删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小偃麦衍生品系的赤霉病抗性评价

本站小编 Free考研考试/2021-12-26

张晓军1,2, 肖进3, 王海燕3, 乔麟轶1, 李欣1, 郭慧娟1, 常利芳1, 张树伟1, 阎晓涛1, 畅志坚,1,2,*, 武宗信,4,*1 山西省农业科学院作物科学研究所/作物遗传与分子改良山西省重点实验室, 山西太原 030031
2 农业部黄土高原作物基因资源与种质创制重点实验室, 山西太原 030031
3 南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
4 山西省农业科学院棉花研究所, 山西运城 044000

Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines

ZHANG Xiao-Jun1,2, XIAO Jin3, WANG Hai-Yan3, QIAO Lin-Yi1, LI Xin1, GUO Hui-juan1, CHANG Li-Fang1, ZHANG Shu-Wei1, YAN Xiao-Tao1, CHANG Zhi-Jian,1,2,*, WU Zong-Xin,4,* 1 Institute of Crop Science, Shanxi Academy of Agricultural Sciences/Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030006, Shanxi, China
2 Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030006, Shanxi, China
3 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
4 Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, Shanxi, China

通讯作者: *畅志坚, E-mail: wrczj@126.com 武宗信, E-mail: mhdwzx@126.com

收稿日期:2019-02-16接受日期:2019-08-9网络出版日期:2019-09-03
基金资助:本研究由国家重点研发计划项目.2017YFD0100600
山西省重点研发计划项目.201803D221018-5
山西省重点研发计划项目.201703D211007
山西省重点研发计划项目.201803D421020
山西省农业科学院项目.YGG17123
山西省农业科学院项目.YCX2018D2YS01
和山西省重点科技创新平台资助.201605D151002


Received:2019-02-16Accepted:2019-08-9Online:2019-09-03
Fund supported: This study was supported by the National Key R&D Program of China.2017YFD0100600
Key R&D Program of Shanxi Province.201803D221018-5
Key R&D Program of Shanxi Province.201703D211007
Key R&D Program of Shanxi Province.201803D421020
Shanxi Academy of Agricultural Sciences.YGG17123
Shanxi Academy of Agricultural Sciences.YCX2018D2YS01
Shanxi Key Scientific and Technological Innovation Platform.201605D151002

作者简介 About authors
E-mail:zxjemail@163.com。













摘要
由镰孢属(Fusarium)真菌侵染引起的赤霉病是严重威胁小麦生产的重要病害之一, 但小麦育种中可直接利用的抗源非常有限。采用单花滴注法接种赤霉菌株F0609, 对来源于中间偃麦草或长穗偃麦草的119份小偃麦衍生品系进行3年6个环境的抗病鉴定, 发现平均病小穗率<10%的材料有13份, 抗性评价为抗病(R); 平均病小穗率介于10%~25%之间的材料有61份, 抗性评价为中抗(MR); 其余45份材料的平均病小穗率介于25%~50%或>50%, 抗性评价为中感或高感(MS和S)。在13份高抗赤霉病材料中, CH16387的抗性显著优于苏麦3号和望水白, CH16371和CH16379的抗性显著优于望水白, 其余10个品系与抗病对照苏麦3号和望水白的抗性水平相当。这13份材料分别来自小麦-中间偃麦草部分双二倍体TAI8045和小麦-长穗偃麦草部分双二倍体TAP8430与普通小麦的杂交组合, TAI8045抗性显著优于对照品种望水白, TAP8430与苏麦3号和望水白的抗性相当, 而杂交组合中的小麦亲本对赤霉病表现感病, 推测这些材料的抗性可能来自TAI8045和TAP8430。这些抗病材料为小麦抗赤霉病育种提供了新的种质资源。
关键词: 小麦;赤霉病;偃麦草;遗传改良;种质资源

Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases in wheat production; however, only limited sources of resistance are available in wheat. In this study, we evaluated 119 lines derived from the crosses between wheat and wheat-Thinopyrum partial amphiploids for their resistance to F. graminearum isolate F0609 over six environments during 2016 to 2018 cropping seasons using single floret inoculation method. Among the wheat-Thinopyrum lines tested, 45 were moderately or highly susceptible, with 25%-50% or >50% of the average percentage of diseased spikelets (PDS), 61 were moderately resistant (MR) with 10%-25% of the average PDS, and 13 lines were identified as resistant (R), with the average PDS less than 10%. For the FHB resistance of the 13 resistant lines, CH16387 was superior to ‘Sumai 3’ and ‘Wangshuibai’, the most widely used source of resistance to FHB, CH16371 and CH16379 were superior to ‘Wangshuibai’, and the remaining ten lines were comparable to ‘Wangshuibai’ or ‘Sumai 3’, in terms of number of infected spikelets per spike and percentage of infected spikelets. Furthermore, the average PDS in these resistant lines over the six environments showed a similar distribution, suggesting a relatively stable FHB resistance. The donor parents, wheat-alien partial amphiploids, involved in development of these resistant derivatives, included wheat-Th. intermedium partial amphiploid TAI8045 and wheat-T.ponticum partial amphiploid TAP8430. As both TAI8045 and TAP8430 were resistant, but all the wheat parents were susceptible, it was likely that the resistance to FHB in these lines identified originated from TAI8045 and TAP8430. These derivatives can serve as novel sources to enhance resistance of wheat to FHB.
Keywords:wheat;Fusarium head blight;Thinopyrum;genetic improvement;germplasm resources


PDF (2820KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张晓军, 肖进, 王海燕, 乔麟轶, 李欣, 郭慧娟, 常利芳, 张树伟, 阎晓涛, 畅志坚, 武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(1): 62-73. doi:10.3724/SP.J.1006.2020.91015
ZHANG Xiao-Jun, XIAO Jin, WANG Hai-Yan, QIAO Lin-Yi, LI Xin, GUO Hui-juan, CHANG Li-Fang, ZHANG Shu-Wei, YAN Xiao-Tao, CHANG Zhi-Jian, WU Zong-Xin. Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines[J]. Acta Agronomica Sinica, 2020, 46(1): 62-73. doi:10.3724/SP.J.1006.2020.91015


由镰孢属(Fusarium)真菌侵染引起的小麦赤霉病不仅会导致小麦大幅减产, 而且, 病原菌产生的脱氧雪腐镰孢菌烯醇(deoxynivalenol, DON)等多种毒素污染还会危害人畜健康[1]。近些年随着全球气候变暖加剧, 以及轮作倒茬、秸秆还田等耕作制度的改变, 小麦赤霉病的高发区已由长江中下游、淮河流域冬麦区和东北春麦区向西南冬麦区、黄淮冬麦区迅速扩展, 直接威胁小麦主产区的安全生产[2]。因此, 开展抗赤霉病育种, 从根本上控制赤霉病的流行与危害对确保国家粮食安全具有重大意义。

小麦赤霉病的研究和防治一直备受关注[3,4,5]。但由于抗源严重匮乏, 加之抗性表现形式的多样性和遗传方式的复杂性, 使得抗赤霉病育种进展缓慢。我国黄淮、西南、北部冬麦区及东北春麦区的主栽品种对赤霉病的抗性普遍较弱, 可利用的抗源也非常有限。迄今为止, 已从普通小麦及其近缘种属中鉴定出200多个抗赤霉病QTL[6], 分布于小麦各染色体上, 但仅有7个主效抗病基因得到精确定位, 分别是来自“苏麦3号”3BS上的Fhb1[7]和6BS上的Fhb2[8]、“望水白”4B上的Fhb4[9]和5A上的Fhb5[10], 以及分别从大赖草7Lr#1S、披碱草1Ets#1S和长穗偃麦草7E上转移的Fhb3[11]Fhb6[12]Fhb7[13]。因此, 广泛发掘并筛选新的抗赤霉病种质资源, 特别是主效基因控制的抗病材料, 对提高栽培品种的赤霉病抗性, 拓展抗源的遗传基础, 满足小麦育种及生产需求十分必要。

2014—2015年度我们在山西省运城市播种了1100余份小偃麦衍生品系, 恰逢赤霉病严重发生, 从中筛选出119份未感病或感病较轻的品系。2016— 2018年分别在江苏南京、山西太原和四川成都通过单花滴注法对119份小偃麦衍生品系进行了赤霉病抗性鉴定与评价, 以期发掘小麦抗赤霉病优异种质资源。

1 材料与方法

1.1 供试材料

供试的119份小偃麦衍生品系(附表1)分别由TAI8045、TAI8335、TAI8505和TAP8430与普通小麦品种冀麦26、中8701、晋春5号、太原768、晋麦33和京繁309杂交1~2次后自交选育而来。TAI8045、TAI8335和TAI8505是普通小麦与中间偃麦草杂交选育的部分双二倍体小偃麦, TAP8430是普通小麦与十倍体长穗偃麦草杂交选育的部分双二倍体小偃麦。TAI8045、TAI8505、TAI8335、TAP8430以及普通小麦品种太原768、晋春5号和冀麦26均来自山西省农业科学院作物科学研究所; 普通小麦中8701来自中国农业科学院种质资源库(编号为ZM20831)。苏麦3号和望水白为抗病对照品种, 周麦27和Alondra’s为感病对照品种。其中, 苏麦3号、望水白和Alondra’s由南京农业大学作物遗传与种质创新国家重点实验室提供, 周麦27由河南省农业科学院小麦研究所提供。

Supplementary table 1
附表1
附表1119份小偃麦衍生品系不同环境下的赤霉病抗性
Supplementary table 1Responses of the 119 wheat lines derived from Thinopyrum to Fusarium head blight under different environments
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
1苏麦3号
Sumai 3
16.83.67.95.14.05.13.616.813.27.11R
2望水白
Wangshuibai
13.96.112.39.67.56.86.113.97.89.41R
3CH163878.74.94.44.51.31.31.38.77.44.2**a1R
4CH1637115.17.34.64.62.03.02.015.113.15.0**b1R
5CH163797.010.27.25.12.04.22.010.28.26.0*b1R
6CH1637310.54.25.14.810.04.04.010.56.56.71R
7CH163527.311.65.54.2-6.04.211.67.36.71R
8CH163886.57.814.54.04.62.02.014.512.56.71R
9CH164196.511.46.64.8-4.04.011.47.46.71R
10CH1636712.59.29.34.62.83.02.812.59.77.01R
11CH1637811.05.1-4.9--4.911.06.17.11R
12CH163749.49.88.35.49.23.03.09.86.87.51R
13CH1637512.410.47.15.38.62.02.012.410.47.61R
14CH164278.410.5-5.9-6.75.910.54.67.71R
15CH164325.812.1-12.7-4.64.612.78.18.41R
16CH163906.717.220.03.79.04.03.720.016.310.12MR
17CH16424-17.6-6.8-6.16.117.611.510.22MR
18CH163997.110.6-7.3-17.07.117.09.810.52MR
19CH1643111.99.5-6.5-15.06.515.08.610.72MR
20CH1636911.311.514.016.010.03.03.016.013.011.02MR
21CH1638911.414.117.615.75.03.03.017.614.611.12MR
22CH135711.213.3-10.0-11.010.013.33.311.42MR
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
23CH164235.012.312.011.123.06.05.023.018.011.62MR
24CH1639216.914.9-10.0-4.64.616.912.211.62MR
25CH1634624.38.1-4.1-10.04.124.320.211.62MR
26CH1638115.810.224.08.68.05.05.024.019.011.92MR
27CH161188.520.4-8.1-12.18.120.412.312.32MR
28CH1637223.719.314.09.15.03.03.023.720.712.32MR
29CH1636827.411.020.04.812.02.02.027.425.412.92MR
30CH1642624.012.0-7.1-8.87.124.016.912.92MR
31CH1636013.47.1-4.7-27.04.727.022.313.02MR
32CH1638010.815.829.018.41.04.01.029.028.013.22MR
33CH1640917.610.2-19.5-6.06.019.513.513.32MR
34CH1635922.618.58.019.112.02.02.022.620.613.72MR
35CH1641710.812.3-12.0-20.410.820.49.613.92MR
36CH164085.028.5-13.3-8.85.028.523.513.92MR
37CH1637642.76.211.05.615.03.03.042.739.713.92MR
38CH134924.57.5-6.8-17.06.824.517.714.02MR
39CH155624.513.3-6.3-12.16.324.518.214.02MR
40CH1636611.48.08.023.928.06.06.028.022.014.22MR
41CH163828.718.226.022.811.05.05.026.021.015.32MR
42CH1639111.313.129.06.829.03.03.029.026.015.42MR
43CH1640323.120.9-7.1-11.07.123.116.115.52MR
44CH1637714.016.9-6.2-26.06.226.019.815.82MR
45CH1644023.612.6-11.0-17.611.023.612.616.2*2MR
46CH1643927.815.4-13.1-9.59.527.818.316.52MR
47CH1640420.213.714.925.421.04.04.025.421.416.5*2MR
48CH1634229.723.711.09.617.010.09.629.720.116.8*c2MR
49CH1639317.56.7-30.8-13.36.730.824.117.12MR
50CH1642521.820.5-6.5-20.26.521.815.317.2*2MR
51CH1638613.319.521.926.415.08.08.026.418.417.3*2MR
52CH163978.817.450.08.718.03.03.050.047.017.72MR
53CH1640620.433.8-4.6-12.04.633.829.217.72MR
54CH1638423.910.413.019.630.010.010.030.020.017.8*2MR
55CH1641823.031.0-6.1-12.06.131.024.918.02MR
56CH1639431.914.7-13.1-12.512.531.919.518.12MR
57CH1610429.718.7-18.4-10.010.029.719.719.2*2MR
58CH16365-26.214.04.046.07.04.046.042.019.42MR
59CH1642218.831.926.06.030.05.05.031.926.919.6*c2MR
60CH1641214.437.3-14.9-14.014.037.323.320.1*c2MR
61CH1643027.117.6-28.4-11.011.028.417.421.0*2MR
62CH1644230.914.5-21.4-19.514.530.916.421.6**2MR
63CH1637037.535.37.036.911.03.03.037.534.521.8*2MR
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
64CH1641649.98.3-7.9--7.949.942.022.0*2MR
65CH1644526.026.2-18.8-17.617.626.28.622.2**2MR
66CH1642113.451.1-12.1-12.012.051.139.122.2*2MR
67CH1642011.140.6-26.1-11.011.040.629.622.2*c2MR
68CH1635132.012.1-35.9-9.49.435.926.622.4*2MR
69CH1634123.916.0-18.4-32.016.032.016.022.6**2MR
70CH1644327.916.3-23.9--16.327.911.622.7**2MR
71CH16449-25.3-20.2-23.620.225.35.123.0**2MR
72CH1611230.120.3-15.0-27.015.030.115.123.1**2MR
73CH1638330.614.0-15.7-33.014.033.019.023.3**a2MR
74CH1641440.220.3-6.7-27.16.740.233.423.6*2MR
75CH1640117.18.385.011.417.03.03.085.082.023.6*2MR
76CH1641521.56.7-21.4-49.06.749.042.324.6*2MR
77CH1641015.038.6-21.8--15.038.623.625.1*3MS
78CH1643525.3--19.5-31.019.531.011.525.2**3MS
79CH1636238.133.9-13.0-18.013.038.125.025.8*3MS
80CH1643816.931.9-15.4-39.715.439.724.326.0**3MS
81CH1634832.141.4-18.8-13.013.041.428.426.3*3MS
82CH1636418.853.613.08.159.06.06.059.053.026.4*3MS
83CH136436.521.5-31.1-17.017.036.519.526.6**3MS
84CH1640233.321.5-27.4-25.021.533.311.926.8**3MS
85CH1639612.234.135.340.0-13.012.240.027.926.9**3MS
86CH1638530.034.2-23.7-20.220.234.214.027.0**3MS
87CH1634331.160.69.028.2-8.08.060.652.627.4*3MS
88CH1643318.647.4-18.8-26.218.647.428.927.8*3MS
89CH1634028.832.3-31.1-19.119.132.313.227.8**3MS
90CH1643739.720.5-21.8-31.920.539.719.128.5**3MS
91CH1640738.243.3-18.9-14.114.143.329.228.6*3MS
92CH1640526.411.485.09.531.09.09.085.076.028.7*3MS
93CH1635452.712.9-30.5-19.312.952.739.828.8*3MS
94CH1644438.123.1-31.0-29.023.138.115.030.3**3MS
95CH1639516.852.391.06.014.02.02.091.089.030.4*3MS
96CH1642833.440.2-11.3-38.411.340.228.930.8**3MS
97CH1642931.831.8-27.8-31.927.831.94.130.8**3MS
98CH1641323.244.4-24.4-31.823.244.421.231.0**3MS
99CH1634438.623.1-36.0-30.023.138.615.531.9**3MS
100CH1635835.646.8-14.0-34.214.046.832.932.6**3MS
101CH1644152.219.2-31.0-30.019.252.233.033.1**3MS
102CH1639830.149.8-16.5-37.516.549.833.333.5**3MS
103CH164486.157.5-38.5-31.86.157.551.533.5*3MS
104CH1644731.737.7-40.2-27.127.140.213.034.2**3MS
编号
No.
材料
名称
Lines
6个环境病小穗率
PDS in six environments
(%)
6个环境病小穗率分布
PDS distribution in six
environments
严重度分级
Severity degree
抗性评价
FHB
resistance
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min
最大
Max
极差
Range
平均
Average
105CH1636351.779.729.024.620.02.02.079.777.734.5*3MS
106CH1634753.937.2-30.1-24.424.453.929.536.4**3MS
107CH1644646.041.0-28.2-34.128.246.017.837.3**3MS
108CH1636162.742.8-9.0--9.062.753.738.2*3MS
109CH167350.8-57.032.1-16.016.057.041.039.0**3MS
110CH1643640.846.2-23.1-51.123.151.128.040.3**3MS
111CH1641117.075.451.124.8-39.717.075.458.441.6**3MS
112CH1635547.964.0-23.2-34.123.264.040.842.3**3MS
113CH1634533.473.8-21.5-46.021.573.852.243.7**3MS
114CH1640047.480.274.920.6-15.015.080.265.247.6**3MS
115CH1635740.254.562.727.8-55.027.862.734.948.0**3MS
116CH1635636.358.6-37.5-60.736.360.724.548.3**3MS
117CH1635353.282.1-43.1-21.121.182.161.049.9**3MS
118CH1643438.496.3-31.0-35.331.096.365.250.2**4S
119CH1610678.461.4-40.2-41.440.278.438.355.3**4S
120CH1635063.893.9-53.6-55.653.693.940.466.7**4S
121CH1634995.0100.0-33.6-46.033.6100.066.468.6**4S
122周麦27
Zhoumai 27
64.357.063.058.638.653.938.664.325.855.9**4S
123Alondra’s53.165.563.851.748.161.448.165.517.457.3**4S
R: 抗病; MR: 中抗; MS: 中感; S: 感病; “-”: 未调查或数据缺失。苏麦3号, 望水白: 抗病对照; 周麦27, Alondra’s: 感病对照。a: 与抗病对照苏麦3号有显著差异(P < 0.05), 与望水白极显著差异(P < 0.01); b: 仅与抗病对照望水白差异显著(P < 0.05), 与苏麦3号无显著差异; c: 仅与苏麦3号有显著差异(P < 0.05), 与望水白无显著差异。***分别表示在P < 0.05、P < 0.01水平上与抗病对照有显著差异。
R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible;“-”: no results or missing data. PDS: percentage of diseased spikelet. Sumai 3, Wangshuibai: resistant control; Zhoumai 27, Alondra’s: susceptible control. a: significantly different from Sumai 3 at P < 0.05, and from Wangshuibai at P < 0.01. b: significantly different from Wangshuibai at P < 0.05, but not from Sumai 3. c: significantly different from Sumai 3 at P < 0.05, but not from Wangshuibai. *, **: significantly different from the resistant control at P < 0.05, P < 0.01, respectively.

新窗口打开|下载CSV

1.2 赤霉病鉴定地点及接种方法

2016、2017和2018年在江苏省南京市南京农业大学江浦基地日光温室, 2017年和2018年在山西省太原市山西省农业科学院东阳基地日光温室, 2018年在四川省成都市四川省农业科学院新都基地田间分别进行接种鉴定。接种赤霉菌菌株为F0609, 由南京农业大学作物遗传与种质创新国家重点实验室王秀娥博士惠赠。

播种鉴定材料于温室或田间, 行长1.5~2.0 m, 每行播种30粒, 行距0.25 m。在小麦完全抽穗后开始扬花时选取中部小穗采用单花滴注法[14]接种赤霉病, 接种剂量为10 μL (约50~80个孢子 μL-1), 每行材料接种10个穗子, 接种后用保鲜膜包裹保湿3~5 d以使发病, 颖壳变褐色时揭开保鲜膜, 每日喷雾保湿4次以上, 以保证发病环境的湿度。

1.3 赤霉病抗性调查与记载

接种后27 d开始调查发病小穗数, 调查每个材料10个单穗, 抗病调查和记载标准按照《中华人民共和国农业行业标准NY/T 1443.4-2007: 小麦抗赤霉病评价技术规范》[15]。小麦赤霉病严重度按病小穗率(percentage of diseased spikelet, PDS)分5级: 免疫(I), 平均严重度为0, 接种小穗无可见发病症状; 高抗(R), 0<平均严重度<2.0, 仅接种小穗发病, 或相邻的个别小穗发病, 但病斑不扩展到穗轴; 中抗(MR), 2.0≤平均严重度<3.0, 穗轴发病, 发病小穗占总小穗数的1/4以下; 中感(MS), 3.0≤平均严重度<3.5, 穗轴发病, 发病小穗占总小穗数的1/4~1/2; 高感(S), 平均严重度≥3.5, 穗轴发病, 发病小穗占总小穗数的1/2以上。

1.4 染色体数目鉴定

采用Han等[16]描述的方法鉴定染色体数目, 滴片后在Olympus BX53相差显微镜下观察, 每个材料5~10个根尖, 选择分裂相完整的细胞进行染色体计数。

1.5 统计分析

利用SAS (Statistical Analysis System) v9.2对不同环境小麦赤霉病病小穗率进行基本数据统计和相关分析。利用Microsoft Excel 2013进行t测验分析。

2 结果与分析

2.1 亲本材料抗赤霉病鉴定与评价

来源于中间偃麦草的TAI8045表现抗病, 病小穗率显著低于抗病对照望水白(P<0.05); TAI8505表现中抗, 病小穗率与望水白无显著差异, 但与苏麦3号有显著差异; TAI8335表现中感, 病小穗率与2个抗病对照存在极显著差异(P<0.01); 来源于长穗偃麦草的TAP8430表现抗病, 病小穗率与苏麦3号和望水白均无显著差异; 其他普通小麦亲本冀麦26、中8701、晋春5号和太原768均表现感病, 严重度3~4级(表1)。未鉴定普通小麦亲本晋麦33和京繁309。

Table 1
表1
表1小偃麦衍生品系亲本的病小穗率及抗性评价
Table 1Fusarium head blight (FHB) resistance and percentage of diseased spikelet (PDS) in the parents of Thinopyrum-derived wheat lines
亲本来源
Source of parents
亲本名称
Name of parents
病小穗率 PDS (%)严重度分级
Severity
degree
抗性评价
FHB
resistance
染色体数目
Number of chromosomes
最小
Min.
最大
Max.
极差
Range
平均
Average
长穗偃麦草Th. ponticumTAP84304.45.91.55.41R56
中间偃麦草Th. intermediumTAI80451.14.53.43.3*a1R56
TAI85057.020.813.814.6**b2MR56
TAI833520.465.445.034.5**3MS56
普通小麦Wheat太原768 Taiyuan 76836.050.014.042.1**3MS42
冀麦26 Jimai 2640.052.212.247.3**3MS42
晋春5号Jinchun 548.570.021.558.7**4S42
中8701 Zhong 870129.284.054.863.6**4S42
苏麦3号Sumai 31.424.022.67.11R42
望水白Wangshuibai1.428.026.69.41R42
周麦27 Zhoumai 2738.664.325.755.9**4S42
Alondra’s48.165.517.457.3**4S42
R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible. *, **: significantly different from the resistant control at P < 0.05, P < 0.01, respectively. a: significantly different from Wangshuibai at P < 0.05, but not from Sumai 3; b: significantly different from Sumai 3 at P < 0.01, but not from Wangshuibai.
R: 抗病; MR: 中抗; MS: 中感; S: 感病。***分别表示在P < 0.05, P < 0.01水平上与抗病对照有显著差异; a: 仅与望水白在P < 0.05水平上显著, 与苏麦3号不显著; b: 仅与苏麦3号在P < 0.01水平上差异显著, 与望水白差异不显著。

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1小偃麦衍生品系亲本对赤霉病的抗性反应(山西太原, 2018)

Fig. 1Responses to Fusarium head blight in the parents (Taiyuan, Shanxi, 2018)



2.2 119份小偃麦衍生品系赤霉病抗性鉴定

2016—2018年3年6点的抗病鉴定中, 抗病对照苏麦3号和望水白的病害严重度均为1级, 表现高抗或中抗, 二者病小穗率无显著差异。感病对照Alondra’s和周麦27的病害严重度均为4级, 都表现高感。119份小偃麦衍生系接种后均有侵染反应, 未发现病小穗率为0、赤霉病抗性免疫(I)的品系(附表1)。平均病小穗率<10%的材料有13份, 抗性分级为抗病(R), 占鉴定材料的10.9%; 平均病小穗率介于10%~25%之间的材料有61份, 抗性评价为中抗(MR), 占51.3%; 平均病小穗率介于25%~50%之间的材料有41份, 表现中感(MS), 占34.5%; 平均病小穗率大于50%的材料有4份, 表现感病(S)(表2表3)。鉴定材料分别来自9个杂交组合(表2), 其中以小麦-长穗偃麦草部分双二倍体TAP8430为亲本的3个组合共有73份材料, 4份表现抗病(R), 36份表现中抗(MR), 占组合材料总数的54.8%; 以小麦-中间偃麦草部分双二倍体TAI8045为亲本的3个组合共有37份材料, 9份表现抗病(R), 21份表现中抗(MR), 占组合材料总数的81.1%; 以小麦-中间偃麦草部分双二倍体TAI8335为亲本的2个组合共6份材料, 1份表现中抗(MR), 其余5份为中感(MS); 以小麦-中间偃麦草部分双二倍体TAI8505为亲本的3份材料均表现中抗(MR)。

Table 2
表2
表2119份小偃麦衍生品系的赤霉病抗性评价
Table 2Responses to Fusarium head blight in 119 wheat lines derived from Thinopyrum
供体亲本Donor parent系谱来源
Pedigree
品系个数
Number of lines
抗病
R
中抗
MR
中感
MS
感病
S
TAP8430太原768//冀麦26/TAP8430 Taiyuan 768//Jimai 26/TAP843073120194
中8701//冀麦26/TAP8430 Zhong 8701//Jimai 26/TAP84302144
中8701//京繁309/TAP8430 Zhong 8701//Jingfan 309/TAP8430126
TAI8045京繁309//晋春5号/TAI8045 Jingfan 309//Jinchun 5/TAI8045378111
太原768//冀麦26/TAI8045 Taiyuan 768//Jimai 26/TAI8045174
京繁309//冀麦26/TAI8045 Jingfan 309//Jimai 26/TAI804532
TAI8335中8701//晋麦33/TAI8335 Zhong 8701//Jinmai 33/TAI8335612
冀麦26//晋麦33/TAI8335 Jimai 26//Jinmai 33/TAI83353
TAI8505太原768//冀麦26/TAI8505 Taiyuan 768//Jimai 26/ATI850533
合计 Total1191361414
R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible.
R: 抗病; MR: 中抗; MS: 中感; S: 感病。

新窗口打开|下载CSV

Table 3
表3
表313份小偃麦衍生品系不同环境下的抗病性
Table 3Disease resistance of the 13 wheat lines derived from Thinopyrum across different environments
材料名称
Line
6个环境病小穗率
PDS in six environments (%)
6个环境病小穗率分布
PDS distribution in six environments
染色体数目
Number of chromosomes
2018
太原
Taiyuan
2018
成都
Chengdu
2018
南京
Nanjing
2017
太原
Taiyuan
2017
南京
Nanjing
2016
南京
Nanjing
最小
Min.
最大
Max.
极差
Range
平均
Average
CH163878.74.94.44.51.31.31.38.77.44.2**a42
CH1637115.17.34.64.62.03.02.015.113.15.0** b42
CH163797.010.27.25.12.04.22.010.28.26.0* b42
CH1637310.54.25.14.810.04.04.010.56.56.742
CH163527.311.65.54.2-6.04.211.67.36.742
CH163886.57.814.54.04.62.02.014.512.56.742
CH164196.511.46.64.8-4.04.011.47.46.742
CH1636712.59.29.34.62.83.02.812.59.77.042
CH1637811.05.1-4.9--4.911.06.17.142
CH163749.49.88.35.49.23.03.09.86.87.542
CH1637512.410.47.15.38.62.02.012.410.47.642
CH164278.410.5-5.9-6.75.910.54.67.742
CH164325.812.1-12.7-4.64.612.78.28.442
苏麦3号Sumai 316.83.67.95.14.05.13.616.813.27.142
望水白Wangshuibai13.96.112.39.67.56.86.113.97.89.442
周麦27 Zhoumai 2764.357.063.058.638.653.938.664.325.755.942
Alondra’s53.165.563.851.748.161.448.165.517.457.342
*, **: significantly different from the resistant control at P < 0.05, P < 0.01, respectively. a: significantly different from Sumai 3 at P < 0.05, and from Wangshuibai at P < 0.01; b: significantly different from Wangshuibai at P < 0.01, but not from Sumai 3. R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible; -: no results or missing data. PDS: percentage of diseased spikelet.
***分别表示在P < 0.05, P < 0.01水平上与抗病对照有显著差异。a: 与抗病对照苏麦3号有显著差异(P < 0.05),与望水白极显著差异(P < 0.01); b: 仅与抗病对照望水白在P < 0.01水平上差异显著, 与苏麦3号无显著差异。R: 抗病; MR: 中抗; MS: 中感; S: 感病; -: 未调查或数据缺失。

新窗口打开|下载CSV

2.3 13份优良品系的抗赤霉病分析

来源于部分双二倍体TAP8430和TAI8045的5个组合中, 分别有4份和9份材料在6个环境下均表现出优良的赤霉病抗性, 平均病小穗率均小于10.0%, 病害严重度均为1级, 均表现抗病(R)(表2表3图2)。t测验表明, CH16387的病小穗率显著低于苏麦3号和望水白(P<0.05), CH16371和CH16379的病小穗率分别显著低于望水白(P<0.05、P<0.01), 其余10个品系的病小穗率与苏麦3号和望水白无显著差异(表3)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2抗病材料和感病材料对赤霉病的反应类型(山西太原, 2018)

a: 13个抗病反应为R的材料; b: 抗病反应为S的部分材料。
Fig. 2Responses to Fusarium head blight in 13 wheat lines (Taiyuan, Shanxi, 2018)

a: resistant wheat lines; b: susceptible wheat lines.


从不同环境病小穗率的变化幅度来看, 除CH16371和CH16388的极差分别为13.1%和12.5%外, 其他11份材料的极差均低于苏麦3号的13.2%, 在试验的各个年度及地点间表现较为稳定的抗病性。尤其是CH16387, 在6个点的试验中, 病小穗率最高仅为8.7%, 最低为1.3%, 极差为7.4%, 低于望水白的7.8%。此外, 不同环境间相关分析表明2018年成都与2018年太原、2017年太原与2017年和2016年南京、2016年与2017年南京之间分别存在一定的相关性, 但相关性均较弱(r<0.5), 其余环境间并无显著相关性(表4)。其原因可能是赤霉病发病易受温、湿度等气候因素影响, 病小穗率在不同环境间变异较大, 但在相同环境下与抗、感病对照相比, 仍具有显著抗病性, 品种抗病性鉴定结果相对稳定, 筛选的抗源材料可用于抗赤霉病的遗传和育种研究。

Table 4
表4
表413个抗病品系在不同环境条件下赤霉病病小穗率的相关系数
Table 4Correction coefficients of percentage of diseased spikes in 13 lines resistant to Furarium head blight under different environments
环境
Environment
2018太原
2018 Taiyuan
2018成都
2018 Chengdu
2018南京
2018 Nanjing
2017太原
2017 Taiyuan
2017南京
2017 Nanjing
2018成都 2018 Chengdu-0.2764*
2018南京 2018 Nanjing0.0562-0.0724
2017太原 2017 Taiyuan0.03980.0247-0.0686
2017南京 2017 Nanjing0.0818-0.0851-0.02640.4086**
2016南京 2016 Nanjing0.22810.0080-0.07560.3199*0.3141*
*,**: significant difference at P < 0.05 and P < 0.01, respectively.
***分别表示在P < 0.05和P < 0.01水平上差异显著。

新窗口打开|下载CSV

3 讨论

近年来, 小麦赤霉病呈爆发速度快、流行范围广、发生面积大和危害损失重的严重态势, 直接威胁着小麦的安全生产[2]。抗病种质资源筛选是抗病育种的基础, 许多小麦近缘种对赤霉病具有较高抗病性, 是小麦抗赤霉病基因的重要来源。从这些近缘种中发掘抗病基因, 对于提高小麦抗赤霉病能力具有重要意义[17]。20世纪80年代以来, 一些研究利用近缘种属创造小麦抗赤霉病新材料, 将纤毛鹅观草[18]、大赖草[19]、鹅观草[20]、华山新麦草[21]、黑麦草、长穗偃麦草[22]、簇毛麦等物种的抗赤霉病基因通过外源染色体附加、代换、易位和双二倍体的方式导入小麦背景中, 育成了许多含有外源染色体或染色体片段的抗赤霉病种质[23]

偃麦草属植物对赤霉病具有很强的抗性[24], 通过远缘杂交将其抗病基因导入普通小麦, 是改良小麦赤霉病抗性的重要途径。经过研究已从中间偃麦草和长穗偃麦草中鉴定出多个抗赤霉病双二倍体[25,26,27]、附加系[28]、代换系[27]以及易位系[22, 29-30]。其中易位系在导入抗赤霉病基因的同时, 尽量地减少了不利基因的影响, 而且能够保证小麦染色体构成的稳定性, 因而是利用外源基因的最佳材料。本研究通过多个环境鉴定筛选出的13份高抗赤霉病材料, 有9份来源于小麦-中间偃麦草部分双二倍体TAI8045与普通小麦的杂交组合, 4份来源于小麦-十倍体长穗偃麦草部分双二倍体TAP8430与普通小麦的杂交组合(表2), 其普通小麦亲本对赤霉病都表现中感或感病(表1图1), 而八倍体亲本TAI8045和TAP8430则高抗赤霉病。因此推测这些材料的赤霉病抗性可能来源于部分双二倍体TAI8045和TAP8430。利用细胞学和分子标记技术可以进一步确定这些材料的赤霉病抗性是否来自偃麦草。根据多年的田间表现, 这些材料的穗型(图2)、株高、株型、籽粒、结实性等农艺性状以及染色体数目都与普通小麦完全一致, 根据系谱及抗病性分析, 推测它们不含或仅含很小的外源片段, 可直接用于小麦抗病育种和QTL/基因定位。

小麦赤霉病是由镰孢属真菌侵染引起的一种土传真菌病害, 引起小麦赤霉病的镰孢菌至少有20种, 发病机制复杂, 不同菌株间的致病力存在显著差异[31-32], 因此致病菌株的选择是否恰当直接影响着抗病鉴定结果的准确性。本研究使用赤霉菌菌株F0609进行接种鉴定, 经过抗感对照的发病情况对比, 发现苏麦3号和望水白对F0609菌株均表现抗病, 周麦27和Alondra’s则表现感病(表2图2)。在3年6个环境的接种鉴定中, F0609对周麦27和Alondra’s的致病性表现一致。在鉴定的119份材料中, 表现抗或中抗的品系占总数的62.2%, 感病品系相对较少, 其原因可能是这些材料是经过2015年赤霉病高发期的田间抗病鉴定筛选出的抗病品系, 但由于田间自然发病不均匀, 因而仍有45份材料人工接种鉴定时表现中感或感病(MS或S)。

本研究筛选出的13份抗病品系在测试的6个环境中, 病小穗率变化幅度不大, 在不同环境条件下表现出较好的抗病性。但部分材料在不同年度和地点间表现出较大的差异, 如CH16376的最高病小穗率为42.7%, 最低仅为3.0%, CH16379最高为50.0%, 最低3.0% (附表1)。究其原因, 既有可能是人为接种造成的差异, 也有可能是赤霉病发病易受环境影响所致[33,34]。因此, 要获得具有良好、稳定抗性的抗赤霉病材料, 需要连续多年在不同环境下进行抗病性鉴定[35], 并且设置适宜的抗感病对照来评价材料的抗性, 以保证获得的抗病材料具有可靠抗性。13份抗病品系中CH16387、CH16371和CH16379的抗性显著优于苏麦3号或望水白, 其余10份与抗病对照苏麦3号和望水白的抗性水平相当; CH16352、CH16388、CH16427和CH16432则表现出矮秆、早熟、结实性好、籽粒饱满、株型紧凑等优良农艺性状, 可为小麦抗病遗传育种提供有价值的亲本材料。

4 结论

采用单花滴注法对来源于中间偃麦草和长穗偃麦草的119份小偃麦衍生品系进行多年多点表型鉴定, 发现有13份材料在多个环境下与高抗对照品种苏麦3号和望水白抗性水平相当, 在不同环境条件下均表现出较好的抗病性; 61份材料表现中抗, 41份材料表现中感, 4份材料表现高感。这些抗赤霉病材料为小麦抗病遗传育种提供有效抗源。

致谢:

对南京农业大学作物遗传与种质创新国家重点实验室王秀娥博士、刘玉博士, 四川农业大学罗培高博士、黄强兰博士, 四川省农业科学院作物所杨恩年博士在种质抗病鉴定方面给予的帮助; 电子科技大学杨足君博士、李光蓉博士, 江苏里下河地区农业科学研究所臧淑江老师在接种与鉴定方法给予的宝贵指导与帮助, 谨致谢忱。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

程顺和, 张勇, 别同德, 高德荣, 张伯桥 . 中国小麦赤霉病的危害及抗性遗传改良
江苏农业学报, 2012,28:938-942.

[本文引用: 1]

Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q . Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China
Jiangsu J Agric Sci, 2012,28:938-942 (in Chinese with English abstract).

[本文引用: 1]

曾娟, 姜玉英 . 2012年我国小麦赤霉病暴发原因分析及持续监控与治理对策
中国植保导刊, 2013,33(4):37-41.

[本文引用: 2]

Zeng J, Jiang Y Y . Analysis and continuous monitoring and control countermeasures of wheat FHB disease outbreak in China in 2012
China Plant Protect, 2013,33(4):37-41 (in Chinese with English abstract).

[本文引用: 2]

Bai G H, Shaner G . Management and resistance in wheat and barley toFusarium head blight
Annu Rev Phytopathol, 2004,42:135-161.

DOI:10.1146/annurev.phyto.42.040803.140340URLPMID:15283663 [本文引用: 1]
Fusarium head blight (FHB) is a devastating disease of wheat and barley worldwide. Resistant cultivars could reduce damage from FHB. Chinese wheat cultivar Sumai 3 and its derivatives represent the greatest degree of resistance to FHB known. A major quantitative trait locus (QTL) on chromosome 3BS and other minor QTL for FHB resistance have been identified in these cultivars and used in wheat-breeding programs worldwide. Many breeding lines with the 3BS resistance QTL and improved agronomic traits have been developed. In barley, only limited sources of FHB resistance are available, especially in six-rowed barley, and none of them contains a DON level low enough to meet the safety requirement of the brewing industry. Several QTL have been identified for lower FHB severity, DON content, and kernel discoloration and used to enhance FHB resistance in barley. Marker-assisted selection for FHB resistance QTL on 3BS of wheat and on 2H of barley is in progress.

Stepient L, Chelkowski J . Fusarium head blight of wheat: pathogenic species and their mycotoxins
World Mycotoxin J, 2010,3:107-119.

DOI:10.1093/gbe/evz225URLPMID:31609418 [本文引用: 1]
Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F.?austroamericanum, F.?cortaderiae, and F.?meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.

Gilbert J, Haber S . Overview of some recent research developments inFusarium head blight of wheat
Can J Plant Pathol, 2013,35:149-174.

DOI:10.1080/07060661.2013.772921URL [本文引用: 1]
This article reviews the recent progress of research on fusarium head blight (FHB) of wheat. It addresses the broad areas of strategies for disease management, biological control, the pathogen (Fusarium graminearum (teleomorph Gibberella zeae)), mycotoxins, the effects of dwarfing genes on FHB severity, quantitative trait loci (QTLs) and new perspectives. Where there are recent reviews on this subject, we have deliberately examined the subsequent literature to provide an update on research. With few resistant cultivars available even now, the main tools to manage the disease remain rotation, varietal selection, disease forecasting and fungicides. A few biocontrol organisms are being considered for commercial application. The pathogen's sexual life cycle has been investigated in depth, and with its complete genome sequence known, the pathways and genes controlling the sexual development and ascospore release of F. graminearum are being explored. The 3-acetyldeoxynivalenol chemotype of F. graminearum has increased in prevalence in Canada with attendant risks of higher DON levels in cereal grain. Stringent limits on allowable levels of Fusarium mycotoxins in the food/feed chain have been enacted in Europe and the USA, but regulations for Canada are only at the discussion stage with the Canadian Food Inspection Agency. Efforts to develop FHB-resistant lines proceed apace, as these can be selected in most wheat populations despite the adverse effects of dwarfing genes on FHB severity. While more quantitative trait loci (QTLs) for disease resistance continue to be identified and mapped, new resistant cultivars remain disappointingly few. We present some encouraging early results from an alternative approach based on epigenetics.

张爱民, 阳文龙, 李欣, 孙家柱 . 小麦抗赤霉病研究现状与展望
遗传, 2018,40:858-873.

[本文引用: 1]

Zhang A M, Yang W L, Li X, Sun J Z . Current status and perspective on research against Fusarium head blight in wheat
Hereditas(Beijing), 2018,40:858-873 (in Chinese with English abstract).

[本文引用: 1]

Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brule-Babel A . Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat(Triticum aestivum L.)
Theor Appl Genet, 2006,112:1465-147.

DOI:10.1007/s00122-006-0249-7URL [本文引用: 1]
A major fusarium head blight (FHB) resistance gene Fhb1 (syn. Qfhs.ndsu-3BS) was fine mapped on the distal segment of chromosome 3BS of spring wheat (Triticum aestivum L.) as a Mendelian factor. FHB resistant parents, Sumai 3 and Nyubai, were used as sources of this gene. Two mapping populations were developed to facilitate segregation of Qfhs.ndsu-3BS in either a fixed resistant (Sumai 3*5/Thatcher) (S/T) or fixed susceptible (HC374/3*98B69-L47) (HC/98) genetic background (HC374=Wuhan1/Nyubai) for Type II resistance. Type II resistance (disease spread within the spike) was phenotyped in the greenhouse using single floret injections with a mixture of macro-conidia of three virulent strains of Fusarium graminearum. Due to the limited heterogeneity in the genetic background of the crosses and based on the spread of infection, fixed recombinants in the interval between molecular markers XGWM533 and XGWM493 on 3BS could be assigned to discrete “resistant” and “susceptible” classes. The phenotypic distribution was bimodal with progeny clearly resembling either the resistant or susceptible parent. Marker order for the two maps was identical with the exception of marker STS-3BS 142, which was not polymorphic in the HC/98 population. The major gene Fhb1 was successfully fine mapped on chromosome 3BS in the same location in the two populations within a 1.27-cM interval (S/T) and a 6.05-cM interval (HC/98). Fine mapping of Fhb1 in wheat provides tightly linked markers that can reduce linkage drag associated with marker-assisted selection of Fhb1 and assist in the isolation, sequencing and functional identification of the underlying resistance gene.

Cuthbert P A, Somers D J, Brule-Babel A . Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat(Triticum aestivum L.)
Theor Appl Genet, 2007,114:429-437.

DOI:10.1007/s00122-006-0439-3URL [本文引用: 1]
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is key to facilitate the introgression of different FHB resistance genes into adapted wheat. The objective of this project was to study the FHB resistance QTL on chromosome 6B, quantify the phenotypic variation, and qualitatively map the resistance gene as a Mendelian factor. The FHB resistant parent BW278 (AC Domain*2/Sumai 3) was used as the source of the resistance allele. A large recombinant inbred line (RIL) mapping population was developed from the cross BW278/AC Foremost. The population segregated for three known FHB resistance QTL located on chromosomes 3BSc, 5A, and 6B. Molecular markers on chromosome 6B (WMC104, WMC397, GWM219), 5A (GWM154, GWM304, WMC415), and 3BS (WMC78, GWM566, WMC527) were amplified on approximately 1,440 F2:7 RILs. The marker information was used to select 89 RILs that were fixed homozygous susceptible for the 3BSc and 5A FHB QTLs and were recombinant in the 6B interval. Disease response was evaluated on 89 RILs and parental checks in the greenhouse and field nurseries. Dual floret injection (DFI) was used in greenhouse trials to evaluate disease severity (DS). Macroconidial spray inoculations were used in field nurseries conducted at two locations in southern Manitoba (Carman and Glenlea) over two years 2003 and 2004, to evaluate disease incidence, disease severity, visual rating index, and Fusarium-damaged kernels. The phenotypic distribution for all five-disease infection measurements was bimodal, with lines resembling either the resistant or susceptible checks and parents. All of the four field traits for FHB resistance mapped qualitatively to a coincident position on chromosome 6BS, flanked by GWM133 and GWM644, and is named Fhb2. The greenhouse-DS trait mapped 2cM distal to Fhb2. Qualitative mapping of Fhb2 in wheat provides tightly linked markers that can reduce linkage drag associated with marker assisted selection of Fhb2 and aid the pyramiding of different resistance loci for wheat improvement.

Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q . Fine mapping Fhb4, a major QTLs conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.)
Theor Appl Genet, 2010,121:147-156.

DOI:10.1007/s00122-010-1298-5URL [本文引用: 1]
Qfhi.nau-4B is a major quantitative trait locus (QTL) against Fusarium graminearum infection identified in the Fusarium head blight-resistant germplasm Wangshuibai. To fine map this QTL, a recombinant inbred line (RIL) population of 530 lines derived from Nanda2419×Wangshuibai and the BC3F2 population derived from the cross of a Qfhi.nau-4B near isogenic line (NIL) with susceptible cultivar Mianyang 99-323 as the recurrent parent were screened for recombinants occurred between microsatellite markers Xbarc20 and Xwmc349 that flank Qfhi.nau-4B. A total of 95 recombinants were obtained, including 45 RIL recombinants obtained through reverse-selection of Qfhi.nau-5A and 50 NIL recombinants from the BC3F2 population. Genotyping these recombinant lines with 22 markers mapping to the Xbarc20 and Xwmc349 interval revealed fourteen genotypes of the RIL recombinants as well as of the NIL recombinants. Two-year field evaluation of their resistance to Fusarium infection showed that these lines could be clearly classified into two groups according to percentage of infected spikes. The more resistant class had over 60% less infection than the susceptible class and were common to have Wangshuibai chromatin in the 1.7-cM interval flanked by Xhbg226 and Xgwm149. None of the susceptible recombinants had this Wangshuibai chromatin. Qfhi.nau-4B was thus confined between Xhbg226 and Xgwm149 and named Fhb4. The interval harboring Fhb4 was mapped to 4BL5-0.86–1.00 bin using Chinese Spring deletion lines, a region with about 5.7 times higher recombination rate than the genome average. This study established the basis for map-based cloning of Fhb4.

Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, An X, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q . Precise mappingFhb5, a major QTLs conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.)
Theor Appl Genet, 123:1055-1063.

DOI:10.1007/s00122-011-1647-zURLPMID:21739138 [本文引用: 1]
Qfhi.nau-5A is a major quantitative trait locus (QTL) against Fusarium graminearum infection in the resistant wheat germplasm Wangshuibai. Genetic analysis using BC(3)F(2) and BC(4)F(2) populations, derived from selfing two near-isogenic lines (NIL) heterozygous at Qfhi.nau-5A that were developed, respectively, with Mianyang 99-323 and PH691 as the recurrent parent, showed that Qfhi.nau-5A inherited like a single dominant gene. This QTL was thus designated as Fhb5. To fine map it, these two backcross populations and a recombinant inbred line (RIL) population derived from Nanda2419?×?Wangshuibai were screened for recombinants occurring between its two flanking markers Xbarc56 and Xbarc100. Nineteen NIL recombinants were identified from the two backcross populations and nine from the RIL population. In the RIL recombinant selection process, selection against Fhb4 present in the RIL population was incorporated. Genotyping these recombinant lines with ten markers mapping to the Xbarc56-Xbarc100 interval revealed four types of Mianyang 99-323-derived NIL recombinants, three types of PH691-derived NIL recombinants, and four types of RIL recombinants. In different field trials, the percentage of infected spikes of these lines displayed a distinct two-peak distribution. The more resistant class had over 55% less infection than the susceptible class. Common to these resistant genotypes, the 0.3-cM interval flanked by Xgwm304 and Xgwm415 or one of these two loci was derived from Wangshuibai, while none of the susceptible recombinants had Wangshuibai chromatin in this interval. This interval harboring Fhb5 was mapped to the pericentromeric C-5AS3-0.75 bin through deletion bin mapping. The precise localization of Fhb5 will facilitate its utilization in marker-assisted wheat breeding programs.

Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S . Molecular cytogenetic characterization of alien introgressions with geneFhb3 for resistance to Fusarium head blight disease of wheat
Theor Appl Genet, 2008,117:1155-1166.

DOI:10.1007/s00122-008-0853-9URL [本文引用: 1]
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n=44) and T14 (2n=44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S+T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S+T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.

Cainong J C, Bockus W W, Feng Y G, Chen P D, Qi L L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S . Chromosome engineering, mapping, and transferring of resistance toFusarium head blight disease from Elymus tsukushiensis into wheat
Theor Appl Genet, 2015,128:1019-1027.

DOI:10.1007/s00122-015-2485-1URLPMID:25726000 [本文引用: 1]
This manuscript describes the transfer and molecular cytogenetic characterization of a novel source of Fusarium head blight resistance in wheat. Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe [telomorph = Gibberella zeae (Schwein. Fr.) Petch] is an important disease of bread wheat, Triticum aestivum L. (2n = 6x = 42, AABBDD) worldwide. Wheat has limited resistance to FHB controlled by many loci and new sources of resistance are urgently needed. The perennial grass Elymus tsukushiensis thrives in the warm and humid regions of China and Japan and is immune to FHB. Here, we report the transfer and mapping of a major gene Fhb6 from E. tsukushiensis to wheat. Fhb6 was mapped to the subterminal region in the short arm of chromosome 1E(ts)#1S of E. tsukushiensis. Chromosome engineering was used to replace corresponding homoeologous region of chromosome 1AS of wheat with the Fhb6 associated chromatin derived from 1E(ts)#1S of E. tsukushiensis. Fhb6 appears to be new locus for wheat as previous studies have not detected any FHB resistance QTL in this chromosome region. Plant progenies homozygous for Fhb6 had a disease severity rating of 7 % compared to 35 % for the null progenies. Fhb6 has been tagged with molecular markers for marker-assisted breeding and pyramiding of resistance loci for effective control of FHB.

Guo J, Zhang X L, Hou Y L, Cai J J, Shen X R, Zhou T T, Xu H H, Ohm H W, Wang H W, Li A F, Han F P, Wang H G, Kong L R . High-density mapping of the major FHB resistance geneFhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection
Theor Appl Genet, 2015,128:2301-2316.

DOI:10.1007/s00122-015-2586-xURLPMID:26220223 [本文引用: 1]
Wheat lines with shortened Th. ponticum chromatin carrying Fhb7 and molecular markers linked to Fhb7 will accelerate the transfer of Fhb7 to breeding lines and provide an important resource for future map-based cloning of this gene. Fusarium head blight is a major wheat disease globally. A major FHB resistance gene, designated as Fhb7, derived from Thinopyrum ponticum, was earlier transferred to common wheat, but was not used in wheat breeding due to linkage drag. The aims of this study were to (1) saturate this FHB resistance gene region; (2) develop and characterize secondary translocation lines with shortened Thinopyrum segments carrying Fhb7 using ph1b; (3) pyramid Fhb7 and Fhb1 by marker-assisted selection. Fhb7 was mapped in a 1.7 cM interval that was flanked by molecular markers XsdauK66 and Xcfa2240 with SSR, diversity arrays technology, EST-derived and conserved markers. KS24-2 carrying Fhb7 was analyzed with molecular markers and genomic in situ hybridization, confirming it was a 7DS.7el2L Robertsonian translocation. To reduce the Thinopyrum chromatin segments carrying Fhb7, a BC1F2 population (Chinese Spring ph1bph1b*2/KS24-2) was developed and genotyped with the markers linked to Fhb7. Two new translocation lines (SDAU1881 and SDAU1886) carrying Fhb7 on shortened alien segments (approximately 16.1 and 17.3% of the translocation chromosome, respectively) were developed. Furthermore, four wheat lines (SDAU1902, SDAU1903, SDAU1904, and SDAU1906) with the pyramided markers flanking Fhb1 and Fhb7 were developed and the FHB responses indicated lines with mean NDS ranging from 1.3 to 1.6 had successfully combined Fhb7 and Fhb1. Three new molecular markers associated with Fhb7 were identified and validated in 35 common wheat varieties. The translocation lines with shortened alien segments carrying Fhb7 (and Fhb1) and the markers closely linked to Fhb7 will be useful for improving wheat scab resistance.

Bai G H, Kolb F L, Shaner G, Domier L L . Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat
Phytopathology, 1999,89:343-348.

DOI:10.1094/PHYTO.1999.89.4.343URLPMID:18944781 [本文引用: 1]
Scab is a destructive disease of wheat. To accelerate development of scab-resistant wheat cultivars, molecular markers linked to scab resistance genes have been identified by using recombinant inbred lines (RILs) derived by single-seed descent from a cross between the resistant wheat cultivar Ning 7840 (resistant to spread of scab within the spike) and the susceptible cultivar Clark. In the greenhouse, F(5), F(6), F(7), and F(10) families were evaluated for resistance to spread of scab within a spike by injecting about 1,000 conidiospores of Fusarium graminearum into a central spikelet. Inoculated plants were kept in moist chambers for 3 days to promote initial infection and then transferred to greenhouse benches. Scab symptoms were evaluated four times (3, 9, 15, and 21 days after inoculation). The frequency distribution of scab severity indicated that resistance to spread of scab within a spike was controlled by a few major genes. DNA was isolated from both parents and F(9) plants of the 133 RILs. A total of 300 combinations of amplified fragment length polymorphism (AFLP) primers were screened for polymorphisms using bulked segregant analysis. Twenty pairs of primers revealed at least one polymorphic band between the two contrasting bulks. The segregation of each of these bands was evaluated in the 133 RILs. Eleven AFLP markers showed significant association with scab resistance, and an individual marker explained up to 53% of the total variation (R(2)). The markers with high R(2) values mapped to a single linkage group. By interval analysis, one major quantitative trait locus for scab resistance explaining up to 60% of the genetic variation for scab resistance was identified. Some of the AFLP markers may be useful in marker-assisted breeding to improve resistance to scab in wheat.

中华人民共和国农业行业标准NY/T 1443.4-2007, 小麦病虫性评价技术规范, 第4部分: 小麦抗赤霉病评价技术规范

[本文引用: 1]

Agricultural Standard of the People’s Republic of China, NY/T 1443.4-2007. Rules for Resistance Evaluation of Wheat to Diseases and Insect Pests, Part 4. Rule for Resistance Evaluation to Wheat Scab
(in Chinese).

[本文引用: 1]

Han F P, Fedak G, Benabdelmouna A, Armstrong K C, Ouellet T . Characterization of six wheat ×Thinopyrum intermedium derivativesby GISH, RFLP and multicolor GISH
Genome, 2003,46:490-495.

DOI:10.1139/g03-032URLPMID:12834067 [本文引用: 1]
Restriction fragment length polymorphism (RFLP) analysis and multicolor genomic in situ hybridization (GISH) are useful tools to precisely characterize genetic stocks derived from crosses of wheat (Triticum aestivum) with Thinopyrum intermedium and Thinopyrum elongatum. The wheat x Th. intermedium derived stocks designated Z1, Z2, Z3, Z4, Z5, and Z6 were initially screened by multicolor GISH using Aegilops speltoides genomic DNA for blocking and various combinations of genomic DNA from Th. intermedium, Triticum urartu, and Aegilops tauschii for probes. The probing (GISH) results indicated that lines Z1 and Z3 were alien disomic addition lines with chromosome numbers of 2n = 44. Z2 was a substitution line in which chromosome 2D was substituted by a pair of Th. intermedium chromosomes; this was confirmed by RFLP and muticolour GISH. Z4 (2n = 44) contained two pairs of wheat--Th. intermedium translocated chromosomes; one pair involved A-genome chromosomes, the other involved D- and A- genome chromosomes. Z5 (2n = 44) contained one pair of wheat--Th. intermedium translocated chromosomes involving the D- and A-genome chromosomes of wheat. Z6 (2n = 44) contained one pair of chromosomes derived from Th. intermedium plus another pair of translocated chromosomes involving B-genome chromosomes of wheat Line Z2 was of special interest because it has some resistance to infection by Fusarium graminearum.

Zhang L, Luo P G, Ren Z L, Zhang H Y . Controlling fusarium head blight of wheat (Triticum aestivum L.) with genetics
Adv Biosci Biotech, 2011,2:263-270.

DOI:10.3835/plantgenome2015.04.0028URLPMID:27898754 [本文引用: 1]
Fusarium head blight (FHB) is one of the most important wheat ( L.) diseases worldwide, and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the United States to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing (GBS) was used to identify 19,992 single-nucleotide polymorphisms (SNPs) covering all 21 wheat chromosomes. Marker-trait associations were performed with different statistical models, the most appropriate being a compressed mixed linear model (cMLM) controlling for relatedness and population structure. Ten significant SNP-trait associations were detected on chromosomes 4A, 6A, 7A, 1D, 4D, and 7D, and multiple SNPs were associated with on chromosome 3B. Although combination of favorable alleles of these SNPs resulted in lower levels of severity (SEV), incidence (INC), and deoxynivalenol concentration (DON), lines carrying multiple beneficial alleles were in very low frequency for most traits. These SNPs can now be used for creating new breeding lines with different combinations of favorable alleles. This is one of the first GWAS using genomic resources from the International Wheat Genome Sequencing Consortium (IWGSC).

Wang X E, Chen P D, Liu D J, Zhang P, Zhou B, Friebe B, Gill B S . Molecular cytogenetic characterization ofRoegneria ciliaris chromosome additions in common wheat
Theor Appl Genet, 2001,102:651-657.

DOI:10.1007/s001220051693URL [本文引用: 1]
The development of alien addition lines is important both for transferring useful genes from related species into common wheat and for studying the relationship between alien chromosomes and those of wheat. Roegneria ciliaris (2n=4x=28, ScScYcYc) is reported to be a potential source of resistance to wheat scab, which may be useful in wheat improvement. The amphiploid common wheat-R. ciliaris and BC1F7 or BC2F6 derivatives were screened by C-banding, genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH) and restriction fragment length polymorphism (RFLP) for the presence of R. ciliaris chromatin introgressed into wheat. Six lines were identified as disomic chromosome additions (DA), one as a ditelosomic addition (Dt), two as double disomic additions (dDA) and one as a monosomic chromosome addition (MA). RFLP analysis using wheat homoeologous group-specific clones indicated that the R. ciliaris chromosomes involved in these lines belong to groups 1, 2, 3, 5 and 7. The genomic affinities of the added R. ciliaris chromosomes were determined by FISH analysis using the repetitive sequence pCbTaq4.14 as a probe. These data suggest that the R. ciliaris chromosomes in five lines belong to the Sc genome. Based on the molecular cytogenetic data, the lines are designated as DA2Sc#1, Dt2Sc#1L, DA3Sc#1, dDA1Sc#2+5Yc#1, DA5Yc#1, DA7Sc#1, DA7Yc#1 and MA?Yc#1. Based on the present and previous work, 8 of the 14 chromosomes of R. ciliaris have been transferred into wheat.

王林生, 张雅莉, 南广慧 . 普通小麦-大赖草易位系T5AS-7Lr.7LrS分子细胞遗传学鉴定
作物学报, 2018,44:1442-1447.

DOI:10.3724/SP.J.1006.2018.01442URL [本文引用: 1]
大赖草对赤霉病具有较好的抗性, 将大赖草赤霉病抗性基因转入普通小麦, 对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上, 采用 60Co-γ射线(1200 Rad, 剂量率100 Rad min -1)处理小麦-大赖草二体附加系DA7Lr, 并用处理后的花粉授给去雄的普通小麦中国春, 对其M1代种子根尖细胞有丝分裂中期染色体进行GISH分析, 获得1株具有一条普通小麦-大赖草易位染色体的植株, 对其自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期I观察发现, 2条易位染色体形成了稳定的环状二价体, 表明该植株为纯合体。利用顺序GISH-双色FISH分析, 结合C-分带、小麦D组专化探针Oligo-pAs1-2和B组专化探针Oligo-pSc119.2-2, 进一步鉴定出该易位系为T5AS-7LrL·7LrS, 同时筛选出可追踪该易位系的3个EST-STS分子标记, 即BE591127、BQ168298和BE591737。该易位系的育成也为小麦赤霉病遗改良提供了新种质。
Wang L S, Zhang Y L, Nan G H . Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation line T5AS-7Lr.7LrS
Acta Agron Sin, 2018,44:1442-1447 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2018.01442URL [本文引用: 1]
大赖草对赤霉病具有较好的抗性, 将大赖草赤霉病抗性基因转入普通小麦, 对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上, 采用 60Co-γ射线(1200 Rad, 剂量率100 Rad min -1)处理小麦-大赖草二体附加系DA7Lr, 并用处理后的花粉授给去雄的普通小麦中国春, 对其M1代种子根尖细胞有丝分裂中期染色体进行GISH分析, 获得1株具有一条普通小麦-大赖草易位染色体的植株, 对其自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期I观察发现, 2条易位染色体形成了稳定的环状二价体, 表明该植株为纯合体。利用顺序GISH-双色FISH分析, 结合C-分带、小麦D组专化探针Oligo-pAs1-2和B组专化探针Oligo-pSc119.2-2, 进一步鉴定出该易位系为T5AS-7LrL·7LrS, 同时筛选出可追踪该易位系的3个EST-STS分子标记, 即BE591127、BQ168298和BE591737。该易位系的育成也为小麦赤霉病遗改良提供了新种质。

丁春邦, 周永红 . 小麦族拟鹅观草属研究进展
四川农业大学学报, 2004,22:269-273.

[本文引用: 1]

Ding C B, Zhou Y H . Advances in research on Pseudoroegneria in the tribe Triticeae
J Sichuan Agric Univ, 2004,22:269-273 (in Chinese with English abstract).

[本文引用: 1]

王益, 康厚扬, 原红军, 蒋云, 张海琴, 周永红 . 普通小麦与华山新麦草衍生后代的农艺性状和细胞遗传学研究
四川农业大学学报, 2008,26:405-410.

[本文引用: 1]

Wang Y, Kang H Y, Yuan H J, Jiang Y, Zhang H Q, Zhou Y H . Cytogenetic and morphological studies on the derivative progenies of Triticum aestivum × Psathyrostachys huashanica
J Sichuan Agric Univ, 2008,26:405-410 (in Chinese with English abstract).

[本文引用: 1]

张璐璐, 陈士强, 李海凤, 刘慧萍, 戴毅, 高勇, 陈建民 . 小麦-长穗偃麦草7E抗赤霉病易位系培育
中国农业科学, 2016,49:3477-3488.

DOI:10.3864/j.issn.0578-1752.2016.18.002URL [本文引用: 2]
【目的】将二倍体长穗偃麦草7E染色体导入主栽小麦背景,培育小麦-长穗偃麦草7E染色体抗赤霉病易位系,为小麦抗赤霉病遗传改良利用外源优良基因提供新种质。【方法】利用中国春-长穗偃麦草7E代换系DS7E(7B)与扬麦16杂交的F2种子进行60Co辐射(30 000 rad)和种植,表现型选择收获存活M1植株的种子,从M2连续通过表型农艺性状选择、单花滴注法进行赤霉病抗性鉴定和长穗偃麦草7E染色体或染色体臂特异分子标记PCR扩增筛选,最后在M4代对中选材料以长穗偃麦草基因组DNA为探针进行基因组原位杂交(genomic in situ hybridization,GISH)证实。【结果】M1选择了赤霉病发病率不同的13个单株进行繁殖。利用前期开发的长穗偃麦草7E染色体和7EL、7ES特异标记检测13株的后代M2单株,获得含有长穗偃麦草7EL片段7株和7ES片段14株;对21株M2衍生的222个M3植株进行特异标记检测,共选择含有长穗偃麦草7EL片段13株和7ES片段3株;利用来自12株M3的后代(M4)进行GISH,共9株M3的后代具有小麦-长穗偃麦草易位染色体,体细胞染色体2n=42。2株M3的后代显示附加2条长穗偃麦草染色体短臂,体细胞染色体2n=44。连续多年多途径的筛选,获得4份材料,3份材料均为长穗偃麦草7E染色体长臂易位系,命名为TW-7EL1、TW-7EL2和TW-7EL3。1份为7E染色体短臂附加系,命名为W-DA7ES,最后所获得的材料是源自M1代2个单株。连续3年赤霉病抗性鉴定结果表明长穗偃麦草7EL易位系抗性高,发病率明显低于中国春和扬麦16,与苏麦3号相当,而7ES附加系的赤霉病抗性明显较低,发病率明显高于7EL易位系。【结论】通过赤霉病抗性鉴定、染色体特异分子标记筛选和GISH证实相结合培育了小麦-长穗偃麦草7EL抗赤霉病易位系,长穗偃麦草易位片段鉴定快速和准确。二倍体长穗偃麦草7E染色体长臂中含有抗小麦赤霉病的基因。
Zhang L L, Chen S Q, Li H F, Liu H P, Dai Y, Gao Y, Chen J M . Development of wheat- Thinopyrum elongatum translocation lines resistant to Fusarium head blight
Sci Agric Sin, 2016,49:3477-3488 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2016.18.002URL [本文引用: 2]
【目的】将二倍体长穗偃麦草7E染色体导入主栽小麦背景,培育小麦-长穗偃麦草7E染色体抗赤霉病易位系,为小麦抗赤霉病遗传改良利用外源优良基因提供新种质。【方法】利用中国春-长穗偃麦草7E代换系DS7E(7B)与扬麦16杂交的F2种子进行60Co辐射(30 000 rad)和种植,表现型选择收获存活M1植株的种子,从M2连续通过表型农艺性状选择、单花滴注法进行赤霉病抗性鉴定和长穗偃麦草7E染色体或染色体臂特异分子标记PCR扩增筛选,最后在M4代对中选材料以长穗偃麦草基因组DNA为探针进行基因组原位杂交(genomic in situ hybridization,GISH)证实。【结果】M1选择了赤霉病发病率不同的13个单株进行繁殖。利用前期开发的长穗偃麦草7E染色体和7EL、7ES特异标记检测13株的后代M2单株,获得含有长穗偃麦草7EL片段7株和7ES片段14株;对21株M2衍生的222个M3植株进行特异标记检测,共选择含有长穗偃麦草7EL片段13株和7ES片段3株;利用来自12株M3的后代(M4)进行GISH,共9株M3的后代具有小麦-长穗偃麦草易位染色体,体细胞染色体2n=42。2株M3的后代显示附加2条长穗偃麦草染色体短臂,体细胞染色体2n=44。连续多年多途径的筛选,获得4份材料,3份材料均为长穗偃麦草7E染色体长臂易位系,命名为TW-7EL1、TW-7EL2和TW-7EL3。1份为7E染色体短臂附加系,命名为W-DA7ES,最后所获得的材料是源自M1代2个单株。连续3年赤霉病抗性鉴定结果表明长穗偃麦草7EL易位系抗性高,发病率明显低于中国春和扬麦16,与苏麦3号相当,而7ES附加系的赤霉病抗性明显较低,发病率明显高于7EL易位系。【结论】通过赤霉病抗性鉴定、染色体特异分子标记筛选和GISH证实相结合培育了小麦-长穗偃麦草7EL抗赤霉病易位系,长穗偃麦草易位片段鉴定快速和准确。二倍体长穗偃麦草7E染色体长臂中含有抗小麦赤霉病的基因。

丛雯雯, 郭长虹 . 小麦近缘野生植物的赤霉病抗源筛选及其利用
分子植物育种, 2010,8:1043-1049.

[本文引用: 1]

Cong W W, Guo C H . Selection and utilization of resistance sources to Fusarium head blight in wheat wild relatives
Mol Plant Breed, 2010,8:1043-1049 (in Chinese with English abstract).

[本文引用: 1]

Li H J, Wang X M . Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat
J Genet Genomics, 2009,36:557-565.

DOI:10.1016/S1673-8527(08)60147-2URL [本文引用: 1]

Abstract

Thinopyrum ponticum and Th. intermedium provide superior resistance against various diseases in wheat (Ttricum aestivum). Because of their readily crossing with wheat, many genes for disease resistance have been introduced from the wheatgrasses into wheat. Genes for resistance to leaf rust, stem rust, powdery mildew, Barley yellow dwarf virus, Wheat streak mosaic virus, and its vector, the wheat curl mite, have been transferred into wheat by producing chromosome translocations. These genes offer an opportunity to improve resistance of wheat to the diseases; some of them have been extensively used in protecting wheat from damage of the diseases. Moreover, new resistance to diseases is continuously detected in the progenies of wheat-Thinopyrum derivatives. The present article summaries characterization and application of the genes for fungal and viral disease-resistance derived from Th. ponticum and Th. intermedium.

Oliver R E, Cai X, Xu S S, Chen X, Stack R W . Wheat-alien species derivatives: a novel source of resistance toFusarium head blight in wheat
Crop Sci, 2005,45:1353-1360.

DOI:10.2135/cropsci2004.0503URL [本文引用: 1]

Zeng J, Cao W, Fedak G, Sun S, Mccallum B, Fetch T, Xue A, Zhou Y . Molecular cytological characterization of two novel durum-Thinopyrum intermedium partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight
Hereditas, 2013,150:10-16.

DOI:10.1111/j.1601-5223.2012.02262.xURL [本文引用: 1]
Thinopyrum intermedium, a wild relative of wheat, is an excellent source of disease resistance. Two novel partial amphiploids, 08-47-50 and 08-53-55 (2n = 6x = 42), were developed from wide crosses between durum wheat and Th. intermedium. Meiotic analysis showed that pollen mother cells of the two partial amphiploids formed an average 20.49 bivalents for 08-47-50 and 20.67 bivalents for 08-53-55, indicating that they are basically cytologically stable. GISH analysis revealed that the two partial amphiploids carried different chromosome compositions. 08-47-50 had fourteen chromosomes from Th. intermedium and its alien chromosomes included six St-, four Ee- and four Ee-St translocated chromosomes, whereas 08-53-55 had four St- and ten Ee-St translocated chromosomes. Fungal disease evaluation indicated that both partial amphiploids had a high level of resistance to FHB, leaf rust and stem rust race Ug99. These two novel partial amphiploids with multiple disease resistance could be used as a new source of multiple disease resistance in bread wheat and durum wheat breeding programs.

Turner M K, De Haan L R, Jin Y, Anderson J . Wheatgrass-wheat partial amphiploids as a novel source of stem rust andFusarium head blight resistance
Crop Sci, 2013,53:1994-2005.

DOI:10.2135/cropsci2012.10.0584URL [本文引用: 2]
Perennial wheatgrasses (Thinopyrum spp.) are recognized sources of genetic variation for annual wheat (Triticum aestivum L.) improvement. Amphiploid lines made by crossing Thinopyrum spp. and T. aestivum (common wheat) can increase resilience of wheat to pathogens and abiotic stress. However, lack of pairing between chromosomes of Thinopyrum and Triticum species reduces genome stability, seed set, and perenniality. Fifty-two wheat-wheatgrass amphiploids from the perennials Thinopyrum intermedium (Host) Barkworth & D. R. Dewey, Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey, and Thinopyrum junceum (L.) A. Love crossed with the annuals T. aestivum, Triticum turgidum L. subsp. carthlicum (Nevski) A. Love & D. Love (syn. Triticum carthlicum Nevski), and Triticum turgidum subsp. durum (Desf.) Husn, were screened for wheat stem rust (caused by Puccinia graminis) and Fusarium head blight (FHB) (caused by Fusarium graminearum) reaction and evaluated for winter hardiness and perenniality. Twenty-four of 48 amphiploid lines were resistant to all stem rust races screened, including TTKSK (syn. Ug99), TRTTF, and common U. S. races. Of the 30 amphiploid lines point inoculated with F. graminearum, 21 were resistant based on the percentage of infected spikelets and the percent of visually scabby kernels. Three sources each of potentially novel stem rust and uncharacterized FHB resistance were identified and may be useful for wheat improvement. Two lines showed perenniality in Minnesota and may be valuable as cold-tolerant perennial wheat germplasm. Seven lines representing two families showed potential genetic stability based on chromosome counts and seed production.

Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F . Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusariumhead blight
J Genet Genomics, 2013,39:103-110.

DOI:10.1016/j.jgg.2011.11.008URLPMID:22361509 [本文引用: 1]
Thinopyrum elongatum (2n=2x=14, EE), a wild relative of wheat, has been suggested as a potentially novel source of resistance to several major wheat diseases including Fusarium Head Blight (FHB). In this study, a series of wheat (cv. Chinese Spring, CS) substitution and ditelosomic lines, including Th. elongatum additions, were assessed for Type II resistance to FHB. Results indicated that the lines containing chromosome 7E of Th. elongatum gave a high level of resistance to FHB, wherein the infection did not spread beyond the inoculated floret. Furthermore, it was determined that the novel resistance gene(s) of 7E was located on the short-arm (7ES) based on sharp difference in FHB resistance between the two 7E ditelosomic lines for each arm. On the other hand, Th. elongatum chromosomes 5E and 6E likely contain gene(s) for susceptibility to FHB because the disease spreads rapidly within the inoculated spikes of these lines. Genomic in situ hybridization (GISH) analysis revealed that the alien chromosomes in the addition and substitution lines were intact, and the lines did not contain discernible genomic aberrations. GISH and multicolor-GISH analyses were further performed on three translocation lines that also showed high levels of resistance to FHB. Lines TA3499 and TA3695 were shown to contain one pair of wheat-Th. elongatum translocated chromosomes involving fragments of 7D plus a segment of the 7E, while line TA3493 was found to contain one pair of wheat-Th. elongatum translocated chromosomes involving the D- and A-genome chromosomes of wheat. Thus, this study has established that the short-arm of chromosome 7E of Th. elongatum harbors gene(s) highly resistant to the spreading of FHB, and chromatin of 7E introgressed into wheat chromosomes largely retained the resistance, implicating the feasibility of using these lines as novel material for breeding FHB-resistant wheat cultivars.

Liu Z H, Xu M, Xian Z P, Li X, Chen W Q, Luo P G . Registration of the novel wheat lines L658, L693, L696, and L699, with resistance toFusarium head blight, stripe rust, and powdery mildew
J Plant Regist, 2015,9:121-124.

DOI:10.3198/jpr2014.01.0003crgURL [本文引用: 1]

Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong LR . A genetic map ofLophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust
Theor Appl Genet, 2011,122:263-270.

DOI:10.1007/s00122-010-1441-3URL [本文引用: 1]
The leaf rust resistance gene Lr19 and Fusarium head blight (FHB) resistance quantitative trait loci (QTL) derived from the wild wheatgrass Lophopyrum ponticum have been located on chromosome 7E. The main objectives of the present study were to develop a genetic map of chromosome 7E and map the two resistance loci using a population of 237 F(7:8) recombinant inbred lines (RILs) derived from a cross between two Thatcher-L. ponticum substitution lines, K11463 (7el(1)(7D)) and K2620 (7el(2)(7D)). 532 G-SSR, E-SSR and STS markers from wheat chromosome group 7 were screened in the parent lines. Of these, 118 markers were polymorphic, with a polymorphism frequency of 22.2%. A genetic map of L. ponticum chromosome 7E was constructed with 64 markers, covering 95.76 cM, with an average genetic distance of 1.47 cM between markers. The major FHB resistance locus, temporarily assigned as FhbLoP, was mapped to the very distal region of the long arm of chromosome 7E within a 3.71 cM interval flanked by Xcfa2240 and Xswes19, which accounts for 30.46% of the phenotypic variance. Lr19 was bracketed by Xwmc273 and XBE404744, with a map distance of 1.54 and 1.43 cM from either side, respectively. The closely linked markers identified in this study will be helpful for marker-assisted introgression of the L. ponticum-derived FhbLoP and Lr19 genes into elite cultivars of wheat, and the development of a genetic map will accelerate the map-based cloning of these two genes.

史文琦, 杨立军, 冯洁, 张旭, 曾凡松, 向礼波, 汪华, 喻大昭 . 小麦赤霉病流行区镰刀菌致病种及毒素化学型分析
植物病理学报, 2011,41:486-494.

URL [本文引用: 1]
为从分子水平上明确小麦赤霉病流行区镰刀菌致病种及其B 型毒素化学型的分布特点,本研究对2008 年度采自四川、重庆、湖北、安徽、江苏、河南6 省33 县市的赤霉病穗上分离获得的433 个镰刀菌单孢菌株,用鉴定种和鉴定B 型毒素化学型的特异性引物进行了鉴定分析。致病种检测结果表明,四川病穗检测到Fusarium asiaticum、F. graminearum、F.avenaceum 和F. meridionale 4 个镰刀菌种,重庆、湖北、安徽和江苏病穗检测到F. asiaticum 和F. graminearum 2 个种,河南病穗仅检测到F. graminearum 1 个种。毒素化学型检测结果表明,Nivalenol(NIV)是四川和重庆镰刀菌主要毒素化学型,Deoxynivalenol(DON)是湖北、河南、安徽和江苏镰刀菌主要毒素化学型;将DON 化学型进一步划分为3-AcDON 和15-AcDON 显示,四川、湖北、江苏镰刀菌毒素以3-AcDON 为主,安徽镰刀菌毒素为3-AcDON 和15-AcDON 两者参半,河南镰刀菌全部产生15-AcDON。结果揭示,F. asiaticum 是四川、重庆、湖北和江苏等赤霉病流行麦区的优势致病种;镰刀菌产生的DON 和NIV 毒素化学型存在明显的地域分布,长江上游的麦区以NIV 为优势化学型,长江中下游麦区以DON 为优势化学型;镰刀菌致病种与DON 毒素的化学型间存在一定关系。
Shi W Q, Yang L J, Feng J, Zhang X, Zeng F S, Xiang L B, Wang H, Yu D Z . Analysis on the population structure of Fusarium pathogenic spp. and its mycotoxin chemotypes in Fusarium head blight epidemic region
Acta Phytopathol Sin, 2011,41:486-494 (in Chinese with English abstract).

URL [本文引用: 1]
为从分子水平上明确小麦赤霉病流行区镰刀菌致病种及其B 型毒素化学型的分布特点,本研究对2008 年度采自四川、重庆、湖北、安徽、江苏、河南6 省33 县市的赤霉病穗上分离获得的433 个镰刀菌单孢菌株,用鉴定种和鉴定B 型毒素化学型的特异性引物进行了鉴定分析。致病种检测结果表明,四川病穗检测到Fusarium asiaticum、F. graminearum、F.avenaceum 和F. meridionale 4 个镰刀菌种,重庆、湖北、安徽和江苏病穗检测到F. asiaticum 和F. graminearum 2 个种,河南病穗仅检测到F. graminearum 1 个种。毒素化学型检测结果表明,Nivalenol(NIV)是四川和重庆镰刀菌主要毒素化学型,Deoxynivalenol(DON)是湖北、河南、安徽和江苏镰刀菌主要毒素化学型;将DON 化学型进一步划分为3-AcDON 和15-AcDON 显示,四川、湖北、江苏镰刀菌毒素以3-AcDON 为主,安徽镰刀菌毒素为3-AcDON 和15-AcDON 两者参半,河南镰刀菌全部产生15-AcDON。结果揭示,F. asiaticum 是四川、重庆、湖北和江苏等赤霉病流行麦区的优势致病种;镰刀菌产生的DON 和NIV 毒素化学型存在明显的地域分布,长江上游的麦区以NIV 为优势化学型,长江中下游麦区以DON 为优势化学型;镰刀菌致病种与DON 毒素的化学型间存在一定关系。

俞刚, 陈利锋, 谢卫平, 柴一秋 . 禾谷镰孢的产毒与致病性
南京农业大学学报, 2001,24(4):19-23.

[本文引用: 1]

Yu G, Chen L F, Xie W P, Chai Y Q . Correlation of trichothecene producing potential to pathogenicity of Fusarium graminearum on wheat
J Nanjing Agric Univ, 2001,24(4):19-23 (in Chinese with English abstract).

[本文引用: 1]

刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保 . 小麦赤霉病抗性改良研究进展
麦类作物学报, 2016,36:51-57.

[本文引用: 1]

Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B . Review on improvement of Fusarium head blight resistance in wheat
J Triticeae Crops, 2016,36:51-57 (in Chinese with English abstract).

[本文引用: 1]

唐洪, 彭恒, 刘明龙, 杨建华, 吴吉林 . 小麦赤霉病田间病情与抽穗扬花期气象条件和病粒率关系
中国植保导刊, 2012,32(7):10-12.

[本文引用: 1]

Tang H, Peng H, Liu M L, Yang J H, Wu J L . Relationships among field condition of wheat scab and climate and percentage of Fusarium infected kernels at the heading and flowering stage
China Plant Protect, 2012,32:10-12 (in Chinese with English abstract).

[本文引用: 1]

Mesterhazy A . Types and components of resistance toFusarium head blight of wheat
Plant breed, 1995,114:377-386.

DOI:10.1007/s00122-003-1272-6URLPMID:12768240 [本文引用: 1]
Fusarium head blight (FHB, scab) causes severe yield and quality losses, but the most serious concern is the mycotoxin contamination of cereal food and feed. The cultivation of resistant varieties may contribute to integrated control of this fungal disease. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. The aim of this work was to detect QTLs for combined type I and type II resistance against FHB and estimate their effects in comparison to the QTLs identified previously for type II resistance. A population of 364, F1 derived doubled-haploid (DH) lines from the cross 'CM-82036' (resistant)/'Remus' (susceptible) was evaluated for components of FHB resistance during 2 years under field conditions. Plants were inoculated at anthesis with a conidial suspension of Fusarium graminearum or Fusarium culmorum. The crop was kept wet for 20 h after inoculation by mist-irrigation. Disease severity was assessed by visual scoring. Initial QTL analysis was performed on 239 randomly chosen DH lines and extended to 361 lines for putative QTL regions. Different marker types were applied, with an emphasis on PCR markers. Analysis of variance, as well as simple and composite interval mapping, revealed that two genomic regions were significantly associated with FHB resistance. The two QTLs on chromosomes 3B (Qfhs.ndsu-3BS) and 5A (Qfhs.ifa-5A) explained 29 and 20% of the phenotypic variance, respectively, for visual FHB severity. Qfhs.ndsu-3BS appeared to be associated mainly with resistance to fungal spread, and Qfhs.ifa-5A primarily with resistance to fungal penetration. Both QTL regions were tagged with flanking SSR markers. These results indicate that FHB resistance was under the control of two major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these two major QTLs appears feasible and should accelerate the development of resistant and locally adapted wheat cultivars.
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓梺顓ㄧ畱閸旀帗绻涘顔荤盎缂佺媴缍侀弻銊╁籍閸ヮ煈妫勯梺閫炲苯澧繛纭风節瀵濡搁埡浣虹潉闂佺ǹ鏈粙鎺楁偟椤忓牊鈷戠紓浣贯缚缁犳岸鏌涢埡鍌滃⒌妤犵偛鐗撴俊鎼佸Ψ椤旇棄鐦滈梺鑽ゅТ濞测晛顕i幘瀵哥彾闁哄洢鍨洪埛鎺懨归敐鍕劅闁衡偓閻楀牏绠鹃柛娑卞枟缁€瀣殽閻愭潙鐏寸€规洘鍎奸ˇ鎾煛閸☆參妾柟渚垮妼椤啰鎷犻煫顓烆棜濠碉紕鍋戦崐鎴﹀垂閸濆嫀娑㈠礃閵娧勬闂佸憡顨堥崐锝夊籍閸繄顦ㄩ梺闈浨归崕鎶筋敊閸ヮ剚鈷掗柛灞捐壘閳ь剚鎮傚畷鎰槹鎼达絿鐒兼繛鎾村焹閸嬫挾鈧娲忛崕鎶藉焵椤掑﹦绉靛ù婊冪埣閹垽宕卞Ο璇插伎濠碉紕鍋犻褎绂嶆ィ鍐╁€甸悷娆忓婢跺嫰鏌涢妸銉у煟闁靛棔绶氬鎾閻欌偓濞煎﹪姊洪棃娑氱畾闁告挻绻堥、娆撳即閵忊檧鎷绘繛鎾村焹閸嬫挻绻涙担鍐叉瘽閵娾晛鐒垫い鎺嗗亾闁宠鍨块崹楣冩惞椤愩垺鐏庨梻浣虹《閺傚倿宕归挊澶樺殨妞ゆ洍鍋撶€规洖銈搁幃銏ゅ传閸曨偆顓奸梻鍌氬€烽懗鍫曘€佹繝鍥风稏濠㈣埖鍔曠粈澶愭煛閸ャ儱鐏柛搴$У缁绘稑顔忛鑽ゅ嚬闂佺粯鎸鹃崰鏍蓟閿濆绫嶉柛顐亝椤ユ牜绱撴担鍓叉Ч婵$偘绮欏濠氭偄绾拌鲸鏅╅梺鍏肩ゴ閺呮繃顨欓梺璇叉唉椤煤濮椻偓瀹曟洘绺介弶鍡楁喘瀵濡烽敂鎯у笚闂傚倷绀侀悘婵嬵敄閸℃稑鐓曢柟閭﹀枤绾捐偐绱撴担璐細缂佺姷鍋ら弻娑㈠煘閹傚濠碉紕鍋戦崐鏍暜閹烘柡鍋撳鐓庡⒋闁诡喚鍋涚叅妞ゅ繐鎳愰崢閬嶆⒑瑜版帒浜伴柛銊ㄤ含濞戠敻宕奸弴鐔哄幗濡炪倖鎸鹃崳銉モ枔閺冨牊鐓冮悷娆忓閻忔挳鏌涢埞鍨姦鐎规洖宕灃闁告剬鍐嚙缂傚倸鍊烽懗鍫曟惞鎼淬劌鍌ㄥ┑鍌氭啞閸嬪鏌i幘铏崳闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖濡ゅ懏顥堟繛鎴炵懄閸犳劙姊虹涵鍛彧缂佽鐗嗛~蹇撁洪鍛姷闂佺粯鍔樼亸顏嗏偓姘緲椤儻顦抽柟鍛婂▕瀵寮撮姀鐘茶€垮┑掳鍊愰崑鎾绘煃瑜滈崜娆忈缚閿熺姷宓佸┑鐘叉处閸婄兘鏌涘┑鍡楃弸闁靛ň鏅滈悡銉╂煛閸ヮ煈娈斿ù婊堢畺濮婃椽宕ㄦ繝鍐弳闂佺娅曢敋妞ゎ偄绻愮叅妞ゅ繐瀚畵宥咁渻閵堝棙灏甸柛瀣戠粩鐔煎即閻旇櫣鐦堥梺鍐茬殱閸嬫捇鏌涢幇闈涙灈鐎殿喕鍗抽幃妤冩喆閸曨剛顦ㄩ梺鎼炲妼濞硷繝鎮伴鍢夌喓浜搁弽褌澹曞┑鐐村灦椤忣亪顢旈崼顐f櫅闂佽鍎虫晶搴e閽樺褰掓晲閸涱喛纭€闂佸疇妫勯ˇ浼村Φ閸曨垰绠f繝闈涙祩濡倗绱撴担鎴掑惈闁稿鍋熼幑銏犫攽鐎n亞顦ㄩ悷婊冪箳缁顫濋澶嬪瘜闂侀潧鐗嗗Λ妤佹叏閸岀偞鐓曞┑鐘插暞缁€瀣煏閸℃鈧湱缂撴禒瀣窛濠电姴瀚獮鍫ユ⒒娴e摜鏋冩俊妞煎妿濞嗐垽濡舵径濠勵槷闂佺粯妫冮弲鑼崲閸℃稒鐓曟繛鍡楁禋濡茬ǹ鈹戦鑲┬ら柍褜鍓濋~澶娒洪弽顐ょ濠电姴娲㈤埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣告啞濞诧箓宕滃▎鎾崇哗妞ゆ挾鍋愰弨浠嬫煟濡櫣浠涢柡鍡忔櫊閺屾稓鈧綆鍋嗛埥澶愭懚閻愬绠鹃柛鈩兩戠亸顓犵磼閻樺啿顥嬬紒杈ㄥ笧閳ь剨缍嗘禍鐐差潩閵娾晜鐓涢悗锝庝簽鏁堥梺鍝勮閸旀垿骞冮姀銈呬紶闁告洘鍩婄紞渚€寮诲☉姘e亾閿濆懎顣抽柟顔笺偢閺岀喖鎳犻銏犵秺椤㈡ɑ绺界粙璺ㄥ€為梺鎸庣箓閹冲秵绔熼弴鐐╂斀妞ゆ梻绮ㄧ紓姘舵煕濡姴娲ㄥ畵浣规叏濡炶浜鹃梺鍝勮閸婃洜鍙呭銈呯箰閸燁垶宕板顒夋富闁靛牆鍟悘顏堟煟閻斿弶娅婃鐐插暙閳诲酣骞欓崘鈺傛珜濠电偠鎻徊鎸庣仚婵犳鍠栭柊锝咁潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹憴鍕偞闁告挻绻勭划顓㈡偄閼茬儤妫冨畷銊╊敇閻愯弓鎲鹃梻鍌欒兌缁垶骞愰崫銉㈠亾閸偄娴€规洜鏁诲鎾閿涘嫬骞堥柣鐔哥矊闁帮綁濡撮崘顔煎耿婵炴垶鐟ユ禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁告捁椴哥换娑㈠醇閻旀帗鍨挎俊鐢稿礋椤栨稒娅嗘繝闈涘€搁幉锟狀敁瀹ュ洨纾藉ù锝堟鐢稓绱掔拠鑼ⅵ鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繑鎸抽弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏灩閻掓椽鏌涢幇鍏哥凹闁革綆鍙冨娲箰鎼达絺妲堢紓浣虹帛閿氭い顐㈢箰鐓ゆい蹇撳椤︻參姊洪懖鈹炬嫛闁告挻鐟ч弫顕€濡烽埡鍌楁嫼闂佸憡绺块崕杈ㄧ墡闂備胶绮〃鍡欏垝閹炬剚鍤曟い鎰跺瘜閺佸鏌嶈閸撶喖鎮伴鑺ュ劅闁靛⿵绠戝▓鐔兼⒑闂堟侗妲堕柛搴濆嵆瀹曠娀寮介鐔叉嫽婵炶揪绲介幗婊呯矓濞差亝鐓曢悗锝庝悍闊剛鈧娲樼划宀勫煡婢跺⿴娼╅弶鍫氭櫇閸樼娀姊绘担铏瑰笡闁搞劌澧庡﹢浣虹磽娴g瓔鍤欐俊顐g箞瀵鎮㈤搹鍦紲濠碘槅鍨靛▍锝夋偡閵娿儺娓婚柕鍫濇噺缁傚鏌涚€n亷韬€殿喖顭烽幃銏ゅ礈閸欏-褔鏌熼懖鈺勊夐悗娈垮墴閺佹劖寰勭€n亖鍋撻悽鍛婄厽闁靛繈鍊栧☉褔鎮介姘卞煟闁哄苯绉堕幏鐘诲蓟閵夈儱鍙婃俊銈囧Х閸嬫盯顢栨径鎰畺妞ゅ繐鐗嗗婵囥亜閺嶃劍鐨戦柛婵撴嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墕閳规垿鎮欓崣澶樻!闂佹悶鍔庨崰鏍х暦閹达箑绠婚柤鎼佹涧閺嬪倿姊洪崨濠冨闁告挻鐩弫宥咁潨閳ь剙顫忛搹鍦煓闁圭ǹ瀛╁畷鎶芥⒑鏉炴壆顦︽い顓犲厴閹即顢氶埀顒€鐣峰鈧崺锟犲礃閻愵剛銈梻浣筋嚙閸戠晫绱為崱娑樼;闁圭儤鍤﹀☉銏犵闁靛ǹ鍨洪弬鈧梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸濄儲宕叉慨妞诲亾鐎殿喛顕ч埥澶愬閻橀潧濮堕梻浣告啞閸斿繘寮插┑瀣庡洭濡歌绾捐棄霉閿濆洦鐒块柛蹇撹嫰椤儻顦虫い銊ワ攻娣囧﹪鎮界粙璺槹濡炪倖鐗徊楣冨疾濠靛鈷戦梻鍫熺〒缁犳岸鏌¢崨顔炬创鐎规洘绮撻弻鍡楊吋閸″繑瀚奸梻浣告贡鏋繛瀵稿厴閸╁﹪寮撮姀锛勫幈闂佸搫鍟犻崑鎾绘煟閻斿弶娅婇柟顔诲嵆椤㈡瑩鏌ㄩ姘闂佹寧绻傜花鑲╄姳閹绢喗鐓涢悗锝庝邯閸欏嫰鏌熼鏂よ€块柟顔界懇瀵爼骞嬮悩鍗炴瀳婵犵數濮伴崹濂革綖婢跺⊕鍝勎熼崗鐓庡簥濠电偞鍨堕悷锔剧礊閸ヮ剚鐓曢柟鐐殔鐎氼剚绂掕ぐ鎺撯拺闁告繂瀚烽崕娑樏瑰⿰鍛槐闁糕斁鍋撳銈嗗笂缁讹繝宕箛娑欑厱闁绘ê纾晶鐢告煙椤旂煫顏堝煘閹寸姭鍋撻敐搴濈敖闁告ɑ鎸冲铏规兜閸涱喖娑х紓浣哄У閸ㄨ绔熼弴銏犵闁兼祴鏅濋鏇㈡⒑绾懏褰х紓宥勭窔瀹曨偄煤椤忓懐鍘介梺鎸庣箓濞诧箑鈻嶉弴鐘电<閺夊牄鍔嶇亸浼存煙瀹勭増鍣烘い锔惧閹棃濡堕崶鈺佺倞闂傚倸鍊烽懗鑸电仚濡炪倖鍨甸幊姗€寮崘顔嘉у鑸瞪戦弲顏堟⒑閹稿海绠撴い锔跨矙瀵偊宕卞☉娆戝帗閻熸粍绮撳畷婊堟偄閻撳孩妲梺闈涚箚閸撴繈宕曢悢鍏肩厓闂佹鍨版禍楣冩⒑閸濆嫷鍎忛梺甯秮瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺濇晛閻忕偛褰炵换鍡涙煕濞嗗浚妲归悘蹇ラ檮閹便劍绻濋崟顓炵闂佺懓鍢查幊妯虹暦閵婏妇绡€闁稿本绋掗悾濂告⒒閸屾瑦绁扮€规洜鏁诲畷浼村幢濞戞ḿ锛熼梺姹囧灮鏋柡瀣╃窔閺屾盯骞囬棃娑欑亪闁搞儲鎸冲娲川婵犲嫮鐒肩紓浣插亾濞撴埃鍋撶€殿喗鐓¢幃鈺佺暦閸モ晝妲囬梻浣圭湽閸ㄨ棄岣胯閻楀孩绻濆▓鍨灍閼垦囨煕閺傝法鐒搁柟顕€绠栧畷褰掝敃閵堝洦鍤岄梻渚€鈧偛鑻晶瀛橆殽閻愭彃鏆欓摶鏍煕濞戝崬娅樻俊顐㈠暙閳规垿鎮欓弶鎴犱桓闂佽崵鍠嗛崕闈涱嚕閹惰棄閱囬柕澶涜吂閹疯櫣绱撴笟鍥х仭婵炲弶锚閳诲秹宕ㄧ€涙ḿ鍘辨繝鐢靛Т閸熶即骞楅崘顔界厽闊洦鎼╅崕鏃€鎱ㄦ繝鍛仩缂佽鲸甯掗~婊堝幢濡吋娈介梻鍌欒兌缁垶銆冮崼銉ョ;闁靛牆鎳愰弳锔戒繆閵堝懏濯奸柡浣告閺屾稓浠﹂崜褏鐓傞梺鎸庣⊕缁捇寮婚埄鍐ㄧ窞濠电姴瀚。鍫曟⒑閸涘﹥鐓ユ繛鎾棑閸掓帗绻濆顒傤啋缂傚倷鐒﹀玻鍧楀储閹剧粯鈷戦柤鎭掑剭椤忓煻鍥寠婢光晝鍠栭崺鈧い鎺戝閳锋垿鎮归崶锝傚亾閾忣偆浜炵紓鍌欑贰閸犳鎮烽妷鈺傚仼闁汇値鍨禍褰掓煙閻戞ḿ绠栭柡鍛箞濮婃椽妫冨☉姘暫缂備胶绮敮锟犲箚瀹€鍕櫢闁跨噦鎷�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮甸妵鍕即濡も偓娴滈箖姊洪崫鍕拱缂佸甯為幑銏犫攽鐎n亞顦板銈嗗坊閸嬫挻绻涢崼婵堢劯闁哄睙鍥ㄥ殥闁靛牆鎳嶅Σ鎰版⒑閸濆嫭婀版繛鑼枎閻g兘鎮℃惔妯绘杸闂佹悶鍎滅仦鎷樼喐绻濋悽闈浶fい鏃€鐗犲畷瑙勫閺夋嚦褔鏌熼梻瀵割槮闁藉啰鍠栭弻銊モ攽閸♀晜笑缂備胶濯寸紞渚€寮婚敐鍫㈢杸闁哄啠鍋撻柕鍥╁枎闇夋繝濠傚缁犳ḿ绱掗纰卞剰妞ゆ挸鍚嬪鍕節閸パ勬毆闂傚倷绀侀幖顐⒚洪妸鈺佺獥闁规崘顕ч崒銊╂煙闂傚鍔嶉柍閿嬪灴閺屾稑鈽夊鍫熸暰缂備讲鍋撻悗锝庡亞缁犳儳霉閿濆懎鏆辨繛璇х畵瀹曟劙宕奸弴鐔哄弳濠电娀娼уΛ娆撍夐悩鐢电<闁抽敮鍋撻柛瀣崌濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼骞橀鐣屽幈闂佸疇妗ㄧ粈渚€顢旈鐘亾鐟欏嫭绀冨畝锝呮健楠炴垿宕熼姣尖晝鎲歌箛娑樺偍妞ゆ巻鍋撻柍瑙勫灴閹晛鈻撻幐搴㈢槣婵犵鍓濊ぐ鍐箠濡櫣鏆︾憸鐗堝笚椤ュ牊绻涢幋鐐殿暡婵炲牓绠栧濠氬磼濮樺崬顤€婵炴挻纰嶉〃濠傜暦椤栫偛宸濇い鏂垮⒔閻﹀牓姊婚崒姘卞缂佸鎸婚弲鍫曞閵忋垺锛忛梺纭咁潐閸旀牠藟婢舵劖顥嗗鑸靛姈閻撱儲绻濋棃娑欘棡妞ゆ洘姘ㄩ幉鎼佹偋閸繄鐟ㄥ┑顔款潐閻擄繝寮婚敓鐘茬闁靛ě鍐炬澑闂備胶绮幐鎼佸疮娴兼潙绠熺紒瀣氨閸亪鏌涢锝囩畼妞は佸啠鏀介柣鎰綑閻忥妇鐥弶璺ㄐфい銏℃礋閹崇偤濡烽敃鈧鍨攽閳藉棗鐏ユ繛澶嬫礋瀹曞ジ顢旈崼鐔哄帗閻熸粍绮撳畷婊冣枎閹惧磭锛欓梺绉嗗嫷娈旂紒鐘靛█閺岋綁骞囬浣瑰創闁哥儐鍨跺娲箰鎼淬垻锛曢梺绋款儐閹瑰洭寮诲☉銏犳闁圭ǹ楠稿▓妤€鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗姂閸ㄧ顣介梻鍌氬€风粈渚€骞楀⿰鍫濈獥閹肩补妾紓姘舵煥閻斿搫孝缂佺姵鐗犻弻銊╂偄閸濆嫅銏ゆ煕濡や礁鈻曢柡宀嬬秮楠炲洭顢楅崒鍌︾秮閺岋綁鍩℃繝鍌滀桓濡ょ姷鍋涢崯鎶剿囬崷顓涘亾鐟欏嫭绀€闁靛牊鎮傞妴浣肝旈崨顓犲姦濡炪倖甯掔€氼剟鎯屽Δ鍛厸闁搞儮鏅涘暩缂佺偓宕樺Λ鍕箒闂佹寧绻傜€氼噣鎯屽▎鎾寸厱婵犻潧锕ラ鐘电磼鏉堛劌绗ч柟椋庡█楠炴捇骞掗幘鎼敳闁诲骸鍘滈崑鎾绘煥濠靛棛澧涚痪顓炵埣閺岀喐顦版惔鈾€鏋呴悗瑙勬穿缂嶄礁鐣烽幒鎴斿牚闁告劏鏅濇禍鏍磽閸屾瑦绁板鏉戞憸閺侇噣骞掗弴鐘辫埅闂傚倷鑳剁划顖炲垂闂堟耽娲Ω閳哄倸浠奸柡澶婄墑閸斿﹥绂嶅⿰鍕╀簻闁圭虎鍨版晶鑼棯椤撶偟鍩i柡宀€鍠栭幃鐑藉级濞嗗彞绱旈梻浣告贡閸樠呯礊婵犲倻鏆︽繝濠傜墕缁犳盯鏌涢幘鑼跺厡闁挎稓鍠撶槐鎾存媴娴犲鎽甸柣銏╁灲缁绘繂鐣风憴鍕╁亝闁告劑鍔庨ˇ銊╂倵閻熸澘顥忛柛鐘虫礈濡叉劙寮崼鐔哄幗闁瑰吋鐣崺鍕疮韫囨稒鐓曢柨婵嗛濞呭秶鈧娲橀崹鍨暦閻旂⒈鏁嶆慨妯哄船楠炴帡姊洪悷鏉挎倯闁伙綆浜畷婵嗙暆閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭⒑鐟欏嫬绀冩繛澶嬬☉閺嗏晠姊绘担鍝ユ瀮妞ゆ泦鍥ㄥ剹闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓熼柣鏃傚帶娴滀即鏌涢妶鍜佸剳缂佽鲸鎸婚幏鍛村礈閹绘帒澹夐梻浣规偠閸斿本鏅舵惔锝囩=闁规儳顕々鐑芥倵閿濆簼绨介柣顐㈠濮婅櫣绮欓幐搴㈡嫳缂備緡鍠栭懟顖炴偩閻戣棄唯闁冲搫鍊婚崢浠嬫煙閸忚偐鏆橀柛銊ヮ煼閸╁﹪寮撮悙鍨畷闂佹寧绻傞幊蹇涘磻閵夆晜鐓曢柍鐟扮仢閻忚尙鈧鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犲搫鈹戦悩鎰佸晱闁哥姵顨婇弫鍐煛閸涱厾顦┑顔角归鎰礊閺嶃劎绡€闁哄洨鍋涢弳鐐电磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿濠电姷鏁搁崑娑㈠触鐎n喗鍋¢柍杞拌兌閺嗭箓鏌曟竟顖楀亾闁稿鎹囬弫鎰償閳╁啰浜堕梻浣规偠閸婃洟鎳熼婵堜簷闂備焦瀵х换鍌炲箠鎼淬劌姹叉繛鍡樺灩绾惧ジ鏌e鈧ḿ褔寮稿☉銏$厸鐎光偓閳ь剟宕伴弽顓犲祦闁糕剝绋掗崑瀣煕椤愵偄浜濇い銉ヮ樀濮婂宕掑▎鎰偘闂佽法鍠嗛崕闈涚暦閹邦兘鏀介悗锝庝海閹芥洖鈹戦悙鏉戠仧闁搞劎鎳撻弫顕€姊绘担鐑樺殌闁宦板妿閹广垽宕掗悙鍙夎緢闂侀潧绶垫0浣虹泿闂備礁鎼崐褰掝敄濞嗗精锝夊箹娴e湱鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍鍛存婢舵劖鍊甸柨婵嗛娴滃墽绱掓潏銊ュ摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦归柟顔ㄥ洤骞㈡繛鎴炨缚閻ゅ洭鏌熼崗鑲╂殬闁告柨鐭傚畷娆撴偐瀹曞洨顔曢梺绯曞墲钃遍悘蹇庡嵆閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹤鐣烽崼鏇熸櫜闁稿本鐭竟鏇㈡⒑閹勭闁稿妫欑粋宥夊冀椤撶啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厸閻忕偠顕ф俊鑺ャ亜閵婏絽鍔︽鐐寸墬閹峰懘宕妷銉ョ闂傚倷娴囬~澶婄暦濮椻偓椤㈡俺顦寸紒顔碱煼閺佹劖寰勭€n剙寮抽梻浣告惈閸燁偊宕愭繝姘闁稿本绋掗崣蹇撯攽閻樻彃鈧綊宕戦妷锔藉弿濠电姴鍟妵婵嬫煛鐏炶姤鍤囬柟顔界懇閹崇姷鎹勬笟顖欑磾婵犵數濮幏鍐沪閼恒儳褰庨柣搴㈩問閸n噣宕戞繝鍌滄殾濠靛倻枪鍞梺鎸庢⒐閸庢娊鐛崼銉︹拺閻犲洩灏欑粻鎶芥煕鐎n偆銆掗柡渚囧櫍瀹曨偊宕熼崹顐㈠厞闂佽崵濞€缂傛艾鈻嶉敐澶嬫櫖婵炴垯鍨洪埛鎴︽煟閻斿憡绶查柍閿嬫⒒缁辨帡顢氶崨顓犱桓閻庢鍠楅悡锟犵嵁閺嶃劍濯撮柛锔诲幖瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷
相关话题/材料 鉴定 环境 化学 基因