Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis
WANG Yan-Hua1,2, XIE Ling1,2, YANG Bo1,2, CAO Yan-Ru1,2, LI Jia-Na,1,2,*1 College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
This study was supported by the Special Project of Chongqing People’s Livelihood Project.cstc2016shms-ztzx80020 the Project of Intellectual Base for Discipline Innovation in Colleges and Universities (“111” Project).B12006
Abstract Flowering is a prerequisite for successful sexual reproduction. Controlling of flowering time is important for crop production in different geographical regions. However, few information regarding flowering genes or their evolution at genome-wide level in Brassica napus has been reported. In this study, identification, characterization, evolutionary and expression analysis of flowering genes in oilseed rape were performed. In total, 1173 flowering-related genes classified into nine types and distributed unevenly on the chromosomes were identified at the genome level of Brassica napus. Compared with Brassica rapa (AA, 2n = 20) and Brassica oleraca (CC, 2n = 18), B. napus (AACC, 2n = 38) showed significantly enlarge number of flowering-related genes due to natural hybridization and chromosome doubling. Selective pressure analysis showed that the autonomous pathway genes had less selection pressure than the genes involved in sugar metabolic pathway, suggesting that some key flowering-related genes are relatively conserved between B. napus and Arabidopsis thaliana. The present study provides more information on the B. napus flowering pathways and sheds light on the evolutionary relationship of flowering-related genes between B. napus and A. thaliana. Keywords:Brassica napus;flowering genes;evolution;regulatory pathway;expression analysis
PDF (6309KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王艳花, 谢玲, 杨博, 曹艳茹, 李加纳. 甘蓝型油菜开花相关基因的鉴定及进化与表达分析[J]. 作物学报, 2019, 45(8): 1137-1145. doi:10.3724/SP.J.1006.2019.84159 WANG Yan-Hua, XIE Ling, YANG Bo, CAO Yan-Ru, LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis[J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145. doi:10.3724/SP.J.1006.2019.84159
开花是开花植物成功繁衍的前提。对于农作物而言, 开花时间适当是作物获得高产和优质的重要条件, 而且开花时间受环境影响比较大, 因此, 开花时间是一项重要的农艺指标, 对作物有性繁殖和高产具有重要影响。目前, 大多数影响作物开花时间的遗传组成和环境因子的信息都是从拟南芥研究中获得的[1]。开花时间受外界和自身信号调控[2], 受环境影响的光周期途径和环境温度途径, 受内部信号调控的自主开花途径、赤霉素途径和衰老途径的显著影响[1]。在拟南芥中有超过300个开花相关基因被鉴定(Flowering Interactive Database) [3]。这些基因参与自发途径、光周期、赤霉素、春化和内在因素(包括衰老和糖信号)途径五大开花通路[4]。尽管不同基因参与不同的通路, 但不同通路均受到FLOWERING LOCUS T (FT)、LEAFY (LFY)、FLOWERING LOCUS C (FLC)、SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)等几个关键基因的协同调控[5]。然而, 仅有很少的开花基因在重要作物中得到鉴定。基因组序列的释放和新的计算方法的开发为在基因组水平上鉴定开花相关基因提供了极大便利, 比如在萝卜和小麦中分别鉴定到254个和900个开花相关基因[6]。
利用本课题组前期完成的转录组数据(NCBI注册号为PRJNA358784)分析甘蓝型油菜开花相关基因的组织表达情况。利用软件Cufflinks[12]和TopHat2 [13]计算基因的表达量FPKM (fragments per kilobase of exon per million mapped reads)。利用软件MeV 4.9.0 (http://en.bio-soft.net/chip/MeV.html)展示表达热图。
2.3.2 春化和自发途径 许多植物都需要春化过程来诱导开花。大量研究证明FRIGIDA (FRI)基因和FLOWERING LOCUS C (FLC)基因在春化过程中起至关重要的作用[4]。作为开花抑制因子, FLC被FRI正向调控[21]。在甘蓝型油菜基因组内有9个FLC同源基因。同时, 在甘蓝和白菜基因组内分别检测到2个和1个FLC同源基因, 没有筛选到FRI基因。而且, 很多春化响应基因如VIN3、VRN1、VRN2、WRD5A、MSP3、VIL1和VIL3也在甘蓝、白菜和甘蓝型油菜基因组内被检测到。与春化途径相似, 自发途径基因如LUMINIDEPENDENS (LD)、FPA、FCA、FLOWERING LOCUS D (FLD)、REF6、FY、FLK和FVE通过抑制FLC的表达来间接诱导开花[22,23]。在甘蓝型油菜基因组内, 有461个基因属于自发途径。
Peng FY, HuZ, Yang RC . Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley , 2015,15:1-17. [本文引用: 2]
RamanH, RamanR, CoombesN, SongJ, PrangnellR, BandaranayakeC, TahiraR, SundaramoorthiV, KillianA, MengJ, Dennis ES, BalasubramanianS . Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola , 2016,39:1228-1239. DOI:10.1111/pce.12644URL [本文引用: 1]
XuL, HuK, ZhangZ, GuanC, ChenS, HuaW, LiJ, WenJ, YiB, ShenJ, MaC, TuJ, FuT . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.) , 2016,23:43-52. [本文引用: 1]
WangJ, QiuY, ChengF, ChenX, ZhangX, WangH, SongJ, DuanM, YangH, LiX . Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.) , 2017,18:981, doi: 10.1186/s12864-017-4377-z. [本文引用: 1]
LiangY, WanN, ChengZ, MoY, LiuB, LiuH, RaboanatahiryN, YinY, LiM . Whole-genome identification and expression pattern of the vicinal oxygen chelate family in rapeseed (Brassica napus L.) , 2017,8:745, doi: 10.3389/fpls.2017.00745. [本文引用: 1]
TrapnellC, RobertsA, GoffL, PerteaG, KimD, Kelley DR, PimentelH, Salzberg SL, Rinn JL, PachterL . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012,7:562-578. DOI:10.1038/nprot.2012.016 [本文引用: 1]
KimD, PerteaG, TrapnellC, PimentelH, KelleyR, Salzberg SL . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013,14:R36. DOI:10.1186/gb-2013-14-4-r36URL [本文引用: 1]
WenkelS, TurckF, SingerK, GissotL, Le GourrierecJ, SamachA, CouplandG . CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis , 2006,18:2971-2984. DOI:10.1105/tpc.106.043299URL [本文引用: 1]
Dong MA, Farre EM, Thomashow MF . Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis , 2011,108:7241-7246. DOI:10.1073/pnas.1103741108URL [本文引用: 1]
SawaM, Kay SA . GIGANTEA directly activates flowering locus T in Arabidopsis thaliana , 2011,108:11698-11703. [本文引用: 1]
Nagel DH, Doherty CJ, PrunedaP J L, SchmitzR J, EckerJ R, KayS A . Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis , 2015,112:4802-4810. DOI:10.1073/pnas.1513609112URL [本文引用: 1]
BaudryA, ItoS, Song YH, Strait AA, KibaT, LuS, HenriquesR, PrunedaP J L, ChuaN H, TobinE M, KayS A, ImaizumiT . F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression , 2010,22:606-622. DOI:10.1105/tpc.109.072843URL [本文引用: 1]
LouP, WuJ, ChengF, Cressman LG, WangX , McClung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa , 2012,24:2415-2426. [本文引用: 1]
JohansonU, WestJ, ListerC, MichaelsS, AmasinoR, DeanC . Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time , 2000,290:344-347. DOI:10.1126/science.290.5490.344URL [本文引用: 1]
NohB, Lee SH, Kim HJ, YiG, Shin EA, LeeM, Jung KJ, Doyle MR, Amasino RM, Noh YS . Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time , 2004,16:2601-2613. DOI:10.1105/tpc.104.025353URL [本文引用: 1]
Simpson GG . The autonomous pathway: epigenetic and post- transcriptional gene regulation in the control of Arabidopsis flowering time , 2004,7:570-574. DOI:10.1016/j.pbi.2004.07.002URL [本文引用: 1]
KimS, Soltis PS, WallK, Soltis DE . Phylogeny and domain evolution in the APETALA2-like gene family , 2006,23:107-120. DOI:10.1093/molbev/msj014URL [本文引用: 1]
Mitchum MG, YamaguchiS, HanadaA, KuwaharaA, YoshiokaY, KatoT, TabataS, KamiyaY, Sun TP . Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development , 2006,45:804-818. DOI:10.1111/tpj.2006.45.issue-5URL [本文引用: 1]
AriizumiT, MuraseK, Sun TP, Steber CM . Proteolysis- independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 , 2008,20:2447-2459. DOI:10.1105/tpc.108.058487URL [本文引用: 1]
AchardP, Vriezen WH, VanD S D, HarberdN P . Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function , 2003,15:2816-2825. DOI:10.1105/tpc.015685URL [本文引用: 1]
Thines BC, YounY, Duarte MI, Harmon FG . The time of day effects of warm temperature on flowering time involve PIF4 and PIF5 , 2014,65:1141-1151. DOI:10.1093/jxb/ert487URL [本文引用: 1]
Lee JH, Yoo SJ, Park SH, HwangI, Lee JS, Ahn JH . Role of SVP in the control of flowering time by ambient temperature in Arabidopsis , 2007,21:397-402. DOI:10.1101/gad.1518407URL [本文引用: 1]
YanY, ShenL, ChenY, BaoS, ThongZ, YuH . A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis , 2014,30:437-448. DOI:10.1016/j.devcel.2014.07.004URL [本文引用: 1]
DalchauN, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Goncalves JM, Webb AA . The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose , 2011,108:5104-5109. [本文引用: 1]
WahlV, PonnuJ, SchlerethA, ArrivaultS, LangeneckerT, FrankeA, FeilR, Lunn JE, StittM, SchmidM . Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana , 2013,339:704-707. [本文引用: 1]
Seo PJ, RyuJ, Kang SK, Park CM . Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis , 2011,65:418-429. DOI:10.1111/tpj.2011.65.issue-3URL [本文引用: 1]
Jung JH, Seo YH, Seo PJ, Reyes JL, YunJ, Chua NH, Park CM . The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis , 2007,19:2736-2748. DOI:10.1105/tpc.107.054528URL [本文引用: 1]
FujiwaraS, OdaA, YoshidaR, NiinumaK, MiyataK, TomozoeY, TajimaT, NakagawaM, HayashiK, CouplandG, MizoguchiT . Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis , 2008,20:2960-2971. DOI:10.1105/tpc.108.061531URL [本文引用: 1]
DingZ, Millar AJ, Davis AM, Davis SJ . TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock , 2007,19:1522-1536. [本文引用: 1]
TaoZ, ShenL, LiuC, LiuL, YanY, YuH . Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis , 2012,70:549-561. DOI:10.1111/tpj.2012.70.issue-4URL [本文引用: 1]
Wigge PA, Kim MC, Jaeger KE, BuschW, SchmidM, Lohmann JU, WeigelD . Integration of spatial and temporal information during floral induction in Arabidopsis , 2005,309:1056-1059. DOI:10.1126/science.1114358URL [本文引用: 1]
LeeH, Suh SS, ParkE, ChoE, Ahn JH, Kim SG, Lee JS, Kwon YM, LeeI . The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis , 2000,14:2366-2376. DOI:10.1101/gad.813600URL [本文引用: 1]