅┑鐘叉搐鍥撮棅顐㈡处濞叉牠宕哄畝鍕拺闁告縿鍎卞▍蹇涙煕閵娿儳鍩g€规洖鎼埥澶愬閻樻鍞洪梻浣烘嚀閻°劑鎮烽姀銈呯;闁规崘顕х粻鎶芥煙閹碱厼骞楅柛宥囨暬濮婃椽骞愭惔锝囩暤闂佺懓鍟跨粔鐢电博閻旂厧鍗抽柣鏃囨閻﹀牓姊哄Ч鍥х伈婵炰匠鍕浄闁圭儤顨嗛悡鏇㈡煛瀹ュ骸浜滈柍璇茬墢閳ь剝顫夊ú姗€銆冩繝鍥х畺婵炲棙鎼╅弫鍡涙煕鐏炵虎娈曟い顐㈢Ч濮婃椽宕滆鐢盯鏌eΔ鍐ㄢ枅鐎殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻濞戞氨涓嶅┑鐘崇閳锋垿鏌涘┑鍡楊伂閻庢矮鍗抽弻锝呂旀担鐟扮濡炪値鍋勭换鎰弲濡炪倕绻愮€氼厼鐣靛鍜佹富闁靛牆妫欑亸銊╂煕閹惧绠炴い銏℃尭铻栭柛娑卞枓閹锋椽姊洪崨濠勭細闁稿氦椴搁悧搴ㄦ⒒娴h櫣甯涙い銊ユ閸掓帗鎯旈妸銉ь槴闂佸湱鍎ら幐鍓у姬閳ь剙鈹戦鏂や緵闁告ê鍚嬬粋宥夊捶椤撶姷锛濋梺绋挎湰閻熝囧礉瀹ュ懐鏆嗛柨婵嗘噺閸嬨儳鈧娲忛崹浠嬨€侀弮鍫濋唶闁绘洑鐒﹂ˉ濠冧繆閻愵亜鈧牠宕濋幋锕€鍨傞柣鎴灻欢鐐烘煕閺囥劌澧扮紒鐘荤畺閺屾稑鈻庤箛锝喰ㄦ繝鈷€灞奸偗闁哄矉绻濆畷杈疀閺冣偓閻濇艾鈹戦纭峰姛缂侇噮鍨堕獮蹇涘川閺夋垵绐涙繝鐢靛Т閸燁偊宕滈崹顐ょ瘈缁剧増蓱椤﹪鏌涚€n亝鍤囬柕鍡楀暞缁绘繈宕堕妷銏犱壕濞撴埃鍋撶€殿喕绮欐俊鎼佸Ψ瑜忛悰顕€姊绘担鍝ョШ闁稿锕畷婊冣攽鐎n亞顔戦梺鍝勬储閸ㄦ椽鍩涢幋锔界厸闁稿本锚閸旀粍绻涢崨顓熷殗闁哄本鐩幃銈嗘媴闂€鎰晼婵犵數鍋涘Λ搴ㄥ垂娴犲绠栨繛鍡樻尭娴肩娀鏌涢弴銊ュ季闁哥喎娲︾换婵嬫偨闂堟稑澹嬬紓鍌氱Т濡繂鐣峰⿰鍐f瀻闁圭偓娼欓埀顒冨煐閵囧嫰寮村Δ鈧禍楣冩⒑閸濆嫭婀版繛鑼枎閻g兘宕¢悙宥嗘⒒閳ь剨缍嗛崢濂稿箚閸喓绡€婵炲牆鐏濋弸娑㈡煥閺囨ê濡奸柍璇茬Ч閺佹劖寰勬繝鍕靛數闂備胶绮灙妞ゆ泦鍥ㄥ€堕柟鎯板Г閻擄綁鐓崶椋庡埌濞存粎鍋熼幉鎼佹偋閸垹寮ㄥ┑顔硷功缁垶骞忛崨瀛樺€绘俊顖滃劋閻n剟姊绘担瑙勫仩闁稿﹥鐗犻幃褔鎮╅懡銈呯ウ闂婎偄娲︾粙鎺楀疾閹间焦鐓ラ柣鏇炲€圭€氾拷40%闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂傚倸娲らˇ鐢稿蓟閵娿儮鏀介柛鈾€鏅滄晥濠电偛鐡ㄩ崵搴ㄥ磹濠靛钃熼柕鍫濐槸缁狙囨煙缁嬪潡顎楀ù鐘虫尦閹鈻撻崹顔界亪闂佺粯鐗滈崢褔鎮鹃悜鑺ュ亗閹兼惌鍠楅崓闈涱渻閵堝棙灏甸柛鐘虫崄閵囨劙宕ㄧ€涙ǚ鎷绘繛杈剧秬椤宕戦悩缁樼厱闁哄倽娉曡倴闂佺懓绠嶉崹钘夌暦濮椻偓椤㈡瑩宕叉径娑氱暤闁哄本鐩鎾Ω閵壯傚摋闂備礁鎲¢崝蹇涘磻閹剧繝绻嗛柣鎰典簻閳ь剚鐗犲畷婵嬫晝閳ь剟鈥﹂崸妤€鐒垫い鎺戝€荤壕鍏笺亜閺冨倸甯舵い锝呯-缁辨帗娼忛妸锕€闉嶉梺鐟板槻閹虫﹢鐛幘璇茬鐎广儱鎷嬪Λ婊冣攽閻樺灚鏆╁┑顔诲嵆瀹曡绺界粙鎸庢К闂佸搫绋侀崢鑲╃矆婢舵劖鐓涚€广儱楠搁獮妤呮煕鐎n亜鈧湱鎹㈠☉銏犵闁绘劘灏欓崝浼存⒑缁嬫鍎愰柟鐟版喘閹即顢氶埀顒€鐣疯ぐ鎺濇晩闁绘挸瀵掑ḿ娑欑節瀵伴攱婢橀埀顒侇殕閹便劑鎮界粙璺ㄧ暫闂佺ǹ鐬奸崑鐐哄磻濡眹浜滈柡鍥殔娴滈箖鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冮姀銈呬紶闁告洦鍋嗛悿鍕⒒閸屾艾鈧娆㈠顑肩細鐟滃酣鎮樺▎鎾粹拺缂佸娼¢崣鍕瑰⿰鍐煟鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粌澧界槐鎾诲磼濮樻瘷銏ゆ煥閺囥劋閭柟顔诲嵆椤㈡岸鍩€椤掆偓閻i攱绺界粙璇俱劑鏌曟径濠勫哺闁哄懐濞€瀵寮撮悢椋庣獮婵犵數濮撮崯顖氱暦閹惰姤鈷戦柛婵勫劚鏍¢梺缁橆殘婵炩偓闁诡喕鍗抽、姘跺焵椤掑嫮宓侀柛銉墻閺佸洭鏌i弬鍨Щ濠碘剝濞婂缁樻媴閻熼偊鍤嬬紓浣筋嚙閸婂灝鐣烽鐐村亹閻犲洩灏欓敍娑㈡⒑鐟欏嫬绀冩い鏇嗗懐涓嶆繛鎴欏灪閻撴稑顭跨捄鍝勵劉缁绢叀娉涜灃闁绘ê寮堕崰妯绘叏婵犲啯銇濈€规洘锕㈠畷锝嗗緞鐎n亜澹嶉梻鍌欒兌鏋柨鏇樺妼閻g兘鎮介棃娑樼亰婵犵數濮电喊宥夊磹閻戣姤鍊垫繛鎴烆仾椤忓嫷鍤曢柟绋挎捣缁♀偓闂佹眹鍨藉ḿ褍鐡梻浣烘嚀閸熻法鎹㈠鈧妴渚€寮崼鐔蜂汗闂佹眹鍨婚弫鎼佹晬濠婂喚娓婚柕鍫濇閳锋帡鏌¢崪浣镐喊妤犵偛锕畷鍫曗€﹂幋鐑嗗晬闂備胶绮崝鏍п缚濞嗘劖鍙忛柛顐犲劜閻撴瑦銇勯弽銊р姇妞ゃ儱鐗嗛埞鎴︻敊閻熼澹曢梻鍌欒兌閸嬨劑宕曢弻銉ョ婵﹩鍘奸閬嶆煕閳╁啰鎳呯痪鍙ョ矙閺屾稓浠﹂幑鎰棟闂侀€炲苯澧柟顔煎€搁悾鐑藉箛椤掑倹娈濋梺鐟板暱閿曘倗绱炴繝鍌滄殾闁割偅娲﹂弫鍡楊熆鐠轰警鍎愭繛鍛閺岋綁鎮㈤崫銉х厐缂備胶绮敮鈥崇暦濮樿泛绠虫俊銈傚亾缂侇偄绉归弻娑㈩敃閵堝懏鐎绘繛瀵稿閸欏啫顫忛搹瑙勫枂闁告洟娼ч弲閬嶆⒑閸濄儱校妞ゃ劌鎳橀崺銏ゅ箻濞n剙浜濋梺鍛婂姀閺備線骞忛崫鍕ㄦ斀妞ゆ梻鍋撻崵鈧┑鐐茬湴閸婃繈骞冨鈧崺锟犲川椤旀儳骞嶉梺鑽ゅТ濞壯囧川椤栨粍顫岄梺璇插椤旀牠宕板Δ鍕╀汗闁告劦鍠栭悡姗€鏌熺€电ǹ袥闁稿鎹囬弫鎰償閳ヨ尙鏁栭梻浣告啞钃遍柟鐟版喘楠炲啫鐣¢幍鍐茬墯闂佸憡娲﹂崢楣冩偂婢舵劖鍊甸悷娆忓缁€鍐磼椤旇姤宕屾鐐插暣婵偓闁靛牆鎳愰ˇ鈺呮⒑闂堟稓澧曢柣妤€鍟村畷鎴﹀箻鐠囨彃鐎銈嗘閵嗏偓闁稿鎹囬獮鎺楀箣椤撶喎鍏婇梻浣瑰缁诲倿骞婂鍡欑彾闁哄洨鍠撶弧鈧┑鐐茬墕閻忔繈寮稿☉銏$叆闁哄洦锚婵″ジ鏌嶇拠鑼ч柡浣瑰姍瀹曞爼鈥﹂幋鐐电◥闂傚倷绀佸﹢閬嶅磿閵堝鍚归柨鏇炲€归崑鍕煟閹捐櫕鎹fい蟻鍥ㄢ拺缂備焦蓱鐏忣參鎮楀☉鎺撴珚闁诡喚鏁婚弫鎰緞鐎Q勫闂備胶枪閺堫剟鎮烽妸鈺佺閻忕偘鍕樻禍婊堟煏韫囨洖顎撶€规悶鍎甸弻宥囨嫚閼碱儷褏鈧鍠楅幐铏叏閳ь剟鏌eΟ娲诲晱婵℃煡鏀辩换婵嗩嚗闁垮绶查柍褜鍓氬ú鐔风暦椤栫儐鏁冮柨鏇楀亾闁搞劌鍊圭换婵嬫濞戝崬鍓遍梺缁樻尰閻╊垶寮诲☉銏犵疀闁宠桨绀侀‖瀣節閳封偓閸ワ附鍠氶梺鍝勫閸撴繈骞忛崨鏉戝窛濠电姴瀛╅敍鍡涙⒒娴e憡鎯堥柡鍫墴閹嫰顢涘鐓庢闂佸湱铏庨崰鏍ㄥ劔闂備線娼чˇ顓㈠磿閸濆嫥缂氬Δ锝呭暞閳锋帒霉閿濆懏鍟為柛鐔哄仱閺屻劑寮村Δ浣圭彆缂備礁鍊哥粔褰掋€侀弮鍫濈闁割煈鍋嗙粙渚€姊绘担鐟板姢缂佺粯甯¢獮濠囧箻閸ㄦ稑浜鹃柛顭戝亞閸欌偓闂佸搫鐭夌换婵嗙暦閸洖鐓涘ù锝夘棑閹规洟姊绘担绋挎毐闁搞垺鐓¤棟妞ゆ牜鍋愰埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″吋銇勯鈧悧鎾愁潖閾忚鍏滈柛娑卞枤瑜把囨⒑閹稿海顣查柕鍥у瀵挳顢旈崱娅烘粌螖閻橀潧浠滈梺甯秮楠炲﹪鎮欓崫鍕庛劑鏌曟径鍫濃偓妤呮儎鎼淬劍鈷掗柛灞剧懆閸忓矂寮搁鍡欑<缂備焦锕╁▓婊呪偓瑙勬礃閸ㄥ潡鐛崶顒€绾ч柛顭戝枛娴滃爼姊绘担鍦菇闁搞劌缍婇獮澶愭晸閻樿尙锛欓梺姹囧灩閹诧繝鎮¢悢鍏肩厽闁哄倹瀵ч崯鐐电磼鐠哄搫绾ч柕鍥у缁犳盯鏁愰崟顓犳晨婵$偑鍊ら崢鐓庒缚閿熺姴绠栭柣鎴eГ閸嬪鏌涢顐簼闁跨喆鍎崇槐鎾诲磼濞嗘垼绐楅梺鍝ュУ椤ㄥ懓鐏嬮梺鍛婂姦閸犳牜绮婚弽銊х瘈濠电姴鍊搁幃鈺呮煟閺傚灝鎮戦柍閿嬪姍閺岀喖鏌囬敃鈧弸銈嗙箾婢跺﹥鍋ユ慨濠傤煼瀹曟帒鈻庨幋鐘靛床婵犵數鍋橀崠鐘诲川椤旂厧绨ラ梻浣虹《閸撴繄绮欓幋锕€鍙婇柕澶涚細缁诲棝鏌曢崼婵囧櫤濠殿垰銈搁弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡樺窛闁伙絽銈稿娲川婵炴碍鍨块獮鎰板礃瀹割喗缍庨梺鎯х箺椤宕楀⿰鍫熺厱婵炴垵宕弸娑欑箾閹冲嘲鎳愮壕钘壝归敐鍛儓閺嶏繝姊洪幖鐐插婵炵》绻濋悰顕€宕橀妸銏$€婚梺褰掑亰閸犳岸鎯侀崼銉︹拺闁告稑锕ユ径鍕煕閹惧鎳囩€殿喗鎮傞獮瀣攽閸愨晜鏉搁梻浣虹帛鏋い鏇熺矊椤斿繘濡烽埡鍌氣偓鍨叏濡厧甯跺褍鐡ㄩ妵鍕閳ュ啿鎽甸梺鍝勮嫰濡顢樻總绋垮耿婵炲棗绻愮粻鐐烘⒒閸屾瑧鍔嶉柡瀣偢瀵彃鈽夐姀鐘垫焾婵炴潙鍚嬪ḿ娆撴偂閳ь剟姊洪崫鍕偍闁搞劍妞介幃锟犲礃椤旇В鎷洪梺鍓茬厛閸n噣宕曡箛鏇犵<婵°倓绀佸ù顔戒繆椤愶紕鍔嶇€垫澘瀚伴獮鍥敇閻樻彃姹插┑鐘垫暩婵炩偓婵炰匠鍏炬稑鈻庨幘鎶芥7濠电偛妯婃禍婵嬫偂閺囥垺鐓熼柡鍌涘閹牆霉閻樿鎲鹃柡灞糕偓宕囨殕闁逞屽墴瀹曚即寮介婧惧亾娴g硶妲堟慨妤€妫欓崓鐢告⒑閸涘⿴娈橀柛瀣姍瀹曪絽煤椤忓應鎷绘繛杈剧到閹诧繝骞嗛崼銉︾厽妞ゆ挾鍎愬Σ铏光偓鍨緲閿曨亜鐣烽幇鐗堝亜閺夌偞澹嗛懗鍝勨攽閻樺灚鏆╅柛瀣█楠炴捇顢旈崱娆戭槸闂侀€炲苯澧紒缁樼洴瀹曨亪宕橀鍠版粓姊虹拠鈥虫灀闁告挻绻傞銉╁礋椤栨氨鐤€濡炪倖鎸鹃崑鎰板磻閹剧粯鍋ㄩ柛娑橈工娴狀厼鈹戦悙鍙夘棞缂佺粯鍔欓、鏃堫敂閸℃瑧锛滈梺閫炲苯澧寸€规洘锕㈤、鏃堝幢濞嗘瑧搴婂┑锛勫亼閸婃牕螞娓氣偓瀹曟垿骞囬悧鍫濃偓鍧楁煙闂傚鍔嶉柣鎾存礋閺屽秹鎮烽幍顔昏檸闂佸憡姊圭划搴ㄥ焵椤掆偓閻忔艾顭垮Ο灏栧亾濮橆偄宓嗛柣娑卞櫍瀹曞爼顢楁径瀣珜濠电姰鍨煎▔娑㈩敄閸モ晝鐭撻梺顒€绉甸埛鎺楁煕鐏炲墽鎳嗛柛蹇撶焸閺屾稓鈧絻鍔屾慨鍌溾偓瑙勬礃濞茬喖寮婚崱妤婂悑闁告侗鍘兼禍鍫曟⒒娴e憡鎯堢紒瀣╃窔瀹曘垽鎳栭埡鍐х瑝闂佹寧绻傞ˇ浼村煕閹达附鐓曟い顓熷灥濞呮﹢鏌涙惔鈩冩崳缂佽鲸甯為幏鐘诲矗婢舵ɑ锛嗛梻浣告惈閻绱炴笟鈧悰顕€宕堕鈧粈鍌炴煕濠靛嫬鍔ゆ繛澶婃健濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼顢涢悙瀵稿幗濠德板€曢崯顐﹀煝閸噥娈介柣鎰絻閺嗐垺銇勯敂鐣屽弨闁硅棄鐖煎浠嬵敇閻斿搫骞堥梻浣筋潐濠㈡﹢宕ラ埀顒傜磼閵娿倗鐭欓柡宀嬬秮楠炴ḿ鈧稒锚绾惧啿鈹戦纭锋敾婵$偠妫勯悾鐑芥倻缁涘鏅i梺缁樺姈濠㈡﹢藟濮樿埖鈷掑ù锝堫潐閵囩喎霉濠婂嫮鐭岀紒杈╁仦缁绘繈宕惰濡差剟姊洪柅鐐茶嫰婢ь垶鏌曢崶褍顏鐐村浮瀹曞崬顪冮幆褜妫滈梻鍌氬€烽懗鍫曘€佹繝鍌楁瀺闁哄洢鍨洪弲婵嬫煏韫囧鈧鐣垫笟鈧弻娑㈠箛閳轰礁唯闂佸壊鍋掓禍顏堝蓟濞戙埄鏁冮柕鍫濇噺閻庤鈹戦悙鑼ⅱ闁哥姵鐗曢~蹇撁洪鍜佹濠电偞鍨兼ご姝屽€撮梻鍌欒兌鏋紒銊ャ偢瀹曪繝宕橀懠顒佹闂佺粯枪椤曆囧礃閳ь剟鎮峰⿰鍐炬█鐎殿喓鍔嶇粋鎺斺偓锝庡亞閸樹粙姊鸿ぐ鎺戜喊闁搞劋鍗抽幃锟犲箛椤旇棄鏋戦梺纭呮硾閿曘倝骞婇幇顔碱棜濠靛倸鎲¢ˉ濠冦亜閹伴潧浜滄鐐达耿閺岋綁顢橀悢鐑樺櫗濡炪們鍔婇崕鐢稿箖濞嗘挸绠规い鎾跺枔閺嗐儲淇婇妶鍡╂濞存粍鐟╁畷锟犲礃閼碱剚娈炬繝闈涘€搁幉锟犲磻閸曨垱鐓曟繛鎴烇公閸旂喓鎲搁懜顒€濮傛慨濠呮閹风娀寮婚妷顔瑰亾濡ゅ啰纾奸柣妯垮皺鏁堥悗瑙勬礃濞茬喎鐣烽敓鐘冲€剁紓浣股戦妵婵嗏攽閳╁啰鎽冩い锕€寮堕妵鍕Ψ閿曗偓閸濇椽鏌″畝瀣М妤犵偞锕㈠畷姗€鎳犻浣囩偤姊绘担铏瑰笡闁哄被鍔岃灋婵犻潧顑呯粻鏍喐閻楀牆绗氶柟顖滃仱閺岋綁鎮㈢粙娆炬濠电偛鐗勯崐婵嗩潖濞差亜宸濆┑鐘插暊閹峰姊洪崫銉バ㈤梺甯到閿曘垺绗熼埀顒€顫忛搹鍦<婵鐗呯欢鐢告⒑閸濄儱校闁绘濞€楠炲啫顫滈埀顒€鐣烽敐鍡楃窞濠㈣泛鐬奸悾鐐繆閻愵亜鈧牠宕濊濡叉劙寮撮姀鐘殿槷閻庡箍鍎卞ú鐘诲磻閹捐鍨傛い鎰剁悼閸戯繝鏌f惔銏犲毈闁革綇缍佸畷娲焵椤掍降浜滈柟鐑樺煀閸旂喓绱掓径灞炬毈闁哄本鐩獮妯尖偓闈涙啞閸掓盯姊虹拠鈥崇仧缂佽埖鑹鹃悾閿嬬附缁嬭銊╂煥閺囨浜炬繛瀵稿閸樺ジ鍩為幋锔藉亹閻犲泧鍐х矗闂備礁鎽滈崰鎰珶閸℃瑥鍨濆┑鐘宠壘閽冪喖鏌曟径娑橆洭闁告ê鐏氱换娑㈠箻绾惧顥濋梺璇茬箲缁诲啴骞堥妸鈺佺<婵炴垼椴搁鏃堟⒑缂佹ê濮岄柟娲讳邯閹虫捇骞愭惔娑楃盎闂侀潧楠忕槐鏇㈠箠閸ヮ剚鐓欓柧蹇e亞婢х敻鏌涢埡瀣瘈鐎规洘甯掗オ浼村礃閵婃劦浜滈埞鎴︽偐濞堟寧娈扮紓浣介哺濞茬喎鐣烽幋锕€绠i柨鏇楀亾缁炬儳缍婇弻鈥愁吋鎼粹€崇闂佺ǹ顑呴鍡欐崲濠靛洨绡€闁稿本绮岄。铏圭磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺缁樺姇椤曨厼鈻撻妶鍡欑闁瑰鍋炵亸顓犵磼婢跺本鏆鐐茬墦婵℃悂濡锋惔锝呮灈鐎规洖缍婇、娆撳箚瑜嶇紓姘舵⒒閸屾瑨鍏岀紒顕呭灦楠炴劗鎷犵憗浣告惈楗即宕煎┑鍫濆Е婵$偑鍊栧濠氬磻閹剧粯鐓曟俊顖濆吹閻帞鈧娲橀崹鍧楃嵁濡偐纾兼俊顖滃帶鐢鏌i悢鍝ョ煁缂侇喗鎸搁悾宄扳堪閸喎浜滄俊鐐差儏鐎涒晛鈻撴ィ鍐┾拺缁绢厼鎳忚ぐ褔姊婚崟顐㈩伃鐎规洘鍔欓幃婊堟嚍閵壯冨箺闂備胶鎳撻顓熷濠靛鏁傞柛娑卞灱濞茬ǹ鈹戞幊閸婃洟骞婅箛娑樼厱闁硅揪闄勯埛鎺楁煕椤愩倕鏋嶇紒鎯伴哺娣囧﹪鎮▎蹇撴殜闁衡偓娴犲鐓冮柕澶堝妽閻濐亞鈧懓鎲$换鍕閹烘鏁婇柛鎾楀啰顐奸梻渚€娼ч悧鐐电礊娴e摜鏆︽慨妞诲亾闁糕晪绻濆畷姗€濡搁妷褜鍚嬮梻鍌氬€峰ù鍥敋瑜嶉湁闁绘垼妫勯弸渚€鏌涘☉姗堝姛濞寸姵宀稿缁樼瑹閳ь剟鍩€椤掑倸浠滈柤娲诲灡閺呭爼顢涢悙瀵稿幈闂侀潧枪閸庤櫕绂掗姀銈嗙厽闁挎繂娲ら崢鎾煙椤旂晫鐭岀紒顔炬暩閳ь剨缍嗛崑鍛枍瀹ュ棛绡€闁汇垽娼ф禒锕傛煕閵娿儱顣虫繝鈧担鍦瘈闁靛骏缍嗗ḿ鎰箾閸欏澧甸柛鈺冨仱楠炲鏁傜紒妯绘珦闂備焦妞块崣搴ㄥ磻閹烘挾顩叉繝濠傜墛閸嬧晠鏌i幋鐘垫憘闁轰礁妫濋弻娑㈠即濡や焦婢掗梺绋款儐閹瑰洤鐣烽幒妤佸€烽柡澶嬪灦閻d即姊绘担绋挎毐闁圭⒈鍋婂畷顖涘鐎涙ɑ娅栧┑鐘诧工閹虫劗澹曟禒瀣厱閻忕偛澧介幊鍛存煕閺傝法孝闁伙絾绻堥弫鎰板川椤栨瑨妾搁梺缁樻尪閸婃繈寮婚悢铏圭<闁靛繒濮甸悘宥夋⒑缂佹ɑ灏伴柣鐕傜畵婵$敻宕熼姘辩潉闂佺ǹ鏈粙鎴濃枔鐏炲墽绡€闁冲皝鍋撻柛鏇ㄥ幖瀵劑姊洪崫鍕伇闁哥姵鐗犻妴浣糕槈濡攱顫嶅┑鐐叉钃辨い銉ョ墦濮婄粯鎷呴搹骞库偓濠囨煛閸屾艾鈧灝鐣烽弴銏☆棃婵炴垶纰嶅▓楣冩⒑閸涘⿴娈橀柛濠忕秮瀵噣宕煎┑鍫濆Е婵$偑鍊栧濠氬磻閹剧粯鐓涘〒姘搐閺嬨倗绱掓潏銊﹀磳鐎规洘甯掗~婵嬵敄閽樺澹曢梺褰掓?缁€浣哄瑜版帗鐓欓梻鍌氼嚟椤︼妇鐥崜褎鍤€妞ゎ亜鍟伴埀顒婄秵娴滄繈骞戦敐澶嬬厽妞ゆ挾鍋為ˉ婊堟煏閸℃ê绗掓い顐g箞閺佹劙宕ㄩ鈧ˉ姘舵⒑鐠囧弶鍞夋い顐㈩槸鐓ゆ慨妞诲亾鐎规洘绻傞埢搴ょ疀閺囩喐顔曟俊鐐€栭崝褏绮婚幋婵囨殰闂佽崵鍠愮划宀€鎹㈠鈧獮鍐晬閸曘劌浜鹃柨婵嗛閺嬬喖鏌涚€Q冨⒉缂佺粯绻冪换婵嬪磼濞戞ɑ顏犳俊鐐€х徊浠嬪Χ閹间礁绠栧ù鐘差儛閺佸秵鎱ㄥ鍡楀箹闁哄濞€濮婅櫣鍖栭弴鐔告緬闂佺ǹ顑嗛幐鎼佲€旈崘顔嘉ч柛鈩冾殘娴煎洤鈹戦悙宸Ч婵炲弶绮庨崚鎺楁晲婢跺﹦鐫勯梺绋挎湰椤ㄥ懏绂嶉悙顒傜闁割偅绻勬禒銏ゆ煛鐎n剙鏋涢柡宀€鍠庨~銏沪閸撗冩锭闂備線鈧稓鈹掗柛鏃€鍨垮畷娲焵椤掍降浜滈柟鐑樺灥椤忣亪鏌i幘璺烘瀾缂佺粯鐩畷鍗炍旈崟顐純濠电偛鐡ㄧ划宥夊磿閹惰棄鐓橀柟杈鹃檮閸婄兘姊婚崼鐔衡槈濞寸姵锕㈠娲箰鎼淬垹顦╂繛瀛樼矋缁捇鏁愰悙鍓佺杸婵炴垶鐟﹂崕顏堟⒑闂堚晛鐦滈柛姗€绠栭弫宥呪堪閸愶絾鏂€闂佸疇妫勫Λ妤呮倶閻樺樊鐔嗙憸宥吤瑰畡鎷旓綁骞囬鐑嗗殼闁诲孩绋掕彜闁归攱妞介弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑濠㈣泛顑囬崢浠嬫⒑閺傘儲娅呴柛鐕佸灣缁牏鈧綆鍠楅悡鏇㈡煃鏉炴壆鍔嶉柛銈呮喘閺屸剝鎷呯憴鍕3闂佽桨鐒﹂幑鍥极閹剧粯鏅搁柨鐕傛嫹9闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偛澧藉ú瀛樸亜閵忊剝绀嬮柡浣瑰姍瀹曞崬鈻庡▎鎴濇灎闂傚倸鍊风欢姘跺焵椤掑倸浠滈柤娲诲灦瀹曘垽骞栨担鍦幗闂佺娅i崑娑€€呴鍕厵妤犵偛鐏濋悘鈺呮煃鐟欏嫬鐏╅柍褜鍓ㄧ紞鍡樼閻愬搫纾归柣鎰劋閸嬧剝绻濇繝鍌氭殻妞ゅ孩顨婂畷鈩冩綇閵婏絼绨婚梺鍦劋閸ㄧ敻顢旈鍫熺厓闂佸灝顑呴悘鎾煛鐏炲墽鈽夐柍瑙勫灴瀹曞崬螖婵犱胶纾婚梻鍌欑閻ゅ洭顢氳钘濋柣銏⑶归拑鐔哥箾閹存瑥鐏╃紒鐘差煼閹妫冨☉娆忔殘闂侀潻缍嗛崰姘辨閹惧瓨濯撮柟瀛樺笒閹牓姊虹粙娆惧剱闁烩晩鍨堕弫鎰版倷濞村鐗氶梺鍓插亝缁诲嫰宕濋敃鈧—鍐Χ閸℃娼戦梺绋款儐閹稿濡甸崟顖f晝闁靛繈鍨婚濠勭磽娴d粙鍝洪悽顖涘笩閻忔帡姊洪崗鑲┿偞闁哄懏绮撳畷闈涚暆閸曨兘鎷绘繛鎾村焹閸嬫捇鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾存礋閺屽秶鎲撮崟顐㈠Б婵炲瓨绮庨崑鎾寸┍婵犲洦鍊锋い蹇撳閸嬫捇寮介锝嗘闂佸湱鍎ら〃鍛瑜版帗鐓曟繛鎴烇公閸旂喐銇勯埡鍛暠缂佺粯绻冪换婵嬪磼濠婂喚鏉搁梻浣虹帛閹哥偓鎱ㄩ悽鍨床婵炴垯鍨洪崵鎴澪涢悧鍫㈢畵婵炲牜鍙冨铏规嫚閺屻儳宕紓浣虹帛缁诲牆顕f繝姘櫢闁绘ɑ褰冪粣娑橆渻閵堝棙灏靛┑顔芥尦閹繝鎮㈡總澶嬪瘜闂侀潧鐗嗛崯顐︽倶椤忓棌鍋撻崗澶婁壕闂佸綊妫跨粈渚€寮伴妷鈺傜厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灠缁犳娊鏌熺€涙ḿ绠ュù鐘层偢濮婃椽鎸婃径濠冩闂佸摜濮甸崝妤呭箲閵忕姭妲堥柕蹇曞Х椤撴椽姊虹紒妯哄闁诲繑宀稿畷鎶筋敊閸撗咃紳婵炶揪绲藉鍫曨敁閸℃稒鐓曢悗锝庡亝瀹曞本鎱ㄦ繝鍕笡闁瑰嘲鎳樺畷銊︾節閸屾稒鐣奸梻鍌欑閹诧繝寮婚妸褎宕叉俊顖欒閸ゆ洟鏌熺紒妯哄潑婵℃彃鐗撻弻鏇$疀閺囩倫銉╂煕閺冩挾鐣辨い顏勫暣婵″爼宕卞Δ鍐啰缂傚倷璁查崑鎾趁归敐鍫綈闁告瑥绻掗埀顒€绠嶉崕閬嵥囨导瀛樺亗婵炴垶鍩冮崑鎾诲礂婢跺﹣澹曢梻渚€鈧偛鑻晶瀵糕偓瑙勬磻閸楀啿顕f禒瀣垫晣婵犙勫劤娴滄儳霉閿濆洨銆婃俊鎻掔墛閹便劌螖閳ь剙螞濞嗘挸纾介梻鍫熶緱濞撳鏌曢崼婵囶棞缂佹鍊块弻锝夊箳閻愮數鏆ゅ銈冨灪閻熲晠鐛幒妤€绠i柡鍐e亾闁哄倵鍋撻梻鍌欒兌缁垵鎽梺鍛婃尰瀹€绋跨暦椤栨繄鐤€婵炴垶鐟ч崢閬嶆⒑缂佹◤顏堝疮閸啔褰掝敊闁款垰浜鹃悷娆忓缁€鍐煕閵娿儲鍋ラ柣娑卞枛铻i柤娴嬫櫇閿涙粌鈹戦埥鍡楃仸闁衡偓鏉堚斁鍋撳顑惧仮婵﹤顭峰畷鎺戭潩椤戣棄浜鹃柟闂寸劍閸嬪鈹戦悩鎻掝伀闁活厽鐟╅弻鐔煎箚瑜忛幗鐘崇箾閸涱垰鈻堥柡宀嬬節瀹曞爼濡烽妷褌鐥梻浣虹帛閹稿鎮烽埡鍛摕鐟滄垹绮诲☉銏℃櫜闁告侗鍓涢惄搴♀攽閻樻剚鍟忛柛鐘崇墱缁棁銇愰幒鎴狀唶婵犵數濮撮崐鐢稿绩娴犲鐓曢柕澶涚到閸旀瑧绱掗妸銉吋婵﹨娅i幉鎾礋椤掑倸鍤掗梻浣虹帛閻楁粓宕㈣閳ユ牗绻濋崶鑸垫櫔闂侀€炲苯澧寸€殿喛顕ч鍏煎緞鐎n剙寮抽梺璇插嚱缂嶅棙绂嶉悙瀵割浄闁兼祴鏅濈壕钘壝归敐鍕煓闁告繃妞介幃浠嬵敍閵堝洨鐦堥梺闈涙缁€渚€鍩ユ径濞㈢喖鏌ㄧ€e灚缍屽┑鐘垫暩閸嬫稑螞濞嗘挸鏄ラ柛顐f儕閿濆鏁嗛柍褜鍓熼崺鐐哄箣閿旇棄浜瑰銈嗗姧缁蹭粙顢撹箛娑欌拺闁告稑锕ゆ慨鍌炴煕閺傚灝顒㈡い銊e劦瀹曞爼鍩¢崘顏庣闯濠电偠鎻紞鈧繛鍜冪悼閺侇喖鈽夐姀锛勫幗闂佸啿鎼敃銈夋倶閿旂瓔娈介柣鎰嚋闊剟鏌熼瑙勬珔閻撱倗绱撴担鑲℃垵鈻嶅畝鍕拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻悗鐢电《閸嬫挸鈻撻崹顔界亾闁哄浜弻宥夋寠婢舵ɑ鈻堟繝娈垮枓閸嬫捇姊洪幐搴b槈閻庢凹鍓熼悰顔碱吋閸℃洜绠氶梺缁樺姦娴滄粓鍩€椤掍胶澧悡銈夋煛瀹ュ海浠滄繛鎴炃氬Σ鍫熸叏濮楀棗澧悮锝夋⒒娓氣偓閳ь剛鍋涢懟顖涙櫠鐎涙ɑ鍙忓┑鐘叉噺椤忕娀鏌涢弽銊у⒌鐎殿喗鎸抽幃銏ゅ传閵夈儱澧ょ紓鍌氬€搁崐鐑芥嚄閸撲礁鍨濇い鏍ㄧ矋瀹曟煡鏌涘畝鈧崑鐐哄磻閳哄懏鐓熼柟杈剧稻椤ュ骞嗛悢鍏尖拺闁告劕寮堕幆鍫ユ煥閺囨ê鍔︾€殿喗鐓¢崺锟犲川椤旀儳骞楅梻浣虹帛閺屻劑骞楀⿰鍫濈疇闁告劦鍠楅崐鍨叏濡厧甯跺褍鐡ㄩ妵鍕閳╁喚姊块梺闈涙处閸旀瑩鐛幒妤€绠绘い鏍ㄧ☉椤忔椽姊婚崒娆掑厡閺嬵亪鏌¢崼顐㈠⒋闁诡喚鏌夐ˇ褰掓寠濠靛鐓ラ柡鍥╁仜閳ь剙缍婇幃鈥斥枎閹炬潙浠梺鎼炲劚濞层倝骞婇幇鐗堝剨闁割偅鎯婇弮鍫熷亹闂傚牊绋愬▽顏堟⒑閸涘﹥鈷愰柣鐔村劦閹箖鎮滈挊澶岊攨闂佺粯鍔忛弲婊堬綖瀹ュ應鏀介柍钘夋閻忥綁鏌嶅畡鎵閸楀崬霉閻撳海鎽犻柣鎾跺枛閺岋綁寮幐搴㈠枑闂佹椿鍘奸敃锔炬閹烘挸绶炵€光偓婵犲啯鏆炴繝纰樻閸嬩線宕硅ぐ鎺戠厴闁硅揪瀵岄弫濠囨偡濞嗘劕绗掔紓宥咃工閻e嘲煤椤忓嫬鍞ㄥ銈嗘尵閸嬬喖宕㈤柆宥嗏拺闁荤喖鍋婇崵鐔兼煕鐎n剙浠辩€规洩缍€缁犳稑鈽夊▎鎴濆箺闂備胶绮弻銊╁箹椤愶负鈧倹绺介崨濠勫幍闂佺ǹ绻掗崢褎鎱ㄥ澶嬬厸鐎光偓鐎n剛袦濡ょ姷鍋炵敮锟犵嵁濡懙搴敄閼愁垱顎楅梻鍌氬€风粈渚€骞栭锕€瀚夋い鎺戝閸庡孩銇勯弽銊р棩缂佽妫濋弻鐔兼⒒鐎靛壊妲梺缁樻尰閻╊垶寮诲鍫闂佸憡鎸鹃崰鏍偘椤旇棄绶為柟閭﹀幖閳ь剟鏀遍妵鍕箳閹搭厽效濡炪倖姊瑰Λ鍐潖閾忓湱纾兼俊顖氭惈椤秴鈹戦悙鎻掓倯闁荤噦绠撻獮鍫ュΩ閵夘喖鎮戞繝銏f硾椤戝洭宕㈤悽鍛娾拺缂備焦蓱鐏忣厽绻涢幘顕呮缂侇喗妫冮幃婊兾熼梹鎰泿闂備線娼х换鍡涘礈濠靛牏鐭嗛悗锝庡枟閻撴稑霉閿濆懏鎲搁弫鍫ユ倵鐟欏嫭绀堥柛鐘崇墵閵嗕礁顫滈埀顒勫箖閳哄懏鎯炴い鎰╁€栬闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟偡濠婂啰绠婚柛鈹惧亾濡炪倖甯婇懗鍫曞煝閹剧粯鐓涢柛娑卞枤缁犳﹢鏌涢幒鎾崇瑨闁宠閰i獮妯虹暦閸ヨ泛鏁介梻鍌欑閹碱偄煤閵娾晛绐楅柟鐗堟緲闂傤垶姊洪崹顕呭剳缂佲檧鍋撻梻浣圭湽閸ㄨ棄岣胯閻楀孩淇婇悙顏勨偓鏍ь潖瑜版帗鍋嬮柣妯垮皺閺嗭妇鎲搁悧鍫濈瑲闁绘帟鍋愰埀顒€绠嶉崕閬嶅箠閹伴偊鏁婇柛銉墯閳锋垿鎮峰▎蹇擃仼闁告棁鍩栨穱濠囶敃閵忕媭浼€缂備緡鍠栭…宄邦嚕娴犲鏁冮柣鏃囨腹婢规洟姊洪懡銈呮瀾婵犮垺锕㈤、鏃堫敂閸曠數鍞甸梺鑽ゅ枛閸嬪﹪宕曢弮鍌楀亾濞堝灝鏋涢柟璇х節楠炲棝寮崼婢晝鎲稿鍫涗汗闁告洦鍨遍埛鎴︽煙閼测晛浠滈柛鏃€锕㈤弻娑㈠棘鐠恒剱褎顨ラ悙鍙夘棦鐎规洜鍠栭、鏇㈠焵椤掑啨浜归柟鐑樻尭娴滃綊鏌h箛鏇炰粶闁稿﹤鎲$粋鎺楊敊鐏忔牗鏂€濡炪倖姊婚妴瀣啅閵夛负浜滄い鎾跺仜濡插鏌i敐鍥у幋妤犵偞甯¢獮瀣敇閻斿嘲鍘炲┑锛勫亼閸婃牠宕归悡搴樻灃闁哄洢鍨归弸渚€鏌″搴″箺闁抽攱甯掗湁闁挎繂鐗滃ḿ鎰版煕鐎n剙鈻堥柡灞剧洴瀵剛鎹勯妸褜鍞堕梻浣哥-缁垶寮婚妸鈺佺叀濠㈣埖鍔х紞鏍ㄣ亜閺傚灝鈷旈柍绗哄€濆缁樼節鎼粹€茬盎濠电偠顕滄俊鍥╁垝濞嗘挸绠虫俊銈傚亾缂佺姵宀搁弻锝夊箛椤旂厧濡洪梺绋款儌閸撴繄鎹㈠☉銏犲耿婵°倕鍟伴鍥ь渻閵堝懐绠氶柡鍛█瀵鈽夊Ο婊呭枛閹煎綊宕烽澶堝妼閳规垿顢欑涵閿嬫暰濠碉紕鍋犲Λ鍕偩閻戣棄惟闁挎柨澧介惁鍫熺箾鏉堝墽绉繛鍜冪悼缁骞掑Δ浣叉嫽婵炶揪缍€椤宕戦悩缁樼厱闁哄倹顑欓崕鏃傗偓瑙勬穿缁绘繈鐛惔銊﹀癄濠㈣泛鐬奸弳顐︽煟閻斿摜鐭婄紒澶婄秺閺佹劙鎮欏ù瀣杸闁诲函缍嗛崑鍕枔濠靛牏纾奸柛鎾楀喚鏆柦鍐憾閹顫濋崘韫睏缂備浇椴搁幑鍥х暦閹烘垟鏋庨柟鎼幗琚﹀┑锛勫亼閸婃牠宕归悽绋跨疇閹艰揪绱曢獮鎾绘煕瑜庨〃鍡涘疾閹间焦鐓熸繛鍡楄嫰娴滈箖姊烘潪鐗堫樂闁绘帪闄勭粚杈ㄧ節閸ヮ灛褔鏌涘☉鍗炲箺婵炲牊绮撳铏圭矙濞嗘儳鍓遍梺瑙勬倐缁犳牠鐛径鎰妞ゆ棁鍋愰ˇ鏉款渻閵堝棗鍧婇柛瀣尰閵囧嫰鏁傜憴鍕彋濠殿喖锕ュ钘夌暦閵婏妇绡€闁告劑鍔嶅▓顐︽⒒娴e憡鎲稿┑顔芥尦閺屽﹪鏁愭径濠冪€梺鍛婂姦閸犳牠锝為崨瀛樼厓闁宠桨绀侀弳娆愩亜鎼淬垺灏电紒杈ㄦ尰缁楃喖宕惰娴狀厼鈹戦悙鎻掔骇闁挎洏鍨归锝夘敆閸曨偆鍔﹀銈嗗笂濡炴帞鎹㈤崱娑欑厽闁规澘鍚€缁ㄥ鏌嶈閸撴岸鎮ч悩宸殨濠电姵鑹炬儫闂佸啿鎼鍥╃矙韫囨稒鈷戦柛婵嗗瀹告繈鏌涢悩铏磳闁靛棗鎳橀弻銊р偓锝庡墰閻﹀牊绻濋悽闈浶㈤柛濠勭帛閺呰泛鈽夐姀锛勫幗闂佽鍎抽悺銊х矆鐎n喗鐓欐い鏃傜摂濞堟粓鏌℃担鐟板闁诡垱妫冮崹楣冩嚑椤掆偓閸ゎ剟姊虹拠鍙夊攭妞ゎ偄顦叅闁哄稁鍘介崕妤呮煕瀹€鈧崑娑㈡嫅閻斿吋鐓冮柕澶堝劤閿涘秹鏌¢崱妤侇棦闁哄苯绉烽¨渚€鏌涢幘璺烘瀻闁伙綁鏀辩€靛ジ寮堕幋婵嗘暏婵$偑鍊栭幐缁樼珶閺囥垹纾婚柟鎯х摠婵绱掗娑欑闁诲骸顭峰娲捶椤撶偘澹曠紓浣稿閸嬨倝宕洪敓鐘插窛妞ゆ梹鍎崇敮鎯р攽閻橆喖鐏遍柛鈺傜墵閹嫰顢涘鑲┾偓鑸点亜閺囨浜鹃梺鍝勭灱閸犳牠銆佸▎鎾村仼閻忕偞鍎冲▍姘節濞堝灝鏋涢柨鏇樺妼閳诲秹鏁愰崶顭戞綗闂佸湱鍎ら崵锕傛偄閻撳簼绱堕梺鍛婃礀閻忔氨绱炵€n喗鈷掗柛灞剧懅閸斿秹鎮楃粭娑樺幘濞差亝鏅滈柣锝呯焾濞茬ǹ顪冮妶鍛閻庢氨鍏樺畷鐢稿即閵忊€充化闂佹悶鍎滈崟銊︾亞闂備礁鎲¢懝楣冾敄閸涚补鈧妇鎹勯妸锕€纾梺缁樿壘閻°劑銆傞懖鈺冪=濞达絿枪閼稿綊鏌i弽顐㈠付妞ゎ偄绻愮叅妞ゅ繐瀚粣娑欑節閻㈤潧孝闁哥噥鍋婅棟闁冲搫鎳忛埛鎴犵磼鐎n偒鍎ラ柛搴$箻閺岀喖宕橀弻銉ュ及闂佺硶鏂傞崹浠嬬嵁濡吋瀚氶柤鑹板煐閹蹭即姊绘笟鈧ḿ褔篓閳ь剟鏌ら棃娑氱Ш妤犵偛绻愮叅妞ゅ繐鎳愰崢浠嬫⒑缂佹◤顏勵嚕閸撲胶鐭嗙€光偓閸曨剛鍘撻悷婊勭矒瀹曟粌鈻庨幋婵愭濡炪倖鎸鹃崰搴敋闁秵鐓曟い鎰Т閻忣喚鐥崣銉х煓闁哄本绋撴禒锕傛倷椤掑倹顓婚柣蹇撶箰缁绘帞妲愰幘瀛樺闁圭粯甯婃竟鏇炩攽閻愬瓨灏伴柛鈺佸暣瀹曟垿骞樼紒妯煎弳濠电娀娼ч悧鍡樼閳哄啰纾奸柣妯虹-濞插瓨顨ラ悙鐡锋垿骞忛崨顖涘枂闁告洍鏅欓搹搴繆閻愵亜鈧垿宕归崫鍕庢盯宕橀妸褎娈鹃梺缁樻⒒閳峰牓寮崶鈺傚枑鐎广儱顦弸浣烘喐閻楀牆绗氶柍閿嬪笒闇夐柨婵嗗椤掔喖鏌¢埀顒勫级濞嗗墽鍞甸梺鑽ゅ枑婢瑰棙鏅堕敂绛嬫闁绘劕鐡ㄥ畷灞俱亜閵忊剝顥堢€规洖宕灃闁告劦浜為幗宀勬⒒閸屾瑧顦﹂柟璇х磿閹广垽宕掑┃鎯т壕婵﹫绲芥禍楣冩⒒娴g懓顕滅紒璇插€胯棟妞ゆ牜鍋為悡渚€鏌涢妷顔煎闁绘挸绻愰…鍧楁嚋閻㈡鐏遍梺鍛婅壘閸婂潡寮婚悢鍏肩叆閻庯綆鍋佹禒銏犫攽椤旂》榫氭繛鍜冪悼閸掓帒鈻庨幋鐐茬/闂侀潧臎鐏炶姤鏆梻鍌氬€风粈渚€骞夐敓鐘冲殞濡わ絽鍠氶弫鍕熆鐠轰警鍎庣紒璇叉閺岋綁濮€閻樺啿鏆堥梺绋款儏鐎氫即寮诲☉婊呯杸婵﹩鍏涘Ч妤呮⒑閸涘⿵鑰垮ù婊嗘硾椤繐煤椤忓拋妫冨┑鐐寸暘閸婃牠鎯勯姘辨殾闁绘梻鈷堥弫鍡椕归敐鍥у妺妞ゎ偅绮岄埞鎴︽偐閸偅姣勬繝娈垮枤閸忔﹢濡撮崒鐑嗘晩闁绘劦鍓﹀ḿ鐔兼⒑閸濆嫭鍌ㄩ柛銊ョ秺瀵憡鎷呯化鏇熸杸闂佺粯枪濞呮洟鎯冮幋鐘亾鐟欏嫭灏紒鑸靛哺瀵鈽夐姀鐘栥劍銇勯弮鍌氬付妞ゎ偀鏅濈槐鎾存媴閸濆嫮褰欓梺鎼炲劘閸斿本绂掗娑氱闁圭偓娼欓崵顒勬煕閵婏箑鈻曠€规洏鍨归オ浼村川椤栨粣绱查梺鍝勵槸閻楀嫰宕濇惔銊ョ煑闁逞屽墮閳规垿顢欑涵宄板缂備緡鍣崹鍫曠嵁韫囨稑宸濋悗娑櫳戦崕顏堟⒑閼姐倕鏋戝鐟版椤㈡洘绺介崨濞炬嫽婵炶揪绲介幉锟犲疮閻愬瓨鍙忓┑鐘插閸も偓闂佺粯绮岄…鐑界嵁閹邦厽鍎熼柨婵嗗闁裤倗绱撻崒娆戭槮妞ゆ垵鎳愰懞閬嶆焼瀹ュ懎鍤戦柟鍏肩暘閸斿秹鎮″▎鎾寸厵妞ゆ牕妫楅幉娑㈠閿涘嫮顔曢悗鐟板閸犳牕顕i鈧弻鏇㈠幢閺囩姷鐛㈤悗娈垮枟閹歌櫕鎱ㄩ埀顒勬煃閳轰礁鏆為柣婵囨礋濮婃椽鎳¢妶鍛€鹃梺鑽ゅ枙娴滎剙顕ユ繝鍥х鐟滃宕戦幘鎰佹僵妞ゆ垶鍎虫禒顔尖攽椤旂》鍔熺紒顕呭灦楠炲繘宕ㄩ弶鎴濈獩婵犵數濮撮崐鐟扳枔濡偐纾介柛灞剧懄缁佺増銇勯弴鍡楁搐绾剧懓鈹戦悩瀹犲闁绘帒鐏氶妵鍕箳瀹ュ棛銈版繝銏n潐閿曘垽寮诲☉銏狀潊闁炽儱纾粊鐑芥倵鐟欏嫭灏悗姘嵆瀵鏁愭径瀣簻闂佸憡绺块崕鏌ュ闯瑜旈弻锝嗘償閵忕姵鎯涢梺鍛婃煥缁夊墎鍒掔€n亶鍚嬮柛娑变簻閻楁岸姊洪崜鎻掍簽闁哥姵鎹囧畷銏ゆ偨閸涘﹦鍘介柟鑹版彧缁查箖寮抽埡鍛嚑妞ゅ繐濞婅ぐ鎺撳亹婵炲棗绻戞径鍕煟閹惧鎳囬柡灞剧洴楠炲洭顢楅埀顒傜棯瑜忛埀顒傛嚀閹诧紕鎹㈤崼銉ヨ摕鐎广儱鐗滃銊╂⒑閸涘﹥灏扮紒璇茬墦閺佹劙鎮欓弶鎴犵獮婵犵數鍋炵敮鎺楀箹椤愩儳浜介梻浣呵圭换鎺楀储瑜庨幆鏃€绻濋崶銊㈡嫼闂佸憡鎸昏ぐ鍐╃濠靛牏纾奸悹鍥ㄥ絻椤忣厾鈧鍠楁繛濠囧极閸愵喖纾兼繛鎴炶壘鐢儳鈹戦悩鍨毄闁稿⿴鍨堕崺鈧い鎺戝绾惧鏌熼崜褏甯涢柣鎾存礋閹鏁愭惔鈥茬凹闁诲繐娴氶崣鍐蓟瀹ュ瀵犲鑸瞪戠瑧闂備礁鐤囬褍霉閻戣棄鐒垫い鎺戯功缁夌敻鏌涢幘瀵搞€掔紒顕嗙到铻栭柛娑卞枓閹风粯绻涙潏鍓у埌闁硅绻濆畷顖炴倷閻戞ê鐝旈梻渚囧墮缁夌敻鎮″▎鎰╀簻闁哄啫鍊哥敮鍫曟煃瑜滈崜娆忈缚閿熺姵鍋樻い鏇楀亾鐎规洘锕㈡俊鍛婃償閵忊槅妫冮悗瑙勬礃閿曘垽宕洪埄鍐╁闁革富鍘搁崑鎾活敇閵忊檧鎷绘繛杈剧到閹诧繝宕悙瀵哥閻犲泧鍛殼閻庤娲樼划宀勫煝鎼淬劌绠婚柟纰卞幗椤ュ鏌f惔锛勭暛闁稿酣浜惰棟濞村吋娼欓悡鏇㈡煙鏉堥箖妾柣鎾存礃缁绘盯骞嬮悜鍥у彆闂佸憡姊婚崰鎾舵閹烘鍋愰柧蹇e亜绾惧啿鈹戦纭烽練婵炲拑缍佸顐︻敋閳ь剟銆佸▎鎾崇畾鐟滃秹鎮¢崒鐐粹拻濞达綁顥撴稉鑼磼閹绘帗鍋ョ€规洘顨呴~婊堝焵椤掑嫭鍋樻い鏇楀亾鐎规洖鐖奸、妤呭焵椤掑倻妫憸鏃堝箖瑜版帒鐐婇柍杞拌兌瑜版瑩姊洪崨濠傚濠⒀傜矙瀹曨剟鎮介崨濠勫幗闂佺粯岣块崕銈夘敂閻樼粯鍊堕煫鍥ь儏婵倻鈧娲樼换鍫ュ箖閵忋倕绀傞柤娴嬫櫅楠炴劙姊虹拠鑼闁稿鍠栧鏌ヮ敃閿濆棙鐝烽梺鎸庢婵倝宕h箛鎾斀闁绘ɑ褰冮弳鐐烘煏閸ャ劎绠橀柍褜鍓濋~澶娒哄Ο鐓庡灊闁规崘宕靛畵渚€鏌熼幑鎰靛殭缂佺姴纾埀顒€绠嶉崕鍗灻洪敂閿亾閸偆鐭掓慨濠傤煼瀹曟帒鈻庨幒鎴濆腐闂佸搫顑愭禍顏堝箖濡も偓閳藉骞掗幘瀵稿綃闂備浇顕栭崳顖滄崲濠靛鏋侀柟鍓х帛閸嬫劙鏌ょ喊鍗炲闁哄棭鍋婂缁樻媴閼恒儳銆婇梺鍝ュУ閹稿骞堥妸鈺佺妞ゆ棁鍋愰、鍛存⒑鐟欏嫬鍔跺┑顔哄€濋幃锟犳偄闂€鎰畾濡炪倖鐗楃喊宥夊箚閸儲鐓涢柛鈩冪◥閹查箖鏌″畝瀣?闁逞屽墾缂嶅棝宕戦崟顖涘€堕柟缁㈠枟閻撴稓鈧厜鍋撻柍褜鍓熷畷浼村冀椤撶偟鐤囧┑鐘绘涧椤戝棝宕戠€n喗鐓曟い鎰剁悼缁犳牠姊哄▎鎯у箻缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐柣鐔哥矋濠㈡﹢宕銏㈠箵闁秆勵殕閺呮悂鏌eΟ鍨毢闁伙綁绠栭弻锝堢疀閺囩偘鍝楅悶姘懇閺岋紕鈧綆浜崣鍕煛瀹€鈧崰鏍嵁閹达箑绠涙い鎾跺О閳ь剚鍔欓幃宄扳堪閸曨剛鍑¢柣搴㈢濠㈡﹢锝炶箛鎾佹椽顢旈崟顓у晣闂備胶绮崝鏍亹閸愨晜鍙忕€光偓閸曨兘鎷洪梺鍛婄☉閿曘儵鎮¢妷鈺傗拺閻㈩垼鍠氱粔顔锯偓瑙勬礃濡炶姤淇婇悜鑺ユ櫇闁逞屽墰濞嗐垽鎮欓悜妯煎幍闂備緡鍙忕粻鎴︾嵁濮椻偓閺屾稑螣閸︻厾鐓撳┑顔硷攻濡炶棄鐣烽悜绛嬫晣闁绘劖褰冮‖鍡涙⒒娴h鍋犻柛鏂跨箻閿濈偞寰勫畝鈧惌澶愭煙閻戞ê鐏嶆俊鎻掔墦閺屾洝绠涢妷褏锛熼梺鍛婏供娴滎亜顫忓ú顏勭闁绘劖褰冩俊褔姊洪崨濠傚鐟滄壆鍋熷Σ鎰板籍閳ь剚绌辨繝鍥ч柛銉仢閵夆晜鐓曢悗锝庡亞濞插瓨銇勯姀锛勫鐎垫澘瀚伴獮鍥敆娴h 鍋撻鍕拺闁革富鍘奸。鍏肩節閵忊埗顏堫敊韫囨挴鏀介柛銉e劙缁ㄥ姊虹憴鍕婵炲鐩崺鈧い鎺戭槸娴滄澘鈹戦敍鍕幋闁糕晪绻濆畷鎺懳旀担鍓蹭紲濠电姷鏁搁崑鐘诲箵椤忓棗绶ゅù鐘差儏缁犵姵绻涢崱妯诲碍闁圭鍩栭妵鍕箻鐠虹儤鐎婚柟鍏兼綑閿曨亜顫忓ú顏勬嵍妞ゆ挾鍎愰弳顓炩攽閻橆喖鐏畝锝呮健閸┾偓妞ゆ帊娴囨竟妯汇亜閿斿灝宓嗗┑锛勬暬瀹曠喖顢涘槌栧敽闂備胶鎳撻悺銊х紦妤e啫纾婚柟鍓х帛閸嬶繝鏌熷▓鍨灍婵炲牓绠栧娲川婵犲嫭鍣у銈忕畳娴滎剛鍒掔紒妯稿亝闁告劏鏅濋崢鐢告煟鎼淬垻鈯曞畝锝呮健楠炲﹪宕橀鐣屽幗闂婎偄娲ら敃銉モ枍閸ヮ剚鐓冪憸婊堝礈濞戙垹绠犻柟鎹愵嚙缁犵喖鏌ㄥ☉妯侯仾鐎规洘鐓¢弻娑㈠箛闂堟稒鐏堟俊妤€鎳樺娲川婵犲啫顦╅梺鎼炲妽婢瑰棛鍒掔拠娴嬫闁靛骏绱曢崢鎾绘煛婢跺苯浠﹀┑顖欑矙瀹曟浠﹂惌顐㈢秺閹晠妫冨☉妯圭帛婵$偑鍊ゆ禍婊堝疮鐎涙ü绻嗛柤绋跨仛閸庣喖鏌嶉妷锕€澧繛鑲╃帛娣囧﹪鎮欓鍕ㄥ亾瑜忕划濠氬箻缂堝懐绱伴悷婊勬閺佹劙鎮欓崜浣烘澑濠电偞鍨堕悷锕傚磿椤忓牊鐓熼柣鏂挎憸閹冲啴鎮楀鐓庡⒋闁诡喖鐏氱€佃偐鈧稒菤閹锋椽姊虹紒妯哄婵☆偄瀚板畷婵嗩潩鏉堚晜锛忕紓鍌欓檷閸ㄥ綊鐛Δ鍐<闁稿本绋戝ù顔姐亜閵忊槄鑰块柟顔界懇閸╋繝宕掑☉娆愮帆闂傚倸鍊风粈渚€鎮块崶顬盯宕熼瀣☉铻栧ù锝勮濞茬ǹ鈹戦悩璇у伐闁绘锕幃锟犲即閵忥紕鍘介梺鍝勫€圭€笛囧疮閻愮數纾界€广儱妫楅悘锕傛煏閸パ冾伃鐎殿喗鎸抽、鏃堝幢濞呯儤绮岄—鍐Χ閸愩劎浠惧┑鐐跺皺閸犳牕顕i锕€绀冩い鏃囧亹閸旓箑顪冮妶鍡楃瑨闁稿﹤顭烽幆宀勫幢濞戞瑧鍘遍梺閫涘嵆濞佳囧几閻斿吋鐓熼柟鎯у暱閺嗭綁鏌$仦鍓р槈闁宠鍨垮畷鍗炍旀繝浣瑰亝闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐寸厵妞ゆ梻鍘ч埀顒€娼℃俊瀛樼瑹閳ь剟鐛Ο鍏煎珰闁肩⒈鍓﹂崯瀣⒒娴e憡鍟為柟鍝ュ厴閹虫宕奸弴鐔告珫濠电娀娼уú銊х不妤e啫绾ч柛顐g箓閳锋棃鏌涢幒鎾寸凡妞ゎ厼娼¢幃椋庢暜椤斿灝鎯堥柣搴ゎ潐濞叉ê煤閻旇偐宓佹俊顖氱毞閸嬫捇妫冨☉娆愬枑濡炪倖姊瑰ú妯兼崲濠靛顫呴柨婵嗘閵嗘劕顪冮妶鍡楃仴婵☆偅绋撻崚鎺楀醇閵夈儳顦ㄥ銈呯箰濡盯鏁嶅⿰鍫熲拺缂佸瀵у﹢鎵磼鐎n偄鐏ラ棁澶嬨亜閺傛娼熷ù婊勭矒閺屾洝绠涙繝鍐炬綈闂佸吋婢橀悘婵嬪煘閹达富鏁婇柣鐔碱暒婢规洟姊婚崒娆戝妽濠电偛锕顐︻敋閳ь剙鐣烽幋锕€绠荤紓浣贯缚閸樺灚淇婇悙宸剰婵炴挳顥撻弫顔尖槈濮樿京锛滅紓鍌欑劍宀e潡鍩婇弴鐔虹闁绘挸娴风粻鑽も偓瑙勬礃缁繘藝閺屻儲鐓曢柍杞拌兌閻掑憡鎱ㄦ繝鍛仩婵炴垹鏁诲畷顏呮媴閸涘﹦鏉虹紓鍌氬€烽懗鍓佸垝椤栨粍宕查柛宀€鍋為崑鈺呮煟閹寸姷鎽傞柡浣哥Ч閺岋綁骞囬鐔虹▏闂侀€炲苯澧伴柛蹇旓耿瀵鏁愭径濠勵吅闂佺粯鍔戦崝搴f娴煎瓨鈷戦柛娑樷姇閼测晛鍨濇繛鍡楁禋濞兼牗绻涘顔荤凹妞ゃ儱鐗婄换娑㈠箣閻愯尙鐟ㄩ梺璇″枛缁夌數鎹㈠┑鍫濇瀳婵☆垰鍢叉禍楣冩煣韫囷絽浜滈柡瀣█濮婅櫣鎷犻垾宕囦哗闂佹椿鍓欓妶鎼佸春閳ь剚銇勯幒鎴姛缂佸鏁婚弻娑㈡偐閹颁焦鐤侀梺璇″枓閳ь剚鏋奸弸搴ㄦ煙鐎涙ɑ鐓ュù婊堢畺閺岋綁鎮㈤崨濠勫嚒濡炪倕娴氶崑鍕€﹂懗顖fЪ濡炪們鍔岄敃銈夋偩閻戣姤鍋ㄧ紒瀣硶閸婄偛顪冮妶搴″箺闁搞劌鐖奸、娆撳籍閸啿鎷虹紓鍌欑劍閿氬┑顔兼喘閺岋絾骞婇柛鏂跨焸閹偓顦版惔婵囧媰缂傚倷闄嶉崹娲敊閺冨牊鈷戠紓浣姑慨鍫熺箾閸忚偐鎳呯紒顕呭弮楠炴帡骞橀崣妯肩泿闂備胶鎳撴晶浠嬪磻閵娾晛纾婚柕蹇婃噰閸嬫挾鎲撮崟顒€顦╂繛瀛樼矋缁诲牓鐛箛娑樺窛妞ゆ牗绋戦悵浼存⒑閺傘儲娅呴柛鐘崇〒濡叉劙寮介妸褏鐦堥梺姹囧灲濞佳冩毄闂備浇妗ㄧ粈渚€骞夐敓鐘茬疄闁靛ň鏅滈崐濠氭煢濡警妲归柣搴墴濮婇缚銇愰幒鎿勭吹缂備讲鍋撳ù锝呮惈椤ユ艾鈹戦悩宕囶暡闁绘挾鍠愭穱濠囶敍濞戝崬鍔岄梺鎼炲€栭悷褏妲愰幒妤佸亹闁肩⒈鍏涚划鐢告⒑闂堟稒鎼愰悗姘煎灣缁鈽夐姀鐘殿啋闂佸湱鈷堥崢浠嬫晸閵壯呯=闁稿本鐟ㄩ澶愭煕鐎n偅灏柍瑙勫灴閹晠骞撻幒鍡椾壕闁割偅娲栭悞鍨亜閹哄秶顦︾紒妤佸笚閵囧嫰顢曢敐鍥╃杽闂佽桨鐒﹂崝娆忕暦閵娾晩鏁嗛柍褜鍓熻棢婵ǹ鍩栭埛鎴︽偣閸ャ劌绲绘い鎺嬪灪閵囧嫰寮埀顒勬偋閻樿尙鏆﹂柡澶庮嚦閺冨牆宸濇い鏃堟?缁ㄧ敻姊绘担鑺ョ《闁哥姵鎸婚幈銊р偓闈涙憸娑撳秹鏌eΟ鑲╁笡闁绘挾鍠愭穱濠囶敍濠婂懎绗¢梺闈涙川閸犳牠寮婚埄鍐╁闁告稑饪村Λ锕傛⒑閸濆嫭婀伴柣鈺婂灦閻涱噣宕堕鈧悡娑樏归敐鍛棌婵☆偄锕缁樻媴閼恒儳銆婇梺鍝ュУ閹稿骞堥妸鈺傚仺缂佸娉曢崢閬嶆⒑绾懏褰ч梻鍕瀹曟垿鍩勯崘顏嗩啎闂佺硶鍓濋〃鍫㈢不閻楀牄浜滈煫鍥э攻濞呭﹪鏌$仦鍓ф创鐎殿噮鍣e畷鍫曞Ω瑜嬮埀顒佸姍濮婅櫣鈧湱濯ḿ鎰版煕閵娿儲鍋ラ柕鍡曠閳诲酣骞橀崗鍛倞闂備礁鎲″ú蹇涘礉鐏炲墽顩查柣鎰靛墰缁♀偓闂傚倸鐗婃笟妤呭磿韫囨洜纾奸柣妯虹-婢х敻鏌$仦璇插闁诡喓鍨藉畷顐﹀礋閹存瑥鐏查柡灞剧☉铻栧ù锝囩《閺嬫瑩姊洪崫鍕効缂傚秳绀侀锝夘敆閸曨偄鐎銈嗘礀閹冲繐鈻撻搹鍦=闁稿本鐟ㄩ崗灞解攽椤曗偓濞佳囨偩濠靛牏鐭欐繛鍡欏亾缂嶅骸鈹戦悙鍙夆枙濞存粍绻堣棢闁割偆鍠撶粻楣冩煙鐎电ǹ浠╁瑙勆戦妵鍕晲閸℃ǜ浠㈤梺鍝勭焿缁查箖骞嗛弮鍫濐潊闁绘ê寮堕惁鎾绘⒒娓氣偓濞艰崵绱為崶鈺冪闁逞屽墯娣囧﹪顢曢妶鍛亪濠殿喖锕ュ浠嬬嵁閹邦厽鍎熼柕蹇嬪焺濡差剟姊绘担鍛靛綊鏁冮妶鍥╃濠电姴娲ょ粻鏍煃閵夛附鐏遍柡瀣叄閺岀喖骞嗚閸ょ喖鏌涘鈧禍璺何涢崨鎼晝闁靛繆鈧剚妲遍梻浣烘嚀閹诧繝骞冮崒鐐靛祦闁告劦鍠栫粻锝夋煥閺冨倹娅曢柛妯块哺缁绘繈鎮介棃娴躲垽鏌涢悤浣镐簼闁逛究鍔岄鍏煎緞鐎n剙骞愰柣搴″帨閸嬫捇鎮楅敐搴″闁挎稓鍠愮换娑氣偓鐢登归鎾剁磼閻樿櫕宕屾鐐插暣瀹曟粏顦辨繛宀婁簼缁绘繈妫冨☉姗嗕患闂佸憡姊圭划鎾诲蓟閺囥垹鐐婄憸宥夘敂椤掍降浜滈柨鏇氭閸氼偆绱掓潏銊ユ诞闁硅櫕绮撳Λ鍐ㄢ槈濡粯鍤堥梺璇插椤旀牠宕板☉銏╂晪鐟滄棃宕洪妷锕€绶炲┑鐐村劤閻楁岸姊洪崨濠佺繁闁搞劌宕…鍧楀箣閿旇В鎷绘繛杈剧到閹诧繝骞嗛崼銉︾厱闁绘洑绀佹禍鎵偓瑙勬礃閸旀瑥鐣锋總绋垮嵆闁绘劙娼ф慨锔戒繆閻愵亜鈧牜鏁繝鍕焼濞达綀娅g粻鏃傛喐韫囨洘顫曢柟鐑樻尰缂嶅洭鏌曟繛鍨姕閻犲洨鍋涢—鍐Χ閸愩劎浠鹃梺鑽ゅ暱閺呯娀鐛繝鍥у唨妞ゆ挾鍋熼崢鍛婄箾閹剧澹樻繛璇х畱椤潡骞嬮敂瑙f嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲橀悡鈥愁嚕婵犳艾唯闁靛/鍛€┑鐘殿暯濡插懘宕归棃娑掓瀺闁挎繂顦Ч鏌ユ煥閺囩偛鈧綊鎮¢悢鍏肩厵閻庣數枪鍟搁梺纭呮閸婂潡寮婚埄鍐╁闁告稑锕ょ粣娑㈡⒑鐟欏嫬绲婚柟璇х節楠炲棝寮崼婢晠鏌ㄩ弮鈧崕鍐差嚕閹惰姤鈷掑〒姘e亾婵炰匠鍥ㄥ亱闁糕剝铔嬮崶銊ヮ嚤闁哄鍨归崢閬嶆⒑閸︻厼鍔嬮柛銈嗕亢閵囨劙骞掗幘瀛樼彸闂備礁鎲℃笟妤呭窗閺嶎厼姹查柛顐犲劜閳锋垿鎮归崶锝傚亾瀹曞洣鍝楅梻浣虹帛椤ㄥ懘鏁冮敃鍌氱闁靛繒濮Σ鍫熸叏濮楀棗浜濋柛鏇炲暣濮婅櫣绮欓幐搴㈡嫳闂佺厧缍婄粻鏍晲閻愬搫鐐婃い鎺嶇閳ь剛鏁婚幃宄扳枎韫囨搩浠剧紒鐐劤椤兘寮诲☉妯滄梹鎷呯化鏇熺亞闂備胶绮笟妤呭窗閺嶎剛浜介梻浣呵圭换鎺楀储瑜旈幃鍨鐎涙ǚ鎷洪梺鍏肩ゴ閺備線骞忛敓鐘崇厱闁规儳顕幊鍥煟濞戝崬鏋ら柍褜鍓ㄧ紞鍡涘窗濡ゅ懏鍋傞柣鏃傚帶缁犲綊寮堕崼婵嗏挃缁炬儳娼¢弻锝夋晲鎼粹€崇睄闂佸搫鏈粙鎺楀箚閺冨牆惟闁靛牆妫楅弸銈夋⒑閼恒儔鎴犳崲閸愵喖桅闁告洦鍨伴崘鈧梺闈浤涢崨顖氬笓婵犵數鍋為崹鍫曞箰閸濄儳鐭撶憸鐗堝笒閽冪喖鏌i弮鍌氬付缂佺姵宀搁弻鈩冨緞婵犲啯鐝栭梺鐟板⒔缁垶鎮¢悢鍏肩厵闁诡垎灞芥闂佺懓鍟垮ú顓㈠蓟閳ュ磭鏆嗛柍褜鍓熷畷浼村冀椤撴壕鍋撴担绯曟婵☆垰鍢查悧姘舵⒑閸涘﹤濮夐柛瀣尭琚欏璺侯儎缁诲棝鏌i幇鍏哥盎闁逞屽墯閸ㄥ灝鐣烽弴銏$劶鐎规挶鍎卞ú顓㈠箖閻e瞼鐭欓柤鎰佸灡閹蹭即姊绘担鐟邦嚋缂佽鍊胯棟妞ゆ牗绮庢稉宥夋煙閹澘袚闁绘挻鐟╅幃妤呮偨閻ц崵鎳撻惃顒傜磽閸屾瑧璐伴柛鐘冲哺瀵偆鎷犲顔界稁濠电偛妯婃禍婵嬎夐崼鐔虹闁瑰鍋熼幊鍕煙椤旂晫鎳囬柡宀嬬稻閹棃濮€閵忋垹褰庨梻浣告啞椤ㄥ棙绻涙繝鍥х畺濞村吋鎯岄弫濠囨⒑濞嗘儳鐏犲ù婊堢畺閺屻劌鈹戦崱娆忓毈缂備降鍔嶉幐鎶藉蓟閿熺姴鐒垫い鎺嶈兌椤╃兘鎮楅敐搴′簽闁告ê宕—鍐Χ閸℃衼缂備焦褰冨ḿ锟犲箚鐏炵偓鍎熸い顐幘缁犳岸姊虹紒妯哄Е闁告挻宀稿畷鎰板箛椤撶喎寮挎繝鐢靛Т鐎氼喚鏁☉銏$厵鐎瑰嫮澧楅崵鍥┾偓瑙勬磸閸旀垵螞閸愩劉妲堟慨妯荤樂閵娾晜鈷戦弶鐐村椤︼箓鏌涢悢椋庢憼濞e洤锕幃婊堟寠婢光斂鍔戦獮鏍箹椤撶偟浠梺璇″枛閵堟悂寮诲鍫闂佸憡鎸堕崝搴f閻愬搫骞㈡繛鎴炨缚椤︻厼鈹戦悙鏉戠仸闁煎綊绠栬棢婵﹩鍎ぐ鎺撳亹鐎瑰壊鍠栭崜閬嶆⒑缂佹ɑ灏版繛鑼枛楠炲啫顫滈埀顒勫箖濞嗘挸绾ч柟瀵稿濡叉澘鈹戦悩顔肩伇妞ゎ偄顦甸弫鍐閵堝懓鎽曢悗骞垮劚閻楁粌顬婇妸鈺傗拺闁告稑锕ョ亸鐢告煕閻樺磭澧虫俊顐犲灲濮婅櫣鎲撮崟顐ゎ槰濠电偛顦伴惄顖氱暦閻熸壋鏀介悗锝庡亞閸樺崬顪冮妶鍡楀闁稿﹥娲熷鎼佸籍閸喓鍘介梺缁樻椤ユ挾绮斿ú顏呯厸閻忕偟鏅暩濡炪伇鍌滅獢闁哄本鐩獮妯尖偓闈涙啞閸f澘顪冮妶鍐ㄧ仾鐎光偓閹间礁鏋侀柟閭﹀幖缁剁偤鎮楅敐搴濈胺缂傚倹鎹囧缁樻媴閸涘﹤鏆堥梺鐟版憸鏋い鏇秮瀹曞ジ寮撮悙鍨叄闂備線娼х换鍫ュ磹閺嶎厼鐓曢柟杈鹃檮閳锋垶銇勯幇鈺佲偓鏇熺濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨顓犲煟妤犵偞锕㈤、娆撴偩鐏炶棄绗氶梻鍌欑窔濞佳嚶ㄩ埀顒勬⒒閸曨偄顏挊鐔兼煕椤愮喐鍣伴柛瀣尵閹叉挳宕熼鍌ゆО闂備焦瀵уú蹇涘垂娴犲违濞达絿纭堕弸搴ㄦ煙閻愵剚缍戦柣褍瀚换婵嬪閿濆棛銆愰梺鍝勭墱閸撶喖銆侀幘鎰佸悑闁糕剝鐟ч惁鍫ユ⒑濮瑰洤鐏叉繛浣冲棌鍙块梻鍌欑劍閹爼宕濆畝鈧槐鐐寸節閸屾粍娈鹃梺闈涚箳婵參宕奸鍫熺厱妞ゆ劧绲跨粻姗€鏌$仦鐔峰暊閺€浠嬫煟濡鍤嬬€规悶鍎甸弻锝呂旈埀顒勬晝椤忓嫮鏆﹂柡鍥╁枑閸庣喖鏌嶈閸忔稓鑺辨繝姘拺闁告繂瀚ⅹ闂佸憡鏌ㄧ粔褰掑箚閸愵喖绠i柨鏃傛櫕閸樻悂姊虹化鏇燁潑闁告ê銈搁妴鍛搭敆閸屾粎锛滈柡澶婄墑閸斿瞼绮閺屽秷顧侀柛鎾卞妿缁辩偤宕卞☉妯肩厬闁瑰吋鐣崝宀勫触瑜版帗鐓ラ柡鍥╁仜閳ь剙缍婇幃鈥斥槈閵忥紕鍘遍梺瑙勫閺呮稒淇婇崹顕呯唵鐟滃骸煤閻旂厧钃熼柨婵嗩槸缁犳娊鏌熺€电ǹ小缂侇喚鏁诲娲濞戞瑦鎮欓柣搴㈢煯閸楁娊鎮伴鈧獮鎺懳旈埀顒傜不閿濆棛绡€闂傚牊绋掓径鍕亜閺傝法肖缂佽鲸鎹囧畷鎺戔枎閹烘垵甯┑鐘愁問閸犳岸宕戦幘璇茬疄闁靛ň鏅涘洿闂佹悶鍎崝灞炬償婵犲倵鏀介柣妯肩帛濞懷勩亜閹存繃顥㈢€规洘鍨挎俊鎼佸煛閸屾瀚介梻浣稿閸嬪棝宕伴幘璇茬厽闁靛鏅滈悡鏇熺節闂堟稒绁╂繛鍫熺矋閹便劍绻濋崨顕呬哗闂佺懓寮堕幐鍐茬暦閻旂⒈鏁勯柛娆嶅劜閸╂稒绻濋悽闈涗粶闁宦板妿閸掓帗鎯旈妸銉э紱闂佺粯妫侀崑銈夋晲婢跺﹦鐤€闂佺粯顨呴悧鍡涘焵椤掑倸鍘撮柡灞剧☉閳规垿宕卞Δ濠佺磻闂備礁鎲″Λ鎴犵不閹达腹鈧棃宕橀鍢壯囨煕閳╁喚娈橀柣鐔稿姍濮婃椽鎮℃惔鈩冩瘣婵犫拃鍐╂崳闁告帗甯炵槐鎺懳熺粙澶哥凹闂備礁鎲¢崝蹇涘疾濠靛鍌ㄩ柛妤冨亹閺€浠嬫煟濡鍤嬬€规悶鍎甸弻娑㈡偆娴i晲鍠婇悗娈垮枟婵炲﹪骞冮姀銈嗘優闁革富鍙忕槐鎻掆攽閻橆喖鐏遍柛鈺傜墵閺佸姊洪崫鍕靛剭闁稿﹥绻堝璇差吋閸偅顎囬梻浣告啞閹歌崵鎹㈤崼銉︽櫜闁绘劖娼欑欢鐐测攽閻愭潙绗氭俊鐐扮矙瀹曟椽鏁撻悩鑼槰濡炪倕绻愬Λ顓炍g粙搴撴斀闁绘劕鐡ㄧ亸浼存煕閳轰礁鏆g€规洘鍨块獮姗€宕瑰☉妯瑰闁荤喐鐟ョ€氼厾绮堥崘鈺€绻嗛柣鎰閻瑧鈧娲樺浠嬪春閳ь剚銇勯幒宥夋濞存粍绮撻弻鐔煎传閸曨厜褎淇婇幆褍妲婚棁澶嬬節婵犲倸顏柣顓熷浮閺屸€崇暆閳ь剟宕伴弽褏鏆︽い鎰剁畱缁€瀣亜閹炬剚妲堕柛搴f暬瀵鈽夊⿰鍛澑闂佽鍎虫晶搴㈠閸モ晝纾藉ù锝勭矙閸濇椽鎮介銈囩瘈妤犵偛鍟撮崺锟犲川椤斿吋顓奸梻渚€娼ч悧鍡椕洪敃鈧闁搞儺鍓氶埛鎺懨归敐鍛暈闁诡垰鐗撻弻锝夘敆閳ь剟濡剁粙璺ㄦ殾濞村吋娼欑粻濠氭偣閸ヮ亜鐨洪柛鏃撶畱椤啴濡堕崱妤冪懆闂佺ǹ锕ょ紞濠傤嚕閹惰棄鐓涢柛娑卞幖閸ゆ垵顪冮妶鍛濠电偛锕ㄩ妵鎰板箳閹惧厖鏉梻浣告啞娓氭宕归幎钘夋辈闁靛牆顦伴埛鎴︽煕濠靛棗顏柣鎺曟硶缁辨挸顓奸崟顓犵崲闂佺粯渚楅崰鏍綖濠婂牆鐒垫い鎺嗗亾闁伙絿鍏橀弫鎾绘偐閸愭祴鍋撻悜鑺ョ厵缂備焦锚闁卞洭鏌熺€电ǹ啸缁惧彞绮欓弻娑氫沪閸撗勫櫗缂備椒鐒﹀姗€鈥旈崘顔肩骇闁瑰鍋為崰鎰版⒑鏉炴壆璐伴柛锝忕秮瀹曟椽宕熼姘鳖槰閻熸粌绻掔划璇差潩閼哥鎷洪悷婊呭鐢鏁嶉悢鍏肩厽闁硅櫣鍋熼悾鐢碘偓娈垮枟瑜板啴銈导鏉戠闁挎繂妫欓弶鍛婁繆閻愵亜鈧牕螞娴h倽娑㈠礋椤掍礁寮块梺鍛婂姦閸犳鎮¢敐澶屽彄闁搞儯鍔嶅畷宀勬煕濞嗗繐顏柟渚垮妽缁绘繈宕熼鐐殿偧闂備胶鎳撻崲鏌ュ箠濮椻偓楠炴牞銇愰幒鏂跨ウ闁圭厧鐡ㄩ幐鍛婄閹€鏀介柣妯哄级婢跺嫰鏌i幘瀵告创闁哄本绋撴禒锕傚礈瑜庨崳顔剧磽娴g懓濮堟慨濠傤煼閸┾偓妞ゆ帒鍠氬ḿ鎰箾閸欏鑰跨€规洖缍婂畷绋课旈崘銊с偊婵犳鍠楅妵娑㈠磻閹炬惌娈介柣鎰级婢跺嫰鏌熷畡鐗堝殗闁诡喚鍏橀獮宥夘敊閸欘偅甯″濠氬磼濮橆兘鍋撴搴㈩偨婵﹩鍏楃紓姘辨喐閺冨牆绠栫憸鏂跨暦閸楃儐娓婚柕蹇ョ磿閳藉鎽堕弽顓熺厱婵炴垵宕弸娑㈡煃瑜滈崜娆撴偉婵傜ǹ钃熼柕濞炬櫅閸楁娊鏌i幇顓犮偞闁稿鎹侀妵鎰板箳閹寸媴绱梻浣圭湽閸ㄥ寮崫銉ヮ棜闁稿繘妫跨换鍡涙煏閸繂顏柛蹇撶焸閺屽秹鎸婃径妯烩枅闂佸搫鐬奸崰鏍箹瑜版帩鏁冮柕蹇曞濞兼岸姊绘担绛嬪殐闁搞劋鍗抽幆宀勫磼濮樿鲸娈鹃梺缁樻尭鐎垫帡鎮㈤崱妯肩瘈闂傚牊绋掗ˉ鐘电磼婢跺銇濋柡宀€鍠栭、娆撴偡閺夊簱鎷ら梻浣筋嚃閸ㄥ崬螞閸愵喖鏋侀柟鐗堟緲楠炪垺淇婇婊冨妺闁诲繐鐗撳濠氬磼濮橆兘鍋撻悜鑺ュ殑闁告挷绀侀崹婵囥亜閺嶎偄浠滅紒鐘虫緲铻栭柨婵嗘噹閺嗘瑧绱掗幇顓ф疁闁哄瞼鍠栭幃褔宕奸悢鍝勫殥濠碘剝顨呴幊妯侯潖濞差亜宸濆┑鐘插暙椤︹晠姊洪崫銉バg€光偓閹间礁绠栭柛褎顨呴悞鍨亜閹烘垵顏柍閿嬪灴閺屾盯鏁傜拠鎻掔婵炲瓨绮庨崑鎾舵崲濞戙垹绀傞柤娴嬫櫆閸Q囨⒑鐎圭媭鍤欑紒澶庮潐娣囧﹪鎳滈棃娑氱獮闁诲函缍嗛崜娆撶嵁濡ゅ懏鈷掑┑鐘查娴滄粍绻涚拠褏鐣垫鐐村灴瀹曞爼顢楁担闀愮钵婵犵數濮撮敃銈夊箠閹邦喖顥氬┑鍌氭啞閻撶喐淇婇娑橆嚋闁绘繍浜為埀顒冾潐濞叉牠鎯夋總绋跨劦妞ゆ帊绶¢崯蹇涙煕閻樺磭澧甸柍銉畵閹粓鎸婃径宀€鏆梻渚€娼х换鍫ュ垂瑜版帒鍑犻柛顐犲劚缁狙囨煕椤愶絿鈽夊┑陇濮ょ换娑㈠川椤旇棄纾冲┑顔硷功缁垶骞忛崨顖滅煓闁圭ǹ楠搁埀顒夊灡缁绘稓鈧稒岣块惌鍡欑磼椤旂晫鎳冮柣锝囧厴瀵挳濮€閳哄倹娅栨繝鐢靛仦閸ㄥ爼宕欓悷鎳婂綊宕熼娑掓嫼闂傚倸鐗婄粙鎾剁不閻愮儤鐓曞┑鐘插暟婢х敻鏌涢埡鍌滄创妤犵偛顑夐弫鍐焵椤掑倻妫憸鏃堝蓟閿濆绠涙い鎾跺枔缁嬪洤顪冮妶鍐ㄥ姎妞ゆ垵顦靛璇测槈閵忕姵顥濋柣鐘充航閸撹精顦归柡宀嬬磿娴狅箓宕滆閸掓盯鎮楀▓鍨珮闁革綇缍佸畷娲焵椤掍降浜滈柟鐑樺灥椤忣亪鏌涚€e墎绡€闁哄本娲樺鍕幢濡崵褰嗛梻浣呵归鍌炲疾閻樿钃熼柨婵嗩槸缁狅綁鏌ㄥ┑鍡橈紞婵☆偄瀚板缁樻媴缁嬭儻鍩炲┑鐐叉▕閸欏啫顕f繝姘櫢闁绘ǹ灏欓崐鐐烘⒑鐎圭姵銆冩俊鐐村浮楠炲鎮滈懞銉㈡嫼闂佸憡绋戦…鈧柟杈剧畱缁犳牠鏌涚仦鎯у毈婵炲吋鐗犻弻褑绠涢幘纾嬬闂佹椿鍘介悷鈺呭蓟閻旇櫣鐭欓柛顭戝櫘閸斿姊洪崷顓熺効濞存粠鍓涘Σ鎰板箻鐎涙ê顎撻梺鍛婃尰瑜板啴宕滈柆宥嗏拺闁硅偐鍋涙俊濂告煟韫囨梻绠為柟顔藉劤閻o繝骞嶉搹顐f澑闂備胶纭跺褔寮插⿰鍐惧殘婵炲樊浜濋埛鎴︽⒑椤愩倕浠滈柤娲诲灡閺呭爼顢欐慨鎰盎濡炪倖鍔戦崹鑽ょ不閼碱剛纾肩紓浣贯缚缁犳挻銇勯锝囩疄妞ゃ垺顨婂畷鎺楁晜閹呭搸濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴烆焸濞戞ǚ鏋庨柟鎹愭珪濡差剟姊洪崜鎻掍簼闁诡垰锕弫鎰緞濡粯娅旈梻渚€鈧偛鑻晶顔姐亜椤愩垻绠婚柟鐓庢贡閹叉挳宕熼銏犵闂傚倷绀侀幉锛勫垝閸垻鐭嗗ù锝囩《閺嬫梹绻濋棃娑氬ⅱ缁炬崘妫勯湁闁挎繂鐗婇鐘绘偨椤栨稓銆掔紒杈ㄥ笧閹风娀鎳犻鈧埅鐢告⒑缂佹ü绶遍柛鐘愁殘閹广垹鈹戠€n亞锛滃┑掳鍊撻悞锕傚级閹间焦鈷戦悹鍥ㄥ絻閸よ京绱撳鍛棡缂佸倸绉归幃娆撳冀缁嬫寧鍠樻い銏★耿婵偓闁炽儱鍘栭悽缁樼節閻㈤潧孝闁挎洏鍊濆畷鏉款潩椤戔晝鍠栭崺鈧い鎺戝閸婄敻鎮峰▎蹇擃仾缂佲偓閸愵喗鐓曢柕濞垮劜閸嬨儵鏌e☉鍗炴灈妞ゎ偅绮撻崺鈧い鎺戝瀹撲線鏌涢妷锝呭濠殿垱鎸抽弻锝夋偄閸涘﹦鍑¢梺鍛娽缚閸嬨倕顫忔繝姘<婵炲棙甯掗崢锛勭磽娓氬洤娅橀柛銊ョ埣閻涱噣骞囬弶鍨獩婵犵數濮寸€涒晠顢欓弮鍫熲拺鐟滅増甯楅敍鐔虹磼閳ь剚绗熼埀顒勫箖閿熺姴鍗抽柕蹇娾偓鏂ュ亾閻㈠憡鐓ユ繝闈涙椤庢霉濠婂懎浠х紒杈ㄥ浮閸╋箓鍩€椤掑嫬纾婚柟鎯у绾捐棄霉閿濆懏鎯堝ù婊呭亾缁绘繈濮€閳藉懓鈧潡鎸婂┑瀣骇闁割偅纰嶅▍鍛亜閵夛箑鍝洪柡灞剧椤﹁櫕銇勯妸銉︻棦闁诡喒鈧枼妲堟俊顖氱箰缂嶅﹪寮幇鏉跨倞闁冲搫鍊归崯鎺楁⒒娴h鍋犻柛濠冪墵閹兘鍩¢崨顓℃憰闂佹寧绻傞ˇ浼村疾閺屻儲鐓曢柕澶嬪灥閸燁偆绮婚敐澶嬬厽閹兼番鍊ゅḿ鎰箾閸欏澧靛┑鈥冲缁瑥鈻庨幆褎顓块梻浣告贡閾忓酣宕伴弽銊ュ姅闂傚倷鐒︾€笛兾涙担瑙勫弿闁靛牆顦伴崑鐔哥節婵犲倻澧涢柍閿嬪浮閺屾稓浠﹂崜褎鍣梺绋跨箰閻倸顕i幖渚囨晜闁割偆鍠撻崢鎼佹⒑閸撴彃浜介柛瀣閺呭爼顢欐慨鎰盎濡炪倖鍔х徊璺ㄧ不閻愭祴鏀介柍鈺佸暞閸婃劙鏌涢埞鎯у⒉闁瑰嘲鎳樺畷鐔煎箻閾忣偄顦╅梺缁樻尪閸庣敻寮婚敓鐘茬倞闁宠桨妞掔划鍫曟⒑闁偛鑻晶顔剧磽瀹ュ拑韬€规洖鎼埥澶愬閻樻鍞洪梻浣告贡閸嬨劑宕濆畝鈧槐鐐寸節閸パ勭€梺鍦濠㈡ê顔忓┑鍥ヤ簻闁哄倸鐏濋幃鎴炵箾閸噦鑰挎慨濠勭帛閹峰懘宕ㄦ繝鍐ㄦ瀾闂備礁鎽滄慨鐢稿箲閸パ呮殾闁硅揪绠戝洿婵犮垼娉涢敃銊╁箺閺囩偐鏀介柣鎰綑閻忕喖鏌涢妸銉﹁础闁绘碍鍎抽鍏煎緞鐎n剙甯楅柣鐔哥矋缁挸鐣峰⿰鍫熷亜闁绘挸娴烽悾娲偡濠婂嫭顥堟鐐插暙閳诲酣骞橀崗鍛倞闂備礁鎲″ú鏍礄閻e瞼涓嶉柟鎹愵嚙閽冪喖鏌i弬鍨倯闁稿顑夐弻娑㈩敃閵堝懏鐏侀梺鍛婂煀缁辨洜妲愰幘瀛樺闁圭粯甯婃竟鏇㈡⒒娴e憡鍟為柛鏂跨箻瀵剟宕掑☉姘兼锤濠电姴锕ら悧濠囨偂濞戙垺鐓曢柟鎵虫櫅婵″ジ鏌嶈閸撴盯骞婇幘璇茬厺鐎广儱顦崡鎶芥煏韫囥儳纾块柛妯哄船閳规垿鍩ラ崱妤冧淮濡炪倖娉﹂崟顒€寮块悗骞垮劚濡瑩宕h箛鎾斀闁绘ɑ褰冮顐︽偨椤栨稓銆掔紒杈ㄥ笒铻栭柛鎰╁妽閻忓牓鎮楃憴鍕闁稿骸銈歌棟闁告瑥顦禍婊勩亜閹邦喖鏋戞繛鍛川缁辨帗娼忛妸锕€闉嶉梺鐟板槻閹虫ê鐣峰⿰鍫濈煑濠㈣鍘归崝鎴濐潖閻戞ɑ濮滈柟娈垮櫘濡差喖顪冮妶搴″箻闁稿繑锕㈤幃浼搭敋閳ь剙鐣峰鈧、娆戠驳鐎Q冧壕闁归偊鍠氱壕钘壝归敐鍛儓閺嶏紕绱撴担鍓插剱闁搞劌娼″畷娲Ψ閿曗偓缁剁偛鈹戦悙闈涗壕闁诲骸顭峰娲偡閹殿喗鎲肩紓浣筋嚙閸婅崵鍒掓繝姘€烽柣鎴炃氶幏濠氭⒑缁嬫寧婀伴柣鐔濆泚鍥晝閸屾稓鍘介梺闈涚墕閹冲繘骞栭幇鐗堟嚉闁绘劗鍎ら悡鏇㈡煛閸ャ儱濡奸柍褜鍓涙慨鎾煡婢跺á鐔封堪閸曨剦妫冮悗瑙勬磸閸旀垿銆佸☉姗嗘僵濞撴艾鐏濇禍鐗堢節閻㈤潧孝闁汇儱顦靛鑸垫償閹惧厖澹曢梺鍝勬储閸ㄥ湱绮婚悩鑽ゅ彄闁搞儯鍔庨埥澶岀棯閹呯Ш闁哄本鐩垾锕傚箣濠靛懐鍑归梻浣告啞閻熴儳鎹㈤幋鐐碘攳濠电姴娴傞弫宥嗙節婵犲倸鏆欏ù鐘成戠换娑氣偓娑欋缚閻帞绱掗悩宕囧⒌妤犵偛鍟灃闁逞屽墴閿濈偛鈹戠€n偄鈧攱銇勯幒鍡椾壕濡炪倕楠忛幏锟�